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Abstract

This article deals with the existence of blockwise low-rank approximants — so-called H-matrices — to
inverses of FEM matrices in the case of uniformly elliptic operators with L∞-coefficients. Unlike operators
arising from boundary element methods for which the H-matrix theory has been extensively developed,
the inverses of these operators do not benefit from the smoothness of the kernel function. However, it will
be shown that the corresponding Green functions can be approximated by degenerate functions giving rise
to the existence of blockwise low-rank approximants of FEM inverses. Numerical examples confirm the
correctness of our estimates. As a side-product we analyse the H-matrix property of the inverse of the FE
mass matrix.

1 Introduction

In a series of papers, the technique of hierarchical matrices (H-matrices) has been introduced, which enable a
cheap but sufficiently accurate representation of fully populated matrices (cf. [16], [17]). Since the method has
its original from the panel clustering method (cf. [18]), it was first applied to dense matrices arising from the
discretisation of boundary integral operators (see also [1]). Since hierarchical matrices allow the approximate
computation of matrix-matrix multiplications and matrix inversions, also the inverse finite element (FE)
stiffness matrix turns out to be computable with almost linear complexity.

A rigorous proof for the fact that the inverse A−1 of a FE stiffness matrix A can be approximated by
means of hierarchical matrices was still missing. The heuristic argument is that A−1 is closely related to the
Galerkin discretisation B of L−1, where the inverse differential operator is written as the integral operator

(L−1ϕ)(x) =
∫

Ω

G(x, y)ϕ(y) dy (1.1)

using Green’s function G(x, y) as Schwartz kernel. For differential operators L with constant (or analytic or
at least sufficiently smooth) coefficients and for sufficiently smooth boundary ∂Ω, one can show that G(x, y)
has the smoothness properties satisfying the following condition: Let ω1 and ω2 be two disjoint subsets of
Ω. Then G(x, y) restricted to x ∈ ω1 and y ∈ ω2 can be approximated sufficiently well by a (e.g., Taylor)
polynomial P (x, y). Since polynomials can be written in the separable form1

∑k
i=1 ui(x)vi(y), we conclude

that

G(x, y) ≈
k∑

i=1

ui(x)vi(y) in ω1 × ω2. (1.2)

Applying the Galerkin discretisation with FE basis functions ϕi, we obtain the matrix B, where bνµ :=∫
Ω

∫
Ω

ϕν(x)G(x, y)ϕµ(y)dxdy. Let Iω1 and Iω2 be the index sets with the property that supp(ϕν) ⊂ ω1

for ν ∈ Iω1 and supp(ϕµ) ⊂ ω2 for µ ∈ Iω2 . Approximating G by the right-hand side in (1.2), we get
bνµ ≈ b̃νµ :=

∑k
i=1

∫
Ω ϕν(x)ui(x)dx

∫
Ω ϕµ(y)vi(y)dy. Hence, the block (b̃νµ)ν∈Iω1 ,µ∈Iω2

is a rank-k matrix2.
1In fact, we may write a polynomial P (x, y) as

Pk
i=1 pi(x)yi−1, where pi(x) is a polynomial only in x. Therefore, set

ui(x) := pi(x) and vi(y) := yi−1.
2The rank-k matrix equals

Pk
i=1 aibT

i with the vectors ai =
`R

Ω ϕν(x)ui(x)dx
´
ν∈Iω1

and bi =
`R

Ω ϕµ(x)vi(x)dx
´
µ∈Iω2

.
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This is the principle behind the representation of B by a hierarchical matrix B̃: Blocks of appropriate size are
replaced by low-rank matrices.

In short, the approximation of a dense matrix by an H-matrix is a consequence of the exponential con-
vergence of polynomials to certain parts G(x, y)|ω1×ω2 of the Green function. This argument fails if G is not
smooth as it happens for non-smooth coefficients cij of the (uniformly elliptic) differential operator

Lu = −
d∑

i,j=1

∂j(cij∂iu) (1.3)

or close to corners of the boundary ∂Ω. In the case of cij ∈ L∞(Ω) the theorem of De Giorgi (1957; see [7,
page 200]) guarantees only local Hölder continuity of G. In this article we consider the extreme case when
cij ∈ L∞(Ω) and Ω ⊂ R

d is a bounded Lipschitz domain, and prove that nevertheless B as well as the inverse
FE stiffness matrix A−1 are well approximated by H-matrices. On the other hand, we require no smoothness
of the functions ui, vi in (1.2).

Usually, iterative methods are applied for the efficient numerical solution of elliptic partial differential
equations, a prominent example are multigrid methods (cf. [12], [13, Chapter 10]). The first aim of iterative
methods is a convergence rate independent3 of the dimension of the problem (“optimality”). However, the
influence of other problem parameters may still deteriorate the method and is not so easy to cure (“robust-
ness”). Jumping coefficients and oscillatory coefficients (as it may happen for cij ∈ L∞(Ω)) are two examples
of this kind.

A weak point of traditional iterative methods is the treatment of arising Schur complements, since its
explicit calculation is avoided but nevertheless a good preconditioning is required. This is hard to achieve for
real life problems involving difficult problem parameters. The concept of H-matrices allows to compute the
Schur complement since the class of H-matrices provides both efficient storage and efficient arithmetic of the
matrix algebra.

Consequently, this article is designed to lay ground to future efficient and easy to implement algorithms
for the solution of elliptic partial differential equations with extremely general coefficients. The efficient
treatment of the inverse of the stiffness matrix might be used for (a) the direct solution of FEM systems,
(b) for preconditioning another iterative method or (c) for the calculation of a Schur complement. It is
interesting to remark that the easily available inverse enables also the calculation of matrix functions (e.g.,
exp(−tA); cf. [5]) or the solution of matrix equations (e.g., the Riccati equation; cf. [8]).

Since we emphasise the rather weak conditions cij ∈ L∞(Ω) on the coefficients and “Ω bounded Lipschitz”
on the domain, we simplify other aspects in order not the distract the attention of the reader by other
complications. These simplifications are listed below.

1. We consider L to be an differential operator (1.3) consisting only of the principal part. Lower order
terms cause no problem as long as we can guarantee L−1 to exist. A dominant low order term changes
the situation, since we obtain a singularly perturbed problem.

2. We consider a second order differential operator L as in (1.3).

3. L is assumed to be a scalar operator, systems are not considered.

4. L is assumed to be uniformly elliptic. Although the numerical examples presented in Section 6 do not
show a dependence on the ratio sup{λmax(x)/λmin(x) : x ∈ Ω} of the eigenvalues of the matrix (cij)d

i,j=1,
the proof requires its boundedness.

5. The spatial dimension is assumed to be d ≥ 3. This is not such restrictive since d = 3 is the interesting
case. The true reason is that the result quoted from [11] is formulated only for d ≥ 3, although there is
no indication why it should not hold for d = 1, 2.

6. We consider Dirichlet boundary conditions, hence the Green functions satisfies zero boundary conditions.

7. As discretisation we require a finite element discretisation with a quasi-uniform triangulation. For other
discretisations the proofs may be more involved, but there is no practical reason why they should behave
worse. Adaptive meshes are no problem for hierarchical matrices (see [10]).

3A logarithmic dependence can be tolerated.
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8. The estimates in Subsection 2.5 are proven for convex domains D2. These domains D2 will later cor-
respond to cluster sets X in R

d. Although the clusters X are in general not convex, they are usually
constructed in such a way that X ⊂ Xc and Xc is convex. Examples for Xc are Chebyshev spheres (cf.
[18]) or bounding boxes (cf. [2]). Therefore, there is no need for a generalisation, although the estimates
could be extended to non-convex domains D2.

The structure of the rest of the article is as follows: Section 2 is devoted to the existence of degenerate
approximations to the Green function G corresponding to the underlying boundary. The Green function G
allows to define the solution operator by the integral operator (1.1). Its Galerkin discretisation with respect
to the FE functions from above yields the matrix B. In Section 3 we show that B possesses the H-matrix
structure. The inverse stiffness matrix A−1 and B are connected via the mass matrix M which is considered
in Section 4. Again M−1 can be approximated by an H-matrix. Finally, in Section 5, we represent the
inverse A−1 of the FE stiffness matrix by means of the foregoing quantities. Using results on the algebra of
H-matrices, we obtain the desired H-matrix property of A−1. Section 6 contains results of numerical tests
that confirm the estimates made in this article.

2 Analysis of the Green Function

2.1 The Differential Operator

Let L : V → V ′ (V = H1
0 (Ω)) be an (scalar) uniformly elliptic operator in divergence form

Lu = −
d∑

i,j=1

∂j(cij∂iu) (2.1)

in a bounded Lipschitz domain Ω ⊂ R
d, d ≥ 3. The coefficient matrix C = C(x) = (cij)ij , cij ∈ L∞(Ω), shall

be symmetric with
0 < λmin ≤ λ ≤ λmax (2.2)

for all eigenvalues λ of C(x) and almost all x ∈ Ω. The ratio κC = λmax/λmin is an upper bound on almost all
spectral condition numbers cond‖·‖2 C(x). Under these assumptions it is shown in [11] that in the case d ≥ 3,
a Green function G : Ω × Ω → R ∪ {∞} with the following properties exists:

G(·, y) ∈ H1(Ω \ Br(y)) ∩ W 1,1
0 (Ω) for all y ∈ Ω and all r > 0, (2.3a)

a(G(·, y), ϕ) = ϕ(y) for all ϕ ∈ C∞0 (Ω) and y ∈ Ω, (2.3b)

where Br(y) is the open ball centred at y with radius r and

a(u, v) =
∫

Ω

d∑
i,j=1

cij(∂iu)(∂jv) dx (2.4)

(see also [4]). Furthermore, for x, y ∈ Ω it holds that

|G(x, y)| ≤ c(d, κC)
λmin

|x − y|2−d. (2.5)

Since L is uniformly elliptic, L−1 : V ′ → V exists and ‖L−1‖V←V ′ ≤ Cλ−1
min (λmin is a matter of scaling).

We will make use of the characteristic relation between L−1 and G, which is equivalent to (2.3b):

(L−1ϕ)(x) =
∫

Ω

G(x, y)ϕ(y) dy for all ϕ ∈ C∞0 (Ω). (2.6)

2.2 Approximation by Finite Dimensional Subspaces

In the following lemmata D ⊂ R
d is a domain. All distances and diameters use the Euclidean norm in R

d

except the distance of functions which uses the L2(D)-norm. The constant cappr in (2.7) depends only on the
spatial dimension d.
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Lemma 2.1 Let D ⊂ R
n be a convex domain and X a closed subspace of L2(D). Then for any k ∈ N there

is a subspace Vk ⊂ X satisfying dimVk ≤ k so that

distL2(D)(u, Vk) ≤ cappr
diam(D)

d
√

k
‖∇u‖L2(D) for all u ∈ X ∩ H1(D). (2.7)

Proof. (a) First we assume k = �d and D ⊂ Q = {x ∈ R
d : ‖x − z‖∞ < 1

2 diam(D)} for some z ∈ R
d. We

subdivide the cube Q uniformly into k subcubes Qi, i = 1, . . . , k, and set Di = D ∩ Qi, i = 1, . . . , k. Each of
the sets Di is convex with diam(Di) ≤

d√2
� diam(D). Let

Wk = {v ∈ L2(D) : v is constant on Di for all i = 1, . . . , k}.
Then dimWk ≤ k and according to Poincaré’s inequality for u ∈ H1(D) (in particular, we use the convex

version in [20] with explicitly given constant) it holds that∫
Di

|u − ūi|2dx ≤ π−2 diam2(Di)
∫

Di

|∇u|2dx,

where ūi = vol(Di)−1
∫

Di
u dx is the mean value of u in Di. Summation over all i yields

distL2(D)(u, Wk) ≤ ‖u − ū‖L2(D) ≤
d
√

2
π�

diam(D) ‖∇u‖L2(D)

for ū defined by ū|Di = ūi.
(b) For general k ∈ N, choose � := 
 d

√
k� ∈ N, i.e., �d ≤ k < (� + 1)d. Applying Part (a) for k′ := �d, we

use the space Wk := Wk′ satisfying dimWk = dim Wk′ ≤ k′ ≤ k. Using 1
� ≤ 2

�+1 < 2
d√

k
, we arrive at

distL2(D)(u, Wk) ≤ cappr
diam(D)

d
√

k
‖∇u‖L2(D)

with the constant cappr := 2 d
√

2 cd.
(c) Let P : L2(D) → X be the L2(D)-orthogonal projection onto X and Vk = P (Wk). Keeping in mind

that P has norm one and u ∈ X , the assertion follows from ‖u−P ū‖L2(D) = ‖P (u− ū)‖L2(D) ≤ ‖u− ū‖L2(D).

In the last proof we have restricted Di to convex domains though Poincaré’s inequality holds whenever
the embedding H1(Di) ↪→ L2(Di) is compact (cf. [21]). This is for example true if Di fulfils a uniform cone
condition. However, in this case it is not obvious how the constant depends on the geometry.

2.3 Space of L-Harmonic Functions

The Green function G(x, ·) is a special example of an L-harmonic function in a subdomain DΩ ⊂ Ω (provided
x /∈ DΩ) with zero boundary values on ∂Ω ∩ DΩ. The space X in Lemma 2.1 will be substituted by a func-
tion space X(D) ⊂ L2(D) which we define next. While the notation X(D) will be used for different D, the
underlying domain Ω is fixed.

Let D be a domain intersecting Ω: DΩ := D ∩ Ω �= ∅. The boundary ∂DΩ

consists of two parts:

Γ0(D) := D ∩ ∂Ω, Γ1(D) := ∂DΩ\Γ0(D) = ∂D ∩ Ω. (2.8)

Γ0 = ∅ holds in the cases of D ⊂ Ω or D ⊃ Ω. The former case may happen,
whereas the latter is of no interest for us.

��

��

�

�

If D is not a subset of Ω, we require that outside of Ω functions u ∈ X(D) are extended by zero. The
functions u ∈ X(D) are locally in H1(D) relative to Γ1(D) (notation: u ∈ H1

rl,Ω(D)) in the following sense:

H1
rl,Ω(D) := {u ∈ L2(D) : u|D\Ω = 0, u ∈ H1(K) for all K ⊂ D with dist(K, Γ1(D)) > 0}. (2.9)
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The first condition is empty if D ⊂ Ω.
The L-harmonicity4 is required in the weak formulation of Lu = 0,

a(u, ϕ) = 0 for all ϕ ∈ C∞0 (DΩ) (DΩ = D ∩ Ω) (2.10)

with a(·, ·) from (2.4). The final definition is

X(D) := {u ∈ L2(D) ∩ H1
rl,Ω(D) : u satisfies (2.10)}. (2.11)

The Green function G(x, ·) can be extended to D by zero. This extension is in H1(D) and hence in X(D) if
x ∈ Ω \ D.

Lemma 2.2 The space X(D) is closed in L2(D).

The proof is postponed to the next subsection, since it needs Lemma 2.4. The closeness of X(D) is
necessary in order to use X(D) as X in Lemma 2.1.

Remark 2.3 Consider X(D) and X(D′) for two domains D′ ⊂ D intersecting Ω.
(a) For any u ∈ X(D), the restriction u|D′ belongs to X(D′); hence, in short notation, X(D)|D′ = X(D′).

If dist(D′, Γ1(D)) > 0, even X(D)|D′ = X(D′) ∩ H1(D′) holds (cf. (2.9)).
(b) The relevant parts of D and D′ are DΩ = D ∩ Ω, D′Ω = D′ ∩ Ω as well as Γ0(D) and Γ0(D′). DΩ

and D′Ω are the domains of L-harmonicity, whereas Γ0(D) and Γ0(D′) describe the location of zero boundary
values due to the zero extension outside. As long as D = D′ and Γ0 = Γ′0, differences in D \Ω and D′ \Ω are
irrelevant, since functions from X(D) and X(D′) vanish in these parts anyway.

2.4 The Caccioppoli Inequality

The following lemma shows that any function u ∈ X(D) allows to estimate ‖∇u‖L2(KΩ) for a domain K ⊂ D
not touching Γ1(D) by means of the weaker norm ‖u‖L2(DΩ). Note that K may contain parts of Γ0(D).

Lemma 2.4 Let X(D), Γ0(D), Γ1(D) as in (2.11), (2.8), and K ⊂ D, KΩ = K∩Ω with dist(K, Γ1(D)) > 0.
Further, let κC = λmax/λmin (cf. (2.2)). Then the so-called Caccioppoli inequality holds:

‖∇u‖L2(KΩ) ≤
4
√

κC

dist(K, Γ1(D))
‖u‖L2(DΩ) for all u ∈ X(D). (2.12)

Proof. The proof follows the lines of [6]. Let η ∈ C1(D) satisfy 0 ≤ η ≤ 1, η = 1 in K, η = 0 in a
neighbourhood of Γ1(D) and5 |∇η| ≤ 2/δ in DΩ, where we set δ = dist(K, Γ1(D)). Since K ′ := supp(η) ⊂ D
satisfies dist(K ′, Γ1(D)) > 0, (2.9) implies u ∈ H1(K ′). Hence, ϕ := η2u ∈ H1

0 (DΩ) may be used as a test
function in a(u, ϕ) = 0:

0 =
∫

DΩ

(∇u)T C(x)∇(η2u)dx = 2
∫

DΩ

ηu(∇u)T C(x)(∇η)dx +
∫

DΩ

η2(∇u)T C(x)(∇u)dx.

¿From (2.2) it follows that∫
DΩ

η2|C1/2(x)∇u|2dx =
∣∣∣∣
∫

DΩ

η2(∇u)T C(x)(∇u)dx

∣∣∣∣ = 2
∣∣∣∣
∫

DΩ

ηu(∇u)T C(x)(∇η)dx

∣∣∣∣
≤ 2

∫
DΩ

η |u| |C1/2(x)∇η| |C1/2(x)∇u| dx

≤ 4
√

λmax

δ

∫
DΩ

|u|
(
η|C1/2(x)∇u|

)
dx

≤ 4
√

λmax

δ

(∫
DΩ

η2|C1/2(x)∇u|2dx

)1/2

‖u‖L2(DΩ),

4To be precise, we need L∗-harmonicity, since the Green function G(x, y) is L-harmonic w.r.t. x but L∗-harmonic w.r.t. y.
However, since here L consists only of the principle part (2.1), L is self-adjoined. But notice that symmetry is not at all essential.

5The estimate |∇η| ≤ c/δ can be fulfilled for all c > 1. Hence, in (2.12) the factor 4 may be replaced by 2c. Since it is true for
all 2c > 2, it follows also for 2 instead of 4.
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i.e., ‖η C1/2(x)∇u‖L2(DΩ) ≤ 4
√

λmax
δ ‖u‖L2(DΩ). The estimation by

‖∇u‖L2(KΩ) ≤ ‖η∇u‖L2(DΩ) ≤ λ
−1/2
min ‖ηC1/2(x)∇u‖L2(DΩ)

yields the assertion.

Remark 2.5 Since u = 0 in D \ Ω, we may write the norms in the inequality of Lemma 2.4 as ‖∇u‖L2(K)

and ‖u‖L2(D) (i.e., K instead of KΩ and D instead of DΩ).

Proof of Lemma 2.2. Let {uk}k∈N ⊂ X(D) converge to u in L2(D). Let K ⊂ D with dist(K, Γ1(D)) > 0.
According to Remark 2.5, the sequence {∇uk}k∈N is bounded on K,

‖∇uk‖L2(K) ≤ c ‖uk‖L2(D) ≤ C.

Due to the Banach-Alaoglu Theorem, a subsequence {uik
}k∈N converges weakly in H1(K) to û ∈ H1(K).

Hence, for any v ∈ L2(K) we have (u, v)L2(K) = limk→∞(uik
, v)L2(K) = (û, v)L2(K) proving u = û ∈ H1(K).

Since the functional a(·, ϕ) for ϕ ∈ C∞0 (DΩ) is in (H1(K))′, we see by the same argument that a(u, ϕ) = 0.
Finally, uk|D\Ω = 0 leads to u|D\Ω = 0. Hence, u ∈ X(D) is shown.

2.5 Main Theorem

First we investigate how large the dimension of a finite dimensional subspace must be to approximate a
function from X(D) in a subdomain D2 of D up to a certain error.

Lemma 2.6 Let D, Γ1(D), DΩ and X(D) as before (cf. Lemma 2.4) and assume that D2 ⊂ D is a convex
domain such that

dist(D2, ∂D) ≥ ρ diam(D2) > 0.

Then for any M > 1 there is a subspace W ⊂ X(D2) so that

distL2(D2)(u, W ) ≤ 1
M

‖u‖L2(DΩ) for all u ∈ X(D) (2.13)

and
dimW ≤ cd

ρ�log M�d+1 + �log M�, cρ = 4ecappr
√

κC
1 + 2ρ

ρ
. (2.14)

Proof. (a) Consider K(r) := {x ∈ R
d : dist(x, D2) ≤ r} for 0 ≤ r ≤ dist(D2, ∂D). We conclude that K(r) are

again convex domains which are increasing with r: K(r1) ⊂ K(r2) for r1 ≤ r2. The smallest is K(0) = D2,
while K(dist(D2, ∂D)) is the largest one which is still in D. We remark that dist(K(r1), ∂K(r2)) = r2 − r1

for r1 ≤ r2 and diam(K(r)) ≤ diam(D2) + 2r.
(b) Consider the sequence r0 > r1 > . . . > ri = 0 with rj := (1− j/i) dist(D2, ∂D), where i is chosen later.

Using K(r) from Part (a) we set

Dj := K(rj), Xj := X(Dj) (cf. (2.11))

and notice that D2 = Di ⊂ Di−1 ⊂ . . . ⊂ D0 ⊂ D.
(c) Let j ∈ {1, . . . , i}. Applying Lemma 2.4 (Remark 2.5) with (Dj−1, Dj) instead of (K, D), we obtain

‖∇v‖L2(Dj) ≤
4
√

κC

dist(Dj , Γ1(Dj−1))
‖v‖L2(Dj−1) for all v ∈ Xj−1

(we recall Γ1(Dj−1) = ∂Dj−1 ∩Ω ). Because of dist(Dj , Γ1(Dj−1)) ≥ dist(Dj , ∂Dj−1) = rj−1 − rj = r0/i (see
Part (a)), the resulting estimate is

‖∇v‖L2(Dj) ≤
4i
√

κC

r0
‖v‖L2(Dj−1) for all v ∈ Xj−1. (2.15)

(d) Apply Lemma 2.1 with Dj instead of D and with the choice k := �(Bi)d�, where the factor B will be
adjusted later. Then this Lemma ensures that there is a subspace Vj ⊂ Xj satisfying dimVj ≤ k and

distL2(Dj)(v, Vj) ≤ cappr
diam(Dj)

d
√

k
‖∇v‖L2(Dj) for all v ∈ Xj ∩ H1(Dj).
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Using d
√

k ≥ Bi and diam(Dj) = diam(D2) + 2rj ≤ diam(D2) + 2r0 (see Part (a)), we arrive at

distL2(Dj)(v, Vj) ≤ cappr
diam(D2) + 2r0

Bi
‖∇v‖L2(Dj) for all v ∈ Xj ∩ H1(Dj). (2.16)

Since any v ∈ Xj−1 also belongs to Xj ∩H1(Dj), the estimates (2.15), (2.16) together with r0 ≥ ρ diam(D2)
may be combined to

distL2(Dj)(v, Vj) ≤ 1 + 2ρ

ρ

4cappr
√

κC

B
‖v‖L2(Dj−1) for all v ∈ Xj−1. (2.17)

In particular, the factor 1+2ρ
ρ

4cappr
√

κC

B becomes M−1/i for the choice

B := B0M
1/i with B0 := 4cappr

√
κC

1 + 2ρ

ρ
. (2.18)

(e) For any given u =: v0 ∈ X0, (2.17) and (2.18) lead to v0|D1 = u1 + v1 with u1 ∈ V1 and

‖v1‖L2(D1) ≤ M−1/i ‖v0‖L2(D0).

Consequently, v1 belongs to X1. Similarly, for all j = 1, . . . , i we are able to find an approximant uj ∈ Vj so
that vj−1|Dj = uj + vj and ‖vj‖L2(Dj) ≤ M−1/i ‖vj−1‖L2(Dj−1). Hence, the subspace

W := span{Vj |D2 : j = 1, . . . , i}
using the restrictions of Vj to the smallest domain D2 = Di contains uj|D2 ∈ Vj |D2 ⊂ W . Therefore,
v0 = vi +

∑i
j=1 uj leads to

distL2(D2)(v0, W ) ≤ ‖vi‖L2(D2) ≤
(
M−1/i

)i

‖v0‖L2(D0) ≤ M−1‖u‖L2(DΩ),

where the last inequality is due to D0 ⊂ D and u|D\Ω = 0.
(f) The dimension of W is bounded by

∑i
j=1 dim Vj = i�(Bi)d� ≤ i + Bdid+1. The choice i := �log M�

yields
dimW ≤ �log M� + Bd

0ed�log M�d+1

because of B = B0M
1/i ≤ B0e. Together with cρ = B0e, we obtain the final result.

Remark 2.7 (a) Setting M = exp(m), the dimension of W is bounded by cd
ρ�m�d+1 +�m� ∼ cd

ρm
d+1. On the

other hand, if a dimension K = dimW is given, the possible improvement factor 1
M = exp(−m) is described

by m � (cρK)1/(d+1)/cρ.
(b) The factor 1+2ρ

ρ in (2.14) shows that ρ should be of order O(1), e.g., dist(D2, ∂D) ≥ diam(D2) is a
reasonable choice.

Next we consider the Green functions G(x, ·) with x ∈ D1 ⊂ Ω, which are L-harmonic in Ω \ D1. Note
that its approximant Gk(x, ·) from the following theorem is of the desired form (1.2).

Theorem 2.8 Let D1, D2 ⊂ Ω be two domains such that D2 is convex and

dist(D1, D2) ≥ ρ diam(D2) > 0.

Then for any ε ∈ (0, 1) there is a separable approximation

Gk(x, y) =
k∑

i=1

ui(x)vi(y) with k ≤ kε = cd
ρ/2�log

1
ε
�d+1 + �log

1
ε
�,

where cρ is defined in (2.14), so that

‖G(x, ·) − Gk(x, ·)‖L2(D2) ≤ ε‖G(x, ·)‖L2(D̂2) for all x ∈ D1, (2.19)

where D̂2 := {y ∈ Ω : dist(y, D2) ≤ ρ
2 diam(D2)}.
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Proof. Let D = {y ∈ R
d : dist(y, D2) ≤ ρ

2 diam(D2)}. Note that D̂2 = D ∩ Ω and that because of
dist(D̂2, D1) ≥ dist(D, D1) = dist(D2, D1)− ρ

2 diam(D2) ≥ ρ
2 diam(D2) > 0, the right-hand side ‖G(x, ·)‖L2(D̂2)

does not contain the singularity of G (cf. (2.5)).
Since dist(D2, ∂D) = ρ

2 diam(D2), we can apply Lemma 2.6 with M = ε−1 and ρ replaced by ρ/2. Let
{v1, . . . , vk} be a basis of the subspace W ⊂ X(D2) with k = dimW ≤ cd

ρ/2�log 1
ε�d+1 + �log 1

ε� according to
Lemma 2.6.

For any x ∈ D1, the function gx := G(x, ·) is in X(D). By means of (2.13), gx = ĝx +rx holds with ĝx ∈ W
and ‖rx‖L2(D2) ≤ ε‖gx‖L2(D̂2)

. Expressing ĝx by means of the basis, we obtain

ĝx =
k∑

i=1

ui(x)vi

with coefficients ui(x) depending on the index x. Since x varies in D1, the ui are functions defined on D1.
The function Gk(x, y) :=

∑k
i=1 ui(x)vi(y) satisfies estimate (2.19).

Remark 2.9 Without loss of generality, we may choose {v1, . . . , vk} as an orthogonal basis of W . Then the
coefficients ui(x) in the latter expansion equal (G(x, ·), vi)L2(D2∩Ω) showing that the ui’s satisfy Lui = vi with
homogeneous Dirichlet boundary conditions. In particular, ui is L-harmonic in Ω \ D2. Note that the ui’s do
not depend on D1.

For later use, we add a trivial remark.

Remark 2.10 Assume (2.19) and E ⊂ D1. Then ‖G − Gk‖L2(E×D2) ≤ ε‖G‖L2(E×D̂2).

Theorem 2.8 can be easily adjusted to fundamental solutions S,

LxS(x, y) = δ(x − y) for all x, y ∈ R
d,

which play a central role for example in boundary element methods (BEM). The following corollary guarantees
that we are able to treat BEM matrices by H-matrices.

Corollary 2.11 Assume that a fundamental solution S exists for L. Let D1, D2 ⊂ R
d be two domains with

D2 being convex and
dist(D1, D2) ≥ ρ diam(D2) > 0.

Then for ε > 0 there is Sk(x, y) =
∑k

i=1 ui(x)vi(y) with k ≤ kε = cd
ρ/2�log 1

ε�d+1 + �log 1
ε�, where cρ is defined

in (2.14), so that
‖S(x, ·) − Sk(x, ·)‖L2(D2) ≤ ε‖S(x, ·)‖L2(D̂2)

for all x ∈ D1,

where D̂2 = {x ∈ R
d : dist(x, D2) ≤ 1

2 dist(D1, D2)}.

3 The Discrete Green Function Integral Operator

3.1 The Finite Element Discretisation

V is the function space introduced in Section 2.1. In the (conforming) finite element discretisation, V is
approximated by Vh ⊂ V. Let n = dimVh be its dimension and {ϕi}i∈I a basis, where I = {1, . . . , n} is used
as index set. The notation for the support of the finite element basis function is generalised to subsets τ ⊂ I
as follows:

Xi := supp ϕi for i ∈ I, Xτ :=
⋃

i∈τ
Xi for τ ⊂ I. (3.1)

In order to avoid technical complications, we consider a quasi-uniform and shape-regular triangulation.
Hence, the step size h := maxi∈I diam(Xi) fulfils

vol(Xi) ≥ cvh
d. (3.2)

The supports Xi may overlap. In accordance with the standard finite element discretisation we require that
each triangle belongs to the support of a bounded number of basis functions, i.e., there is a constant cM > 0
so that

cM vol(Xτ ) ≥
∑
i∈τ

vol(Xi). (3.3)
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We use the notation J for the natural bijection J : R
n → Vh defined by Jx =

∑
i∈I xiϕi. For quasi-uniform

and shape-regular triangulations it is known that there are constants 0 < cJ,1 ≤ cJ,2 (independent of h and
n) such that

cJ,1‖x‖h ≤ ‖Jx‖L2(Ω) ≤ cJ,2‖x‖h for all x ∈ R
n, (3.4)

where ‖x‖h =
√

hd
∑

i∈I x2
i is the (naturally scaled) Euclidean norm (cf. [13, Theorem 8.8.1]). Correspond-

ingly, we use the scalar product 〈x,y〉h = hd
∑

i∈I xiyi.
Since J is also a function from R

n into V , the adjoint J∗ ∈ L(V ′, Rn) is defined. We define the following
three n × n matrices,

A = J∗LJ, B = J∗L−1J, and M = J∗J.

A is the stiffness matrix, B the Galerkin discretisation of the inverse of L, and M the mass matrix. The
matrices A and M are sparse, while B as well as A−1 and M−1 are dense.

3.2 Admissible Partitions and H-Matrices

In the following, τ and σ denote subsets of the index set I. The set Xτ ⊂ Ω has already been defined in (3.1).
A block of an n×n matrix is characterised by the pair product τ ×σ (τ contains the row indices, σ the column
indices). P is a partition of I × I, if it contains elements of the form τ × σ (τ, σ ⊂ I) such that (3.5a) holds6:

I × I =
⋃

τ×σ∈P
τ × σ (disjoint union), (3.5a)

dist(Xτ , Xσ) ≥ ρ max{diam(Xτ ), diam(Xσ)} > 0 or min{#τ, #σ} = 1. (3.5b)

If, in addition, (3.5b) is satisfied, P is called7 an admissible partition of I × I.
The desirable properties of the hierarchical matrices are based on the fact that the “clusters” τ, σ appearing

in P are hierarchically generated. In particular, this allows the cheap computation of the minimal admissible
partition (with O(n log n) cost, see [1], [8], [16], [17]).

The hierarchical structure is based on a cluster tree T (I) which may be assumed to be a binary tree: I is
the root and each τ ∈ T (I) is a subset of I which either contains only one index (#τ = 1) or is the disjoint
union of its two sons τ ′, τ ′′ ∈ T (I). Let

T�(I) := {τ ∈ T (I) : the path from I to τ has length �},

e.g., I is the only element of T0(I). The maximal level L with TL(I) �= ∅ is of the size O(log n). The blocks
b = τ × σ are constructed such that both τ and σ belong to the same level. Therefore, P is the union of the
sets P� = {b = τ × σ : τ, σ ∈ T�(I)}, 0 ≤ � ≤ L.

The hierarchical structure does not enter the proofs given in this paper, but for instance the following
results makes use of it.

Lemma 3.1 Let P be a partition as described above with L = O(log n). Then there is a constant Csp such
that for any matrix M ∈ R

n×n the following inequality holds between the global and the blockwise spectral
norms:

‖M‖2 ≤ Csp

L∑
�=0

max
b∈P�

‖M |b‖2, where M |b = (Mij)i∈τ, j∈σ for b = τ × σ. (3.6)

Lemma 3.2 The exact product8 of two matrices M1 ∈ H(P, k1) and M2 ∈ H(P, k2) is in H(P, k) for all
k ≥ k3 = c L max{k1, k2} with a constant c and L as in the previous lemma.

The proofs can be found in [8] and the forthcoming paper [9].

Remark 3.3 In the practical determination of an (minimal) admissible partition P , one uses suitable su-
persets Yτ ⊃ Xτ (e.g., Chebyshev spheres or bounding boxes) which are convex and satisfy dist(Yτ , Yσ) ≥
ρ max{diam(Yτ ), diam(Yσ)} > 0 if min{#τ, #σ} > 1. Note that this inequality implies (3.5b).

6In practice, min{#τ,#σ} = 1 is replaced by min{#τ,#σ} ≤ cmin with an appropriate cmin > 1.
7Either the factor ρ is fixed or we use the more precise notation “ρ-admissible partition”.
8In the usual H-matrix arithmetic, the exact product is replaced by a truncation of the true product (in H(P, k3)) to an

approximation in H(P, k), where k is of the size of k1 and k2.
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Having fixed the partition P and a number k ∈ N, we define the set of hierarchical matrices (H-matrices
of blockwise rank at most k corresponding to the partition P ) by

H(P, k) := {M ∈ R
n×n : rank (M |b) ≤ k for all b = τ × σ ∈ P}.

In [1], [8], [16], [17] it is shown that operations like matrix-times-vector, matrix-plus-matrix, matrix-times-
matrix, matrix-inversion within H(P, k) cost O(nk logα n) with α = 1 (first two operations) or α = 2 (last two
operations). Also the storage amounts to O(nk log n).

The next theorem shows that the Galerkin discretisation B of L−1 can be well approximated by H(P, k)-
matrices.

3.3 H(P, k)-Approximation to B

Theorem 3.4 Assume (3.5b) and let Xσ be convex for all τ ∈ T (I). Let P be chosen such that Lemma 3.1
can be applied. For any ε ∈ (0, 1), let kε ∈ N (kε ∼ O(logd+1(1

ε ))) be the dimension bound from Theorem 2.8.
Then for k ≥ kε there is BH ∈ H(P, k) such that the spectral norm of the difference is bounded by

‖B − BH‖2 ≤ ε
c(κC , ρ, diam(Ω))

λmin
L, (3.7)

where c(κC , ρ, Ω) is a function depending on κC = λmax/λmin, ρ from (3.5b) and diam(Ω). L = O(log n) is
the maximal level from Lemma 3.1.

Proof. (a) Let b = τ × σ ∈ P with min{#τ, #σ} > 1. Hence, (3.5b) holds. Apply Theorem 2.8 with
D1 = Xτ , D2 = Xσ, and X̂σ := {x ∈ Ω : dist(x, Xσ) ≤ ρ

2diam(Xσ)}. According to Remark 2.10 there is
G̃b(x, y) =

∑kε

i=1 ub
i(x)vb

i (y) such that

‖G − G̃b‖L2(Xτ×Xσ) ≤ ε‖G‖L2(Xτ×X̂σ).

Let the functions ub
i and vb

i of G̃b be extended to Ω by zero. We define the integral operator

Kbϕ =
∫

Ω

G̃b(·, y)ϕ(y) dy for suppϕ ⊂ Ω

and set BH|b = (J∗KbJ)|b for all blocks b. The rank of BH|b is bounded by kε since each term ub
i(x)vb

i (y) in
G̃b produces one rank-1 matrix in (J∗KbJ)|b.

If min{#τ, #σ} = 1, we use the exact Green function, i.e., G̃b := G. Since the block BH|b has rank 1 at
most, rank(BH|b) ≤ k holds again.

(b) Consider a block b = τ × σ ∈ P with min{#τ, #σ} > 1. Choose any vectors x = (xj)j∈σ , y = (yi)i∈τ

and set u = Jx =
∑

j∈σ xjϕj and v = Jy. To see that BH|b approximates the block B|b, remember the
representation (2.6) of L−1 and use (3.4). The estimate

|〈(B|b − BH|b)y,x〉h| = |〈J∗(L−1 − Kb)Jβ, α〉h| = |((L−1 − Kb)v, u)L2 |
≤ ‖G − G̃b‖L2(Xτ×Xσ) ‖u‖L2(Xσ) ‖v‖L2(Xτ )

≤ ε ‖G‖L2(Xτ×X̂σ) ‖u‖L2(Ω) ‖v‖L2(Ω)

≤ ε c2
J,2 ‖G‖L2(Xτ×X̂σ) ‖x‖h ‖y‖h

proves ‖B|b − BH|b‖2 ≤ ε c2
J,2 ‖G‖L2(Xτ×X̂σ) for the spectral norm.

Although G(·, y) ∈ W 1,1(Ω) for all y ∈ Ω, G(·, ·) does not belong to L2(Ω × Ω) as soon as d ≥ 4. ¿From
(2.5) it can be seen that ‖G‖L2(Xτ×X̂σ) may increase when the sets Xτ , X̂σ are approaching each other. The

construction of X̂τ ensures

δ := dist(Xτ , X̂σ) =
1
2

dist(Xτ , Xσ) ≥ ρ

2
diam(Xτ )

as well as δ ≥ ρ
2 diam(Xσ). Hence (2.5) implies

‖G‖L2(Xτ×X̂σ) ≤
c(d, κC)

λmin
δ2−d

√
vol(Xτ ) vol(X̂σ).
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Using vol(X̂σ) ≤ ωd(1
2 diam(X̂σ))d ≤ ωd(1 + 1/ρ)dδd and vol(Xτ ) ≤ ωd(δ/ρ)d with ωd = vol(B1(0)), we see

that

‖G‖L2(Xτ×X̂σ) ≤ Cρ
c(d, κC)

λmin
δ2 with Cρ := ωd

(ρ + 1)d/2

ρd
.

The rough estimate δ ≤ diam(Ω) = O(1) together with Lemma 3.1 yields (3.7).

Corollary 3.5 Assume that each (possibly non-convex) set Xτ has a convex superset Yτ satisfying the admis-
sibility condition (cf. Remark 3.3). Then Theorem 3.4 remains true for Xτ , Xσ.

Proof. Apply Theorem 3.4 to Yτ and Yσ.

Remark 3.6 (a) The factor L = O(log n) in (3.7) can be avoided. Under the following two reasonable
assumptions that (i) τ ∈ T (I) is always subdivided into its two sons τ ′, τ ′′ ∈ T (I) so that the diameters
are comparable, i.e. for the diameter of a cluster Xτ ∈ T�(I) it holds that diam(Xτ ) ≤ cq−� (q < 1) and
(ii) the partition P is generated so that the admissibility condition is almost sharp for each admissible block
b = τ × σ ∈ P , i.e., in addition to (3.5b) there is a constant c̃ > 1, which is independent of b, so that
dist(Xτ , Xσ) ≤ c̃ρ min{diam(Xτ ), diam(Xσ)}. In this case the factor δ2 decreases with respect to the level �
as δ2 ≤ Cq−2�. Thus, the sum (3.6) is bounded independently of n.

(b) Replacing ε by ελmin/(c(κC , ρ, diam(Ω))L), Theorem 3.4 yields ‖B−BH‖2 ≤ ε with kε = O
(
logd+1(L

ε )
)

and thanks to Part (a) even O
(
logd+1(1

ε )
)
.

4 Approximation of the Inverse Mass Matrix by an H-Matrix

The inverse of the mass matrix M will arise when the inverse of the stiffness matrix is approximated by an
H-matrix. Therefore H-matrix properties of M−1 are to be investigated.

For the inverse of banded matrices an exponential decay of the entries has been observed (cf. [3]). Here,
σ(M) denotes the spectrum of M .

Lemma 4.1 Let M = (Mij)i,j∈I be a symmetric positive definite matrix with σ(M) ⊂ [a, b] and denote its
matrix graph by GM (cf. [14, Subsection 6.2]). Let i, j ∈ I and δij be the minimal length of a path9 in GM

from i to j. Then

|(M−1)ij | ≤ ĉ qδij with ĉ =
(1 +

√
r)2

2ar
, q =

√
r − 1√
r + 1

, r =
b

a
. (4.1)

Proof. For any polynomial p ∈ Πk with k < δij we observe p(M)ij = 0. Furthermore, the spectral norm and
the spectral radius coincide for normal matrices:

‖M−1 − pk(M)‖2 = ρ(M−1 − pk(M)) = max
x∈σ(M)

|x−1 − pk(x)|.

A result due to Chebyshev says that Πk contains a polynomial pk (cf. [19, p. 33]) so that

‖x−1 − pk(x)‖∞,[a,b] ≤ ĉ qk+1

with q, ĉ as in (4.1). Set k = δij − 1. The previous arguments show the final result:

|(M−1)ij | = |(M−1)ij − pk(M)ij | ≤ ‖M−1 − pk(M)‖2 ≤ ĉ qk+1 = ĉ qδij .

The mass matrix is by definition symmetric positive definite with a = ‖M−1‖−1
2 and b = ‖M‖2. (i, j) ∈ GM

implies that Xi∩Xj contains an interior point. Hence, if k is the smallest integer so that dist(Xi, Xj) ≤ (k−1)h,
the length of a path in GM from i to j must be at least k, i.e., δij ≥ 1 + dij/h, where dij := dist(Xi, Xj).

Lemma 4.2 Let 0 < cJ,1 ≤ cJ,2 be the constants from (3.4). Then

|(M−1)ij | ≤ C ‖M−1‖2 qdij/h for all i, j ∈ I,

where C = r−1
2r and q =

√
r−1√
r+1

∈ (0, 1) with r = (cJ,2/cJ,1)2 are independent of the matrix size n.
9If no path from i to j exists (case of a reducible matrix M), we formally set δij = ∞, because (M−1)ij = 0.
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Proof. Since M = J∗J , the spectrum of M is contained in [a, b] with a = c2
J,1 and b = c2

J,2. Hence, the
condition number of M is bounded independently of the matrix size n by r = (cJ,2/cJ,1)2. Applying the
previous lemma and using δij ≥ 1 + dij/h, we end up with the assertion.

Theorem 4.3 Assume (3.2), (3.4), (3.5b), and choose P such that Lemma 3.1 holds. For any ε > 0, there is
NH ∈ H(P, kε) satisfying ‖M−1 − NH‖2 ≤ ε‖M−1‖2 with kε = O(logd(L

ε )) (L = O(log n) from Lemma 3.1).

Proof. (a) We use the following explicit definition of NH = NH(k) depending on k ∈ N. Set NH|b := M−1|b for
b = τ × σ ∈ P if #τ#σ ≤ k2; otherwise NH|b := 0. Since rank(NH|b) ≤ min{#τ, #σ} ≤ k for all b ∈ P , NH
belongs to H(P, k). Let E = M−1 − NH(k) be the error matrix. Due to Lemma 3.1, it remains to determine
the spectral norms of E|b = M−1|b in the case of #τ#σ > k2.

(b) For #τ#σ > k2 and i ∈ τ , j ∈ σ, we want to estimate Eij = (M−1)ij . Condition (3.5b) implies dij =
dist(Xi, Xj) ≥ dist(Xτ , Xσ) ≥ ρ max{diam(Xτ ), diam(Xσ)}. We notice that (diam(Xτ ))d ≥ vol(Xτ )2d/ωd,
and from (3.3) and (3.2) we obtain that

vol(Xτ ) ≥ c−1
M

∑
i∈τ

vol(Xi) ≥ cv

cM
hd#τ.

Altogether, dij ≥ C′h d
√

#τ follows with C′ expressed by ωd, ρ, cM , and cv. Similarly, dij ≥ C′h d
√

#σ holds.
The combination yields dij/h ≥ C′ 2d

√
#τ#σ. This proves

|Eij | ≤ C ‖M−1‖2 qC′ 2d
√

#τ#σ.

(c) A trivial estimate of the spectral norm yields

‖E|b‖2 ≤
√

#τ#σ max
i∈τ, j∈σ

|Eij | ≤ C
√

#τ#σ ‖M−1‖2 qC′ 2d
√

#τ#σ.

We simplify the right-hand side: For a suitable C′′ > C′, the estimate C� qC′ d√� ≤ qC′′ d√� holds for all � ≥ kmin

so that
‖E|b‖2 ≤ ‖M−1‖2 qC′′ 2d

√
#τ#σ < ‖M−1‖2 qC′′ d√

k.

Lemma 3.1 implies ‖E‖2 ≤ LC∗ ‖M−1‖2 qC′′ d√
k with C∗ = CCsp. Choose k = kε ≥ kmin such that

LC∗ qC′′ d√
k ≤ ε, i.e., kε = max{kmin,O(logd(LC∗

ε )} = O(logd(L
ε )).

We summarise that the simple construction used in the proof yields an H(P, k)-approximation with k =
O(logd(L

ε )) which is asymptotically smaller than the rank k from the B-approximation in Theorem 3.4.

Remark 4.4 The factor L = O(log n) in kε = O(logd(L
ε )) can be avoided by arguments as in Remark 3.6a.

5 Approximation of the Inverse FE-Stiffness Matrix by an H-Matrix

5.1 Projections and Smoothness Assumptions

The following two projectors will be necessary in the FE error analysis. The L2(Ω)-orthogonal projection is
expressed by Qh := JM−1J∗ : L2(Ω) → Vh, i.e., (Qhu, vh)L2 = (u, vh)L2 for all u ∈ V and vh ∈ Vh. The
related error is described by

eQ
h (u) := ‖u − Qhu‖L2(Ω). (5.1)

On the other hand, the finite element approximation is connected with the Ritz projection Ph = JA−1J∗L :
V → Vh. If u ∈ V is the solution of the variational problem a(u, v) = f(v) (cf. (2.4)), uh = Phu is its finite
element solution. The FE error is

eP
h (u) := ‖u − Phu‖L2(Ω).

Since the L2(Ω)-orthogonal projection is the optimal one, i.e., eQ
h (u) ≤ eP

h (u), we only need estimates of eP
h .

The weakest form of the finite element convergence is described by

eP
h (u) ≤ εh‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω), (5.2)

where εh → 0 as h → 0.
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For the sake of completeness, we give a proof of the last statement: Since I−Ph is an orthogonal projection
with respect to the inner product (u, v)E := a(u, v), ‖u − Phu‖E ≤ ‖u‖E holds. The inequalities ‖ · ‖L2(Ω) ≤
C′‖ · ‖E ≤ C′′‖ · ‖H1(Ω) prove (a) eP

h (u) ≤ C‖u‖H1(Ω). Furthermore, for any fixed u ∈ H1(Ω), there holds
(b) limh→0 eP

h (u) = 0 (cf. [13, Theorem 8.2.2]). Let H∗ := {u ∈ H1(Ω) : u = L−1f for some f ∈ L2(Ω) with
‖f‖L2(Ω) ≤ 1}. Since the embedding L2(Ω) ↪→ H−1(Ω) is compact (cf. [13, Theorems 6.4.8 and 6.4.10]) and
L−1 : H−1(Ω) → H1(Ω) is bounded, the closure of the set H∗ ⊂ H1(Ω) is compact. We claim (c) eP

h (u) ≤ εh

for all u ∈ H∗ with εh → 0 as h → 0. For an indirect proof, we assume that there is a sequence {uk}k∈N ⊂ H∗

such that eP
h (uk) ≥ η > 0 for all k ∈ N. By compactness of H∗, there is a subsequence ukj → u∗ ∈ H1(Ω). Note

that eP
h (ukj ) ≤ eP

h (ukj −u∗)+eP
h (u∗). Due to result (a), eP

h (ukj −u∗) ≤ C‖ukj −u∗‖H1(Ω) → 0, while result (b)
yields eP

h (u∗) → 0. Together, eP
h (ukj ) → 0 contradicts the assumption (c). Hence, εh := supu∈H∗ eP

h (u) → 0
is proved.

The standard error estimate assumes εh = cEhβ:

eP
h (u) ≤ cEhβ‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω) with some β > 0. (5.3)

Usually, such an estimate is proved in two steps. By regularity assumptions, u ∈ Hα(Ω) for some α ∈
(1, 2] is established for u = L−1f , f ∈ L2(Ω), so that ‖u‖Hα(Ω) ≤ C‖f‖L2(Ω). Then by approximation
properties of Vh, ‖u−Phu‖H1(Ω) ≤ C′hα−1‖u‖Hα(Ω) is derived and can be generalised to ‖u−Phu‖H2−α(Ω) ≤
C′′h2(α−1)‖u‖Hα(Ω). Using ‖ · ‖L2(Ω) ≤ C′′′‖ · ‖H2−α(Ω), we arrive at (5.3).

Remark 5.1 (a) Due to our quite weak assumption cij ∈ L∞(Ω) upon the smoothness of the coefficients, one
cannot ensure (5.3) for any β > 0 without further assumptions, while at best β = 2 holds.

(b) The approximation error ε which we should choose for ‖A−1 −CH‖2 when we approximate A−1 by an
H-matrix CH, is to be adapted to the finite element error, i.e., u − uh = u − Phu and uh − ũh ( ũh = CHfh,
fh = J∗f) should be of similar size.

(c) Accordingly, we take (5.2) as an assumption without specifying the behaviour with respect to h → 0 and
use εh as desirable error for ‖A−1 − CH‖2.

5.2 Approximation to A−1

First we show that M−1BM−1 is an approximation to the inverse A−1 of the finite element stiffness matrix.

Lemma 5.2 Let cJ,2 and εh be the quantities in (3.4) and (5.2). Then ‖MA−1M − B‖2 ≤ 2 c2
J,2 εh.

Proof. Let x,y ∈ R
n and fh = Jx, vh = Jy ∈ Vh. Then, using B = J∗L−1J and the projections from above,

we have

〈(MA−1M − B)x,y〉h = ((MA−1M − J∗L−1J)M−1J∗fh, M−1J∗vh)L2(Ω)

=
(
(JA−1J∗ − JM−1J∗L−1JM−1J∗)fh, vh

)
L2(Ω)

= (PhL−1fh − QhL−1Qhfh, vh)L2(Ω) = (PhL−1fh − QhL−1fh, vh)L2(Ω)

= ([L−1fh − PhL−1fh] − [L−1fh − QhL−1fh], vh)L2(Ω)

≤
(
eP

h (L−1fh) + eQ
h (L−1fh)

)
‖vh‖L2(Ω) ≤ 2 eP

h (L−1fh)‖vh‖L2(Ω)

≤ 2 εh‖fh‖L2‖vh‖L2(Ω) ≤ 2 c2
J,2 εh‖x‖h‖y‖h,

which proves ‖MA−1M − B‖2 ≤ 2 c2
J,2 εh.

Corollary 5.3 ‖A−1 − M−1BM−1‖2 ≤ 2 c−4
J,1 c2

J,2 εh.

Proof. Use A−1 − M−1BM−1 = M−1(MA−1M − B)M−1 and ‖M−1‖2 ≤ c−2
J,1.

5.3 H-Matrix Approximation to M−1BM−1

Above we have shown that B and M−1 can be approximated by the H-matrices BH and NH, respectively.
Therefore, the natural approach is to use

CH := NHBHNH
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as approximant of A−1. Due to Lemma 3.2, the exact product CH = NHBHNH belongs to H(P, k) provided
that k ≥ kC := c L max{c L max{kB, kN}, kN} and NH ∈ H(P, kN ), BH ∈ H(P, kB). Since L ≥ 1 and,
without loss of generality, c ≥ 1, the latter expression becomes kC = c2L2 max{kB, kN}. Assuming kB ≥ kN ,
we arrive at

kC = c2L2kB.

The estimation of the spectral norm of

M−1BM−1 − NHBHNH = (M−1 − NH)BM−1 + NH(B − BH)M−1 + NHBH(M−1 − NH)

by
‖M−1 − NH‖2(‖B‖2‖M−1‖2 + ‖NH‖2‖BH‖2) + ‖NH‖2‖M−1‖2‖B − BH‖2

is obvious. Let εN := ‖M−1−NH‖2, εB := ‖B−BH‖2. Since εN ≤ ‖M−1‖2, εB ≤ ‖B‖2 and ‖B‖2, ‖M−1‖2 =
O(1), we obtain

‖M−1BM−1 − NHBHNH‖2 ≤ CII(εN + εB). (5.4)

5.4 Final Result

The combination of Corollary 5.3 and (5.4) yields

‖A−1 − NHBHNH‖2 ≤ CI εh + CII(εN + εB),

where CI = 2 c−4
J,1 c2

J,2. For simplicity we set kB = kN =: k and choose

k = max{O(logd+1(
LC1

δ
)),O(logd(

L‖M−1‖2

δ
))}

with C1 = c(κC ,ρ,diam(Ω))
λmin

and δ = CI θεh/(2CII), where the constants in the O(·) expressions are detailed in
Theorem 3.4 and Theorem 4.3, while θ ∈ (0, 1). Then,

‖A−1 − NHBHNH‖2 ≤ CI (1 + θ)εh (5.5)

shows that the already existing finite element error CI εh is only slightly increased. The corresponding ranks
kB = kN behave asymptotically like

kB = kN = O(logd+1(
L

εh
)).

The resulting rank for CH = NHBHNH is bounded by kC = c2L2kB . Thus, CH approximates A−1 as described
in (5.5) and belongs to H(P, k) for all k ≥ c2L2kB. This result is summarised in Part (a) of

Theorem 5.4 (a) Let εh > 0 be the finite element error from (5.2). L = O(log n) is the depth of the cluster
tree (see Lemma 3.1). Then there are constants C′ and C′′ defining kC := C′L2 logd+1(LC′′

εh
) and there is an

H-matrix CH ∈ H(P, kC) such that

‖A−1 − CH‖2 ≤ CI (1 + θ)εh. (5.6)

(b) If εh = O(hβ) according to (5.3), kC = O(logd+3(n)) holds.

Proof. As h−1 = O(n1/d), the asymptotic behaviour of log(LC′′
εh

) = log(L) + const + log(nβ/d) is O(log n).
This proves Part (b).

Since λmin in (2.2) is of size O(1) (without loss of generality, we may scale the problem so that λmin = 1),
also ‖A−1‖2 = O(1) holds. Hence, the absolute error (5.6) may be changed into a relative one: ‖A−1−CH‖2 ≤
C∗I ‖A−1‖2(1 + θ)εh with another constant C∗I .
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6 Computational Experiments

In the following section numerical experiments will demonstrate that the preceding results are true. At this
moment we are not interested in fast numerical schemes to approximate the blocks. Instead, this section will
show only the existence of low-rank approximants. Therefore CPU times are omitted.

We compare the Laplacian with operators of type (2.1). For simplicity, the following tests are performed for
operators in two variables in the unit square Ω = [0, 1]2. The Figures 1 and 2 show the coefficient C(x) ∈ R

2×2

for x ∈ Ω, or more precisely the spectral norm of C(x) for x ∈ Ω.
For the first example Ω is decomposed into Ω1 and Ω2 = Ω\Ω1, where Ω1 is the wall-like domain in Figure

1. Let La be the operator in (2.1) with the coefficient Ca(x) = c(x)I, where

c(x) =
{

a, x ∈ Ω1

1, x ∈ Ω2
.
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Figure 1: Coefficients of the first example

The following table shows the relative accuracy measured for different problem sizes n in Frobenius norm
when approximating the inverse of the respective FEM matrix by an H-matrix. For each admissible block the
best rank-k approximant is calculated using the singular value decomposition. In the first line of each problem
size the amount of storage needed for the respective H-matrix approximant is given.

n = 2304 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Storage (MB) 10.2 18.9 27.6 36.2
∆ 4.1e−03 5.9e−04 1.1e−05 1.2e−06
L103 6.9e−03 9.8e−04 1.6e−05 2.1e−06
L106 6.9e−03 9.8e−04 1.6e−05 1.7e−06

n = 6400
Storage (MB) 40.0 75.9 111.6 147.5 183.1 218.8
∆ 3.5e−03 6.5e−04 8.8e−06 2.1e−06 4.2e−07 8.3e−09
L103 5.5e−03 1.0e−03 1.2e−05 3.2e−06 5.5e−08 1.3e−08
L106 5.6e−03 1.0e−03 1.2e−05 3.1e−07 4.7e−08 9.1e−09

n = 14400
Storage (MB) 123.4 235.7 349.6 462.0 575.9 688.2
∆ 3.2e−03 5.9e−04 8.9e−06 2.3e−06 5.5e−08 1.5e−08
L103 4.9e−03 8.8e−04 1.2e−05 3.3e−06 7.3e−08 1.9e−08
L106 5.0e−03 8.8e−04 1.0e−05 3.2e−06 6.7e−08 9.1e−09

The values for L103 and L106 differ only insignificantly from those for the Laplacian. Notice that L103 and
L106 behave almost the same though the ratios κC = λmax/λmin (see Section 2.1) differ by a factor of 1000.

While in the first example the aim was to demonstrate that jumps of arbitrary size do not affect the quality
of the H-matrix approximation, the second example is designed to show that these jumps may happen on
more than few interior boundaries. Again, we decompose Ω into two domains Ω1 and Ω2 = Ω \ Ω1, where Ω2

is the lower region in Figure 2.
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Figure 2: Coefficients of the second example

By La we denote an operator for which Ca(x) is the identity in Ω2 and a quadruple of random numbers from
the interval [0, a] in the remaining part Ω1, so that Ca(x) is always positive definite. The coefficient matrix
is chosen to have a two level random structure: the first scale is

√
h and the second h. The corresponding

numerical results are assembled in the following table:

n = 2304 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
∆ 4.1e−03 5.9e−04 1.1e−05 1.2e−06
L103 4.4e−03 3.7e−04 1.1e−05 4.4e−07
L106 4.4e−03 3.4e−04 1.0e−05 2.2e−07

n = 6400
∆ 3.5e−03 6.5e−04 8.8e−06 2.1e−06 4.2e−07 8.3e−09
L103 4.2e−03 5.3e−04 7.5e−06 1.1e−05 2.3e−08 1.7e−09
L106 4.2e−03 5.2e−04 6.8e−06 8.9e−07 1.7e−08 5.4e−10

n = 14400
∆ 3.2e−03 5.9e−04 8.9e−06 2.3e−06 5.5e−08 1.5e−08
L103 4.0e−03 6.0e−04 1.1e−05 2.1e−06 6.0e−08 1.2e−08
L106 4.0e−03 5.8e−04 1.0e−05 1.9e−06 5.3e−08 9.1e−09

Although in Theorem 5.4 we could only proof a relative error of order εh the numerical results show that
any prescribed accuracy can be reached by increasing the rank k of the approximation. Moreover, the accuracy
does not seem to depend on the upper bound κC of the condition numbers of Ca(x).

7 Additional Comments

There are various steps in the proofs where the constants can be improved.
In (3.5b) we have formulated the admissibility condition by the maximal diameters: dist(Xτ , Xσ) ≥

ρ max{diam(Xτ ), diam(Xσ)}. An interesting weaker form is obtained by changing max into min:

dist(Xτ , Xσ) ≥ ρ min{diam(Xτ ), diam(Xσ)}.
As long as the clusters of the same level are balanced in size, i.e., diam(Xτ ) ≈ diam(Xσ), both conditions are
very similar. However, there may arise cases, where diam(Xτ ) and diam(Xσ) differ strongly (cf. [10]). The
proof of the central Theorem 2.8 relies on dist(D1, D2) ≥ ρ diam(D2). Therefore, the choice D2 = Xτ in the
proof of Theorem 3.4 is correct as long as diam(Xτ ) ≤ diam(Xσ). If, however, diam(Xτ ) > diam(Xσ), we
have to assume that Xσ is convex. Again Theorem 2.8 can be applied, now with D2 = Xσ. The estimates in
Theorem 3.4 must be slightly modified, since vol(Xσ) cannot be estimated by means of diam(Xτ ).

Acknowledgement. The authors wish to thank S. Müller (MPI, Leipzig) for his contribution to the proof
of Theorem 2.8.
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