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Abstract

We study the biparametric quantum deformation of GL(2) ⊗ GL(1) and exhibit its cross-

product structure. We derive explictly the associated dual algebra, i.e., the quantised uni-

versal enveloping algebra employing the R-matrix procedure. This facilitates construction

of a bicovariant differential calculus which is also shown to have a cross-product structure.

Finally, a Jordanian analogue of the deformation is presented as a cross-product algebra.
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I Introduction

The biparametric quantum deformation of GL(2) ⊗ GL(1) was introduced in [1] as a novel

Hopf algebra involving five generators {a, b, c, d, f} and two deformation parameters {r, s}.

From among the five generators, four {a, b, c, d} correspond to GL(2) and the fifth one f is

related to GL(1). These can be arranged in the matrix of generators

T =

⎛
⎜⎜⎜⎜⎝

f 0 0

0 a b

0 c d

⎞
⎟⎟⎟⎟⎠

(1)

with the labelling 0, 1, 2. The associated solution of the quantum Yang-Baxter equation is

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0 0

0 S−1 0 0

0 Λ S 0

0 0 0 Rr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

in block form, i.e., in the order (00), (01), (02), (10), (20), (11), (12), (21), (22) (which is

chosen in conjunction with the block form of the T -matrix) where

Rr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; S =

⎛
⎝s 0

0 1

⎞
⎠ ; Λ =

⎛
⎝λ 0

0 λ

⎞
⎠ ; λ = r − r−1

The RT T relations

RT1T2 = T2T1R (3)

(where T1 = T ⊗ 1 and T2 = 1⊗T ) give the commutation relations between the generators

a,b,c,d and f

ab = r−1ba, bd = r−1db

ac = r−1ca, cd = r−1dc

bc = cb, [a, d] = (r−1 − r)bc

(4)

and

af = fa, cf = sfc

bf = s−1fb, df = fd
(5)
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Note that the first set of these relations is exactly the q-deformation of GL(2) with de-

formation parameter r while the second set involves the fifth generator f and the second

deformation parameter s. This results in a biparametric q-deformation of GL(2) ⊗ GL(1),

say, Ar,s. The coproduct and counit is given as

∆(T ) = T ⊗̇T

ε(T ) = 1
(6)

The Casimir operator δ = ad − r−1bc is invertible and determines the antipode

S(f) = f−1, S(a) = δ−1d, S(b) = −δ−1rb, S(c) = −δ−1r−1c, S(d) = δ−1a (7)

The quantum determinant D = δf is group-like but not central. Some of the interesting

features of the above quantum deformation are the following:

• If we write the set of generators {a, b, c, d, f} as {fNa, fNb, fNc, fNd} (N being a

fixed nonzero integer), i.e., reducing the five-dimensional set to the four-dimensional

set, then we obtain an exact realisation of the biparametric (p, q)-deformation of GL(2),

i.e., GLp,q(2) subject to the relations

p = r−1sN and q = r−1s−N (8)

This realisation also reproduces the full Hopf algebraic structure underlying GLp,q(2).

• Another interesting feature of the Ar,s deformation is that it can be contracted (by

means of the contraction procedure [2] based on the concept of singular limit of a simi-

larity transformation) to yield the corresponding biparametric Jordanian deformation

of GL(2) ⊗ GL(1), which in turn provides a complete realisation of the biparamet-

ric (h, h′)-deformation of GL(2), i.e., GLh,h′(2) in a manner similar to that for the

q-deformed case [3].

• Both the biparametric quantum and Jordanian deformations of GL(2)⊗GL(1) admit

coloured extensions [3] which also commute with the contraction procedure.

• The physical interest in studying Ar,s lies in the observation that when endowed with

a ∗-structure, this specialises to its compact form, i.e., provides a biparametric q-

deformation of SU(2) ⊗ U(1) which is precisely the gauge group for the theory of

electroweak interactions.
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Another deformation similar to Ar,s has also been recently given in [4], though in a different

context. In the present article, we give an explicit description of the algebra dual to Ar,s as

a starting point in further investigation of this quantum group structure. Motivated by the

relation of this deformation with gauge theory, we also construct a bicovariant differential

calculus since gauge theories have an obvious differential geometric description. This would

then provide insights into possible scenarios for constructing q-gauge theories based on this

deformation. In pursuing our aim, we follow the convenient R-matrix approach [5, 6]. In

Sec. II, we give the cross-product structure and go over to the R-matrix duality in Sec. III.

The constructive calculus is presented in Sec. IV, while Sec. V is a brief description of the

Jordanian analogue. The results are discussed in Sec. VI.

II Cross-product structure

The biparametric q-deformation Ar,s can also be considered as the semidirect or cross-

product GLr(2) �
s

C[f, f−1] built on the vector space GLr(2) ⊗ C[f, f−1] where GLr(2) =

C[a, b, c, d] modulo the relations (4) and C[f, f−1] has the cross relations (5). Then, Ar,s

can also be interpreted as a skew Laurent polynomial ring GLr[f, f−1; σ] where σ is the

automorphism given by the action of element f on GLr(2). Knowing properties of cross-

product algebras (general theory given in [7, 8]), we already know that the algebra dual to

Ar,s would be the cross-coproduct coalgebra Ur,s = Ur(gl(2)) �
s

C[[φ]] with φ as an element

dual to f . If we let A = GLr(2) and H = C[f, f−1], then A is a left H-module algebra and

the action of f on GLr(2) is given by

f � a = a, f � b = sb, f � c = s−1c, f � d = d (9)

As a vector space, the dual is Ur,s = Ur(gl(2))⊗U(u(1)). Now, the duality relation between

〈GLr(2), Ur(gl(2))〉 is already well-known [9], while that between 〈C[f, f−1], U(u(1))〉 is

given by 〈f, φ〉 = 1, i.e., U(u(1)) = C[[φ]]. More precisely, we work algebraically with

C[sφ, s−φ] where 〈f, sφ〉 = s (this is a standard notational convention which we adopt).

This induces duality on the vector space tensor products and the left action dualises to the

left coaction. This results in the dual algebra being a cross-coproduct Ur,s = Ur(gl(2)) �
s

C[[φ]]. Let us recall [9] that Ur(gl(2)), the algebra dual to GLr(2), is isomorphic to the

tensor product Ur(sl(2)) ⊗ Ũ(u(1)) where Ur(sl(2)) has the usual generators {H, X±} and

Ũ(u(1)) = C[[ξ]] = C[rξ, r−ξ] with ξ central. Therefore, Ur,s is nothing but Ur(sl(2)) and
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two central generators ξ and φ, where ξ is the generating element of Ũ(u(1)) and φ is the

generating element of U(u(1)). Also note that sφ (s being the second deformation parameter)

is dually paired with the element f of Ar,s. Defining the left coaction Ur(gl(2)) −→ U(u(1))⊗

Ur(gl(2)) we have

X+ −→ sφ ⊗ X+, X− −→ s−φ ⊗ X−, H −→ 1 ⊗ H, ξ −→ 1 ⊗ ξ (10)

It can be checked that this gives the correct duality pairings. For example, we have for X+

〈∆L(X+), 1 ⊗
(

a b
c d

)
〉 = 〈sφ ⊗ X+, 1 ⊗

(
a b
c d

)
〉 = 〈sφ, 1〉〈X+,

(
a b
c d

)
〉 = ( 0 1

0 0 )

〈∆L(X+), f ⊗
(

a b
c d

)
〉 = 〈sφ ⊗ X+, f ⊗

(
a b
c d

)
〉 = 〈sφ, f〉〈X+,

(
a b
c d

)
〉 = s ( 0 1

0 0 )

〈X+, f �
(

a b
c d

)
〉 = 〈X+,

(
a sb

s−1c d

)
〉 = s ( 0 1

0 0 )

(11)

Therefore, the coalgebra structure of Ur,s is given as

∆(X+) = X+ ⊗ r
H
2 + r−

H
2 sφ ⊗ X+ (12)

∆(X−) = X− ⊗ r−
H
2 + r

H
2 s−φ ⊗ X+ (13)

∆(H) = H ⊗ 1 + 1 ⊗ H (14)

∆(ξ) = ξ ⊗ 1 + 1 ⊗ ξ (15)

∆(φ) = φ ⊗ 1 + 1 ⊗ φ (16)

In this way, we have obtained the Drinfeld-Jimbo form of the dual algebra Ur,s using the

cross-product construction. Given other approaches to the problem of duality for quantum

groups, we also construct explicitly the dual algebra using the R-matrix procedure.

III R-matrix duality

The biparametric (r, s)-deformation, Ar,s, of GL(2)⊗GL(1) has been defined in the previous

section at the group level, i.e., as the q-deformation of algebra of functions on GL(2)⊗GL(1).

In this section, we derive explicitly the corresponding quantised universal enveloping alge-

bra, i.e., its dual within the framework of the R-matrix formulation. We first construct

functionals (matrices) L+ and L− which are dual to the matrix of generators in the fun-

damental representation. The linear functionals (L±)a
b (following the method of [5, 7]) are

defined by their value on the elements of the matrix of generators T

〈(L±)a
b , T c

d 〉 = (R±)ac
bd (17)
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where

(R+)ac
bd = c+(R)ca

db (18)

(R−)ac
bd = c−(R−1)ac

bd (19)

and c+ , c− are free parameters. Matrices (L±)a
b satisfy

〈(L±)a
b , uv〉 = 〈(L±)a

c ⊗ (L±)c
d, u ⊗ v〉 = (L±)a

c (u)(L±)c
d(v) (20)

i.e. ∆(L±)a
b = (L±)a

c ⊗ (L±)c
b

For Ar,s, the (R+) and (R−) matrices read

(R+) = c+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0 0

0 S Λ 0

0 0 S−1 0

0 0 0 RT
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; (R−) = c−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r−1 0 0 0

0 S 0 0

0 −Λ S−1 0

0 0 0 R−1
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where Rr, Λ and S are the same as before and R−1
r = Rr−1 . Before proceeding further, it is

pertinent to make the following remark about the L± functionals. Let A(R) be a bialgebra

or a Hopf algebra underlying a 3 × 3 quantum matrix and let Ũ(R) be a similar matrix

bialgebra with two full matrices L± of generators. These may be viewed as functionals

A(R) −→ C via (17), but duality pairing at this level may be degenerate. So, we look at

appropriate quotients of these such that the pairing is non-degenerate. In our case, upon

quotienting A(R) would descend to Ar,s, and likewise Ũ(R) to the dual of Ar,s. The quotient

on A(R) is obtained by setting certain entries of the T-matrix to zero. The most general

3 × 3 quantum matrix has nine elements

T =

⎛
⎜⎜⎜⎜⎝

T 0
0 T 0

1 T 0
2

T 1
0 T 1

1 T 1
2

T 2
0 T 2

1 T 2
2

⎞
⎟⎟⎟⎟⎠

(22)

Now, let T 0
1 = 0 = T 0

2 and T 1
0 = 0 = T 2

0 . Checking the coideal property (via coproduct of

T ), we have

∆(T 0
1 ) = T 0

0 ⊗ T 0
1 + T 0

1 ⊗ T 1
1 + T 0

2 ⊗ T 2
1

∆(T 0
2 ) = T 0

0 ⊗ T 0
2 + T 0

1 ⊗ T 1
2 + T 0

2 ⊗ T 2
2

∆(T 1
0 ) = T 1

0 ⊗ T 0
0 + T 1

1 ⊗ T 1
0 + T 1

2 ⊗ T 2
0

∆(T 2
0 ) = T 2

0 ⊗ T 0
0 + T 2

1 ⊗ T 1
0 + T 2

2 ⊗ T 2
0

(23)
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These generate biideals. Therefore, setting them to zero gives the quotient of A(R)

T =

⎛
⎜⎜⎜⎜⎝

T 0
0 0 0

0 T 1
1 T 1

2

0 T 2
1 T 2

2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

f 0 0

0 a b

0 c d

⎞
⎟⎟⎟⎟⎠

= T (Ar,s) (24)

Similarly, the quotient on Ũ(R) is obtained by setting certain entries of L± matrices to zero.

Starting with

L+ =

⎛
⎜⎜⎜⎜⎝

L+0
0 L+0

1 L+0
2

L+1
0 L+1

1 L+1
2

L+2
0 L+2

1 L+2
2

⎞
⎟⎟⎟⎟⎠

, L− =

⎛
⎜⎜⎜⎜⎝

L−0
0 L−0

1 L−0
2

L−1
0 L−1

1 L−1
2

L−2
0 L−2

1 L−2
2

⎞
⎟⎟⎟⎟⎠

(25)

we make the ansatz

L+2
1 = 0 = L−1

2

L+0
1 = L+0

2 = L+1
0 = L+2

0 = 0

L−0
1 = L−0

2 = L−1
0 = L−2

0 = 0

(26)

and, similar to the above for A(R), check the coideal property. We also verify explicitly [7]

that this ansatz is compatible with the duality pairing

〈L+2
1 , T i

j 〉 = R+2i
1j = Ri2

j1 = 0

〈L−1
2 , T i

j 〉 = R−1i
2j = (R−1)1i

2j = 0
(27)

and so on for their pairing with products of the T i
j . Therefore, setting these elements to

zero yields a quotient bialgebra U(R) of Ũ(R)

L+ =

⎛
⎜⎜⎜⎜⎝

L+0
0 0 0

0 L+1
1 L+1

2

0 0 L+2
2

⎞
⎟⎟⎟⎟⎠

, L− =

⎛
⎜⎜⎜⎜⎝

L−0
0 0 0

0 L−1
1 0

0 L−2
1 L−2

2

⎞
⎟⎟⎟⎟⎠

(28)

Therefore, the initial pairing 〈A(R), Ũ(R)〉 descends to 〈Ar,s, U(R)〉. So, for Ur,s (or U(R))

we make the following ansatz for the L± matrices:

L+ = c+r

⎛
⎜⎜⎜⎜⎝

s−
1
2 (F̃−H2−1)r

1
2 (F̃−H1−1) 0 0

0 s−
1
2 (F̃−H1+1)r

1
2 (−F̃+H2−1) r−1λC̃

0 0 s−
1
2 (F̃+H1−1)r

1
2 (−F̃−H2−1)

⎞
⎟⎟⎟⎟⎠

L− = c−r−1

⎛
⎜⎜⎜⎜⎝

s−
1
2 (F̃−H2−1)r−

1
2 (F̃−H1−1) 0 0

0 s−
1
2 (F̃−H1+1)r−

1
2 (−F̃+H2−1) 0

0 −rλB̃ s−
1
2 (F̃+H1−1)r−

1
2 (−F̃−H2−1)

⎞
⎟⎟⎟⎟⎠
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where H1 = Ã + D̃, H2 = Ã − D̃, and {Ã, B̃, C̃, D̃, F̃} is the set of generating elements of

the dual algebra. This is consistent with the action on the generators of Ar,s and gives the

correct duality pairings. More conveniently,

L+ =

⎛
⎜⎜⎜⎜⎝

J 0 0

0 M P

0 0 N

⎞
⎟⎟⎟⎟⎠

and L− =

⎛
⎜⎜⎜⎜⎝

J ′ 0 0

0 M ′ 0

0 Q N ′

⎞
⎟⎟⎟⎟⎠

(29)

where

J = s−
1
2 (F̃−H2−1)r

1
2 (F̃−H1+1)

M = s−
1
2 (F̃−H1+1)r

1
2 (−F̃+H2+1)

N = s−
1
2 (F̃+H1−1)r

1
2 (−F̃−H2+1)

J ′ = s−
1
2 (F̃−H2−1)r−

1
2 (F̃−H1+1)

M ′ = s−
1
2 (F̃−H1+1)r−

1
2 (−F̃+H2+1)

N ′ = s−
1
2 (F̃+H1−1)r−

1
2 (−F̃−H2+1)

(30)

and

P = λC̃

Q = −λB̃
(31)

These can also be arranged in terms of smaller L+ and L− matrices

L+ = c+

⎛
⎝J 0

0 L+

⎞
⎠ where L+ =

⎛
⎝M P

0 N

⎞
⎠

L− = c−

⎛
⎝J ′ 0

0 L−

⎞
⎠ where L− =

⎛
⎝M ′ 0

Q N ′

⎞
⎠

(32)

Commutation relations of the dual

The dual algebra is generated by L± functionals which satisfy the q-commutation relations

(the so-called RLL relations)

R12L±
2 L±

1 = L±
1 L±

2 R12 (33)

R12L+
2 L−

1 = L−
1 L+

2 R12 (34)

where L±
1 = L±⊗1 and L±

2 = 1⊗L±. Since Ar,s is a quotient Hopf algebra, it is necessary to

amend the R-matrix to eliminate relations that are inconsistent with the quotient structure.
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Consequently, the R-matrix for the RLL relations is different from the one used in the RT T

relations. The RLL relations are constructed with the R-matrix:

R12 = c−〈L−, T 〉−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0 0

0 S−1 0 0

0 0 S 0

0 0 0 Rr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(35)

Evaluating L±
1 , L±

2 matrices and substituting in the above RLL- relations yields the dual

algebra commutation relations. From R12L−
2 L−

1 = L−
1 L−

2 R12 and R12L+
2 L+

1 = L+
1 L+

2 R12

we obtain

RrL
−
2 L−

1 = L−
1 L−

2 Rr (36)

RrL
+
2 L+

1 = L+
1 L+

2 Rr (37)

MJ = JM M ′J ′ = J ′M ′

NJ = JN N ′J ′ = J ′N ′

PJ = sJP J ′Q = sQJ ′

(38)

where

RrL
−
2 L−

1 = L−
1 L−

2 Rr =⇒ QM ′ = rM ′Q, N ′Q = rQN ′ and N ′M ′ = M ′N ′

RrL
+
2 L+

1 = L+
1 L+

2 Rr =⇒ PM = rMP, NP = rPN and NM = MN

(39)

In addition, the cross relation R12L+
2 L−

1 = L−
1 L+

2 R12 yields

NJ ′ = J ′N MJ ′ = J ′M PJ ′ = sJ ′P

N ′J = JN ′ M ′J = JM ′ JQ = sQJ
(40)

and RrL
+
2 L−

1 = L−
1 L+

2 Rr which further implies

QP − PQ = −λ(N ′M − NM ′) (41)

Simplifying the above, we get the following commutation relations

[Ã, B̃] = B̃, [Ã, C̃] = −C̃

[D̃, B̃] = −B̃, [D̃, C̃] = C̃

[Ã, D̃] = 0, [F̃ , •] = 0

(42)
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and

[B̃, C̃] =
rÃ−D̃s−F̃ − r−(Ã−D̃)s−F̃

r − r−1
=

rγF̃

r − r−1
[rÃ−D̃ − r−(Ã−D̃)] (43)

where γ = ln s
ln r . So, we obtain a single-parameter deformation of U(gl(2)) ⊗ U(u(1)) as an

algebra. Including the coproduct, we again obtain a semidirect product Ur(gl(2))�
s

U(u(1)),

as expected.

IV Constructive calculus

In order to investigate the differential geometric structure of the (r, s)-deformation, Ar,s, of

GL(2)⊗GL(1), we use Jurc̆o’s constructive procedure [6] based on the R-matrix formulation.

This method has so far been applied only to full matrix quantum groups but we demonstrate

here that it works equally well for appropriate quotients of these. For Ar,s, we obtain a first

order bicovariant differential calculus employing the ansatz for L± introduced in Sec. III.

A One-forms

Let {ω} be the basis of all left-invariant quantum one-forms. So, we have

∆L(ω) = 1 ⊗ ω (44)

This defines the left action on the bimodule Γ (space of quantum one-forms). The bimodule

Γ is further characterised by the commutation relations between ω and a ∈ A (≡ Ar,s),

ωa = (f ∗ a)ω (45)

The left convolution product is

f ∗ a = (1⊗ f)∆(a) (46)

where f ∈ A′(= Hom(A,C)) belongs to the dual. This means

ωa = (1⊗ f)∆(a)ω (47)

Now the linear functional f is defined in terms of the L± matrices as

f = S(L+)L− (48)
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Thus we have

ωa = [(1 ⊗ S(L+)L−)∆(a)]ω (49)

In terms of components,

ωija = [(1⊗ S(l+ki)l
−
jl)∆(a)]ωkl (50)

using the expressions L± = l±ij and ω = ωij where i, j = 1..3. For Γ to be a bicovariant

bimodule, the right coaction is given by

∆R(ω) = ω ⊗ M (51)

where functionals M are defined in terms of the matrix of generators T ,

M = T S(T ) (52)

Again, in component form, we can write

∆R(ωij) = ωkl ⊗ tkiS(tjl) (53)

Using the above formulas, we obtain the commutation relations of all the left-invariant one

forms with the generating elements {a, b, c, d, f} of Ar,s:

ω0a = aω0 ω0b = bω0

ω1a = r−2aω1 ω1b = bω1

ω+a = r−1aω+ ω+b = r−1bω+ − λr−1aω1

ω−a = r−1aω− − λr−1bω1 ω−b = r−1bω−

ω2a = aω2 − λbω+ ω2b = r−2bω2 − λr−1aω− + λ2bω1

(54)

ω0c = cω0 ω0d = dω0

ω1c = r−2cω1 ω1d = dω1

ω+c = r−1cω+ ω+d = r−1dω+ − λr−1cω1

ω−c = r−1cω− − λr−1dω1 ω−d = r−1dω−

ω2c = cω2 − λdω+ ω2d = r−2dω2 − λr−1cω− + λ2dω1

(55)

ω0f = r−2fω0

ω1f = fω1

ω+f = sfω+

ω−f = s−1fω−

ω2f = fω2

(56)
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where ω0 = ω11, ω
1 = ω22, ω

+ = ω23, ω
− = ω32, ω

2 = ω33 and the components

ω12, ω13, ω21, ω31 have null contribution, given the structure of the T matrix (i.e., t12 =

t13 = t21 = t31 = 0).

B Vector fields

The linear space Γ (space of all left invariant one-forms) contains a bi-invariant element

τ =
∑

i ωii which can be used to define a derivative on A. For a ∈ A, one sets

da = τa − aτ (57)

Now

ωiia = [(1 ⊗ S(l+ki)l
−
il )∆(a)]ωkl (58)

So

da = [(1⊗ χkl)∆(a)]ωkl (59)

where χkl = S(l+ki)l
−
il − δklε, ε being the counit. Denote

χij = S(l+ik)l−kj − δijε (60)

or more compactly

χ = S(L+)L− − 1ε (61)

the matrix of left-invariant vector fields χij on A. The action of the vector fields on the

generating elements is

χija = (S(l+ik)l−kj − δijε)a (62)

χija = 〈S(l+ik)l−kj , a〉 − δijε(a) (63)

Explicitly, we obtain

χ0(a) = 0 χ0(b) = 0

χ1(a) = r−2 − 1 χ1(b) = 0

χ+(a) = 0 χ+(b) = 0

χ−(a) = 0 χ−(b) = −(r − r−1)

χ2(a) = 0 χ2(b) = 0

(64)
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χ0(c) = 0 χ0(d) = 0

χ1(c) = 0 χ1(d) = (r − r−1)2

χ+(c) = −(r − r−1) χ+(d) = 0

χ−(c) = 0 χ−(d) = 0

χ2(c) = 0 χ2(d) = r−2 − 1

(65)

χ0(f) = r−2 − 1

χ1(f) = 0

χ+(f) = 0

χ−(f) = 0

χ2(f) = 0

(66)

where χ0 = χ11, χ1 = χ22, χ+ = χ23, χ− = χ32, χ2 = χ33 and again (by previous argument)

the components χ12, χ13, χ21, χ31 have null contribution. The left convolution products are

given as

χ0 ∗ a = 0 χ0 ∗ b = 0

χ1 ∗ a = (r−2 − 1)a χ1 ∗ b = ((r − r−1)2)b

χ+ ∗ a = −(r − r−1)b χ+ ∗ b = 0

χ− ∗ a = 0 χ− ∗ b = −(r − r−1)a

χ2 ∗ a = 0 χ2 ∗ b = (r−2 − 1)b

(67)

χ0 ∗ c = 0 χ0 ∗ d = 0

χ1 ∗ c = (r−2 − 1)c χ1 ∗ d = ((r − r−1)2)d

χ+ ∗ c = −(r − r−1)d χ+ ∗ d = 0

χ− ∗ c = 0 χ− ∗ d = −(r − r−1)c

χ2 ∗ c = 0 χ2 ∗ d = (r−2 − 1)d

(68)

χ0 ∗ f = (r−2 − 1)f

χ1 ∗ f = 0

χ+ ∗ f = 0

χ− ∗ f = 0

χ2 ∗ f = 0

(69)
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C Exterior derivatives

Using da =
∑

i(χi ∗ a)ωi for a ∈ A, we obtain the action of the exterior derivatives:

da = (r−2 − 1)aω1 − λbω+ (70)

db = λ2bω1 − λaω− + (r−2 − 1)bω2 (71)

dc = (r−2 − 1)cω1 − λdω+ (72)

dd = λ2dω1 − λcω− + (r−2 − 1)dω2 (73)

df = (r−2 − 1)fω0 (74)

where λ = r − r−1. The exterior derivative d : A −→ Γ satisfies the Leibniz rule and dA

generates Γ as a left A-module. This then defines a first-order differential calclulus (Γ,d)

on Ar,s. Furthermore, the calculus is bicovariant due to the coexistence of the left and the

right actions

∆L : Γ −→ A⊗ Γ (75)

∆R : Γ −→ Γ ⊗A (76)

since d has the invariance property

∆Ld = (1⊗ d)∆ (77)

∆Rd = (d⊗ 1)∆ (78)

The bicovariance holds also due to the existence of the bi-invariant element τ =
∑

i ωii

(eqn.(57)) of the linear space of left-invariant one-forms. If we rewrite the derivatives

{da,db,dc,dd,df} as {d(fNa),d(fNb),d(fNc),d(fNd)}, i.e., reducing from the five-

dimensional to the four-dimensional algebra, then the latter set of exterior derivatives pro-

vides a realisation of the differential calculus on the biparametric (p, q)-deformation of GL(2),

i.e., GLp,q(2), with the defining relations between the two sets of deformation parameters

(p, q) and (r, s) as before. Furthermore, the differential calculus also respects the cross-

product structure of Ars. It can be checked (using the Leibniz rule) that

d(af − fa) = 0, d(cf − sfc) = 0, d(bf − s−1fb) = 0, d(df − fd) = 0, (79)

which is consistent with the cross relations (5).
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V Jordanian analogue

It was shown in [3] that the Ar,s deformation could be contracted (by means of singular limit

of similarity transformations) to obtain a nonstandard or Jordanian analogue, say Am,k, with

deformation parameters {m, k} and the associated R-matrix is triangular. In analogy with

Ar,s, Am,k can also be considered as the semidirect or cross-product GLm(2) �
k

C[f, f−1]

where GLm(2) = C[a, b, c, d] modulo the relations

[c, d] = −mc2, [c, b] = −m(ac + cd) = −m(ca + dc)

[c, a] = −mc2, [d, a] = −m(d − a)c = −mc(d − a)
(80)

[d, b] = −m(d2 − δ)

[b, a] = −m(δ − a2)
(81)

where δ = ad − bc + mac = ad − cb − mcd, and C[f, f−1] has the cross relations

[f, a] = kcf, [f, b] = k(df − fa)

[f, c] = 0, [f, d] = −kcf
(82)

Thus, Am,k 	 GLm(2)�
k

C[f, f−1] can also be interpreted as a skew Laurent polynomial ring

GLm[f, f−1; σ] where σ is the automorphism given by the action of element f on GLm(2).

The (left) action is given by

f � a = a + kc, f � b = b + k(d − a) − k2c, f � c = c, f � d = d − kc (83)

VI Discussion

In this article, we have investigated the algebro-geometric structure of the biparametric

quantum deformation of GL(2) ⊗ GL(1), namely, Ar,s. A particular feature of this defor-

mation is that it has an interpretation as a semidirect or cross-product algebra. We exhibit

this cross-product structure and establish a picture of duality in this setting. Using the

R-matrix formalism, we have given an explicit derivation of the corresponding dual agebra,

i.e., the quantised universal enveloping algebra and also constructed a bicovariant differen-

tial calculus. The dual algebra obtained via R-matrices is isomorphic to the dual algebra

obtained by the cross-product construction. We note that the differential calculus satisfies

the required axioms, contains the calculus on GLq(2) and our results match with those

given in [10]. Besides, the calculus is also consistent with the cross-product structure of
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Ar,s. We expect that the calculus could as well be obtained by projection from the calculus

on multiparameter q-deformed GL(3). The differential calculus obtained on Ar,s enables us

to investigate the associated gauge theory from a noncommutative perspective. It would

be useful to repeat the analysis presented in this paper for the biparametric Jordanian de-

formation of GL(2) ⊗ GL(1) obtained in [3] and also to investigate corresponding hybrid

(q, h)-deformations [11, 12]. Furthermore, it would indeed be interesting to generalise the

setting to the case of coloured quantum and Jordanian deformations.
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