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CONNECTIONS ON NATURALLY REDUCTIVE SPACES, THEIR DIRAC
OPERATOR AND HOMOGENEOUS MODELS IN STRING THEORY

ILKA AGRICOLA

Abstract. Given a reductive homogeneous space M = G/H endowed with a naturally reductive
metric, we study the one-parameter family of connections ∇t joining the canonical and the Levi-
Civita connection (t = 0, 1/2). We show that the Dirac operator Dt corresponding to t = 1/3 is
the so-called “cubic” Dirac operator recently introduced by B. Kostant, and derive the formula for
its square for any t, thus generalizing the classical Parthasarathy formula on symmetric spaces.
Applications include the existence of a new G-invariant first order differential operator D on spinors
and an eigenvalue estimate for the first eigenvalue of D1/3. This geometric situation can be used
for constructing Riemannian manifolds which are Ricci flat and admit a parallel spinor with respect
to some metric connection ∇ whose torsion T �= 0 is a 3-form, the geometric model for the common
sector of string theories. We present some results about solutions to the string equations and give
a detailed discussion of some 5-dimensional example.
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1. Introduction

This paper proposes a differential geometric approach to some recent results from B. Kostant on
an algebraic object called ”cubic Dirac operator” ([Kos99]). The key observation is that one can
introduce a metric connection on certain homogeneous spaces whose torsion (viewed as a (0, 3)-tensor)
is 3-form such that the associated Dirac operator has Kostant’s algebraic object as its symbol. At the
same time, there has been recently a growing interest in connections with totally skew symmetric
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torsion for constructing models in string theory and supergravity. We show that the mentioned
class of homogeneous spaces yields interesting candidates for such solutions and use Dirac operator
techniques to prove some vanishing theorems.

In a first part of this paper, we consider a reductive homogeneous space M = G/H endowed with
a Riemannian metric that induces a naturally reductive metric 〈 , 〉 on m, where we set g = h ⊕ m.
The one-parameter family of G-invariant connections defined by

∇t
XY = ∇0

XY + t [X,Y ]m

joins the canonical (t = 0) and the Levi-Civita (t = 1/2) connection. Its torsion T (X,Y, Z) =
(2t − 1) · 〈[X,Y ]m, Z〉 is a 3-form. For an orthonormal basis Z1, . . . , Zn of m, it induces the third
degree element

H :=
3
2

∑
i<j<k

〈[Zi, Zj ]m, Zk〉Zi · Zj · Zk

inside the Clifford algebra C(m) of m. The fact that the Dirac operator associated with the connection
∇t may then be written as

Dtψ =
∑

i

Zi · Zi(ψ) + t ·H · ψ

suggested the name ”cubic Dirac operator” to B. Kostant. We will show that the main achievement
in [Kos99] was to realize that, for the parameter value t = 1/3, the square of Dt may be expressed in a
very simple way in terms of Casimir operators and scalars only ([Kos99, Thm 2.13], [Ste99, 10.18]). It
is a remarkable generalization of the well-known Parthasarathy formula for D2 on symmetric spaces
(Theorem 3.1 in this article, see [Par72]). In fact, S. Slebarski has already noticed independently
that the parameter value t = 1/3 has distinguished properties (see Theorem 1 and the introduction
in [Sle87a]). He uses it to prove a ”vanishing theorem” for the kernel of the twisted Dirac operator,
which can be easily recovered from Kostant’s formula (see [Lan00, Thm 4]). Although his articles
[Sle87a] and [Sle87b] contain several attempts to generalize Parthasarathy’s formula for D2, none of
them seems to come close to Kostant’s results. We shall compute the general expression for (Dt)2 in
Theorem 3.2 and show how it can be simplified for this particular parameter value in Theorem 3.3.
We emphasize one difference between our work and [Kos99]. While Kostant studies the algebraic
action of D1/3 as an element of U(g) ⊗ C(m) on L2-functions G → ∆m (the spinor representation),
we restrict our attention to spinors, i. e., L2-sections of the spinor bundle S = G ×

eAd ∆m. In
particular, this implies that one of the terms in the formula for (Dt)2 (the ”diagonally” embedded
Casimir operator of h) vanishes independently of t. An immediate consequence of Theorem 3.2 is
the existence of a new G-invariant first order differential operator

Dψ :=
∑
i,j,k

〈[Zi, Zj ]m, Zk〉Zi · Zj · Zk(ψ)

on spinors (Remark 3.4) that has no analogue on symmetric spaces. Furthermore, under some
additional hypotheses (the lifted Casimir operator Ωg has to be non negative) Theorem 3.3 yields
an eigenvalue estimate, which is discussed in Corollary 3.1.

In the second part of this paper, we use the preceding approach for studying the string equations
on naturally reductive spaces. Stated in a differential geometric way, one wants to construct a
Riemannian manifold (M, g) with a metric connection ∇ such that its torsion T �= 0 is a 3-form and
such that there exists at least one spinor field ψ satisfying the coupled system

Ric∇ = 0, δ(T ) = 0, ∇Ψ = 0, T · Ψ = 0 .

The number of preserved supersymmetries depends essentially on the number of ∇-parallel spinors.
For a general background on these equations, we refer to the article by A. Strominger [Str86],
where they appeared for the first time. Thus, if one looks for homogeneous solutions, the family
of connections ∇t yields canonical candidates for the desired connection ∇, and the results on the
associated Dirac operator can be used to discuss the solution space to these equations. We discuss
the significance of constant spinors (which do not always exist) in Theorem 4.2 and show that the
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last two string equations cannot have any solutions at all if the lifted Casimir operator Ωg is non
negative (Theorem 4.3). In order to discuss the first equation, we present a representation theoretical
expression for the Ricci tensor of the connection ∇t, which generalizes previous results by Wang and
Ziller (Theorem 4.4). The article ends with a thourough discussion of an example, namely, the
naturally reductive metrics on the 5-dimensional Stiefel manifold.

Although we rarely refer to it, this paper is in spirit very close (and in some sense complementary)
to a recent article by Friedrich and Ivanov ([FI01]). There, the authors study metric connections
with totally skew symmetric torsion preserving a given geometry.

Thanks. I am grateful to Thomas Friedrich (Humboldt-Universität zu Berlin) for many valuable
discussions on the topic of this paper. My thanks are also due to the Erwin-Schrödinger Institute in
Vienna and the Max-Planck Institute for Mathematics in the Natural Sciences in Leipzig for their
hospitality.

2. A family of connections on naturally reductive spaces

Consider a Riemannian homogeneous space M = G/H . We suppose that M is reductive, i. e., the
Lie algebra g of G may be decomposed into a vector space direct sum of the Lie algebra h of H and
an Ad (H)-invariant subspace m such that g = h⊕m and Ad (H)m ⊂ m. We identify m with T0M by
the map X 	→ X∗

0 , where X∗ is the Killing vector field on M generated by the one parameter group
exp(tX) acting on M . We pull back the Riemannian metric 〈 , 〉0 on T0M to an inner product 〈 , 〉
on m. Let Ad : H → SO(m) be the isotropy representation of M . By a theorem of Wang ([KN96,
Ch. X, Thm 2.1]), there is a one-to-one correspondence between the set of G-invariant metric affine
connections and the set of linear mappings Λm : m → so(m) such that

Λm(hXh−1) = Ad (h)Λm(X)Ad (h)−1 for X ∈ m and h ∈ H .

Its torsion and curvature are then given for X,Y ∈ m by ([KN96, Ch. X, Prop. 2.3])

T (X,Y ) = Λm(X)Y − Λm(Y )X − [X,Y ]m,
R(X,Y ) = [Λm(X),Λm(Y )] − Λm([X,Y ]m) − Ad ([X,Y ]h) ,

where the Lie bracket is split into its m and h part, [X,Y ] = [X,Y ]m + [X,Y ]h.

Lemma 2.1. The (0, 3)-tensor corresponding to the torsion (X,Y, Z ∈ m)

T (X,Y, Z) := 〈T (X,Y ), Z〉
is totally skew symmetric if and only if the map Λm satisfies for all X,Y, Z ∈ m the invariance
condition

〈Λm(X)Y, Z〉 + 〈Λm(Z)Y,X〉 = 〈[X,Y ]m, Z〉 + 〈[Z, Y ]m, X〉 .
Proof. The antisymmetry of T (X,Y, Z) in X and Z is equivalent to

〈Λm(X)Y, Z〉+ 〈Λm(Z)Y,X〉 − 〈Λm(Y )X,Z〉 − 〈Λm(Y )Z,X〉 − 〈[X,Y ]m, Z〉 − 〈[Z, Y ]m, X〉 = 0 .

The third and fourth term cancel out each other by the assumption that Λm(Y ) lies in so(m), since
this means that the endomorphism Λm(Y ) is skew symmetric with respect to the inner product of
m. �

For a general map Λm, this is all one can say. We are interested in the one parameter family of
connections defined by

Λt
m(X)Y := t · [X,Y ]m .

It is well known that t = 0 corresponds to the canonical connection ∇0, which, by the Ambrose-
Singer theorem, is the unique metric connection on M such that its torsion and curvature are
parallel, ∇0T 0 = ∇0R0 = 0. By Lemma 2.1, the torsion of ∇0 is a 3-form if and only if M is
naturally reductive.
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Definition 2.1. A homogeneous Riemannian metric on M is said to be naturally reductive (with
respect to G) if the map [X,−]m : m → m is skew symmetric,

〈[X,Y ]m, Z〉 + 〈Y, [X,Z]m〉 = 0 for all X,Y, Z ∈ m .

Note that if G1 ⊂ G2 are two transitive groups of isometries of M , then the properties of being
naturally reductive with respect to G1 and G2 are independent of each other.

Remark 2.1. Under the assumption that M is naturally reductive, the right-hand side in the
criterion of Lemma 2.1 vanishes, and the remaining condition may be restated – using the skew
symmetry of Λm(X) and Λm(Z) – as 〈Y,Λm(X)Z + Λm(Z)X〉 = 0. Since this equation has to hold
for all X,Y and Z in m, we obtain that the torsion is a 3-form if and only if Λm(X)X = 0 for all
X ∈ m.

If M is naturally reductive, then the torsion of the family ∇t of connections is given by the simple
expression

T t(X,Y ) = (2t− 1) [X,Y ]m .

One sees that the Levi-Civita connection is attained for t = 1/2. The general formula for the
connection ∇t is

(1) ∇t
XY = ∇0

XY + t [X,Y ]m .

Notice that for a symmetric space, [m,m] ⊂ h, so all connections of this one-parameter family coincide
and are equal to the Levi-Civita connection.

Assumption 2.1. We will assume that M = G/H is naturally reductive with respect to G.

We begin by computing a few characteristic entities for this family of connections, which will be
needed in the subsequent sections. We start by recalling a theorem of B. Kostant.

Theorem 2.1 ([Kos56]). Suppose G acts effectively on M = G/H. If the inner product 〈 , 〉 is
naturally reductive with respect to G, then g̃ := m + [m,m] is an ideal in g whose corresponding
subgroup G̃ ⊂ G is transitive on M , and there exists a unique Ad (G̃) invariant, symmetric, non
degenerate, bilinear form Q on g̃ (not necessarily positive definite) such that

Q(h ∩ g̃,m) = 0 and Q|m = 〈 , 〉 ,
where h ∩ g̃ will be the isotropy algebra in g̃. Conversely, if G is connected, then, for any Ad (G)
invariant, symmetric, non degenerate, bilinear form Q on g, which is non degenerate on h and
positive definite on m := h⊥, the metric on M defined by Q|m is naturally reductive. In this case,
g = g̃. �
Assumption 2.2. We shall assume from now on that G acts transitively on M (thus, g = g̃) and
use the Ad (G) invariant extension Q of the inner product 〈 , 〉 as well as its restriction Q|h =: Qh

to h where needed without further comment.

Lemma 2.2. The curvature of the connection ∇t is given by

Rt(X,Y )Z = t2 [X, [Y, Z]m]m + t2 [Y, [Z,X ]m]m + t [Z, [X,Y ]m]m + [Z, [X,Y ]h] .

If Zi, . . . , Zn is an orthonormal basis of m, the Ricci tensor and the scalar curvature are

Rict(X,Y ) =
∑

i

(t− t2) 〈[X,Zi]m, [Y, Zi]m〉 +Qh([X,Zi], [Y, Zi])

Scalt =
∑
i,j

(t− t2) 〈[Zi, Zj ]m, [Zi, Zj]m〉 +Qh([Zi, Zj ], [Zi, Zj ]) .

Proof. The formula for the curvature follows immediately from the general formula given before. In
particular, it implies〈

Rt(X,Z)Z, Y
〉

= (t− t2) 〈[X,Z]m, [Y, Z]m〉 + 〈[Z, [X,Z]h], Y 〉 .
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Using the Ad (G) invariant extension Q of the inner product 〈 , 〉 and the fact that m is then
perpendicular to h, we may rewrite the latter term as

〈[Z, [X,Z]h], Y 〉 = Q([Z, [X,Z]h], Y ) = Q([X,Z]h, [Y, Z]) = Qh([X,Z], [Y, Z]) .

Thus, we obtain 〈
Rt(X,Z)Z, Y

〉
= (t− t2)Qm([X,Z], [Y, Z]) +Qh([X,Z], [Y, Z])

and the formula for the Ricci tensor by Rict(X,Y ) =
∑ 〈Rt(X,Zi)Zi, Y 〉. The expression for the

scalar curvature is obtained by contraction relative to X and Y . �

At a later stage, we will give a further expression for the Ricci tensor due to Wang and Ziller
([WZ85]). For the time being, we observe that the connection with t = 1 has also special properties,
for example, it has the same Ricci tensor than the canonical connection. This is why we propose to
call it the anticanonical connection. We compute the covariant derivative of the torsion tensor.

Lemma 2.3. As a map m × m → m, the covariant derivative of T is

(∇t
ZT

t)(X,Y ) = t(2t− 1)
(
[X, [Y, Z]m]m + [Y, [Z,X ]m]m + [Z, [X,Y ]m]m

)
.

Proof. By definition, the covariant derivative is given by

(∇t
ZT

t)(X,Y ) = ∇t
Z(T t(X,Y )) − T t(∇t

ZX,Y ) − T t(X,∇t
ZY ) .

We insert the expression for ∇t from equation (1)

(∇t
ZT

t)(X,Y ) = ∇0
Z(T t(X,Y )) + t[Z, T t(X,Y )]m − T t(∇0

ZX + t[Z,X ]m, Y )
−T t(X,∇0

ZY + t[Z, Y ]m)
= ∇0

Z(T t(X,Y )) − T t(∇0
ZX,Y ) − T t(X,∇0

ZY )
+t(2t− 1)

(
[X, [Y, Z]m]m + [Y, [Z,X ]m]m + [Z, [X,Y ]m]m

)
.

But the third line may be rewritten as −(2t−1)(∇0
ZT

0)(X,Y ), which vanishes by the Ambrose-Singer
theorem. �

For the first time we encounter here an expression that will play an important role at different places.
Let us define

Jacm(X,Y, Z) := [X, [Y, Z]m]m + [Y, [Z,X ]m]m + [Z, [X,Y ]m]m ,
Jach(X,Y, Z) := [X, [Y, Z]h] + [Y, [Z,X ]h] + [Z, [X,Y ]h] .

Notice that the summands of Jach(X,Y, Z) automatically lie in m by the assumption that M is re-
ductive. The Jacobi identity for g implies 〈Jacm(X,Y, Z) + Jach(X,Y, Z),m〉 = 0. As the connection
∇t is metric, the covariant derivatives of T viewed as a (0, 3)- resp. (1, 2)-tensor are related by

(2) (∇t
ZT

t)(X,Y, V ) =
〈
(∇t

ZT
t)(X,Y ), V

〉
= t(2t− 1) 〈Jacm(X,Y, Z), V 〉 .

For completeness, we recall the formula for the exterior derivative of a differential form in terms of
a connection with torsion.

Lemma 2.4. If ω is an r-form, then

(dω)(X0, . . . , Xr) =
r∑

i=0

(−1)i(∇Xiω)(X0, . . . , X̂i, . . . , Xr)

−
∑

0≤i<j≤r

(−1)i+jω(T (Xi, Xj), X0, . . . , X̂i, . . . , X̂j , . . . , Xr) .
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Proof. We start with the general formula for the derivative of an r-form ω (see, for example, [KN91,
Prop. 3.11]),

(dω)(X0, . . . , Xr) =
r∑

i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xr))

+
∑

0≤i<j≤r

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j , . . . , Xr) .

In the first line, we express every summand in terms of the covariant derivative of ω, i. e.,

Xi(ω(X0, . . . , X̂i, . . . , , Xr)) = (∇Xiω)(X1, . . . , Xr) + ω(∇XiX0, . . . , X̂i, . . . , Xr) + . . .+
+ ω(X0, X1, . . . ,∇XiXr) .

A simple rearrangement of terms together with the definition T (X,Y ) = ∇XY − ∇YX − [X,Y ] of
the torsion yields the result. �

Lemma 2.5. The codifferential of the 3-form T t vanishes, δT t = 0, while its outer derivative is
given by dT t(X,Y, Z, V ) = 2(2t− 1) · 〈Jacm(X,Y, Z), V 〉.
Proof. For the first claim, one deduces from equation (2) that X ∇t

XT
t = 0. Then it follows for

the orthonormal basis Zi, . . . , Zn of m that

δtT t =
n∑

i=1

Zi ∇t
Zi
T t = 0 .

In particular, the divergence of T with respect to ∇t coincides with its Riemannian divergence (a
more general fact, see [FI01]), δtT t = δ1/2T t = 0. Hence we shall drop the superscript, as we did
in the statement of the lemma. The second claim follows from Lemma 2.4 by a simple algebraic
computation. �

Remark 2.2. We finish this section with a remark about the connection between the torsion and
the Lie algebra structure. If some torsion 3-form T is given as a fundamental datum and is to be the
torsion of the canonical connection of some space with naturally reductive metric, then the m-part
of the commutators [m,m] may be reconstructed by

[X,Y ]m = −
∑

i

T (X,Y, Zi)Zi .

This formula is fundamental for the point of view taken in the article [Kos99] (formula 1.23). The
full Lie algebra structure of g can now be viewed as consisting of the torsion 3-form, the isotropy
representation and the subalgebra structure of h, with some compatibility condition resulting from
the Jacobi identity. This point of view will be useful in the last section, where we will study examples.

3. The Dirac operator of the family of connections ∇t

3.1. General remarks and formal self adjointness. Assume that there exists a homogeneous
spin structure on M , i. e., a lift Ãd : H → Spin(m) of the isotropy representation such that the
diagram

Spin(m)

�
�

�
�

�
Ãd

�

H
Ad� SO(m)

λ

�

commutes, where λ denotes the spin covering. Moreover, we denote by ãd the corresponding lift
into spin(m) of the differential ad : h → so(m) of Ad . Let κ : Spin(m) → GL(∆m) be the spin
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representation, and identify sections of the spinor bundle S = G×
eAd ∆m with functions ψ : G→ ∆m

satisfying
ψ(gh) = κ(Ãd (h−1))ψ(g) .

For any G invariant connection defined by a map Λm : m → so(m), we consider its lift Λ̃m : m →
spin(m), which is given by Λ̃m := dλ−1 ◦ Λm. Then the the covariant derivative on spinors may be
expressed as ([Ike75, Lemma 2])

(3) ∇Zψ = Z(ψ) + Λ̃m(Z)ψ

and thus the Dirac operator associated with this connection has the form

(4) Dψ =
∑

i

Zi · Zi(ψ) + Zi · Λ̃m(Zi)ψ ,

where Z1, . . . , Zn denotes any orthonormal basis of m. In the same article, Ikeda states a criterion for
the formal self adjointness of this operator. We restate the result here, since there is some confusion
about the assumptions on the scalar product in the original version.
Proposition 3.1. Let M = G/H be a homogeneous reductive manifold with a homogeneous spin
structure, 〈 , 〉 the scalar product on m induced by the Riemannian metric on M , and ∇ the G
invariant metric connection defined by some map Λm : m → so(m). Then the Dirac operator D
associated with the connection ∇ is formally self adjoint if and only if for any vector X ∈ m and any
orthonormal basis Z1, . . . , Zn of m, one has

(∗)
∑

i

〈Λm(Zi)X,Zi〉 =
∑

i

〈[Zi, X ]m, Zi〉 .

In particular, this condition is always satisfied if the torsion T (X,Y, Z) is totally skew symmetric.
If the metric 〈 , 〉 is in addition naturally reductive, condition (∗) is equivalent to

∑
Λm(Zi)Zi = 0.

Proof. By a result of Friedrich and Sulanke ([FS79]), the Dirac operator D∇ associated with any
metric connection ∇ is formally self adjoint if and only if the ∇-divergence of any vector X coincides
with its Riemannian divergence,

div∇(X) :=
∑

i

〈Zi,∇ZiX〉 =
∑

i

〈
Zi,∇LC

Zi
X

〉
=: div(X) ,

where ∇LC denotes the Levi-Civita connection. But for any vector X , the covariant derivatives are
related by

∇ZiX = ∇LC
Zi
X +

1
2
T (Zi, X) ,

thus equality of divergences holds if and only if∑
i

〈T (Zi, X), Zi〉 = 0 .

Inserting the general formula for the torsion and using the fact that 〈Λm(X)Zi, Zi〉 = 0, one checks
that this is equivalent to condition (∗). Since 〈T (Zi, X), Zi〉 = T (Zi, X, Zi), condition (∗) is always
fulfilled if the (0, 3)-tensor T is totally skew symmetric. Alternatively, one easily deduces equation (∗)
from the antisymmetry condition in Lemma 2.1 by a contraction. Finally, if the metric is naturally
reductive, the right-hand side of (∗) vanishes, and by the antisymmetry of Λm(Zi) one obtains
〈X,∑Λm(Zi)Zi〉 = 0. This finishes the proof. �

Returning to the family ∇t, our aim is to rewrite the connection term of the Dirac operator in
equation (4) as an element of the Clifford algebra C(m). Basically this amounts to the identification
of spin(m) with the elements of second degree in C(m). We implement the Clifford relations via
Zi · Zj + Zj · Zi = −δij , in contrast to [Kos99] (see [Fri00] for notational details). The following
lemma due to Parthasarathy expresses the lift of the isotropy representation as an element of the
Clifford algebra.
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Lemma 3.1 ([Par72, 2.1]). For any element Y in h, one has

ãd (Y ) =
1
4

n∑
i,j=1

〈[Y, Zi], Zj〉Zi · Zj .

�
Similarly, any skew symmetric map Λm(X) : m → m may be expanded in the standard basis Eij of
so(m) as

Λm(X) =
∑
i<j

〈Λm(X)Zi, Zj〉Eij .

Since Eij lifts to Zi ·Zj/2 in the Clifford algebra, we obtain in complete analogy to the Parthasarathy
Lemma:

Lemma 3.2. For any map Λm : m → so(m), one has

Λ̃m(X) =
1
2

∑
i<j

〈Λm(X)Zi, Zj〉Zi · Zj =
1
4

∑
i,j

〈Λm(X)Zi, Zj〉Zi · Zj .

�
In particular, the image of Λ1

m(Zi) = [Zi,−]m in C(m) may be written

Λ̃1
m(Zi) =

1
4

∑
j,k

〈[Zi, Zj ]m, Zk〉Zj · Zk .

Thus, by defining the element

H :=
n∑

i=1

Zi · Λ̃1
m(Zi) =

1
4

∑
i,j,k

〈[Zi, Zj ]m, Zk〉Zi · Zj · Zk =
3
2

∑
i<j<k

〈[Zi, Zj ]m, Zk〉Zi · Zj · Zk ,

we can rewrite the Dirac operator corresponding to the connection ∇t from equation (4) as

(5) Dtψ =
∑

i

Zi · Zi(ψ) + t ·H · ψ .

Remark 3.1. We identify differential forms with elements of the Clifford algebra by∑
i1<...<ir

ω1...r Zi1 ∧ . . . ∧ Zir 	−→
∑

i1<...<ir

ω1...r Zi1 · . . . · Zir .

Thus, the torsion form T t(X,Y, Z) = (2t− 1) 〈[X,Y ]m, Z〉 induces the element

T t = (2t− 1)
∑

i<j<k

〈[Zi, Zj ]m, Zk〉Zi · Zj · Zk

of the Clifford algebra, which differs from H only by a numerical factor,

T t =
2(2t− 1)

3
H .

The simplicity of equation (5) is the main reason why we prefer to work with the element H instead
of T t.

3.2. The cubic element H, its square and the Casimir operator. It is the cubic element H
inside the Clifford algebra C(m) which suggested the name ”cubic Dirac operator” to B. Kostant. We
see that the fact that H is of degree 3 inside C(m) does not depend on the particular choice for Λm.
The square of H will play an eminent role in our considerations, both for a Kostant-Parthasarathy
type formula and for general vanishing theorems. Notice that the square of any element of degree 3
inside C(m) has only terms of degree zero and 4.
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Proposition 3.2. The terms of degree zero and 4 of H2 are given by

(H2)0 =
3
8

∑
i,j

〈[Zi, Zj]m, [Zi, Zj ]m〉 ,

(H2)4 = −9
2

∑
i<j<k<l

〈Zi, Jacm(Zj , Zk, Zl)〉Zi · Zj · Zk · Zl .

The first formula is valid for all n ≥ 3, while the second holds only for n ≥ 5. For n = 3, 4, one has
(H2)4 = 0.

Proof. The contributions of degree zero inH2 are exactly the squares of the summands ofH . Because
of (Zi · Zj · Zk)2 = 1, we have

(H2)0 =
9
4

∑
i<j<k

〈[Zi, Zj ]m, Zk〉2 =
9
24

∑
i,j,k

〈[Zi, Zj]m, Zk〉 〈[Zi, Zj ]m, Zk〉 .

For fixed i, j, the sum over k is the coordinate expansion of the scalar product 〈[Zi, Zj ]m, [Zi, Zj]m〉,
thus

(H2)0 =
3
8

∑
i,j

〈[Zi, Zj ]m, [Zi, Zj]m〉 ,

as claimed. Contributions of degree 4 occur if Zi ·Zj ·Zk is multiplied by Zi′ ·Zj′ ·Zk′ with exactly
one common index. Since this requires at least 5 different indices, it follows that there are no terms
of fourth degree for n ≤ 4. For the moment, put aside the overall factor 9/4 of H2. We explain the
occurrence of the term proportional to Z1234 := Z1 ·Z2 ·Z3 ·Z4 in detail, the others are obtained in
a similar way. Since H consists of ordered tuples proportional to Zijk := Zi · Zj · Zk, i < j < k, the
only way to obtain a term in Z1234 is to multiply Z12k by Z34k, Z13k by Z24k and Z14k by Z23k for
any index k ≥ 5. First we notice that the order of multiplication is irrelevant, since

Z12k · Z34k = Z34k · Z12k, Z13k · Z24k = Z24k · Z13k, and Z14k · Z23k = Z23k · Z14k .

Every term will thus have multiplicity two. In the next step, these products have to be rearranged
in order to be proportional to Z1234:

Z12k · Z34k = −Z1234, Z13k · Z24k = +Z1234, Z14k · Z23k = −Z1234 .

The total contribution coming from the products Z12k by Z34k is thus

(∗) := −2Z1234

∑
k≥5

〈[Z1, Z2]m, Zk〉 〈[Z3, Z4]m, Zk〉 .

This is equal to the sum over all k, since the additional terms are zero. However, it shows that the
sum is precisely the expansion of the scalar product 〈[Z1, Z2]m, [Z3, Z4]m〉:

(∗) = −2Z1234

n∑
k=1

〈[Z1, Z2]m, Zk〉 〈[Z3, Z4]m, Zk〉 = −2Z1234 〈[Z1, Z2]m, [Z3, Z4]m〉 .

After a similar simplification of the other two contributions, the fourth degree term in H2 propor-
tional to Z1234 is finally equal to

(∗∗) := 2 [−〈[Z1, Z2]m, [Z3, Z4]m〉 + 〈[Z1, Z3]m, [Z2, Z4]m〉 − 〈[Z1, Z4]m, [Z2, Z3]m〉] · Z1234 .

This, in turn, may be rewritten as

(∗∗) = −2 〈Z1, Jacm(Z2, Z3, Z4)〉 · Z1234 .

Putting back in the factor 9/4, we get the factor −9/2 as stated in the lemma. �

For later reference, we compute the anticommutator of H with an element Zl for arbitrary l.

Lemma 3.3. For any l, one has H · Zl + Zl ·H = − 3
2

∑
i,j

〈Zl, [Zi, Zj ]m〉Zi · Zj.
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Proof. By definition,

H · Zl + Zl ·H =
1
4

∑
i,j,k

〈[Zi, Zj ]m, Zk〉
(
Zi · Zj · Zk · Zl + Zl · Zi · Zj · Zk) .

If all four indices i, j, k, l are pairwise different,

Zi · Zj · Zk · Zl = −Zl · Zi · Zj · Zk,

and the corresponding summand vanishes. Thus, the sum may be split into those parts where l is
one of the indices i, j and k, respectively:

H · Zl + Zl ·H =
1
4

∑
j,k

〈[Zl, Zj ]m, Zk〉
(
Zl · Zj · Zk · Zl + Zl · Zl · Zj · Zk)

+
1
4

∑
i,k

〈[Zi, Zl]m, Zk〉
(
Zi · Zl · Zk · Zl + Zl · Zi · Zl · Zk)

+
1
4

∑
i,j

〈[Zi, Zj]m, Zl〉
(
Zi · Zj · Zl · Zl + Zl · Zi · Zj · Zl) .

We simplify the mixed products to get

H · Zl + Zl ·H = −1
2

∑
j,k

〈[Zl, Zj ]m, Zk〉Zj · Zk +
1
2

∑
i,k

〈[Zi, Zl]m, Zk〉Zi · Zk

− 1
2

∑
i,j

〈[Zi, Zj]m, Zl〉Zi · Zj .

Using the invariance property of the scalar product and renaming the summation indices, this is
easily seen to be the desired expression. �
Finally, we compute the image of the quadratic Casimir operator of h inside the Clifford algebra.
Since the Ad (G) invariant extension Q of 〈 , 〉 is not necessarily positive definite when restricted to
h, it is more appropriate to work with dual rather than with orthonormal bases. So pick bases Xi, Yi

of h wich are dual with respect to Qh, i. e., Qh(Xi, Yj) = δij . The lift of the Casimir operator of h
is defined as

C̃h = −
∑

i

ãd (Xi) ◦ ãd (Yi) .

By the Parthasarathy Lemma (Lemma 3.1),

ãd (Xi) =
1
4

∑
j,k

〈[Xi, Zj ], Zk〉Zj · Zk

and similarly for ãd (Yi). Thus,

C̃h = − 1
16

∑
i

∑
j,k,l,p

〈[Xi, Zj], Zk〉 〈[Yi, Zl], Zp〉Zj · Zk · Zl · Zp .

We may get rid of the sum over i immediately. Since m is orthogonal to h, we can rewrite C̃h as

C̃h = − 1
16

∑
i

∑
j,k,l,p

Q([Xi, Zj], Zk)Q([Yi, Zl], Zp)Zj · Zk · Zl · Zp

= − 1
16

∑
i

∑
j,k,l,p

Q(Xi, [Zj, Zk])Q(Yi, [Zl, Zp])Zj · Zk · Zl · Zp .

For fixed j, k, l and p, the sum over i is again the expansion of the h part of Q([Zj , Zk], [Zl, Zp]),
yielding

(6) C̃h = − 1
16

∑
j,k,l,p

Qh([Zj , Zk], [Zl, Zp])Zj · Zk · Zl · Zp .
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This expression has the advantage that it does not contain the dual bases Xi, Yi any more. It turns
out that C̃h has no second degree term, for such a term would occur if the two index pairs (j, k)
and (l, p) had exactly one common index, for example, j = l. But such a term would appear twice,
namely, as Zj · Zk · Zj · Zp and as Zj · Zp · Zj · Zk, and these cancel out each other.

Proposition 3.3. The terms of degree zero and 4 of C̃h are given for all n ≥ 3 by

(C̃h)0 =
1
8

∑
i,j

Qh([Zi, Zj], [Zi, Zj]) ,

(C̃h)4 = −1
2

∑
i<j<k<l

〈Zi, Jach(Zj , Zk, Zl)〉Zi · Zj · Zk · Zl .

In particular, (C̃h)4 vanishes identically for n ≤ 3, but not for n = 4.

Proof. As the form of the result suggests, the proof is similar to the computation of H2 (Proposi-
tion 3.2). This is why we shall be brief. For the zero degree term, (j, k) = (l, p), and each term of
this kind appears twice, thus

(C̃h)0 = −1
8

∑
i,j

Qh([Zi, Zj], [Zi, Zj ])Zi · Zj · Zi · Zj .

Since Zi · Zj · Zi · Zj = −1, we obtain the first part of the proposition. For the fourth degree
contribution, rewrite the Casimir operator as

(7) C̃h = −1
4

∑
j<k,l<p

Qh([Zj , Zk], [Zl, Zp])Zj · Zk · Zl · Zp .

Then the index pairs (j, k) and (l, p) have to be completely disjoint. Agein we look only at the term
that is proportional to Z1234 := Z1 ·Z2 ·Z3 ·Z4. It may be obtained by multiplying Z12 by Z34, Z13

by Z24 and Z14 by Z23. Again, these elements commute, so we only need to consider each product
in the order of multiplication just given and count it twice. Restoring the order of indices in these
products, one sees that the term in (C̃h)4 proportional to Z1234 looks like

(∗) := −2
4

[Qh([Z1, Z2], [Z3, Z4]) −Qh([Z1, Z3], [Z2, Z4]) +Qh([Z1, Z4], [Z2, Z3])] · Z1234 .

By the properties of Q, the first scalar product may be formulated differently:

Qh([Z1, Z2], [Z3, Z4]) = Q([Z1, Z2], [Z3, Z4]h) = Q(Z1, [Z2, [Z3, Z4]h]) .

Rewriting the other two products in a similar way, we see that

(∗) = −1
2
Q(Z1, Jach(Z2, Z3, Z4)) · Z1234 .

�

3.3. A Kostant-Parthasarathy type formula for (Dt)2. If M = G/H is a symmetric space,
it is well known that besides the general Schrödinger-Lichnerowicz formula for D2, which is valid
on any Riemannian manifold, there exists a formula expressing D2 in terms of Casimir operators
due to Parthasarathy (see also [Kos99, Remark 1.63]). The Dirac operator D is defined relative to
the Levi-Civita connection, which coincides with our one-parameter family ∇t, and 〈 , 〉 denotes
an Ad (G) invariant scalar product on g whose restriction to m is positive definite. Let Scal be the
scalar curvature of the symmetric space M and ΩG the Casimir operator of G, viewed as a second
order differential operator.
Theorem 3.1 ([Par72, Prop.3.1], [Fri00, Ch. 3]). On a symmetric space M = G/H, one has

D2 = ΩG +
1
8
Scal ,

and the scalar curvature may be rewritten as Scal = 8 · (〈�g, �g〉 − 〈�h, �h〉).
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This formula is the starting point for vanishing theorems, the realization of discrete series representa-
tions in the kernel of D, and it allows the computation of the full spectrum of D on M . If we now go
back to the situation studied in this article, i. e., a reductive homogeneous space G/H endowed with
a naturally reductive metric 〈 , 〉 on m, then, a priori, the steps in the proof of Theorem 3.1 cannot
be performed any longer. To prove a Kostant-Parthasarathy type formula in this situation, we recall
the general expression for the Dirac operator associated with the connection ∇t from equation (5)
and split it into the terms coming from the canonical connection and the 3-form H , respectively:

(8) Dtψ =
∑

i

Zi · Zi(ψ) + Zi · Λ̃t
m(Zi)ψ =: D0ψ +Dt

Hψ .

First, notice that the equivariance property of spinors implies that the action on spinors of vector
fields coming from m is by “true” differential operators, while the action of vector fields in h is in
fact purely algebraic.
Lemma 3.4. Let ψ be a spinor, i. e., a section in S = G×

eAd ∆m and X an element of h, identified
with the left invariant vector field it induces. Then

X(ψ) = −ãd (X) · ψ ,
where ãd (X) · ψ denotes the Clifford product of the spinor ψ with the element ãd (X) ⊂ spin(m) ⊂
C(m).

Proof. We identify ψ with a map ψ : G → ∆m such that ψ(gh) = κ(Ãd (h−1))ψ(g) for all g ∈ G
and h ∈ H . Then one has

Xψ(g) =
d

ds
ψ(gesX)

∣∣
s=0

=
d

ds
κ(Ãd (e−sX))ψ(g)

∣∣
s=0

= −κ(ãd (X))ψ(g) .

Thus, X(ψ) = −κ(ãd (X))ψ = −ãd (X) · ψ, as claimed. �

Remark 3.2. In [Kos99, Section 2] and [Ste99, Chapter 10.5], the map assigning to X ∈ h the sum

X(−) + ãd (X) · −
is called the “diagonal” map from h to U(g) ⊗ C(m). The assumption that the action is on spinors
thus implies that this diagonal map is equal to zero. In particular, the diagonal Casimir operator of
h vanishes in the formula for (Dt)2.
Proposition 3.4. The square of D0, the Dirac operator corresponding to the canonical connection,
is given by

(D0)2ψ = −
∑

i

Z2
i (ψ) + 2 C̃h +

1
2

∑
i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ) .

Before proceeding to the proof, let us make a short remark on how this formula is to be understood.
In the first term, one has to take the derivative of ψ along all vector fields Zi twice, thus yielding
a second order differential operator. By C̃h, we mean the image of the Casimir operator of h inside
C(m) as described in Section 3.2. Finally, Zi ·Zj · denotes the Clifford product of Zi and Zj, whereas
Zk acts again as a derivative. Thus the last term is a first order differential operator. Notice that
Clifford multiplication by any constant element in C(m) commutes with derivation along m.

Proof. We compute (D0)2 as follows:

(D0)2ψ =
∑

i

Zi · Zi(
∑

j

Zj · Zj(ψ)) =
∑
i,j

Zi · Zj · (ZiZj(ψ)) .

We divide the sum into the diagonal (i = j) and off-diagonal (i �= j) terms and see that this separates
the second and the first order differential operator contribution,

(D0)2ψ = −
∑

i

Z2
i (ψ) +

1
2

∑
i,j

Zi · Zj · [Zi, Zj](ψ) .
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We concentrate our attention on the second term. Split the commutator into its m and h part, then
write the m part again in the orthonormal basis Z1, . . . , Zn to obtain

1
2

∑
i,j

Zi · Zj · [Zi, Zj ](ψ) =
1
2

∑
i,j

Zi · Zj · ([Zi, Zj]m(ψ) + [Zi, Zj]h(ψ))

=
1
2

∑
i,j,k

〈Zk, [Zi, Zj ]m〉Zi · Zj · Zk(ψ) +
1
2

∑
i,j

Zi · Zj · [Zi, Zj]h(ψ) .

This takes care of the last term in the formula of Proposition 3.4. Thus it remains to show that
1
2

∑
i,j

Zi · Zj · [Zi, Zj]h(ψ) = 2 C̃h .

The action of the commutators [Zi, Zj ]h on the spinor ψ is first transformed into Clifford multi-
plication by the adjoint representation as explained in Lemma 3.4, then rewritten in terms of an
orthonormal basis according to the Parthasarathy Lemma (Lemma 3.1),

1
2

∑
i,j

Zi · Zj · [Zi, Zj]h(ψ) = −1
2

∑
i,j

Zi · Zj · ãd ([Zi, Zj]h) · ψ

= −1
8

∑
i,j

Zi · Zj

∑
p,q

〈[[Zi, Zj]h, Zp], Zq〉Zp · Zq · ψ .

But since 〈[[Zi, Zj ]h, Zp], Zq〉 = Qh([Zi, Zj ], [Zp, Zq]), this is 2 C̃h by equation (6). �

With the preparations of Section 3.2, the other two terms in the expression for (Dt)2 are relatively
easy to compute. We denote the Casimir operator of the full Lie algebra g by Ωg,

Ωgψ = −
∑

i

Z2
i (ψ) + C̃h · ψ .

We decided to use a symbol different from C in order to emphasize that Ωg is a real second order
differential operator, as opposed to C̃h, which is a constant element of the Clifford algebra. In
particular, the result of Lemma 3.4 may be restated as

(9) (D0)2ψ = Ωg + C̃h +
1
2

∑
i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ) .

First we state the formula in its most general form.
Theorem 3.2 (General Kostant-Parthasarathy formula). For n ≥ 5, the square of Dt is given by

(Dt)2ψ = Ωg(ψ) +
1
2
(1 − 3t)

∑
i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ)

− 1
2

∑
i<j<k<l

〈
Zi, Jach(Zj , Zk, Zl) + 9t2Jacm(Zj , Zk, Zl)

〉 · Zi · Zj · Zk · Zl · ψ

+
1
8

∑
i,j

Qh([Zi, Zj ], [Zi, Zj ])ψ +
3
8
t2

∑
i,j

Qm([Zi, Zj ], [Zi, Zj ])ψ .

For n ≤ 4, one has

(Dt)2ψ = Ωg(ψ) +
1
2
(1 − 3t)

∑
i,j,k

〈[Zi, Zj ]m, Zk〉Zi · Zj · Zk(ψ)

− 1
2

∑
i<j<k<l

〈Zi, Jach(Zj , Zk, Zl)〉 · Zi · Zj · Zk · Zl · ψ

+
1
8

∑
i,j

Qh([Zi, Zj ], [Zi, Zj])ψ +
3
8
t2

∑
i,j

Qm([Zi, Zj], [Zi, Zj ])ψ .
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Proof. The mixed term is the first order differential operator

(D0Dt
H +Dt

HD
0)ψ = t

∑
p

[Zp · Zp(H · ψ) +H · Zp · Zp(ψ)]

= t
∑

p

[Zp ·H +H · Zp] · Zp(ψ) .

In Lemma 3.3, we computed the anticommutator of H with the vector Zp, which leads us to

(D0Dt
H +Dt

HD
0)ψ = −3

2
t
∑

p

[ ∑
i,j

〈Zp, [Zi, Zj]m〉Zi · Zj

]
Zp(ψ) .

By Lemma 3.2, we have

(Dt
H)2ψ = −9

2
t2

∑
i<j<k<l

〈Zi, Jacm(Zj , Zk, Zl)〉Zi · Zj · Zk · Zl · ψ +
3
8
t2

∑
i,j

〈[Zi, Zj ]m, [Zi, Zj]m〉ψ

for n ≥ 5 and

(Dt
H)2ψ =

3
8
t2

∑
i,j

〈[Zi, Zj]m, [Zi, Zj ]m〉ψ

otherwise. Together with equation (9) and the formula for C̃h from Proposition 3.3, one obtains the
desired formulas. �

Now it becomes clear that the particular choice t = 1/3 leads to substantial simplifications in case of
n = 3 or n ≥ 5. In fact, the second part of the first line vanishes identically, the second line is zero
by the Jacobi identity in g (n ≥ 5) or for dimensional reason (n = 3), and the scalar contributions
in the last line appear in a very precise ratio, which will allow some further simplification. It is a
strange effect that no simplification is possible for n = 4.
Theorem 3.3 (The Kostant-Parthasarathy formula for t = 1/3). For n = 3 or n ≥ 5 and t = 1/3,
the general formula for (Dt)2 reduces to

(D1/3)2ψ = Ωg(ψ) +
1
8

[ ∑
i,j

Qh([Zi, Zj ], [Zi, Zj ]) +
1
3

∑
i,j

Qm([Zi, Zj], [Zi, Zj ])
]
ψ

= Ωg(ψ) +
1
8

[
Scal1/3 +

1
9

∑
i,j

Qm([Zi, Zj], [Zi, Zj ])
]
ψ .

�
Remark 3.3. In particular, one immediately recovers the classical Parthasarathy formula for a
symmetric space (Theorem 3.1), since then all scalar curvatures coincide and [Zi, Zj ] ∈ h.
As in the classical Parthasarathy formula, the scalar term as well as the eigenvalues of Ωg(ψ) may be
expressed in representation theoretical terms if G (and hence M) is compact. Consider the unique
Ad (G) invariant extension Q of the scalar product 〈 , 〉 on m to the full Lie algebra g, which exists
by Kostant’s Theorem. Thus, Q is a multiple of the Killing form on any simple factor of g; however,
Q is not necessarily positive definite, hence the scaling factors may be of different sign. If they are
such that Q is positive definite, the metric 〈 , 〉 is said to be normal homogeneous.

We begin with a more careful analysis of the Casimir operator Ωg(ψ). By the same arguments as in
the symmetric space case, Ωg(ψ) is a G invariant differential operator, and this property does not
depend on the signs of Q. We sketch the argument for completeness: On every simple summand gi

of g, Qi := Q|gi is either a positive or a negative multiple of the Killing form, and Ad (g) maps gi

into itself. Hence, in either case, the adjoint action of G transforms an orthonormal base Z̃1, . . . , Z̃m

of gi into an orthonormal base, and dual bases X̃1, Ỹ1, . . . , X̃m, Ỹm of gi are mapped to dual bases:

Qi(Ad (g)Z̃k,Ad (g)Z̃l) = Qi(Z̃k, Z̃l), Qi(Ad (g)X̃k,Ad (g)Ỹl) = Qi(X̃k, Ỹl) .
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Now consider the Frobenius decomposition of the square integrable spinors into irreducible finite-
dimensional representations Vλ of G,

L2(S) =
∑
λ∈Ĝ

Mλ ⊗ Vλ,

where Mλ denotes the multiplicity space of Vλ. Let �λ : G → GL(Vλ) be the representation with
highest weight λ, and d�λ its differential. Then Ωgi acts on Vλ by

d�λ(Ωgi) = −
m∑

k=1

d�λ(Z̃k)2 or d�λ(Ωgi) = −
m∑

k=1

d�λ(X̃k)d�λ(Ỹk) .

However, for any element X ∈ gi, one checks immediately

�λ(g)d�λ(X)�λ(g−1) = d�λ(Ad (g)X),

hence Ωgi commutes with the action of g ∈ G on Vλ, as claimed. Furthermore, it acts by multipli-
cation by the well-known eigenvalue

Qi(λ+ �i, λ+ �i) −Qi(�i, �i),

whose sign, however, depends on whether Qi is a positive or a negative multiple of the Killing form
on gi. Here, �i denotes the half sum of positive roots of gi, as usually. Since the center of G does
not contribute to the total eigenvalue of Ωg, we conclude:
Lemma 3.5. The operator Ωg is non negative if the metric 〈 , 〉 is normal homogeneous or if the
negative definite contribution to Q comes from an abelian summand in g. �
In a forthcoming paper, we will discuss examples where Q has also a simple summand on which Q
is negative definite and show that Ωg has negative eigenvalues. We use these remarks to express the
scalar term in Theorem 3.3 in a different way.
Lemma 3.6. Let G be compact, n = 3 or n ≥ 5, and denote by �g and �h the half sum of the positive
roots of g and h, respectively. Then the Kostant-Parthasarathy formula for (D1/3)2 may be restated
as

(D1/3)2ψ = Ωg(ψ) + [Q(�g, �g) −Q(�h, �h)]ψ = Ωg(ψ) + 〈�g − �h, �g − �h〉ψ .
In particular, the scalar term is positive independently of the properties of Q.

Proof. Consider the eightfold multiple of the term under consideration and regroup it as

8((D1/3)2 − Ωg) =
∑
i,j

Qh([Zi, Zj], [Zi, Zj]) +
1
3

∑
i,j

Qm([Zi, Zj ], [Zi, Zj ])

=
1
3

[ ∑
i,j

Q([Zi, Zj], [Zi, Zj ]) + 2
∑
i,j

Qh([Zi, Zj], [Zi, Zj ])
]
.

The first summand can easily be seen to be a trace over m,∑
i,j

Q([Zi, Zj ], [Zi, Zj ]) = −
∑
i,j

Q([Zi, [Zi, Zj ]], Zj) = −
∑

j

Q(
∑

i

(adZi)2, Zj) = −trm

∑
i

(adZi)2 .

For the second term, we first notice that it may be rewritten by expanding and contracting in two
different ways as∑
i,j

Qh([Zi, Zj ], [Zi, Zj ]) =
∑
i,j,k

Q(Xk, [Zi, Zj ])Q(Yk, [Zi, Zj ]) =
∑
i,j,k

Q([Xk, Zi], Zj)Q([Yk, Zi], Zj)

=
∑
i,k

Q([Xk, Zi], [Yk, Zi]).

This, in turn, can be identified with two different kinds of traces: On the one hand, this is

−
∑
i,k

Q([Zi, [Zi, Xk]], Yk) = −trh

∑
i

(adZi)2 ,
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on the other hand, this reads

−
∑
i,k

Q([Xk, [Yk, Zi]], Zi) = −trm

∑
k

(adXk)(adYk) = trmCh ,

were Ch denotes the “unlifted” Casimir operator of h, i. e., its usual action on g via the adjoint
representation. Now, since the sum we have just treated appears twice, we use each way of writing
it once to obtain

8((D1/3)2 − Ωg) =
1
3

[
− trm

∑
i

(adZi)2 − trh

∑
i

(adZi)2 + trmCh

]

=
1
3

[
− trg

∑
i

(adZi)2 + trgCh − trhCh

]

=
1
3

[
trgCg − trhCh

]
.

Again, Cg is not to be confused with the action of the Casimir operator of g on spinors. By looking
separately on every simple summand where Q is just a multiple of the Killing form, one easily sees
that these traces are the rescaled lengths of the half sum of positive roots,

trgCg = 24Q(�g, �g),

and similarly for h (Proposition 1.84 in [Kos99]). This proves the formula. To see that the scalar is
positive even for non normal homogeneous metrics, decompose �g = �h +R, where R ∈ m. Since m
and h are orthogonal with respect to Q, one obtains

Q(�g, �g) −Q(�h, �h) = Q(�h +R, �h +R) −Q(�h, �h) = Q(R,R) = 〈R,R〉 > 0,

since by dimensional reasons R �= 0 and the scalar product on m is positive definite. �

We can formulate our first conclusion from Theorem 3.3:

Corollary 3.1. If the operator Ωg is non negative, the first eigenvalue λ1/3
1 of the Dirac operator

D1/3 satisfies the inequality (
λ

1/3
1

)2 ≥ Q(�g, �g) −Q(�h, �h) .

Equality occurs if and only if there exists an algebraic spinor in ∆m which is fixed under the lift
κ(ÃdH) of the isotropy representation.

Proof. By our assumption on Ωg, its eigenvalue on a spinor ψ can be zero if and only if the Casimir
eigenvalue of every simple summand gi of g vanishes, hence ψ has to lie in the trivial G-representation
and is thus constant. �

We shall discuss examples of equality at the end of Section 5.

Remark 3.4. Since Dt is a G-invariant differential operator on M by construction, Theorem 3.2
implies that the linear combination of the first order differential operator and the multiplication by
the element of degree four in the Clifford algebra appearing in the formula for (Dt)2 is again G
invariant for all t. Hence, the first order differential operator

Dψ :=
∑
i,j,k

〈[Zi, Zj ]m, Zk〉Zi · Zj · Zk(ψ)

has to be a G invariant differential operator, a fact that cannot be seen directly by any simple argu-
ments. It has no analogue on symmetric spaces and certainly deserves further separate investigations.
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4. The equations of type II string theory on naturally reductive spaces

4.1. The field equations. The common sector of type II string theories may be geometrically
described as a tuple (Mn, 〈 , 〉 , H,Φ,Ψ) consisting of a manifold Mn with a Riemannian metric 〈 , 〉,
a 3-form H , a so-called dilaton function Φ and a spinor field Ψ satisfying the coupled system of field
equations

RicLC
ij − 1

4
HimnHjmn + 2∇LC

i ∂jΦ = 0, δ(e−2ΦH) = 0, (∇LC
X +

1
4
X H)Ψ = 0, (dΦ− 1

2
H)Ψ = 0.

The first equation generalizes the Einstein equation, the second is a conservation law, while the first
of the spinorial field equations suggests that the 3-form H should be the torsion of some metric
connection ∇ with totally skew-symmetric torsion tensor T = H . Then the equations may be
rewritten in terms of ∇:

Ric∇ +
1
2
δ(T ) + 2∇LCdΦ = 0, δ(T ) = 2 · dΦ# T, ∇Ψ = 0, (dΦ − 1

2
T ) · Ψ = 0 .

If the dilaton Φ is constant, the equations may be simplified even further,

Ric∇ = 0, δ(T ) = 0, ∇Ψ = 0, T · Ψ = 0 .

In particular, the last equation becomes a purely algebraic condition. The number of preserved
supersymmetries depends essentially on the number of ∇-parallel spinors. For a general background
on these equations, we refer to the article by A. Strominger where they appeared first [Str86]. By
Lemma 2.5, we conclude that the second equation is always satisfied for the family of connections ∇t.

Before proceeding further, we add a general observation which follows easily from the formulas in
[FI01] and which was pointed out to us by Bogdan Alexandrov.

Theorem 4.1. Let Mn be a compact Riemannian manifold with metric 〈 , 〉 and a metric connection
∇ with totally skew symmetric torsion T . Suppose that there exists a spinor field ψ such that all the
equations

Ric∇ = 0, δ(T ) = 0, ∇Ψ = 0, T · Ψ = 0

hold. Then T = 0 and ∇ is the Levi-Civita connection.

Proof. If ψ is ∇-parallel, the Riemannian Dirac operator DLC acts on ψ by DLCψ = −3T ·ψ/4. The
last equation thus implies DLCψ = 0. By the classical Schrödinger-Lichnerowicz formula,

0 =
∫

Mn

||∇LCψ||2dMn +
1
4

∫
Mn

ScalLC||ψ||2dMn .

On the other hand, the two Ricci tensors are related by the equation

RicLC(X,Y ) = Ric∇(X,Y ) +
1
2
(δT )(X,Y ) +

1
4

n∑
i=1

〈T (X, ei), T (Y, ei)〉 ,

where e1, . . . , en denotes an orthonormal basis. If Ric∇ = 0 and δT = 0, this implies that the
Riemannian scalar curvature is non negative and given by

4 ScalLC =
n∑

i,j=1

〈T (ei, ej), T (ei, ej)〉 .

Consequently, the scalar curvature ScalLC has to vanish identically, and the torsion form T is zero,
too. �

Hence, compact solutions to all equations have to be Calabi-Yau manifolds in dimensions 4 and 6,
Joyce manifolds in dimensions 7 and 8 etc.
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4.2. Some particular spinor fields. Consider the situation that the lift of the isotropy represen-
tation κ(ÃdH) contains the trivial representation, i. e., an algebraic spinor ψ that is fixed under the
action of H . Any such spinor induces a section of the spinor bundle S = G ×κ( eAd ) ∆m if viewed as
a constant map G→ ∆m and is thus of particular interest.
Theorem 4.2.

(1) Any constant spinor field ψ satisfies the equation

∇t
Zψ =

t

3
(Z H)ψ .

In particular, it is parallel with respect to the canonical connection (t = 0). Conversely, any
spinor field ψ satisfying ∇0ψ = 0 is necessarily constant.

(2) Any constant spinor field ψ is an eigenspinor of the square of the Dirac operator (Dt)2, and
its eigenvalue does not depend of the special choice of ψ:

(Dt)2ψ = 9t2
[
Q(�g, �g) −Q(�h, �h)

]
ψ .

In particular, H · ψ �= 0 and hence the last string equation can never hold for a constant
spinor.

Proof. For a constant spinor field, the formula for the covariant derivative of a spinor field (equation
3) reduces to ∇t

Zψ = 0+Λ̃t
m(Z)ψ. By Lemma 3.2, Λ̃t(Z) may be expressed in terms of an orthonormal

basis as

∇t
Zψ =

t

2

∑
j<k

〈[Z,Zj ]m, Zk〉Zj · Zk · ψ .

By the definition of H , this is easily seen to be t(Z H)/3. Conversely, assume that ψ is parallel
with respect to the canonical connection, i. e. Zi(ψ) = 0 for all i. Then [Zi, Zj ](ψ) = 0, and the
commutator [Zi, Zj ] may be split into its m and h part. But the m part acts again trivially on ψ,
hence we obtain

[Zi, Zj ]h(ψ) = 0 .

By Assumption 2.2, [m,m] spans all of h, hence h also acts trivially on ψ, which finishes the argument.
For the second part of the Theorem, we use that the Dirac operator on a constant spinor is given by
Dtψ = tH ·ψ for any t. Since any constant spinor lies in the trivial G-representation in the Frobenius
decomposition of Γ(S), the eigenvalue of Ωg on ψ is zero. For t = 1/3, the Kostant-Parthasarathy
formula (Theorem 3.3) thus yields

(D1/3)2ψ =
[
Q(�g, �g) −Q(�h, �h)

]
ψ =

1
9
H2ψ .

This may be understood as a formula for H2ψ, from which we immediately derive the general formula
through (Dt)2ψ = t2H2ψ. In particular, H · ψ cannot vanish. �

Remark 4.1. Easy examples show that ψ might not be an eigenspinor of Dt itself, since not all
constant spinors are eigenspinors of H . For the canonical connection, ∇0T 0 = 0 implies that the
space of parallel spinors is invariant under T 0, hence there exists a basis of the space of parallel
spinors consisting of eigenspinors.

4.3. Vanishing theorems. This section is devoted to non-existence theorems for solutions in certain
geometric configurations. It allows us to draw quite a precise picture of what a promising naturally
reductive metric should look like. First, the Kostant-Parthasarathy formula yields that we should
be interested in precisely those metrics where Ωg is not non negative.
Theorem 4.3. If the operator Ωg is non negative and ∇t is not the Levi-Civita connection, there
do not exist any non trivial solutions to the system of equations

∇tψ = 0, T t · ψ = 0 .
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Proof. If the spinor ψ is ∇t-parallel, then it lies in the kernel of Dt = D0 + tH . Since ∇t is assumed
not to be the Levi-Civita connection, T t does not vanish and hence T t · ψ = 0 implies H · ψ = 0.
Thus ψ is also in the kernel of D0. For the Dirac operator to the parameter t = 1/3, we obtain

D1/3ψ = D0ψ +
1
3
H · ψ = 0 ,

which contradicts Corollary 3.1. �
For the Levi-Civita connection, it is well known that the existence of a parallel spinor implies van-
ishing Ricci curvature. By repetition of the same argument, one sees that this conclusion does no
longer hold for a metric connection with torsion. Rather, we get restrictions on the algebraic type
of the derivatives of the torsion.
Proposition 4.1. If the canonical connection ∇0 is Ricci flat and admits a parallel spinor, then the
exterior derivative of its torsion T 0 satisfies (X dT 0) · ψ = 0 for all vectors X in m.

Proof. In [FI01, Cor. 3.2], Friedrich and Ivanov showed that a spin manifold with some connection
∇ whose torsion T is totally skew symmetric and a ∇-parallel spinor ψ satisfies[

1
2
X dT + ∇XT

]
· ψ = Ric∇(X) · ψ .

Since the canonical connection satisfies ∇0T 0 = 0, the claim follows. �
These conditions are independent of the equation T 0 · ψ = 0. If dT 0 �= 0 and the dimension is
sufficiently small, it can happen that the intersection of all kernels of X dT 0 is already empty, thus
showing the non-existence of solutions. Models with dT 0 = 0 are of particular interest and are called
closed in string theory.

For further investigations of the Ricci tensor

Rict(X,Y ) =
∑

i

(t− t2) 〈[X,Zi]m, [Y, Zi]m〉 +Qh([X,Zi], [Y, Zi]) ,

it is useful to describe it from a more representation theoretical point of view. Wang and Ziller derived
the general formula we shall present for t = 1/2 in [WZ85]. Their proof may easily be generalized
to the case of arbitrary t, hence we omit it here. The main idea is to use a more elaborate version
of the core computation in the proof of Lemma 3.6. Recall that Ch denotes the (unlifted) Casimir
operator of h, i. e.,

Ch = −
∑

i

adXiadYi .

It defines a symmetric endomorphism A : m×m → m by A(X,Y ) := 〈ChX,Y 〉. Similarly, we denote
by β(X,Y ) = −trgadXadY the Killing form of the full Lie algebra g. We make no notational
difference between β itself and its restriction to m.
Theorem 4.4. The endomorphisms A and β satisfy the identities

A(X,Y ) =
∑

i

Qh([X,Zi], [Y, Zi]), β(X,Y ) =
∑

i

〈[X,Zi]m, [Y, Zi]m〉 + 2A(X,Y ) .

Thus, the Ricci tensor is given by

Rict(X,Y ) = (t− t2)β(X,Y ) + (2t2 − 2t+ 1)A(X,Y ) .

�
Remark 4.2. We observe that the coefficient of β vanishes for t = 0 and t = 1, and is positive be-
tween these parameter values, whereas the coefficient of A is always positive and attains its minimum
for the Levi-Civita connection (t = 1/2).
The endomorphism A has block diagonal structure, with every block corresponding to an irreducible
summand of the isotropy representation. In particular, the block of the trivial representation van-
ishes, since its Casimir eigenvalue is zero. Since β is positive definite for G compact, we can deduce:
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dimG/H 5 6 7 8

Hmax SU(2) SU(3) G2 Spin(7)

Table 1. Maximal holonomy groups for the existence of a parallel spinor

Proposition 4.2. Assume that G is compact. If the isotropy representation Ad : H → SO(m) has
fixed vectors, only the connections t = 0 and t = 1 can be Ricci flat. �
Typically, the eigenvalues of Ch are linear functions of some deformation parameters, hence, they
can vanish for some particular parameter choices without belonging to a trivial h-summand of m.
This makes it difficult to make more precise predictions for the vanishing of the Ricci tensor.

Proposition 4.3. If the canonical connection has vanishing scalar curvature, H cannot be simple
and the metric cannot be normal homogeneous.

Proof. The scalar curvature for the canonical connection is∑
i,j

Qh([Zi, Zj], [Zi, Zj]) .

By Assumption 2.2, not all vectors [Zi, Zj ]h can be zero. Since Qh is non degenerate, we conclude
that Qh can be neither positive nor negative definite. However, on every simple factor of h, Qh has
to be a multiple of the Killing form; hence h cannot be simple. �

This fact, as elementary as its proof might be, has far reaching consequences for the geometry
of homogeneous models of string theory. The existence of a parallel spinor severely restricts the
holonomy group of ∇. In fact, it needs to be a subgroup of the isotropy subgroup of a spinor inside
SO(n), and these subgroups are well-known. By a theorem of Wang ([KN96, Ch.X, Cor. 4.2]), the
Lie algebra of the holonomy group is spanned by

m0 + [Λm(m),m0] + [Λm(m), [Λm(m),m0]] + . . . ,

where the subspace m0 is defined as

m0 = {[Λm(X),Λm(Y )] − Λm([X,Y ]m) − ad ([X,Y ]h) : X,Y ∈ m } .
For the canonical connection and using our assumption that [m,m]h spans all of h, we conclude that
its holonomy Lie algebra is precisely h. For t �= 0, the holonomy can only increase, hence we obtain
Table 1 for the maximally possible subgroups Hmax. If we restrict our attention to the canonical
connection, Proposition 4.3 implies that H cannot be equal to Hmax itself, but rather has to be a
non simple subgroup of it. This excludes many homogeneous spaces that would naturally come to
one’s mind. Of course, they might yield models for other connections than the canonical one, but
such an analysis can only be performed on a case by case basis.

5. Examples

5.1. The Jensen metric on V4,2. The 5-dimensional Stiefel manifold V4,2 = SO(4)/SO(2) carries a
one-parameter family of metrics constructed by G. Jensen [Jen75] with many remarkable properties.
Embed H = SO(2) into G = SO(4) as the lower diagonal 2 × 2 block. Then the Lie algebra so(4)
splits into so(2) ⊕ m, where m is given by

m =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 −a
a 0 −Xt

X
0 0
0 0

⎤
⎥⎥⎦ =: (a,X) : a ∈ R, X ∈ M2,2(R)

⎫⎪⎪⎬
⎪⎪⎭ .
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Denote by β(X,Y ) := tr(XtY ) the Killing form of so(4). Then the Jensen metric on m to the
parameter s ∈ R is defined by

〈(a,X), (b, Y )〉 =
1
2
β(X,Y ) + sβ(a, b) =

1
2
β(X,Y ) + 2s · ab .

For s = 2/3, G. Jensen proved that this metric is Einstein, and Th. Friedrich showed that it admits
two Riemannian Killing spinors [Fri80] and thus realizes the equality case in his estimate for the
first eigenvalue of the Dirac operator. A more careful analysis shows that V4,2 carries three different
contact structures, one of which is Sasakian, one quasi-Sasakian but not Sasakian, and the third one
has no special name, although special properties. It will become clear in the discussion that this
metric is only naturally reductive with respect to G = SO(4) for s = 1/2. In the following sections,
we shall describe the Jensen metrics on V4,2 first from the point of view of contact geometry and
then from the point of view of naturally reductive spaces.

5.2. The contact geometry approach. Denote by Eij the standard basis of so(4). Then the
elements

Z1 := E13, Z2 := E14, Z3 = E23, Z4 = E24, Z5 =
1√
2s
E12

form an orthonormal base of m. To start with, we compute all nonvanishing commutators in m.
These are

(∗)
[Z1, Z3]m =

√
2sZ5, [Z1, Z5]m = − 1√

2s
Z3, [Z2, Z4]m =

√
2sZ5,

[Z2, Z5]m = − 1√
2s
Z4, [Z3, Z5]m =

1√
2s
Z1, [Z4, Z5]m =

1√
2s
Z2.

Notice that all these commutators have no h-contribution. Identifying m with R
5 via the chosen

basis, the isotropy representation of an element g(θ) =
[

cos θ − sin θ
sin θ cos θ

]
∈ H = SO(2) may be

written as follows:

Ad g(θ) =

⎡
⎢⎢⎢⎢⎣

cos θ − sin θ 0 0 0
sin θ cos θ 0 0 0

0 0 cos θ − sin θ 0
0 0 sin θ cos θ 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

In particular, Z5 is invariant under the isotropy action. As in [Fri80], we use a suitable basis
ψ1, . . . , ψ4 for the 4-dimensional spinor representation κ : Spin(R5) → GL(∆5). One derives the
expression for the lift of the isotropy representation,

κ
(
Ãd g(θ)

)
=

⎡
⎢⎢⎣

cos θ + i sin θ 0 0 0
0 cos θ − i sin θ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Thus, the elements ψ3 and ψ4 define sections of the spinor bundle S = G ×κ( eAd ) ∆5 if viewed as
constant maps G → ∆5. In fact, for s = 2/3, ψ± := ψ3 ∓ iψ3 are exactly the Riemannian Killing
spinors from [Fri80] as we will see below. The sections induced by ψ1 and ψ2 are not constant and
thus more difficult to treat. We will not consider them in our discussion. In [Jen75, Prop. 3], the
author computed the map ΛLC

m : m ∼= R
5 → so(5) (see Wang’s Theorem in Section 2) defining the

Levi-Civita connection:

ΛLC
m (Zα)Zβ =

1
2
[Zα, Zβ], ΛLC

m (Z5)Zα = (1−s)[Z5, Zα], ΛLC
m (Zα)Z5 = s[Zα, Z5] for α, β = 1, . . . , 4.

Indeed, one easily verifies that this is the unique map Λm verifying the conditions

〈Λm(X)Y, Z〉 + 〈Y,Λm(X)Z〉 = 0 and Λm(X)Y − Λm(Y )X = [X,Y ]m .
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Thus, one sees that for s �= 1/2, Λm(X)Y is not globally proportional to the commutator [X,Y ]m,
and both 〈Λm(X)Y, Z〉 and −〈[X,Y ]m, Z〉 (the torsion of the canonical connection) fail to define a
3-form: The first is not skew symmetric in X and Y , the second is not skew symmetric in X and
Z. In any case, by using the commutator relations (∗), the Levi-Civita connection can be identified
with an endomorphism of R

5 as follows:

ΛLC
m (Z1) =

√
s

2
E35, ΛLC

m (Z2) =
√
s

2
E45, ΛLC

m (Z3) = −
√
s

2
E15, ΛLC

m (Z4) = −
√
s

2
E25,

ΛLC
m (Z5) =

1 − s√
2s

(E13 + E24) .

The lift into the spin representation yields a global factor 1/2 and replaces Eij by Zi∧Zj . By setting

T̃ := (Z1 ∧ Z3 + Z2 ∧ Z4) ∧ Z5,

the Levi-Civita connection may be rewritten in a unified way as

(10) Λ̃LC
m (Z5) =

1
4

2(1 − s)√
2s

(Z5 T̃ ), Λ̃LC
m (Zα) =

1
4

√
2s(Zα T̃ ) for α = 1, . . . , 4 .

Now we discuss the three different metric almost contact structures existing on V4,2. The space m
has a preferred direction, namely ξ = Z5, which is fixed under the isotropy representation. Denote
its dual 1-form, η(X) = 〈Z5, X〉 by η. The following operators

ϕS =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , ϕqS =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , ϕ∗ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

intertwine the isotropy representation, and thus define compatible complex structures on the linear
span of Z1, . . . , Z4. Then one checks for all three choices for ϕ that the compatibility conditions
defining a metric almost contact structure hold:

ϕ2 = −Id + η ⊗ ξ, 〈ϕ(X), ϕ(Y )〉 = 〈X,Y 〉 − η(X) · η(Y ), ϕ(ξ) = 0 .

The fundamental form of the structure is defined by F (X,Y ) = 〈X,ϕ(Y )〉, thus yielding

FS = Z1 ∧ Z3 + Z2 ∧ Z4, FqS = Z1 ∧ Z2 + Z3 ∧ Z4, F∗ = Z1 ∧ Z2 − Z3 ∧ Z4 ,

respectively. Since Z5 is constant under the isotropy action, its exterior derivative may be computed
using the general formula as stated at the beginning of the proof of Lemma 2.4,

dω1(X0, X1) = X0(ω1(X1)) −X1(ω1(X0)) − ω1([X0, X1]) .

For the constant vector field Z5, we thus obtain dZ5(Zi, Zj) = −〈Z5, [Zi, Zj]〉. Applying again the
commutator relations implies

dZ5 = −√
2s (Z1 ∧ Z3 + Z2 ∧ Z4) .

In particular, dZ5 is proportional to FS , turning it into a Sasaki structure (up to rescaling) and
implying immediately dFS = 0. For the other two structures, remark that Z1 ∧ Z2 and Z3 ∧ Z4 are
also invariant forms under the isotropy action, thus their exterior differential may be computed in a
similar way. One gets that dFqS = 0, turning it into a non Sasakian quasi-Sasakian structure, and
dF∗ is proportional to Z2 ∧ Z3 ∧ Z5, which implies dFϕ∗

∗ = 0. We can then compute the Nijenhuis
tensor

N(X,Y ) := [ϕ(X), ϕ(Y )] + ϕ2([X,Y ]) − ϕ([ϕ(X), Y ]) − ϕ([X,ϕ(Y )]) + dη(X,Y ) · ξ
and see that it vanishes for all three metric almost contact structures. By [FI01, Thm. 8.2], the
Stiefel manifold V4,2 admits a unique almost contact connection ∇ with torsion

T = η ∧ dη = −
√

2s (Z1 ∧ Z3 + Z2 ∧ Z4) ∧ Z5 .
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Next we discuss the existence of spinors that are parallel with respect to the connection ∇ as well
as the existence of Killing spinors, since we consider the analogy and differences to the previous case
to be instructive.
Theorem 5.1.

(1) The constant spinors are parallel with respect to the contact connection ∇ if and only if
s = 1/2;

(2) The constant spinors ψ± are Riemannian Killing spinors if and only if s = 2/3.

Proof. In equation (10), we gave the general formula for the Levi-Civita connection in direction Zi

as the inner product of Zi and the 3-form T̃ . If a constant spinor ψ is to be parallel with respect to
∇,

0 = ∇Xψ = (Λ̃LC
m (X) +

1
4
X T )ψ ,

then the coefficients of Λ̃LC
m as in equation (10) have to be equal for all Zi, hence, 2(1−s)/√2s =

√
2s,

which means that s = 1/2. For this value, the combination Λ̃LC(X) + 1
4X T vanishes, so both

constant spinors are parallel indeed. For the discussion of Riemannian Killing spinors, we use the
following realization of the spin representation:

e1 =

⎡
⎢⎢⎣

0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

⎤
⎥⎥⎦ , e2 =

⎡
⎢⎢⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤
⎥⎥⎦ , e3 =

⎡
⎢⎢⎣

0 0 −i 0
0 0 0 i
−i 0 0 0
0 i 0 0

⎤
⎥⎥⎦ ,

e4 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ , e5 =

⎡
⎢⎢⎣
i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

⎤
⎥⎥⎦ .

Then one checks that

(Z5 T̃ ) · ψ± = ±2Z5 · ψ±, (Zα T̃ ) · ψ± = ±Zα · ψ± for α = 1, . . . , 4.

Looking at Z5, we conclude that the Killing equation ∇LC
X ψ = µX · ψ implies that the coefficients

in equation (10) have to satisfy 2(1− s)/
√

2s =
√

2s/2. The solution is now s = 2/3, and one checks
that ψ± are Killing spinors indeed. �

5.3. The naturally reductive space approach. We would like to interpret the metric 〈 , 〉 as a
naturally reductive metric with respect to some other group Ḡ, and the connection with the torsion

T = −
√

2s (Z1 ∧ Z3 + Z2 ∧ Z4) ∧ Z5

as its canonical connection. So write M = Ḡ/H̄ with the Lie algebra decomposition ḡ = h̄ ⊕ m̄,
and assume that the original isotropy representation is a subrepresentation of the new isotropy
representation, i. e., the action of h ⊂ h̄ on m ∼= m̄ remains unchanged. This point of view necessarily
enlarges the holonomy group H already for dimensional reasons. In fact, we can deduce a lot of
information about the new isotropy representation from the formula for T . In Remark 2.2, we
explained the relation between m-commutators and the torsion. For example, the formula above
implies

[Z1, Z3]m̄ =
√

2sZ5, [Z4, Z5]m̄ =
√

2sZ2, [Z1, Z4]m̄ = [Z3, Z4]m̄ = 0 .

Then we can compute
Jacm̄(Z1, Z3, Z4) = 2sZ2 .

On the other hand,

Jach̄(Z1, Z3, Z4) = −Z2 + [Z4, [Z1, Z3]h̄] + [Z3, [Z4, Z1]h̄] != −Jacm̄(Z1, Z3, Z4) .
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Thus, there must be two elements H1 := [Z1, Z3]h̄ and H2 := [Z4, Z1]h̄ in h̄, not both zero, such that

[H1, Z4] + [H2, Z3] = (2s− 1)Z2 .

By some more careful analysis, one obtains H2 = 0, H1 = [Z2, Z4]h̄ and the action of H1 on the other
vectors Zi. The systematic description of 〈 , 〉 as a naturally reductive metric can be given using a
deformation construction due to Chavel and Ziller ([Cha70], [Zil77]). It is based on the remark that
for s = 1/2, m splits into an orthogonal direct sum of m1 := {(0, X)} and m2 := {(a, 0)} such that

[h,m2] = 0 and [m2,m2] ⊂ m2 .

Let M2 ⊂ G be the subgroup of G with Lie algebra m2, and set Ḡ = G × M2, H̄ = H × M2.
An element (k,m) of Ḡ acts on M = G/H by (k,m)gH = kgHm−1, and then H̄ can indeed be
identified with the isotropy group of this action. We endow ḡ = g ⊕ m2 with the direct sum Lie
algebra structure. The trick is now to choose a realization of m̄ that depends on the deformation
parameter s of the metric. Writing all elements of ḡ as 4-tuples (H,U,X, Y ) with H ∈ h, U ∈ m1

and X,Y ∈ m2, we can realize the Lie algebra of H̄ as

h̄ = {(H, 0, X,X) ⊂ ḡ : H ∈ h, X ∈ m2}
and choose

m = {(0, X, 2s Y, (2s− 1)Y ) : X ∈ m1, Y ∈ m2}
as an orthogonal complement. Here, (0, 0, 2s Y, (2s− 1)Y ) will be identified with Y ∈ m2. Since m2

is abelian in this example, the Lie algebra structure of ḡ is particularly simple. h̄ is a Lie algebra
with commutator

[(H, 0, X,X), (H ′, 0, X ′, X ′)] = ([H,H ′], 0, 0, 0) ,

the full isotropy representation is

[(H, 0, X,X), (0, U, 2sY, (2s− 1)Y )] = (0, [H +X,U ], 0, 0)

and the commutator of two elements in m̄ splits into its h̄ and m̄ part as follows:

[(0, U, 2sX, (2s− 1)X), (0, V, 2s Y, (2s− 1)Y )] = ([U, V ]h, 0,−(2s− 1)[U, V ]m2 ,−(2s− 1)[U, V ]m2)
+(0, [U, V ]m1 + 2s([U, Y ] + [X,V ]), 2s[U, V ]m2 , (2s− 1)[U, V ]m2) .

With these choices for h̄ and m̄, the metric 〈 , 〉 is naturally reductive with respect to Ḡ, the torsion
of its canonical connection is precisely T and the Ricci tensor is given by

Ric0 = 2(1 − s)diag(1, 1, 1, 1, 0) .

For s = 1, the canonical connection is thus Ricci flat, and by Proposition 4.2, we know that no other
connection can have this property. However, the holonomy H̄ ∼= SO(2)×SO(2) is too large to admit
parallel spinors. For s = 1/2, we have two parallel spinors for the canonical connection as seen in
the preceding section, but the Ricci curvature does not vanish. In this case, one can ask the question
whether some other connection of the family ∇t admits parallel spinors. But using Wang’s Theorem
([KN96, Ch.X, Cor. 4.2]) for computing the holonomy, one sees that ∇t has full holonomy SO(m)
for t �= 0, excluding again the existence of parallel spinors.

We close this section with a look at the eigenvalue estimate for (D1/3)2. Since the extension
of H is by the abelian group SO(2), the Casimir operator Ωg is non negative by Lemma 3.5 and
Corollary 3.1 can be applied. We compute the scalar in the general Kostant-Parthasarathy formula
(Theorem 3.2)

1
8

∑
i,j

Qh([Zi, Zj ], [Zi, Zj]) +
3
8
t2

∑
i,j

Qm([Zi, Zj], [Zi, Zj ]) =
1
8
· 8(1− s) +

3
8
t2 · 24s = 1 + (9t2 − 1)s

and see that it is independent of the deformation parameter s precisely for the Kostant connection
t = 1/3. If s �= 1/2, there exist no constant spinors and hence Corollary 3.1 is a strict inequality,

(λ1/3)2 > 1 .
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For s = 1/2, there exists a constant spinor ψ and it satisfies by Theorem 4.2

(Dt)2ψ = 9t2 · 1 · ψ = 9t2ψ .

Unfortunately, we have been unable to relate this bound with the infimum of the spectrum of (Dt)2 for
other values of t. In particular, it seems to be difficult to deduce from Corollary 3.1 any information
about the Riemannian Dirac spectrum.
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