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Abstract

We study evolving networks where new nodes when attached to the network
form links with other nodes of preferred distances. A particular case is where
always the shortest distances are selected (“make friends with the friends of your
present friends”). We present simulation results for network parameters like the
first eigenvalue of the graph Laplacian (synchronizability), clustering coefficients,
average distances, and degree distributions for different distance preferences and
compare with the parameter values for random and scale free networks. We find
that for the shortest distance rule we obtain a power law degree distribution as in
scale free networks, while the other parameters are significantly different, especially
the clustering coefficient.

PACS Numbers: 89.75.Da, 89.75.Fb, 89.75.Hc, 89.75.-k

1 Introduction

Graphs can be considered as substrata of dynamic networks, and so, several types of
graph models have been proposed for capturing the properties of specific networks [1].
In particular, evolving networks can be modelled through growing graphs, i.e. graphs to
which continuously new nodes (vertices) and new links (edges) are added. While regular
graphs, i.e. ones where each node has the same connectivity pattern and where conse-
quently interactions are local in nature and progress in a slow and orderly fashion from
neighbor to neighbor, can exhibit subtle combinatorial patterns, for a realistic network
model typically a certain amount of irregularity or randomness is needed. The proto-
types here are the random graphs introduced by Erdös and Rényi where the connections
between the nodes are chosen completely randomly [2]. These exhibit quite interesting
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properties, but often real networks are not entirely random in this sense, but show some
kind of regularity, not directly in their connectivity pattern, but with respect to some
other variable or order parameter. Such a parameter can be a clustering coefficient, the
average or maximal distance between nodes in the network (as measured by the minimal
number of links separating them), the distribution of the number of links between the
nodes, the correlation of such properties between neighboring nodes (i.e. those connected
by a link of distance 1), or the first eigenvalue of the graph Laplacian which is relevant for
synchronization properties throughout the network of dynamic activities at the individual
nodes. Models have been proposed that capture some of these aspects. The small world
networks introduced by Watts and Strogatz [3] are constructed from regular graphs by
creating additional random links between nodes, with or without deleting some of the
existing ones. Once a certain number of such new links has been introduced in proportion
to the number of regular ones, distances in the graph get dramatically shortened, and,
consequently, activity can spread quite rapidly from a localized source through the entire
network. Another interesting model is the one of a scale free network as introduced by
Barabasi and Albert [4]. This is a graph where new nodes are added and form a fixed
number of links with the existing nodes not completely at random, but with a prefer-
ence towards those nodes that already have more connections than other ones. More
precisely, the probability with which an existing nodes receives a link from a new node is
proportional to the number of links it already possesses. The characteristic feature of the
emerging graph here is that the number of nodes with a given number of links does not
decrease exponentially as a function of the latter as for example in random graphs, but
follows a power law – the reason why such a graph is called scale free. Such models can
provide valuable insight into existing real networks, for example into patterns of social
relations or spreading of diseases in the small world model, or the connection patterns of
internet sites or flight connections between airports in the scale free model.

It is then a natural question whether there exists an encompassing scheme that on one
hand can put these specific models into a more general perspective and that on the other
hand can offer systematic tools for analyzing the dependencies among the various network
features listed above. Ideally, these features should depend in an analyzable manner on
certain parameters of the network construction, and so their interdependencies could then
be studied in terms of relations between the parameters involved.

We attempt here to take a step in this direction by proposing a general scheme for
constructing evolving networks. Our model is characterized by a distance preference
function. This function specifies the probability in terms of the distance with which an
existing node in the network receives a new link from a newly created node that already
has formed one random link so as to attach it to the network and to define its distances
to the other nodes. The number of links each node is allowed to make can be either fixed
– as in our simulation results below – or also follow some random distribution. So, for
example, we can stipulate that the shortest distances are always preferred. Thus, a node
that is allowed to form a new link does so preferably to another node of distance 2, i.e.
to a direct neighbor of a node that it is already attached to. This might constitute a
useful model for the formation of social relationships (you want to become a friend of the
friends of your present friends as the easiest or safest means of forming new relationships).
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Conversely, we might also stipulate that always the most distant nodes are the preferred
recipients of new links. Obviously, one then expects that the resulting network has a
quite short average distance between any two nodes, as in the small world and scale free
models. More interestingly, one may even expect a certain tendency towards the scale
free type when shortest distances are preferred. Namely, a node that is highly connected
then has a greater chance of receiving a new link than a less well connected one, because
the former has a greater chance of being a direct neighbor of another node that has
received a previous link from a new node that is attaching itself to the network. Thus,
we see the principle that the rich get richer that is characteristic for scale free networks
also at work here, although in an indirect and somewhat mediated form. A conceptual
advantage of this construction over the scale free one might be that here, for each link,
we only need to evaluate local information, namely check those sites in its vicinity. More
precisely, if we exclusively select sites of distance two as recipients of new links, then we
only have to list all the neighbors of the present neighbors of the link forming node at
each step. In contrast to this, for the scale free model, the complete connectivity pattern
of any potential recipient anywhere in the network has to be evaluated. In general, in
our scheme, whether we give preference to short distances or not, what is crucial for the
decision about a new link is not an absolute property of the candidate as in the scale
free model, but rather its relation, as expressed by the distance, to the link forming node.
This may capture a property that is relevant in some applications.

On the other hand, the scheme where short distances are preferred should lead to more
pronounced local clustering effects and larger average distances in the network than the
scale free construction model. In this way, we can check that certain network properties
are independent of or at least not strongly related to each other.

Of course, our scheme also includes the possibility that all distances are equally pre-
ferred. This should generate properties similar to a random network, although the con-
struction is not entirely identical, because for a random graph, all nodes are considered
equal, whereas here, only those of the same distance to the node forming links have equal
recipient probabilities, because the distances need not be evenly distributed among the
nodes.

We could also easily supplement our construction scheme by a rule for the deletion
of links and/or nodes according to some criterion to be specified, as a means to stabilize
the size of our network. This would allow a comparison of our model with other ones
for evolving networks of given size range. Here, however, we do not pursue this aspect
systematically.

2 Network construction

We start with a small network having m0 nodes and then let it grow according to the
following scheme. We fix a number m as the number of connections each new node is
allowed to establish to other nodes existing in the network; in principle, this number
could also be randomly chosen from some distribution instead of being fixed, but, for
simplicity, in our simulations, we only work with a fixed m = m0, as this will probably
not dramatically affect the resulting network properties. The crucial part of our scheme
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is the specification of a probability distribution p(d) for the preferred distance to a node
with which a new link is established. So, when a new node xn comes in, it is first allowed
to make one connection with a randomly chosen node in the network, in order to attach
it to the network. (We could also change this rule and let the first connection prefer well
connected recipient nodes, as in the scale free model, but in the present paper, we do
not perform numerical simulations for that rule.) This leaves us with m− 1 further links
that it is allowed to establish. For the formation of any such link, we consider a node x
in the network and select it as the recipient of the new link with a probability given by
p(d(xn, x)). Of course, the formation of any new link changes the distances in the network
and the creation of further links, until the allotted number m of them has been formed
from xn, then is governed by the new distance pattern. Once xn is connected according
to this scheme, we create a new node xn+1 and repeat the procedure.

The distance preference function p(d) encodes all the features of our construction. An
important case is where this function is in fact deterministic, namely where only nodes
of distance 2 from xn are allowed as link recipients, i.e. the ones that have the smallest
possible distance from it (we are not allowing multiple links, and so no further link can
be attached to a node at distance 1). Another deterministic choice of p(d) would be to
allow only recipients of maximal distance from xn. This obviously makes the scheme
computationally much more expensive than the exclusive selection of nodes at distance 2.
More generally, we are interested in distance preference functions p(d) that are decreasing
functions of d, i.e. where short distances are preferred over large ones, but the latter can
still be selected with a positive probability.

In our simulations as described in the Table 1, we consider the cases the number of
links that each new node is allowed to form is m = 2, 3, 4, and 5. We let the network grow
until its size was 30,000 nodes when we evaluated the various parameters. We considered
three different versions of the probability for the distances. In Model 1, we exclusively
selected links to nodes of distance 2, i.e. we always formed triangles. In Model 2, we
let the probability be proportional to the inverse distance. Thus, there was a (slight)
preference for shorter distances over larger ones. In Model 3, in contrast to this, we let
the preference function be proportional to the distance itself (scaled with the maximal
distance in the network). Thus, there is a preference for larger over shorter distance. Our
comparison models are the growing random graph model where all m links are randomly
connected (Model 4) and the scale free or real world model (Model 5).

In Table 1 we give the first eigenvalue λ1, the clustering coefficient C, the mean path
length L and the second moment of degrees < k2 >, for different m values, for Models
1 to 5. The discussion below will employ the simulation results for m = 5, as one can
see from the table, the results for m = 3, 4 are qualitatively similar but m = 2 is slightly
different. The table gives the averages over 10 simulations each; the standard deviations
are quite small.

3 First eigenvalue

The first (nonzero) eigenvalue of the graph Laplacian is the crucial parameter for the
synchronization properties of activities at the network sites as systematically investigated
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m λ1 C L < k2 >
Model 1

2 .00051 .692780 9.9977 28.2986
3 .00089 .658008 7.2686 72.4940
4 .00213 .620832 6.0137 140.6150
5 .00501 .586553 5.2833 236.4537

Model 2
2 .13906 .001011 7.0212 22.3045
3 .25099 .001002 5.6292 48.8695
4 .32974 .000986 4.9776 85.6206
5 .38889 .001058 4.5795 132.6747

Model 3
2 .13872 .000031 7.1207 21.7022
3 .24933 .000140 5.7022 47.1782
4 .32844 .000247 5.0324 82.4328
5 .38688 .000365 4.6203 127.5877

Model 4
2 .13929 .000197 7.0690 21.9742
3 .25053 .000293 5.6659 47.9818
4 .32948 .000408 5.0061 83.8960
5 .38816 .000526 4.6017 129.8109

Model 5
2 .15605 .000696 5.8862 39.9532
3 .27093 .001276 4.8676 90.2483
4 .35066 .001688 4.3696 161.7150
5 .40970 .002076 4.0593 250.7354

Table 1: The first eigenvalue λ1, the clustering coefficient C, the mean path length L and
the second moment of degrees < k2 >, for Models 1-5, for different m values.
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in our previous work [5]. We naturally assume here that the graph Γ under consideration
is connected, as are the graphs resulting from our constructive scheme. Moreover they are
symmetric because we consider undirected links. We label the nodes of Γ as x1, x2, ..., xn,
and we let nx denote the connectivity, i.e. the number of neighbors of the node x. The
first eigenvalue is then given by

λ1 = inf
u:Γ→R,

P
nxiu(xi)=0

∑
xi∼xj

(u(xi) − u(xj))
2

∑
nxi

u(xi)2
, (1)

where xi ∼ xj denotes that they are neighbors. We can now provide the following heuristic
argument how the creation of a new link in the network affects λ1 depending on the
distance d(x, y) between the two nodes x, y before the link between them is formed.
Namely, for any function u as evaluated for the infimum in (1), the new link only creates
an additional summand (u(x) − u(y))2 in the numerator while the denominator is left
unchanged. As the difference in u between neighbors is minimized for a first eigenfunction,
the expected squared difference (u(x) − u(y))2 should be an increasing function of the
distance between x and y. Therefore, the value of a typical candidate function u for the
infimum in (1) should increase as a result of the new link in a manner that is positively
correlated with the distance d(x, y). Thus, if our scheme prefers larger distances the first
eigenvalue should get larger than when we select short distances for new links. Of course,
this fits well together with the fact that on one hand, a larger λ1 facilitates synchronization
across the network, and on the other hand, connecting nodes that had a large distance
should have the effect of a more pronounced decrease of the average distance which in
turn facilitates synchronization as well.

Our simulations (as described in the Table 1 ) yield that the first eigenvalue for Model
1 is .005 which is quite close to the value for a regular network. Thus, synchronization is
quite difficult in such a network although the average or maximal distance in the network
are quite low (as described below) and the degree distribution of the nodes is quite similar
to the scale free case. In all the other models, λ1 is substantially larger, namely around
.39 for Models 2-4 and .41 for Model 5. It might be of some interest that it appears to
be about the same or perhaps even slightly smaller in Model 2, where shorter distances
are preferred, than in the random Model 4, which in turn has a smaller value than Model
3 with the preference for larger distances. Thus, the scale free model is the most easily
synchronizable of the five, a not always desirable property.

4 Clustering

If our distance preference is for the shortest possible distance, namely 2, then the emerging
graph will contain many triangles, i.e. triples of nodes of mutual distance 1. As a
consequence, we expect that the graph contains highly connected subclusters.

Also, since the creation of any new link increases the first eigenvalue, it has been
suggested by Eckmann and Moses [6] to employ the number of triangles for defining some
notion of curvature of a graph. This is based on an analogy with Riemannian geometry
where the so-called Ricci curvature yields a lower bound for the eigenvalue of the Laplace-
Beltrami operator (the Riemannian version of the Laplacian). In other words, the larger
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the curvature, the higher the expected value of the first eigenvalue. As our preceding
heuristic analysis of the first eigenvalue of the graph Laplacian shows, however, there is a
problem with the analogy between the number of triangles and the curvature. Namely, if
we add a link to a given graph, then the expected increase in the eigenvalue is the higher,
the larger the original distance between the two linked nodes was. In other words, when
we select the new link so as to form a new triangle, the expected eigenvalue increase is
smallest, or, when trying to pursue the analogy with Riemannian geometry, the additional
curvature is least.

The clustering coefficient for a node i is measured as follows

Ci =
2Ei

ki(ki − 1)
(2)

where the ki(ki−1)
2

is the maximum possible number of connections between the ki neighbors
of i if they were fully connected, and Ei is the actual number of connections between
them. The clustering coefficient C of the network is the average of the coefficients Ci of
the individual nodes.

For our choice m = 5, for a regular network the value for C is 2/3 (as the number of
links of each node is constrained, not all the neighbors of a given node can be connected
among each other, and so the value is smaller than 1 in any case). In our Model 1, the
value .5851 is quite close to this value, as to be expected, whereas in all other Models, it
is dramatically smaller. In fact, for Models 2 and 3 as well as for the random Model 4, it
is even smaller than for the scale free Model 5. In particular, the difference between the
Models 1 and 2 is striking here.

5 Distances

As already explained, the resulting average or maximal distance in our network should be
smaller when large distances are preferred for the establishment of new links. However,
this is not so easy to support through numerical simulations, as in any case, independently
of the preference function adopted, our networks, like the small world and scale free ones,
exhibit rather small maximal distances, say around the order of 4 or 5 for networks with
ten or twenty thousand sites, and so the difference resulting from the preference function
cannot be very pronounced.

There is one observation that can be made here, however. Namely, the direct preference
for forming links to nodes at largest distance is not as efficient in reducing the average or
maximal distance in the network as the more indirect scheme of preferential attachment
to highly connected nodes employed in the Barabasi-Albert model. This demonstrates
the virtue of the latter model. In fact, the average distance L between all possible pairs of
nodes is smallest for that model, namely 4.06, around 4.6 for Models 2-4, and about 5.2
for Model 1. Not surprisingly, a preference for short connections leads to a larger average
distance although the effect is by no means as pronounced as one might naively expect.
It is surprising, however, that L is slightly larger for Model 3 where large distances are
preferred than for the random Model 4, and slightly smaller for Model 2 with its preference
for shorter distances.
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Figure 1: Degree distribution P (k) for Model 1

6 Degree distribution

One of the distinguishing features of the scale free or real world model (Model 5) is that
the distribution of the degrees of the nodes decays like a power law in contrast to the
exponential of, for example, the random graph model. In Figures (1–5) we give the plot
for degree distribution, P (k) for models 1–5, respectively, with m = 4. We find that in
our Model 1, where exclusively short connections are selected once a node is anchored
in the network, the degree distribution likewise follows a power laws, at least over most
of its regime. (For m = 3, we get a power law distribution only for some part of the
distribution while the end decays exponentially.) Thus, our mechanism is capable of
producing a network that exhibits a power law distribution of the degrees but that differs
from the scale free model with respect to a number of distinctive other parameters, like
first eigenvalue and synchronizability, clustering, average distance, etc. In particular, this
feature is independent of those other features.

Models 2 and 3 show an exponential distribution as in the random model (Model 4).
We also find that the distribution of the neighbor degrees (i.e. the sum of the degrees of
all the neighbors of a given node, P (kk)) also partly follows a power law in our simulations
for Models 1 and 5. In Fig. 6 we plot that for Model 1 with m = 4.

7 Correlations

We may ask whether our scheme leads to strong correlations between neighboring sites in
the network, with regard to their connectivity. One possible source of such a correlation
in connectivity could be a correlation in age. Namely, older nodes in the network have had
more chances than younger ones of receiving a random connection from a new node, and
so, the connectivity should be positively correlated with the age of a node. However, there
is no direct reason why neighboring nodes should exhibit a pronounced age correlation.

Another line of reasoning can go as follows: If x1 is a neighbor of a site x2 of connectiv-
ity l, then if distance 2 is selected by our preference function, then x2 has an l-fold chance

8



0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

10
5

k

P
(k

)

Figure 2: Degree distribution P (k) for Model 2
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Figure 3: Degree distribution P (k) for Model 3
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Figure 4: Degree distribution P (k) for Model 4
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Figure 5: Degree distribution P (k) for Model 5
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Figure 6: Neighbor Degree distribution P (kk) for Model 1
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of receiving the second connection that a new node xn is making, but the chances of x1

to benefit from this and receive the third connection that xn is making is proportional to
1/l as it is facing the competition of the l − 1 other neighbors of x2. Thus, the factors
cancel, and here, we do not get an advantage for a node from being a neighbor of a well
connected node. Of course, this heuristic argument does not take the triangle pattern in
the network into account. We calculated the average of the square of the degrees of the
nodes (second moment), < k2 > and is given in the last column of the table. The value of
this parameter is around 250 for models 1 and 5 while for models 2, 3 and 4 it is almost
half of that value.

8 Comparison with other recent network construc-

tions

Holme and Kim [7] introduced a model that in some respects is similar to ours. They
let the first connection of a new node form according to preferential attachment as in
the scale-free model and then introduce subsequent links that either form triangles or
constitute once more preferential attachments, according to some random preference. The
resulting network is again scale free. Their main result is that in a scale free network, the
clustering coefficient can take different values (according to the strength of the triangle
preference).

Klemm and Egúiluz [8] consider a growing network model based on the scale free
paradigm, with the distinctive feature that older nodes become inactive at the same
rate that new ones are introduced. This is interpreted as a finite memory effect, in the
sense that older contributions tend to be forgotten when they are not frequently enough
employed. This results in networks that are even more highly clustered than regular ones.

Davidsen et al. [9] consider a network that rewires itself through triangle formation.
Nodes together with all their links are randomly removed and replaced by new ones with
one random link. The resulting network again is highly clustered, has small average
distance, and can be tuned towards a scale free behavior.

9 Conclusion and discussion

We have introduced a model for evolving networks where each new node, once it is (ran-
domly) anchored to the network, forms further links according to some distance preference
function, and we have compared simulation results for the evolved networks with those for
two main types previously considered, namely the random graph model and the scale free
or real world model of Barabasi-Albert. We found that when always the shortest possible
distances are selected for the recipients of new links, we get a highly clustered network
which is difficult to synchronize, although it still has a relatively small average distance
between nodes. It also exhibits a power law type behavior for the distribution of the
degrees of the nodes comparable to the scale free model, although the underlying network
forming mechanism is different, and, in particular, there is no direct preference for highly
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connected nodes which is considered as the main reason for the power law behavior in the
scale free model. As the other network parameters are different from the scale free model,
this shows that this feature is independent of clustering or synchronizability properties.
For other distance preference functions, we found network parameters that were roughly
comparable with the ones for a random graph network, and in fact regardless of whether
our preference was proportional or inversely proportional the distance between the link
forming node and the potential recipient.
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