Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

Some remarks on the theory of elasticity for compressible Neohookean materials
by
Sergio Conti and Camillo De Lellis

SOME REMARKS ON THE THEORY OF ELASTICITY FOR COMPRESSIBLE NEOHOOKEAN MATERIALS

SERGIO CONTI, CAMILLO DE LELLIS

Abstract

In compressible Neohookean elasticity one minimizes functionals which are composed by the sum of the L^{2} norm of the deformation gradient and a nonlinear function of the determinant. Non-interpenetrability of matter is then represented by additional invertibility conditions. An existence theory which includes a precise notion of invertibility and allows for cavitation was formulated by Müller and Spector in 1995. It applies, however, only if some L^{p}-norm of the gradient with $p>2$ is controlled (in three dimensions). We first characterize their class of functions in terms of properties of the associated rectifiable current. Then we address the physically relevant $p=2$ case, and show how their notion of invertibility can be extended to $p=2$. The class of functions so obtained is, however, not closed. We prove this by giving an explicit construction.

1. Introduction

The starting point of this paper is the following question: how does one address the problem of existence of minimizers in the case of compressible Neohookean materials? The model problem in this framework is minimizing energies like

$$
\begin{equation*}
E(u):=\int_{\Omega}|\nabla u|^{2}+\varphi(\operatorname{det} \nabla u) \tag{1}
\end{equation*}
$$

where φ is a convex function with superlinear growth and approaching infinity at zero. The minimizers are sought among deformations u which map $\Omega \subset \mathbb{R}^{3}$ into \mathbb{R}^{3} and satisfy some notion of invertibility and a Dirichlet boundary condition (the classical starting point is to look for minimizers in the class of orientation-preserving diffeomorphism or in that of Bilipschitz maps which are orientation preserving).

The known existence theories, starting from the classical works of Morrey (see in particular Ball [4] and the bibliography in the second volume of [12]) give only partial answers for the case of interest here: the available works rely on relaxation techniques (see for example [3, 5 ,

13, 14, 1], and the works of Giaquinta, Modica and Souček cited below) but they do not attack the problem of how "bad" the domain of the relaxed functional could be. In particular one of the consequences of Malý's work is the following. For every function $u \in W^{1,2}$ we define $F(u)$ as the infimum of

$$
\liminf _{n \rightarrow \infty} E\left(u_{n}\right)
$$

among all sequences of orientation-preserving Bilipschitz maps $\left(u_{n}\right)$ weakly converging in $W^{1,2}$ to u. If u is itself an orientation-preserving Bilipschitz map, then $F(u)=E(u)$. Hence a minimizer of F could be regarded as a weak solution of the classical problem of minimizing E among regular admissible elastic deformations.
The approach of Giaquinta, Modica and Souček (see the second volume of [12] for an overview and further references) is part of a more general program of applying Geometric Measure Theory to a wide class of problems in the Calculus of variations. In our case the main idea of this program is to consider graphs instead of functions, hence to relax functionals in the framework of "Cartesian currents" (which can be thought of as generalized graphs). The invertibility conditions can be translated into suitable properties of the graphs as currents and then existence can be obtained within the framework of generalized graphs using the machinery of Federer and Fleming.

On the other hand, works based on explicit exhibitions of function spaces closed under weak topologies can attack problems like showing existence of minimizers of

$$
\begin{equation*}
E^{p}(u):=\int_{\Omega}|\nabla u|^{p}+\varphi(\operatorname{det} \nabla u) \tag{2}
\end{equation*}
$$

for p strictly bigger than 2 , but the proofs fail when $p=2$. The key problem in the latter case is to exhibit an appropriate weak notion of invertibility which is closed under the weak $W^{1,2}$ topology when one controls det ∇u. For $p>3$ this was addressed by Ciarlet and Nečas [7].

In this paper we focus our attention on the work of Müller and Spector [15] (inspired by previous ideas of Šverák [16]) and on those of Giaquinta, Modica and Souček [12]. The main idea of Müller and Spector is to give a condition of invertibility which strongly relies on topological arguments (called condition INV by the authors). This theory is tailored to energies of the form E^{p} with $p>2$, and it provides an existence theory which allows for cavitation.

Our first result is that the point of view of Müller and Spector and the one of Giaquinta, Modica and Souček are closely related, as already suggested by the first authors in their work. Namely, the admissible
classes of functions given in [15] can be described as the classes of those functions whose graph is a rectifiable current with some precise properties (see Theorem 5.1). Hence for functionals like (2) when $p>2$ the closedness of the class of Müller and Spector can be seen as a byproduct of the closedness of the respective class of rectifiable currents.

What can be said when $p=2$? In this case we can give a definition of admissible maps which is the strict analog of that of Müller and Spector in the case $p>2$. Again we can characterize this class of functions in terms of their graphs. However neither the techniques of Müller and Spector, nor the use of Geometric Measure Theory can prove the closedness of the class under the topology induced by the functional. In Section 6 of this work we prove that this is not merely a technical problem: we exhibit a sequence of functions satisfying all the conditions given by Müller and Spector, which are equibounded in energy and which converge weakly to a function which is not in their class. The limiting map appears to be very pathological from the point of view of elasticity: this pathology could be interpreted in physical terms as "interpenetration of matter". Moreover we underline the fact that the sequence of functions exhibited consists of orientationpreserving Bilipschitz maps. Since every reasonable class of admissible deformations has to include Bilipschitz maps, this means that if one wants to use the direct methods of calculus of variations one has to admit our pathology when building an existence theory.

From the point of view of Cartesian currents an interesting consequence is that new types of singularities need to be involved in the relaxation procedure. These singularities are different from the ones due to "cavitation" (i.e. the opening of holes in some points). This point is quite delicate and we shall discuss it in the final section.

The paper is organized as follows. In Section 2 we give some preliminary definitions and notations. In Section 3 we introduce the definition of condition INV, extended to maps in $W^{1,2} \cap L^{\infty}$, and we prove some properties of the admissible maps. In Section 4 we describe the distributional determinant of the admissible maps using the properties proved in Section 3. This description will be crucial for proving in Section 5 the characterization of the classes of functions in terms of properties of their graphs. In Section 6 we exhibit the sequence of Bilipschitz maps with the "bad" behavior and in Section 7 we make some remarks on the consequences of such a behavior.

2. Preliminaries

In this section we establish the basic notation and we give some definitions which will be used throughout the paper. First of all, using the notation of [15] we introduce
Definition 2.1 (Cofactor matrix). Given an $n \times n$ matrix we call $\Lambda_{n-1} A$ the matrix of cofactors of $A\left(\right.$ which obeys $\left(\Lambda_{n-1} A\right) \cdot A^{T}=$ $(\operatorname{det} A) \cdot \mathrm{Id})$.

We observe that $\Lambda_{n-1} A$ is the transpose of the adjoint matrix to A, and that for gradient fields it is divergence-free, i.e.

$$
\operatorname{div} \Lambda_{n-1} \nabla u=\partial_{i}\left(\Lambda_{n-1} \nabla u\right)_{j i}=0
$$

In the following B will denote an open ball in $\mathbb{R}^{k}, B(x, r)$ the open ball of radius r centered on x and Ω a bounded open set. Given an open set $A, \partial A$ will be its topological boundary, \bar{A} its topological closure and χ_{A} its characteristic function. Moreover we denote by $|A|$ the Lebesgue measure of any measurable set A and we use the notation \mathcal{H}^{k} for the k-dimensional Hausdorff measure. We call density of A in $x \in \mathbb{R}^{n}$ the limit

$$
\lim _{\rho \rightarrow 0} \frac{|B(x, \rho) \cap A|}{|B(x, \rho)|}
$$

whenever it exists and we denote this number by $D(A, x)$. Given a Radon measure μ and a Borel set A we define the Radon measure $\mu\llcorner A$ by $\mu\llcorner A(C):=\mu(C \cap A)$.

Next we give a brief list of concepts and more technical objects of geometric measure theory. For proofs and for a more detailed exposition we refer to the book of Federer [10] and to the first volume of the book of Giaquinta, Modica and Souček [12].

We say that A is a Caccioppoli set if its characteristic function is a function of bounded variation. Moreover we denote by $\operatorname{Per}(A)$ the total variation of the distributional derivative of χ_{A}. The following is a well-known theorem
Theorem 2.2 (Reduced boundary). Let $A \subset \mathbb{R}^{n}$ be a Caccioppoli set. Then there exists a rectifiable $n-1$ dimensional set (which is called reduced boundary and is denoted by $\partial^{*} A$) such that
(i) for every $x \in \partial^{*} A$ the sets defined by $(A-x) / \rho$ converge locally in measure to a half space when $\rho \downarrow 0$ (hence $D(A, x)=1 / 2$);
(ii) for \mathcal{H}^{n-1} a.e. $x \in \mathbb{R}^{n} \backslash \partial^{*} A$ the density of A in x is either 1 or 0;
(iii) the distributional derivative $D \chi_{A}$ is equal to $\nu \mathcal{H}^{n-1}\left\llcorner\partial^{*} A\right.$, where ν is a unit vector normal to $\partial^{*} A$ (which is called outward normal).

Definition 2.3 (a.e. injectivity). A measurable function $f: \Omega \rightarrow \mathbb{R}^{n}$ is called a.e. injective if there is a measurable set $A \subset \Omega$ such that $|\Omega \backslash A|=0$ and $\left.f\right|_{A}$ is injective.

Now let us fix a Sobolev map $u \in W^{1, p}(\Omega)$. Using standard arguments involving maximal functions we can show that for every ε there is a closed set A such that $|\Omega \backslash A| \leq \varepsilon$ and u is Lipschitz on A. At this point, using Rademacher Theorem and Whitney Theorem, we can show that for every ε there is a closed set A such that $|\Omega \backslash A| \leq \varepsilon$ and $\left.u\right|_{A}$ is C^{1}. Hence we define
Definition 2.4 (approximate differentiability). Let u be a measurable function with domain Ω. We say that u is approximately differentiable in $x \in \Omega$ if there exists a closed set $A \subset \Omega$ such that $D(A, x)=1$ and the restriction of u to A is a C^{1} function. Moreover we call approximate differential of u in x the differential of $\left.u\right|_{A}$ and we denote it by apDu(x). Finally we will denote by Ω_{d} the set of points where u is approximately differentiable.
Remark 2.5. We warn the reader that the previous definition does not coincide completely with the classical one of Federer's book. However Theorem 3.1.8 in [10], Rademacher Theorem and Whitney Theorem one can see that if u is approximately differentiable in A according to Federer's definition, then it is approximately differentiable a.e. in A according to our definition. This is enough for our purposes and we believe that our choice makes theorems and proofs easier.
Remark 2.6. If u is a function in some Sobolev space and we select a pointwise representative for ∇u, then this function coincides a.e. with $a p D u$. Hence we will use both notations without distinction.
Definition 2.7 (geometrical image). Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function which is approximately differentiable almost everywhere. Given a set $A \subset \mathbb{R}^{n}$ we call geometrical image of A through u the set given by $u\left(\Omega_{d} \cap A\right)$. Moreover we denote it by $\mathrm{im}_{\mathrm{G}}(u, A)$.

The following theorem gives a version of the classical area formula for approximately differentiable functions.
Theorem 2.8 (Area formula). Let us suppose that u maps \mathbb{R}^{n} into \mathbb{R}^{n} and it is injective on a measurable set A. Then

$$
\left|\operatorname{im}_{\mathrm{G}}(u, A)\right|=\int_{A \cap \Omega_{d}}|\operatorname{det}(a p D u(x))| d x .
$$

Moreover we will use the following technical lemma, which is easily checked for functions which are restrictions of C^{1} functions, and can be immediately extended to approximately differentiable functions using Definition 2.4.

Lemma 2.9. Suppose that u maps \mathbb{R}^{n} into \mathbb{R}^{n} and that $x \in \Omega_{d}$ is such that $\operatorname{det}(\operatorname{apD} D(x))>0$, and let A be a measurable subset of Ω. Then, the following holds:
(i) if $D(A, x)=1$ then $D\left(\operatorname{im}_{G}(u, A), u(x)\right)=1$;
(ii) if $D\left(A \cap\left\{\left(x^{\prime}-x\right) \cdot \nu \geq 0\right\}, x\right)=1 / 2$, then

$$
D\left(u(A) \cap\left\{(y-u(x)) \cdot \Lambda_{2}(u) \nu \geq 0\right\}, u(x)\right)=\frac{1}{2} .
$$

A k-dimensional current T in \mathbb{R}^{N} is defined as a linear functional on the space of $C^{\infty} k$-dimensional differential forms in \mathbb{R}^{N}. For the boundary, the product and all the standard operations on currents we adopt the usual definitions.

A k-dimensional manifold $M \subset \mathbb{R}^{N}$ with a given orientation can be associated to the current given by the integration of forms on M. The same can be said for a Lipschitz k-dimensional manifold (since it possesses a tangent plane in \mathcal{H}^{k}-a.e. point) and for every measurable subset of it. Moreover the orientation of the manifold does not need to be regular: it is sufficient that it is Borel measurable.

We can associate a current to any approximately differentiable function $u: \Omega \rightarrow \mathbb{R}^{n}$ in the following way. First we choose an orthonormal basis $e_{1}, \ldots e_{k}$ for $\mathbb{R}^{k} \supset \Omega$. Then we split Ω (possibly neglecting a subset of Lebesgue measure zero) into a countable union of closed sets F_{i} such that $\left.u\right|_{F_{i}}$ is a C^{1} function. We regard $G_{i}:=\left\{(x, u(x)): x \in F_{i}\right\}$ as a closed subset of a C^{1} manifold and we choose for every $x \in F_{i}$ the k-tuples of vectors

$$
\left\{\left(e_{1}, \nabla u(x) \cdot e_{1}\right), \ldots,\left(e_{k}, \nabla u(x) \cdot e_{k}\right)\right\}
$$

as orientation of the tangent plane to G_{i} in $(x, u(x))$. To every G_{i} we associate the current T_{i} induced by this orientation. At this point one is tempted to associate $\sum_{i} T_{i}$ to u. In general this is not possible because $\sum_{i} T_{i}(\omega)$ could be a divergent series for some form $\omega \in C_{c}^{\infty}$. However, when the minors of $a p D u$ are L^{1} functions, $\sum_{i} T_{i}$ actually defines a current (see below) and we denote it by G_{u}.
Definition 2.10 (Minors). Suppose that L is an $n \times k$ matrix. If α, β are two k-tuples of indices $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{k}$ then we call $G_{\alpha}^{\beta}(L)$ the matrix given by the intersection of rows $\beta_{1}, \ldots, \beta_{k}$ and columns $\alpha_{1}, \ldots, \alpha_{k}$ of L. Moreover we call $M_{\alpha}^{\beta}(L)$ the determinant of $G_{\alpha}^{\beta}(L)$.

Let now $u: \mathbb{R}_{x}^{k} \supset \Omega \rightarrow \mathbb{R}_{y}^{n}$ be a C^{1} function and fix two systems of coordinates for \mathbb{R}_{x}^{k} and \mathbb{R}_{y}^{n}, namely x_{1}, \ldots, x_{k} and $y_{1}, \ldots y_{n}$. We then identify ∇u with its matrix representation in these systems. Finally let us fix a k-dimensional form $f(x, y) d x_{\alpha_{1}} \wedge \ldots \wedge d x_{\alpha_{j}} \wedge d y_{\beta_{1}} \wedge \ldots \wedge d y_{\beta_{i}}$, with $i+j=k$ (in the following we will use the shorthand $f d x_{\alpha} \wedge d y_{\beta}$).

For any $\bar{\alpha}=\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{i}\right)$ such that $(\bar{\alpha}, \alpha)$ is an even permutation of $\{1, \ldots, k\}$ one can show that

$$
\begin{equation*}
G_{u}\left(f d x_{\alpha} \wedge d y_{\beta}\right)=\int_{\Omega} f(x, u(x)) M_{\bar{\alpha}}^{\beta}(\nabla u(x)) d x \tag{3}
\end{equation*}
$$

With standard techniques analogous formulas can be written when u is merely an approximately differentiable function such that $M_{\bar{\alpha}}^{\beta}(\nabla u(x))$ is absolutely integrable. The product structure of $\mathbb{R}_{x}^{k} \times \mathbb{R}_{y}^{n}$ gives a natural splitting of any differential form ω, which induces a splitting on currents by duality.
Definition 2.11 (Splitting of currents). Let us write the differential form ω as $\sum_{\alpha, \beta} f_{\alpha \beta} d x_{\alpha} \wedge d y_{\beta}$. Then for every integer h we define

$$
\begin{equation*}
\omega^{(h)}:=\sum_{\alpha, \beta \text { s.t. the length of } \beta \text { is } h} f_{\alpha \beta} d x_{\alpha} \wedge d y_{\beta} . \tag{4}
\end{equation*}
$$

Given a current T in $\mathbb{R}_{x}^{k} \times \mathbb{R}_{y}^{n}$ we define $(T)_{h}$ by

$$
(\partial T)_{h}(\omega):=\partial T\left(\omega^{(h)}\right) .
$$

We notice that if u maps \mathbb{R}^{k} into \mathbb{R}^{k} then G_{u} is k-dimensional current. Hence ∂G_{u} is a $k-1$ dimensional current and $\left(\partial G_{u}\right)_{i}$ is a $k-1$ dimensional current which is different from zero only on forms of type

$$
\omega^{(h)}:=\sum_{\alpha, \beta \text { s.t. the length of } \beta \text { is } h} f_{\alpha \beta} d x_{\alpha} \wedge d y_{\beta} .
$$

A typical example of a current which behaves like $\left(\partial G_{u}\right)_{i}$ is given by the product of a ($k-1-i$)-dimensional surface $M_{x} \subset \mathbb{R}_{x}^{k}$ with an i-dimensional surface $N_{y} \subset \mathbb{R}_{y}^{k}$. Of course when u is smooth then $\left(\partial G_{u}\right)_{i}=0$ for every i. Intuitively, when $\partial G_{u} \not \equiv 0$ some holes or some fractures occur in the graph of u : the currents $\left(\partial G_{u}\right)_{i}$ measure in a certain sense the degree of verticality of such holes.

When $u \in W^{1, p}\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)$ we have that $\left(\partial G_{u}\right)_{i}=0$ for every $i \leq(p-1)$. This can be proved by approximating u strongly in $W^{1, p}$ with C^{∞} functions u_{n} and observing that $\left(\partial G_{u_{n}}\right)_{i}$ converges weakly to $\left(\partial G_{u}\right)_{i}$ (since in the computations only products of less than $i+1$ derivatives of u_{n} are involved). We refer to pages 238-247 of the first volume of [12] for a thorough discussion.

3. Condition INV

In this section we recall the definition of condition INV given by Müller and Spector in [15] following ideas of Šverák in [16] and we extend it to the case of functions in $W^{1,2} \cap L^{\infty}$. Moreover we will follow the proofs contained in [15] of some properties which we will
use for the "graph" characterization of the next section. We start with the definition of degree for a map from the sphere S^{2} to \mathbb{R}^{3}. Of course Müller and Spector in their work use the definition of degree for continuous functions, since a a map $u \in W^{1, p}(\partial B)$ is continuous when $p>2$. In our case we use the integral definition of the degree for $W^{1,2}$ functions, which is nowadays quite well known in the literature (compare with [6], see also the book [11]).
Definition 3.1 (Degree for maps in $W^{1,2} \cap L^{\infty}$). Let us suppose that $u \in W^{1,2}\left(\partial B, \mathbb{R}^{3}\right) \cap L^{\infty}\left(\partial B, \mathbb{R}^{3}\right)$. Then we define $\operatorname{deg}(u, \partial B, \cdot)$ as the only L^{1} function which satisfies the identity

$$
\begin{equation*}
\int \operatorname{deg}(u, \partial B, y) \operatorname{div} g(y) d y:=\int_{\partial B}(g \circ u) \cdot \Lambda_{2} D u \cdot \nu d \mathcal{H}^{2}, \tag{5}
\end{equation*}
$$

for every C^{∞} vector field g (ν denotes the outer unit normal to B).
For the sake of simplicity in the following we will use the notation $\Lambda_{2}(u)$ for $\Lambda_{2} D u$ and we will suppose that the target space of a function is \mathbb{R}^{3} when not specified.
Remark 3.2. If $u \in C^{\infty}$, then Definition 3.1 coincides with the classical

$$
\begin{equation*}
\operatorname{deg}(u, \partial B, y)=\sum_{x \in u^{-1}(y) \cap B} \operatorname{sgn} \operatorname{det} D u(x) . \tag{6}
\end{equation*}
$$

This can be easily checked using the identity

$$
\operatorname{div}\left((g \circ u) \Lambda_{2}(u)\right)=\operatorname{det} \nabla u(\operatorname{div} g) \circ u .
$$

Remark 3.3. To show that deg is well defined we have to prove that if $\operatorname{div} g=\operatorname{div} h$ then the RHS of Eq. (5) is the same for g and h. This is equivalent to proving that the RHS vanishes if $\operatorname{div} g=0$. In order to do that, take a sequence of functions u_{n} in $C^{\infty}(B)$ which are equibounded and converge to u strongly in $W^{1,2}(\partial B)$. Since $\Lambda_{2}\left(u_{n}\right) \rightarrow$ $\Lambda_{2}(u)$ strongly in L^{1}, and $g \circ u_{n} \stackrel{*}{\rightharpoonup} g \circ u$ in L^{∞},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int\left(g \circ u_{n}\right) \cdot \Lambda_{2}\left(u_{n}\right) \cdot \nu d y=\int(g \circ u) \cdot \Lambda_{2}(u) \cdot \nu d y \tag{7}
\end{equation*}
$$

From the previous remark, we conclude that the RHS is zero.
Proposition 3.4 (Basic properties of deg). deg is an integer-valued function of bounded variation. Moreover for a.e. ball B we have

$$
\begin{equation*}
\int \operatorname{deg}(u, \partial B, y) \operatorname{div} g(y) d y=\int_{u\left(\partial B \cap \Omega_{d}\right)} g(y) \cdot \tilde{\nu}(y) d \mathcal{H}^{2}(y), \tag{8}
\end{equation*}
$$

where

$$
\tilde{\nu}(y)=\sum_{x \in u^{-1}(y) \cap \partial B \cap \Omega_{d}} \frac{\Lambda_{2}(u)(x) \cdot \nu(x)}{\left|\Lambda_{2}(u)(x) \cdot \nu(x)\right|}
$$

$(\nu(x)$ is the outer unit normal to $B)$.
Proof. From the definition it follows that

$$
\begin{equation*}
\left|\int \operatorname{deg}(u, \partial B, y) \operatorname{div} g(y) d y\right| \leq\|\nabla u\|_{L^{2}(\partial B)}^{2}\|g\|_{\infty} \tag{9}
\end{equation*}
$$

To prove the first statement take a sequence of functions u_{n} in $C^{\infty}(B)$ which are equibounded and converge to u in $W^{1,2}(\partial B)$. Then, from Remark 3.2 there is a large ball B^{\prime} such that $\operatorname{deg}\left(u_{n}, \partial B, y\right)=0$ if $y \in \mathbb{R}^{3} \backslash B^{\prime}$. Moreover, by Eq. (9) and Remark 3.2, we get that the L^{1} norm of $\nabla \operatorname{deg}\left(u_{n}\right)$ is equibounded. Poincaré inequality applied to the ball B^{\prime} yields uniform control of the L^{1} norm of $\operatorname{deg}\left(u_{n}\right)$. Then, by the compactness theorem for functions of bounded variation there is $\phi \in B V\left(\mathbb{R}^{3}, \mathbb{Z}\right)$ such that

$$
\operatorname{deg}\left(u_{n}, \partial B, y\right) \rightarrow \phi
$$

strongly in L^{1}. Further, Eq. (7) shows that $\operatorname{deg}(u, \partial B, y)=\phi(y)$ in the sense of distributions, hence it is a BV function and it is integer-valued. Eq. (8) is the area formula from Corollary 3.2.20 of [10].

One easy corollary of the previous statement is that for every $u \in$ $W^{1,2}(\partial B) \cap L^{\infty}(\partial B)$, the set

$$
\begin{equation*}
A_{u, B}:=\{y \mid \operatorname{deg}(u, \partial B, y) \neq 0\} \tag{10}
\end{equation*}
$$

is a Caccioppoli set.
Definition 3.5 (topological image). For $u \in W^{1,2}(\partial B) \cap L^{\infty}(\partial B)$, the topological image of B under $u, \operatorname{im}_{\mathrm{T}}(u, B)$, is the set of points where the density of $A_{u, B}$ is 1 .

The topological image, defined here as in [16] and [15], can be seen as the set "enclosed" by $u(\partial B)$. Indeed when $u \in W^{1, p}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ for $p>2$ then $\left.u\right|_{\partial B}$ is continuous for almost every ball B and the degree of Definition 3.1 coincides with the classical one. For those balls the topological image of u is an open set which has $u(\partial B)$ as boundary. Hence it is very natural to request that maps allowed in elasticity map the interior of balls inside the topological image of the respective spheres: this is what Müller and Spector call condition INV.
Definition 3.6 (INV). We say that $u \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ satisfies property $I N V_{L}$ in the ball $B(a, r) \subset \Omega$ if
(i) its trace on ∂B is in $W^{1,2} \cap L^{\infty}$;
(ii) for a.e. $x \in B(a, r), u(x) \in \operatorname{im}_{\mathrm{T}}(u, B(a, r))$;
(iii) for a.e. $x \in \Omega \backslash B(a, r), u(x) \notin \operatorname{im}_{\mathrm{T}}(u, B(a, r))$.

We say that $u \in W^{1,2}(\Omega) \cap L^{\infty}$ satisfies property INV if for every $a \in \Omega$ there is $r_{a}>0$ such that for \mathcal{L}^{1}-a.e. $r \in\left(0, r_{a}\right)$ property $I N V_{L}$ holds in $B(a, r)$.

In the next lemmas we will follow the proofs of Müller and Spector (based on the work of Šverák) with slight modifications which allow us to include the case $u \in W^{1,2} \cap L^{\infty}$. The propositions will lead to prove the positivity of the distributional determinant of the maps which satisfy condition INV (this description is given in the next section). This property and the invariance of condition INV under orientation-preserving diffeomorphisms of the target space will be the main ingredients in the characterization of Section 5.
Lemma 3.7. Let $u \in W^{1,2}(\Omega) \cap L^{\infty}$. Suppose that condition INV holds and that $\operatorname{det} D u \neq 0$ on Ω_{d}. Then, $\left.u\right|_{\Omega_{d}}$ is injective.

Proof. We know that $\left|\Omega \backslash \Omega_{d}\right|=0$ and that $D\left(\Omega_{d}, x\right)=1$ for every $x \in \Omega_{d}$. Moreover by Lemma $2.9 D\left(u\left(\Omega_{d}\right), u(x)\right)=1$ for every $x \in \Omega_{d}$. To prove injectivity, fix $x, y \in \Omega_{d}$. By condition INV we can choose $r>0$ such that the two balls $B(x, r)$ and $B(y, r)$ are disjoint, contained in Ω and satisfy condition INV_{L}. Therefore the images of the two balls are disjoint, possibly ruling out a set of measure zero. Since x and y are points of density 1 for the two images, $u(x) \neq u(y)$.

Lemma 3.8. Let $u \in W^{1,2}(\Omega) \cap L^{\infty}$, with $\operatorname{det} D u \neq 0$ on Ω_{d}, and choose $B \subset \Omega$ such that condition $I N V_{L}$ holds. Then $\operatorname{im}_{G}(u, B) \subset \operatorname{im}_{T}(u, B)$, and $\operatorname{im}_{\mathrm{G}}\left(u, \mathbb{R}^{3} \backslash B\right) \subset \mathbb{R}^{3} \backslash \operatorname{im}_{\mathrm{T}}(u, B)$.

Proof. Let $A=\left\{x \in B \cap \Omega_{d}: u(x) \in \operatorname{im}_{\mathrm{T}}(u, B)\right\}$. By condition INV_{L}, $B \backslash A$ is a null set, and for any $x \in B \cap \Omega_{d}$ we get $D(A, x)=1$. By Lemma 2.9 $D(u(A), u(x))=1$, and since $u(A) \subset \operatorname{im}_{\mathrm{T}}(u, B)$ by definition, $D\left(\operatorname{im}_{\mathrm{T}}(u, B), u(x)\right)=1$. Hence $u(x) \in \operatorname{im}_{\mathrm{T}}(u, B)$. The converse is proved analogously.

Since in the following we will consider only maps such that det $D u>$ 0 a.e., we denote by Ω_{d} the set where u is approximately differentiable and $\operatorname{det} a p D u>0$.
Lemma 3.9. Suppose that $u \in W^{1,2}(\Omega) \cap L^{\infty}$ satisfies condition INV and that $\operatorname{det} D u>0$ a.e. Then, $\operatorname{deg}(u, \partial B, y) \in\{0,1\}$ for a.e. B and a.e. y.

Proof. Fix a ball B such that
(i) condition INV_{L} is satisfied for B;
(ii) $\mathcal{H}^{2}\left(\Omega \backslash \Omega_{d} \cap \partial B\right)=0$.

We observe that these conditions are satisfied for almost every ball and that the approximate differential of the trace on ∂B coincides with the restriction to the tangent plane to ∂B of the approximate differential in Ω. From Proposition 3.4

$$
\int \operatorname{deg}(u, \partial B, y) \operatorname{div} g(y) d y=\int_{u\left(\Omega_{d} \cap \partial B\right)} g \cdot \tilde{\nu} d \mathcal{H}^{2}
$$

and moreover, since u is invertible in $\Omega_{d},|\tilde{\nu}|=1$. Consider the sets

$$
U_{k}=\{y: \operatorname{deg}(u, \partial B, y) \geq k\}
$$

for k integer and positive, and

$$
U_{k}=\{y: \operatorname{deg}(u, \partial B, y) \leq k\}
$$

for k integer and negative. From the fact that $u \in L^{\infty}$ it follows that all the sets U_{k} are bounded. Since the distributional derivative of $\operatorname{deg}(u, \partial B, \cdot)$ equals $\tilde{\nu} \mathcal{H}^{2}$ restricted to the jump set $u\left(\Omega_{d} \cap \partial B\right)$, and $\tilde{\nu}$ is a unit vector, we have

$$
\partial^{*} U_{k} \cap \partial^{*} U_{h}=\emptyset
$$

for any $k \neq h$. We now show that $\left|U_{k}\right|=0$ for all $k \neq 1$. Indeed, if this was not the case, since U_{k} is bounded then $\mathcal{H}^{2}\left(\partial^{*} U_{k}\right)>0$. Since the jump set is contained, apart from an \mathcal{H}^{2}-null set, in $u\left(\partial B \cap \Omega_{d}\right)$, we can choose $x \in \partial B \cap \Omega_{d} \cap u^{-1}\left(\partial^{*} U_{k}\right)$. Let $A=\Omega_{d} \backslash B$. By point (ii) of Lemma 2.9 we get that

$$
u(A) \cap\left\{y \in \mathbb{R}^{3}:(y-u(x)) \cdot \tilde{\nu} \geq 0\right\}
$$

(with $\tilde{\nu}$ as in Proposition 3.4) has density $1 / 2$ at $u(x)$. But by condition $\mathrm{INV}_{L}, \operatorname{deg}(u, \partial B, \cdot)$ vanishes on $u(A)$. In view of the area formula of Proposition 3.4 this implies that the trace deg^{+}of the BV function deg corresponding to the orientation $\tilde{\nu}$ of the interface is zero. Since the jump is one, this implies that the other trace is one. Hence $u(x) \in \partial U_{1}$, contrary to our hypothesis.

Definition 3.10 (Good radii). Given $a \in \Omega$, we call R_{a} the set of $r>0$ such that $B(a, r) \subset \Omega$,
(i) condition $I N V_{L}$ is satisfied for $B(a, r)$;
(ii) $\mathcal{H}^{2}\left(\partial B(a, r) \backslash \Omega_{d}\right)=0$.

Lemma 3.11. Let $u \in W^{1,2}(\Omega) \cap L^{\infty}$. Suppose that condition INV holds. Then, for any $a, b \in \Omega$ and any $r \in R_{a}, s \in R_{b}$,
(i) $\mathrm{im}_{\mathrm{T}}(u, B(a, r)) \cap \mathrm{im}_{\mathrm{T}}(u, B(b, s))=\emptyset$ if $B(a, r) \cap B(b, s)=\emptyset$;
(ii) $\operatorname{im}_{\mathrm{T}}(u, B(a, r)) \subset \operatorname{im}_{\mathrm{T}}(u, B(b, s))$ whenever $B(a, r) \subset B(a, s)$.

Proof. Let us first prove (i). Let $A=\operatorname{im}_{\mathrm{T}}(u, B(a, r))$, and $C=$ $\operatorname{im}_{\mathrm{T}}(u, B(b, s))$. Except for an \mathcal{H}^{2} null set, $\partial^{*} C$ equals $u\left(\Omega_{d} \cap \partial B(b, s)\right)$. Take $x \in \Omega_{d} \cap \partial B(b, s)$. Then, $x \notin B(a, r)$, and by Lemma 3.8, $u(x) \notin$ $A=\operatorname{im}_{\mathrm{T}}(u, B(a, r))$. It follows that $\mathcal{H}^{2}\left(\partial^{*} C \backslash A\right)=0$, and analogously $\mathcal{H}^{2}\left(\partial^{*} A \backslash C\right)=0$. The result follows from Lemma A. 1 of the Appendix. Point (ii) is obtained analogously, by taking $A=\operatorname{im}_{\mathrm{T}}(u, B(a, r))$, and $C=\mathbb{R}^{3} \backslash \operatorname{im}_{\mathrm{T}}(u, B(b, s))$.

Before concluding this section, we define $F(x)$ as the "topological image of a point x ". More precisely,
Definition 3.12 (Topological image of a point). For every x we define

$$
\begin{equation*}
F(x):=\bigcap_{r>0} \operatorname{im}_{\mathrm{T}}(u, B(x, r)) \tag{11}
\end{equation*}
$$

We observe that by Lemma 3.7, for $x \in \Omega_{d}, u(x) \in F(x)$.

4. Distributional determinant

Definition 4.1 (Distributional Det). Let $u \in W^{1,2}(\Omega) \cap L^{\infty}(\Omega)$. We define Det Du as the divergence in the sense of distributions of the vector field given by $u \cdot \Lambda_{2}(u) / 3$.

The goal of this section is the following theorem, which characterizes the distributional determinant of the class of functions considered by Müller and Spector. As in the previous section we follow their proofs with minor adjustments to include the case $p=2$.
Theorem 4.2. Let $u \in W^{1,2}(\Omega) \cap L^{\infty}$. Suppose that condition INV holds, that $\operatorname{det} D u>0$ a.e., and $\operatorname{Per}\left(\operatorname{im}_{\mathrm{G}}(u, \Omega)\right)<\infty$. Then,

$$
\begin{equation*}
\operatorname{Det} D u=\operatorname{det} D u+\sum_{x_{i} \in C_{u}} \mathcal{L}^{3}\left(F\left(x_{i}\right)\right) \delta_{x_{i}} \tag{12}
\end{equation*}
$$

where C_{u} is the set of points x such that $\mathcal{L}^{3}(F(x))>0$. Further,

$$
\begin{equation*}
\sum_{x_{i}} \operatorname{Per}\left(F\left(x_{i}\right)\right) \leq \operatorname{Per}\left(\operatorname{im}_{\mathrm{G}}(u, \Omega)\right) \tag{13}
\end{equation*}
$$

Before proving Theorem 4.2 we give some partial results.
Lemma 4.3. Let $u \in W^{1,2}(\Omega) \cap L^{\infty}$. Suppose that condition INV holds, and that $\operatorname{det} D u>0$ a.e. Then,
(i) Det $D u \geq 0$, hence it is a Radon measure;
(ii) the absolutely continuous part of Det $D u$ with respect to \mathcal{L}^{3} has density det $D u$;
(iii) for every $a \in \Omega$ and for a.e. $r \in R_{a}$,

$$
\begin{equation*}
(\operatorname{Det} D u)(B(a, r))=\mathcal{L}^{3}\left(\operatorname{im}_{\mathrm{T}}(u, B(a, r))\right) . \tag{14}
\end{equation*}
$$

Proof. Take $\phi \in C_{0}^{\infty}(B(0,1))$ radially symmetric, nonnegative, monotone in the radial direction and such that $\int \phi=1$. Define the standard sequence of mollifiers as

$$
\phi_{\varepsilon}(x):=\varepsilon^{-3} \phi\left(\frac{x}{\varepsilon}\right) .
$$

First of all we prove positivity of $\left(\phi_{\epsilon} * \operatorname{Det} D u\right)(x)$ for every $x \in \Omega$ such that $\operatorname{dist}(x, \partial \Omega) \geq \varepsilon$. Let $\phi(x)=f(|x|)$, with $f^{\prime} \leq 0$. Then, from Definition 4.1

$$
\begin{aligned}
\left(\phi_{\varepsilon} * \operatorname{Det} D u\right)(x) & =-\frac{1}{3} D \phi_{\varepsilon} *\left[u \cdot\left(\Lambda_{2}(u)\right)\right](x) \\
& =-\frac{1}{3} \int_{B(x, \varepsilon)} D \phi_{\varepsilon}(x-z) u(z)\left(\Lambda_{2}(u)\right)(z) d z \\
& =-\frac{1}{3} \int_{0}^{\varepsilon} \varepsilon^{-4} f^{\prime}\left(\frac{r}{\varepsilon}\right) d r \int_{\partial B(x, r)} u \cdot\left(\Lambda_{2}(u)\right) \nu d \mathcal{H}^{2},
\end{aligned}
$$

where ν is the outward unit normal to $B(x, r)$. From Definition 3.1 and Lemma 3.9
$\frac{1}{3} \int_{\partial B(x, r)} u \cdot\left(\Lambda_{2}(u)\right) \nu d \mathcal{H}^{2}=\int \operatorname{deg}(u, \partial B, y) d y=\mathcal{L}^{3}\left(\operatorname{im}_{\mathrm{T}}(u, B)\right) \geq 0$.
This concludes the proof of point (i). Point (ii) is a direct consequence of Lemma 4.7 of [9]. By standard arguments on Radon measures,

$$
(\operatorname{Det} D u)(B(a, r))=\sup _{\delta>0} \int \Phi_{\delta}(|x-a|) d \operatorname{Det} D u(x)
$$

where

$$
\Phi_{\delta}(s)= \begin{cases}1 & \text { if } s \leq r-\delta \\ (r-s) / \delta & \text { if } r-\delta \leq s \leq r \\ 0 & \text { if } s \geq r\end{cases}
$$

A computation similar to the one above, gives, for δ sufficiently small,

$$
\begin{aligned}
\int \Phi_{\delta}(|x-a|) d \operatorname{Det} D u(x) & =\int_{r-\delta}^{r} \frac{1}{3 \delta} d s \int_{\partial B(a, s)} u \cdot \Lambda_{2}(u) \cdot \nu d \mathcal{H}^{2} \\
& =\int_{r-\delta}^{r} \frac{1}{\delta} \mathcal{L}^{3}\left(\operatorname{im}_{\mathrm{T}}(u, B(a, s))\right) d s \\
& =\mathcal{L}^{3}\left(\operatorname{im}_{\mathrm{T}}(u, B(a, r))\right.
\end{aligned}
$$

for \mathcal{L}^{1}-a.e. $r \in R_{a}$.
Remark 4.4. It is convenient to redefine the sets R_{a} excluding the zero-measure part in which Eq. (14) does not hold.

Proof of Theorem 4.2. Let us split Det $D u$ into the absolutely continuous part with respect to the Lebesgue measure $\mu_{a c}$ and the singular part μ_{s}. By standard arguments of measure theory we can find a countable collection of Dirac masses $\delta_{x_{i}}$ such that

$$
\mu_{s}=\sum k_{i} \delta_{x_{i}}+\mu_{c},
$$

where μ_{c} contains no atoms. From the previous Lemma we know that $\mu_{a c}=\operatorname{det} D u$. We have to prove that $\mu_{c}=0$, and $k_{i}=\mathcal{L}^{3}\left(F\left(x_{i}\right)\right)$.

Let $A=\operatorname{im}_{\mathrm{G}}(u, \Omega)$. Fix $a \in \Omega, r \in R_{a}$, and let $C=\operatorname{im}_{\mathrm{T}}(u, B(a, r))$. The previous Lemma shows that $\mathcal{L}^{3}(C \backslash A)=\mu_{s}(B(a, r))$. Now we want to show that

$$
\begin{equation*}
\mathcal{L}^{3}(C \backslash A)^{2 / 3} \leq c_{3} \mathcal{H}^{2}\left(\partial^{*} A \cap C\right) \tag{15}
\end{equation*}
$$

where $c_{3}=(36 \pi)^{-1 / 3}$ is the isoperimetric constant.
The set $C \backslash A$ is a Caccioppoli set, hence the previous equation is proved if we can show that

$$
\begin{equation*}
\mathcal{H}^{2}\left(\partial^{*}(C \backslash A)\right) \leq \mathcal{H}^{2}\left(\partial^{*} A \cap C\right) . \tag{16}
\end{equation*}
$$

Take $y \in \partial^{*}(C \backslash A)$. Clearly $D(A, y)<1$ and $D(C, y)>0$. We now show that $D(C, y)<1$ only for a \mathcal{H}^{2}-null set. Indeed, if $D(C, y)<$ 1 then y belongs to $\partial^{*} C$, which up to a \mathcal{H}^{2}-null set coincides with $u\left(\Omega_{d} \cap \partial B(a, r)\right)$. By Lemma 2.9, $D(A, u(x))=1$ for every $x \in \Omega_{d}$, which contradicts the statement $D(A, y)<1$. Therefore $D(C, y)=1$, which in turn implies $D(A, y)=1 / 2$, hence $y \in \partial^{*} A$. By Definition 3.5, $y \in C$, and Eq. (16) is proved.

Now we use Eq. (15) to prove that $\mu_{c}=0$. By definition we have $\lim _{r \downarrow 0} \mu_{c}(B(a, r))=0$ for every a. Fix $\varepsilon>0$ and consider the family of closed balls

$$
\mathcal{F}_{\varepsilon}=\left\{\overline{B(a, r)}: a \in \Omega, r \in R_{a}, \mu_{c}(\partial B(a, r))=0, \mu_{c}(\overline{B(a, r)})<\varepsilon\right\} .
$$

By the Besicovitch covering theorem (e.g. Theorem 2.19 of [2]) there is a sequence of pairwise disjoint, closed balls $\overline{B_{i}} \in \mathcal{F}_{\varepsilon}$ such that

$$
\mu_{c}(\Omega)=\mu_{c}\left(\bigcup_{i=1}^{\infty} \overline{B_{i}}\right)=\sum_{i=1}^{\infty} \mu_{c}\left(B_{i}\right) .
$$

By (14) and (15),

$$
\sum_{i=1}^{\infty}\left[\mu_{c}\left(B_{i}\right)\right]^{2 / 3} \leq \sum_{i=1}^{\infty}\left[\mathcal{L}^{3}\left(\mathrm{im}_{\mathrm{T}}\left(u, B_{i}\right) \backslash A\right)\right]^{2 / 3} \leq c_{3} \mathcal{H}^{2}\left(\partial^{*} A\right) .
$$

We conclude that $\mu_{c}(\Omega) \leq c_{3} \varepsilon^{1 / 3} \mathcal{H}^{2}\left(\partial^{*} A\right)$ and since ε was arbitrary, this gives $\mu_{c}=0$.

To show that $k_{i}=\mathcal{L}^{3}\left(F\left(x_{i}\right)\right)$, we observe that

$$
\begin{aligned}
k_{i} & =\lim _{r \rightarrow 0} \mu_{s}\left(B\left(x_{i}, r\right)\right) \\
& =\lim _{r \rightarrow 0} \mathcal{L}^{3}\left(\operatorname{im}_{\mathrm{T}}\left(u, B\left(x_{i}, r\right)\right) \backslash \operatorname{im}_{\mathrm{G}}\left(u, B\left(x_{i}, r\right)\right)\right) .
\end{aligned}
$$

Since by the area formula $\mathcal{L}^{3}\left(\operatorname{im}_{G}\left(u, B\left(x_{i}, r\right)\right)\right)$ converges to zero, we get
$k_{i}=\lim _{r \rightarrow 0} \mathcal{L}^{3}\left(\operatorname{im}_{\mathrm{T}}\left(u, B\left(x_{i}, r\right)\right)\right)=\mathcal{L}^{3}\left(\bigcap_{r>0} \operatorname{im}_{\mathrm{T}}\left(u, B\left(x_{i}, r\right)\right)\right)=\mathcal{L}^{3}\left(F\left(x_{i}\right)\right)$
where monotonicity and the definition of $F(x)$ have been used.
The following remark will be crucial for the next section.
Remark 4.5 (Invariance). If we compose u with a diffeomorphism $H: B(0, R) \rightarrow \mathbb{R}^{3}$, where $B(0, R) \supset \operatorname{im}_{\mathrm{G}}(u, \Omega)$, then $H \circ u$ satisfies all the hypotheses of the previous theorem, and
$\operatorname{Det} D(H \circ u)=(\operatorname{det} \nabla H) \circ u \operatorname{det} D u \mathcal{L}^{3}+\sum_{x_{i} \in C_{u}} \delta_{x_{i}} \int_{F\left(x_{i}\right)} \operatorname{det} \nabla H(y) d y$.

5. Graphs and currents

The goal of this section is to prove the following theorem.
Theorem 5.1 (Currents versus INV). Suppose $u \in W^{1,2}(\Omega) \cap L^{\infty}$, with $\operatorname{det} D u>0$ a.e.. Then the following two conditions are equivalent:
(i) u satisfies condition $I N V$ and $\operatorname{im}_{G}(u, B)$ has bounded variation in every ball where u satisfies $I N V_{L}$;
(ii) there exists a countable number of bounded Caccioppoli sets F_{i} and of points $x_{i} \in \Omega$ such that

$$
\begin{aligned}
& \partial G_{u}=-\sum_{i}\left\{x_{i}\right\} \times \partial^{*} F_{i} \\
& \partial G_{u} \text { has locally finite mass in } \Omega \\
& u \text { is injective a.e. and }\left|\operatorname{im}_{\mathrm{G}}(u, \Omega) \cap F_{i}\right|=0
\end{aligned}
$$

In the previous statement there is a slight abuse of notation: indeed $\left\{x_{i}\right\} \times \partial^{*} F_{i}$ is a set and not a current. However, after having fixed an orientation for \mathbb{R}^{3} we can orient $\partial^{*} F_{i}$ in such a way that in every point the orienting couple and the outward unit normal form a triple of vectors oriented as $\{(1,0,0),(0,1,0),(0,0,1)\}$. This induces a two dimensional current in \mathbb{R}^{3} and by mapping \mathbb{R}^{3} into $\left\{x_{i}\right\} \times \mathbb{R}^{3}$ it gives a rectifiable 2-dimensional current in $\Omega \times \mathbb{R}^{3}$. We identify $\left\{x_{i}\right\} \times \partial^{*} F_{i}$ with this current.

Proof of (i) \Rightarrow (ii). We will prove that if (i) holds then (ii) is true if we take $\left\{x_{i}\right\}=C_{u}=\left\{x: \mathcal{L}^{3}(F(x))>0\right\}$ and $F_{i}=F\left(x_{i}\right)$. From Remark 3.2.3.3 in [12] (page 245) we have

$$
\left(\partial G_{u}\right)_{(k)}\left\llcorner\Omega \times \mathbb{R}^{3}=0\right.
$$

for $k=0$ and $k=1$. Hence we have to compute $\left\langle G_{u}, d \omega\right\rangle$ for ω of the form

$$
\omega=h_{1}(x, y) d y_{2} \wedge d y_{3}+h_{2}(x, y) d y_{3} \wedge d y_{1}+h_{3}(x, y) d y_{1} \wedge d y_{2}
$$

where $h \in C_{0}^{\infty}\left(\Omega \times \mathbb{R}^{3}\right)$. Namely, we want to show that

$$
\begin{equation*}
\left\langle\partial G_{u}, \omega\right\rangle=\left\langle G_{u}, d \omega\right\rangle=-\sum_{x_{i} \in C_{u}} \int_{\partial^{*} F\left(x_{i}\right)} h\left(x_{i}, y\right) \cdot \nu_{i} d \mathcal{H}^{2}(y) \tag{17}
\end{equation*}
$$

where ν_{i} is the outer normal to $F\left(x_{i}\right)$. Now, we notice that the vector space generated by functions of the form $\phi(x) g(y)$ is dense in C_{0}^{∞} in the topology induced by C^{k} seminorms. Hence it is sufficient to prove (17) for

$$
\omega=\phi(x)\left[g_{1}(y) d y_{2} \wedge d y_{3}+g_{2}(y) d y_{3} \wedge d y_{1}+g_{3}(y) d y_{1} \wedge d y_{2}\right]
$$

where ϕ has compact support in Ω. We first show that, if $\operatorname{div} g=0$, then $\left\langle G_{u}, d \omega\right\rangle=0$. In order to do that, we observe that

$$
\left\langle G_{u}, d \omega\right\rangle=\int(\operatorname{div} g) \circ u \phi \operatorname{det} D u+\int g \circ u \cdot \Lambda_{2}(u) \cdot \nabla \phi
$$

The first term in the RHS is zero. To show that also the second one vanishes we take a sequence of C^{∞} functions u_{n} converging to u strongly in $W^{1,2}$ and weakly in L^{∞}. Then, the same calculation and the fact that the boundary of $G_{u_{n}}$ is zero gives $\left\langle G_{u_{n}}, d \omega\right\rangle=0$, and hence

$$
\int g \circ u_{n} \cdot \Lambda_{2}\left(u_{n}\right) \cdot \nabla \phi=0
$$

For $n \rightarrow \infty, \Lambda_{2}\left(u_{n}\right) \rightarrow \Lambda_{2}(u)$ strongly in L^{1}, and $g \circ u_{n} \stackrel{*}{\rightharpoonup} g \circ u$ in L^{∞}, and so $\left\langle G_{u}, d \omega\right\rangle=0$ whenever $\operatorname{div} g=0$.

We now prove (17) in the general case. By linearity, we can assume that $\operatorname{div} g \geq k>0$. Now, using a result of Dacorogna and Moser [8], we can find a diffeomorphism $H: \Omega \rightarrow \mathbb{R}^{3}$ such that

$$
\operatorname{div} g=\operatorname{det} \nabla H=\frac{1}{3} \operatorname{div}\left(H \cdot \Lambda_{2}(H)\right) .
$$

Let us define the form ν as

$$
\begin{aligned}
\nu:= & \frac{1}{3} \phi(x)\left[\left(H \cdot \Lambda_{2}(H)\right)_{1}(y) d y_{2} \wedge d y_{3}\right. \\
& \left.+\left(H \cdot \Lambda_{2}(H)\right)_{2}(y) d y_{3} \wedge d y_{1}+\left(H \cdot \Lambda_{2}(H)\right)_{3}(y) d y_{1} \wedge d y_{2}\right]
\end{aligned}
$$

where $\left(H \cdot \Lambda_{2}(H)\right)_{i}$ denotes the i-th component of the vector $H \cdot \Lambda_{2}(H)$. Since we have shown that $\left\langle G_{u}, d \omega\right\rangle$ only depends on the divergence of g, we have $\left\langle G_{u}, d \omega\right\rangle=\left\langle G_{u}, d \nu\right\rangle$. Then, a computation analogous to the previous one gives
$\left\langle G_{u}, d \nu\right\rangle=\int(\operatorname{det} \nabla H) \circ u \phi \operatorname{det} D u+\frac{1}{3} \int\left(\left(H \cdot \Lambda_{2}(H)\right) \circ u\right) \cdot \Lambda_{2}(u) \cdot \nabla \phi$
We observe that $\left(H \cdot \Lambda_{2}(H)\right) \circ u \cdot \Lambda_{2}(u)=(H \circ u) \cdot \Lambda_{2}(H \circ u)$. Then, integrating by parts we get

$$
\frac{1}{3} \int\left(\left(H \cdot \Lambda_{2}(H)\right) \circ u\right) \cdot \Lambda_{2}(u) \cdot \nabla \phi=-\int \phi \operatorname{Det} D(H \circ u) .
$$

Finally, in view of Remark 4.5, we have

$$
\begin{aligned}
\left\langle G_{u}, d \omega\right\rangle & =-\sum_{x_{i} \in C_{u}} \delta_{x_{i}} \phi\left(x_{i}\right) \int_{F\left(x_{i}\right)} \operatorname{det} \nabla H(y) d y \\
& =-\sum_{x_{i} \in C_{u}} \delta_{x_{i}} \phi\left(x_{i}\right) \int_{F\left(x_{i}\right)} \operatorname{div} g(y) d y \\
& =\sum_{x_{i} \in C_{u}} \delta_{x_{i}} \phi\left(x_{i}\right) \int_{\partial^{*} F\left(x_{i}\right)} g(y) \cdot \nu_{i}(y) d \mathcal{H}^{2}(y)
\end{aligned}
$$

In order to prove the converse implication we first need some definitions.

Definition 5.2. Let $M \subset \Omega \times \mathbb{R}_{y}^{3}$ be a 3 -dimensional smooth oriented manifold (possibly with boundary). Given a C^{∞} open set $A \subset \subset \Omega$, for every point $y \in \mathbb{R}^{3}$ we set $M_{y}:=(A \times\{y\}) \cap M$. For every $x \in M_{y}$ we call $T(x)$ the tangent plane to M in x with its orientation and we call $T_{p}(x)$ the projection of $T(x)$ on \mathbb{R}_{y}^{3} with the induced orientation. We set

$$
\chi(x):= \begin{cases}0 & \text { if } \operatorname{dim}\left(T_{p}(x)\right)<3 \\ 1 & \text { if } \operatorname{dim}\left(T_{p}(x)\right)=3 \text { and } T_{p}(x) \text { is oriented as } \mathbb{R}_{y}^{3} \\ -1 & \text { otherwise }\end{cases}
$$

We define

$$
\operatorname{deg}(M, A, y):=\sum_{x \in M_{y}} \chi(x) .
$$

Exactly in the same way, using approximate tangent planes, we can define $\operatorname{deg}(T, A, y)$ if T is a rectifiable current.

Remark 5.3. It is easy to see that the degree is well defined and

$$
\begin{equation*}
\int_{M \cap\left\{A \times \mathbb{R}_{y}^{3}\right\}} g(y) d y_{1} \wedge d y_{2} \wedge d y_{3}=\int_{\mathbb{R}^{3}} g(y) \operatorname{deg}(M, A, y) d y . \tag{18}
\end{equation*}
$$

Hence, if $\left(\partial A \times \mathbb{R}_{y}^{3}\right) \cap M$ is a 2-dimensional manifold then

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} \operatorname{div} h \operatorname{deg}(M, A, y) d y=\int_{M \cap\left\{A \times \mathbb{R}_{y}^{3}\right\}} \operatorname{div} h d y_{1} \wedge d y_{2} \wedge d y_{3} \\
= & \int_{\partial\left(A \times \mathbb{R}^{3}\right) \cap M} h_{1} d y_{2} \wedge d y_{3}+h_{2} d y_{3} \wedge d y_{1}+h_{3} d y_{1} \wedge d y_{2} .
\end{aligned}
$$

Moreover if A is a ball B and $\left(A \times \mathbb{R}_{y}^{3}\right) \cap M$ is the trace of a function $u: \Omega \rightarrow \mathbb{R}^{3}$ then this last term is equal to

$$
\int_{\partial B} h \circ u \cdot \Lambda_{2}(u) \cdot \nu d \mathcal{H}^{2}
$$

and we can write

$$
\int_{\mathbb{R}^{3}} \operatorname{div} h \operatorname{deg}(M, B, y) d y=\int_{\mathbb{R}^{3}} \operatorname{div} h \operatorname{deg}(u, \partial B, y) d y .
$$

Since every smooth function g can be written as the divergence of a vector field we conclude that $\operatorname{deg}(M, B, y)=\operatorname{deg}(u, \partial B, y)$ a.e.

Proof of (ii) \Rightarrow (i) in Theorem 5.1. What happens in the previous remark if we try to replace the manifold M with a rectifiable current T ? Equation (18) remains true. Moreover if we fix a point x a classical theorem of Federer (the Theorem of slicing 4.2.1) says that for \mathcal{L}^{1} a.e. r such that $\operatorname{dist}(\Omega, x)>r>0$ we have:
(i) the intersection of the rectifiable set which supports T with $\partial B(x, r) \times \mathbb{R}^{3}$ gives a 2-dimensional rectifiable set S_{r};
(ii) \mathcal{H}^{2} a.e. $y \in S_{r}$ has an orientation induced naturally by the orientation of the tangent space to $\partial B \times \mathbb{R}^{3}$ and the one of the approximate tangent space to T;
(iii) the orientation of (ii) on S_{r} induces a rectifiable current, which we also call S_{r} with a slight abuse of notation;
(iv) if we take in $\mathbb{R}^{3} \times \mathbb{R}^{3}$ the current T_{r} given by the restriction of T to $B(x, r) \times \mathbb{R}^{3}$ we have that $\partial T_{r}=S_{r}$.
Keeping this in mind we notice that the current given by $T=G_{u}+$ $\sum_{i}\left\{x_{i}\right\} \times F_{i}$ is rectifiable and has no boundary in $\Omega \times \mathbb{R}^{n}$. The current T is supported on the rectifiable set R given by $u\left(\Omega_{d}\right) \cup \bigcup_{i}\left\{x_{i}\right\} \times F_{i}$. Now let us fix an $x \in \Omega$. For \mathcal{L}^{1}-a.e. radius r such that $B(x, r) \subset \Omega$, we have that $\left(\partial B(x, r) \times \mathbb{R}^{3}\right) \cap R$ is given by the rectifiable set $u\left(\Omega_{d} \cap \partial B(x, r)\right)$.

Hence (for a.e.) $r \partial T_{r}$ is given by the current induced by the $W^{1,2} \cap L^{\infty}$ function $\left.u\right|_{\partial B(x, r)}$.

Reasoning as in Remark 5.3 it is not difficult to check that

$$
\operatorname{deg}(T, B(x, r), y)=\operatorname{deg}(u, \partial B(x, r), y)
$$

for a.e. y. Hence, since every approximate tangent plane to T is oriented in the same way, it is easy to see that for every point $z \in$ $B(x, r), \operatorname{deg}(u, \partial B(x, r), u(z))$ is positive. Moreover, since for a.e. point $z \notin B(x, r)$ we have $(B(x, r) \times u(z)) \cap T=\emptyset$ we can conclude that $\operatorname{deg}(u, \partial B(x, r), u(z))=0$ for a.e. $z \in \Omega \backslash B(x, r)$. This implies that u satisfies condition INV.

Finally, let us fix a ball B such that u satisfies INV_{L} on it. Of course we have that

$$
\operatorname{im}_{\mathrm{G}}(u, B)=\{y \mid \operatorname{deg}(T, B, y)>0\} \backslash \bigcup_{x_{i} \in B} F_{i} .
$$

Since $\operatorname{deg}(T, B, \cdot)=\operatorname{deg}(u, \partial B, \cdot)$ we have that $\{y \mid \operatorname{deg}(B, T, y)>0\}=$ $\mathrm{im}_{\mathrm{T}}(u, B)$. As we have seen in Section 3, the last set is a set of bounded variation. Moreover

$$
\sum_{x_{i} \in B} \operatorname{Per}\left(F_{i}\right)
$$

is equal to the mass of ∂G_{u} in $B \times \mathbb{R}^{3}$, hence it is finite. This means that $\operatorname{im}_{\mathrm{G}}(u, B)$ is the difference between two Caccioppoli sets and completes the proof.

6. Examples

In this section we construct a sequence of Bilipschitz functions u_{n} : $\Omega \rightarrow \mathbb{R}^{3}$ such that
(i) every u_{n} obeys condition INV;
(ii) $\left\|u_{n}\right\|_{\infty}$ is equibounded and

$$
\begin{equation*}
\sup _{n} \int\left(\left|\nabla u_{n}\right|^{2}+\phi\left(\operatorname{det} \nabla u_{n}\right)\right)<\infty \tag{19}
\end{equation*}
$$

for some convex function $\phi: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\phi(t)}{t}=\lim _{t \rightarrow 0} \phi(t)=\infty ; \tag{20}
\end{equation*}
$$

(iii) u_{n} converge weakly in $W^{1,2}$ to a map u which does not satisfy condition INV.
The limit u is illustrated in Figure 1. The whole construction is cylindrically symmetric with respect to the x-axis, therefore only a section is plotted. The half-ball a, centered in the origin, is mapped into the ball
$\operatorname{im}_{\mathrm{G}}(u, a)=B((1 / 2,0,0), 1 / 2)$. The half-ball e, centered in $(1,0,0)$, is mapped into $\mathrm{im}_{\mathrm{G}}(u, e)=B((1,0,0), 1) \backslash \mathrm{im}_{\mathrm{G}}(u, a)$. The topological image of $e, \operatorname{im}_{\mathrm{T}}(u, e)=B((1,0,0), 1)$, also contains $\operatorname{im}_{\mathrm{G}}(u, a)$, whereas a and e are disconnected. Hence condition INV is violated by u.

To understand how u can be reached as the limit of a sequence of functions satisfying condition INV, it is instructive to mention the following result (well known in the literature on harmonic maps)
Lemma 6.1. There is a sequence of maps $v_{n}: S^{2} \rightarrow S^{2}$ which for any n are surjective,

$$
\sup _{n} \int_{S^{2}}\left|\nabla v_{n}\right|^{2}<\infty
$$

with $v_{n} \rightarrow v$ in $W^{1,2}$, and v a constant function.
Proof. The construction is cylindrically symmetric, and is based on expanding the usual projection of the sphere onto the complex plane. In polar coordinates, this gives

$$
\left(v_{\theta}, v_{\phi}\right)(\theta, \phi)=\left(2 \arctan n \tan \frac{\theta}{2}, \phi\right)
$$

It is clear that $v_{\theta} \rightarrow \pi$ as $n \rightarrow \infty$. The L^{2} norm of cylindrically invariant functions is given by (see Appendix B)

$$
\|\nabla v\|_{L^{2}\left(S^{2}\right)}^{2}=2 \pi \int_{-1}^{1}\left(\partial_{\theta} v_{\theta}\right)^{2}+\left(\frac{\sin v_{\theta}}{\sin \theta}\right)^{2} d \cos \theta
$$

and by direct substitution we obtain

$$
\|\nabla v\|_{L^{2}\left(S^{2}\right)}^{2}=4 \pi \int_{-1}^{1}\left(\frac{2 n}{\left(n^{2}+1\right)+\cos \theta\left(1-n^{2}\right)}\right)^{2} d \cos \theta=8 \pi
$$

This concludes the proof.
Before presenting the actual construction, we show a simple method for checking the determinant constraint. One possible way would of course be to explicitly construct a function ϕ (for example $\phi(t)=t^{p}+$ t^{-q}, for some $p>1, q>0$) which satisfies (20) and check (19). It is however easier to use the following lemma
Lemma 6.2. If the sequence of Bilipschitz maps $u_{n}: \Omega \rightarrow \mathbb{R}^{n}$ has the following properties:
(i) for any δ there exists ε such that, if $\omega \subset \Omega$ is measurable and $|\omega| \leq \varepsilon$, then $\left|u_{n}(\omega)\right|<\delta$;
(ii) for any δ, there exists ε such that, if $|\omega| \leq \varepsilon$, then $\left|u_{n}^{-1}(\omega)\right|<\delta$.

Then, there is a convex function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\phi(t)}{t}=\lim _{t \rightarrow 0} \phi(t)=\infty \tag{21}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sup _{n} \int_{\Omega} \phi\left(\operatorname{det} \nabla u_{n}\right)<\infty . \tag{22}
\end{equation*}
$$

Proof. Since every u_{n} is Bilipschitz we have

$$
\left|u_{n}(\omega)\right|=\int_{\omega} \operatorname{det} \nabla u_{n}(x) d x .
$$

Hence the first condition implies the equiintegrability of $\operatorname{det} \nabla u_{n}$ and using Dunford-Pettis Theorem for weakly compact L^{1} sequences (see for example [2] for a proof) we conclude that there exists a positive, increasing, convex and superlinear function ψ_{1} such that $\int \psi_{1}\left(\operatorname{det} \nabla u_{n}\right)$ is equibounded. Using condition (ii) in the same way we find an analogous ψ_{2} such that $\int \psi_{2}\left(\left(\operatorname{det} \nabla u_{n}\right)^{-1}\right)$ is equibounded. Since $\psi_{2}(x)$ is increasing, $\psi_{2}\left(x^{-1}\right)$ is still convex. It follows that $\psi_{1}(x)+\psi_{2}(1 / x)$ gives the desired function.

Figure 1: Representation of the limit function u. Left panel: subdivision of the domain. Right panel: image. The letters denote the images of the various pieces of the domain.

We now turn to the relevant construction, which is illustrated in Figures 1 and 2. The unwrapping of the sphere mentioned in Lemma 6.1 is used in the central section, denoted by c in Figure 2. For finite n, sections of c at constant x are mapped into spheres which are contained

Figure 2: Representation of a function of the sequence u_{n}, which converge to the one represented in Figure 1. Left panel: subdivision of the (x, y) plane used in the construction in Theorem 6.3. Right panel: image. The letters denote the images of the various pieces of the domain.
between the image of a and the one of e. In the limit, those spheres shrink to a point, the origin.
Theorem 6.3 (Bad sequence). There is a sequence $\left(u_{n}\right) \subset W^{1,2}\left(\Omega, \mathbb{R}^{n}\right)$ such that:
(i) u_{n} is Bilipschitz;
(ii) every u_{n} satisfies condition INV;
(iii) $u_{n} \rightharpoonup u$ in $W^{1,2}$ and u does not satisfy condition INV;
(iv) $\sup _{n} \int_{\Omega} \psi\left(\operatorname{det} \nabla u_{n}\right)<\infty$ for some convex and superlinear ψ approaching infinity at 0 .

Proof. We work in cylindrical coordinates, and construct the sequence u_{n} using piecewise smooth functions. We shall consider $\Omega=B(0,3)$, examples for other domains can be obtained by rescaling and translating the construction. We first construct $v_{n}(x, y)$, which coincides with the restriction of u_{n} to the $\{z=0, y>0\}$ half-plane, then extend it cylindrically,

$$
u_{n}(x, y \cos \phi, y \sin \phi)=v_{x}^{n}(x, y) e_{x}+v_{y}^{n}(x, y)\left(\cos \phi e_{y}+\sin \phi e_{z}\right) .
$$

The construction of v_{n} is based on the subdivision of the domain shown in Figure 2. In the limit u, the region a, which corresponds to a halfsphere, is mapped into the sphere $u(a)=B(1 / 2,1 / 2)$, and the region e is mapped into $u(e)=B(1,1) \backslash B(1 / 2,1 / 2)$. The regions b and d are mapped into the $x<0$ half-space, the region f is mapped into the
rest of the $x>0$ half-space. The remaining regions all disappear in the limit. For finite n, the regions a^{\prime}, c and e^{\prime} (of total volume of order n^{-2}) ensure that the maps are Bilipschitz. The corresponding images also have small volume, and join continuously $u_{n}(a)$ with $u_{n}(e)$.
Let (r, θ) be polar coordinates centered in $(0,0)$, and ($\bar{r}, \bar{\theta})$ polar coordinates centered in $(1,0)$. We consider first the inner regions a, a^{\prime}, c, e^{\prime} and e, and afterwards the outer ones, b, d and f. For simplicity of notation we denote here v_{n} by v, and use $\varepsilon:=1 / n$ as small parameter. We also use the same symbols a, b, etc. to denote both the threedimensional pieces and their two-dimensional sections.

We start from $a:=\{\varepsilon \leq r \leq 1, \pi / 2 \leq \theta \leq \pi\}$, and set

$$
\begin{align*}
v_{\theta} & :=\pi-\theta \tag{23}\\
v_{r} & :=\frac{1-r}{1-\varepsilon}\left(\cos v_{\theta}+2 \varepsilon\right)+\varepsilon \frac{r-\varepsilon}{1-\varepsilon} \tag{24}
\end{align*}
$$

where v_{r} and v_{θ} are polar components of $\left(v_{x}, v_{y}\right)=\left(v_{r} \cos v_{\theta}, v_{r} \sin v_{\theta}\right)$. For $r=\varepsilon$ this reduces to $v_{r}=\cos v_{\theta}+2 \varepsilon$. In region $a^{\prime}:=\{0 \leq r \leq$ $\varepsilon, \pi / 2 \leq \theta \leq \pi\}$ we set

$$
\begin{align*}
& v_{\theta}:=2 \arctan \left(\frac{r \sin \theta}{-r \cos \theta+\varepsilon}\right) \tag{25}\\
& v_{r}:=(1+\varepsilon) \cos v_{\theta}+2 \varepsilon-r \cos \theta . \tag{26}
\end{align*}
$$

In the strip $0 \leq x \leq 1$ we use cartesian coordinates in the (x, y)-plane. In $c:=\{0 \leq x \leq 1,0 \leq y \leq \varepsilon\}$,

$$
\begin{aligned}
v_{\theta} & :=2 \arctan (y / \varepsilon) \\
v_{r} & :=(1+\varepsilon) \cos v_{\theta}+2 \varepsilon+x \varepsilon^{2}
\end{aligned}
$$

We finally come to the region $x \geq 1$. Here we use the polar coordinates $(\bar{r}, \bar{\theta})$ centered in $(1,0)$, and only need to consider $0 \leq \bar{\theta} \leq \pi / 2$. In $e^{\prime}:=\{0 \leq \bar{r} \leq \varepsilon, 0 \leq \bar{\theta} \leq \pi / 2\}$ we set

$$
\begin{aligned}
& v_{\theta}:=2 \arctan \left(\frac{\bar{r} \sin \bar{\theta}}{\bar{r} \cos \bar{\theta}+\varepsilon}\right), \\
& v_{r}:=(1+\varepsilon) \cos v_{\theta}+2 \varepsilon+\bar{r} \cos \bar{\theta}+\varepsilon^{2} .
\end{aligned}
$$

Finally, in $e:=\{\varepsilon \leq \bar{r} \leq 1,0 \leq \bar{\theta} \leq \pi / 2\}$, we set

$$
\begin{aligned}
v_{\theta} & :=\bar{\theta} \\
v_{r} & :=2 \varepsilon+\varepsilon \bar{r}+(1+\varepsilon+\bar{r}) \cos v_{\theta} .
\end{aligned}
$$

We now come to the outer region. Since the function here has a smooth dependence on ε, we only shortly sketch the construction, without giving all details. We start from region $b:=\left\{x \leq 0, x^{2}+y^{2} \geq 1\right\}$.

The construction is most simply understood by composing two Bilipschitz functions. Let c_{ε} be the map defined, in polar coordinates, by

$$
(r, \theta) \rightarrow(r-1+\varepsilon,(\theta+\pi) / 2) .
$$

Let ψ_{ε} be a Bilipschitz function which maps $\{x \leq 0,|y| \leq \varepsilon+|x|\} \backslash$ $B(0, \varepsilon)$ into $\{x \leq 0,|y| \leq \varepsilon+|x|\} \cup B(0, \varepsilon)$ and satisfies
(i) $\psi_{\varepsilon}(r, \theta)=(r, \theta)$ on the lines $\theta=\pi \pm \pi / 4, r \geq \varepsilon$;
(ii) $\psi_{\varepsilon}(r, \theta)=(r, \pi-\theta)$ on the half-circumference $r=\varepsilon, \theta \in$ ($\pi / 2,3 \pi / 2$);
(iii) ψ_{ε} equals the identity outside $B(0,2 \varepsilon)$.

We finally set $v_{\varepsilon}=\psi_{\varepsilon} \circ c_{\varepsilon}$. Region f is analogous.
We now consider region $d:=\{0 \leq x \leq 1, y \geq \varepsilon\}$. Let g_{ε} be uniformly Bilipschitz functions that map d into $(0,3) \times(0, \infty)$, with $g_{\varepsilon}(0,1)=(0,0), g_{\varepsilon}(0, \varepsilon)=(1,0), g_{\varepsilon}(1, \varepsilon)=(2,0), g_{\varepsilon}(1,1)=(3,0)$ and affine in the segments joining these points. Now we consider the additional function h given by

$$
\begin{aligned}
& h_{x}:=-y \cos (\varphi(x)) \\
& h_{y}:=\omega(x)+y \sin (\varphi(x))
\end{aligned}
$$

where $\omega(x)$ is still to be determined and

$$
\varphi(x):=\frac{\pi}{4}\left(1+\frac{x}{3}\right) .
$$

We finally set $v_{\varepsilon}=h \circ g_{\varepsilon}$, and choose ω so that the trace on the $x=0$ axis agrees with the one obtained from the interior.

We leave to the reader to check that all pieces match continuously and are orientation-preserving, and focus directly on the estimate of $\left|\nabla u_{n}\right|^{2}+\phi\left(\operatorname{det} \nabla u_{n}\right)$.

The estimate of the L^{2} norm of the gradients is done with the help of the expressions in polar/cylindrical coordinates given in Appendix B. We start from region a. From Eq. (27) we see that if the partial derivatives $\partial_{(r, \theta)} u_{(r, \theta)}$ are uniformly bounded, all terms are immediately controlled, except for the last one. The last one is also uniformly controlled, since in this region $u_{\theta} / \sin \theta=1$. In region a^{\prime}, we get $\left|u_{r, \theta}\right|+\left|u_{\theta, \theta}\right| \leq c$, and $\left|u_{r, r}\right|+\left|u_{\theta, r}\right| \leq c / \varepsilon$. Since $|r| \leq \varepsilon$, there is nothing to be checked. Similar arguments apply to region c, by considering the formula for cylindrical coordinates in Eq. (28). Finally, regions e and e^{\prime} are completely analogous to a and a^{\prime}.

We now come to the determinant. This is easily done using Lemma 6.2. Indeed, let us check the first property. Fix $\eta \in(0,1)$, and let Ω_{η} be the set of points of distance less than η from the segment joining $(0,0,0)$ and $(1,0,0)$. It is clear that for ε small enough (as compared
to η) the first property is satisfied outside of Ω_{η}. This implies the first hypothesis of the Lemma, for all $\delta>2\left|u_{n}\left(\Omega_{\eta}\right)\right|$. Since

$$
\lim _{\eta \downarrow 0}\left(\sup _{n}\left|u_{n}\left(\Omega_{\eta}\right)\right|\right)=0
$$

we only have to choose η small enough. The second hypothesis of Lemma 6.2 can be proved analogously.

This concludes the proof of the theorem.

7. Final Remarks

We now give a brief summary of the results of the previous sections and of their implications. Let us fix a bounded open set $\Omega \subset \mathbb{R}^{3}$ (sufficiently regular) and call \mathcal{A} the class of maps $u \in W^{1,2}(\Omega) \cap L^{\infty}$ which satisfy condition INV and such that $\operatorname{det} D u>0$ a.e.. After fixing a diffeomorphism $g: \bar{\Omega} \rightarrow \mathbb{R}^{3}$ we introduce the following class of functions

$$
\begin{aligned}
\mathcal{A}_{n c} & :=\left\{u \in \mathcal{A}\left|\operatorname{im}_{\mathrm{G}}(u, \Omega)=\operatorname{im}_{\mathrm{T}}(u, \Omega), u\right|_{\partial \Omega}=\left.g\right|_{\partial \Omega}\right\} \\
\mathcal{A}_{c} & :=\left\{u \in \mathcal{A}\left|\operatorname{Per}\left(\operatorname{im}_{\mathrm{G}}(u, \Omega)\right)<\infty, u\right|_{\partial \Omega}=\left.g\right|_{\partial \Omega}\right\} .
\end{aligned}
$$

Of course $\mathcal{A}_{n c} \subset \mathcal{A}_{c}$. Moreover it is easy to build a map which is in $\mathcal{A}_{c} \backslash \mathcal{A}_{n c}$ (see the first examples in the pioneering work of Ball [4]). Basically the first class does not allow for the opening of holes, whereas the second one does: the union of such holes gives the set $\mathrm{im}_{\mathrm{T}} \backslash \mathrm{im}_{\mathrm{G}}$. In the first class there exists a minimum for the functional (2) when $p>2$ and in the second one there exists a minimum of the modified functional

$$
E^{\prime}(u)=\int_{\Omega}\left(|\nabla u|^{p}+\varphi(\operatorname{det} \nabla u)\right) d x+\operatorname{Per}\left(\operatorname{im}_{G}(u, \Omega)\right) .
$$

We have proved that the first problem is equivalent to minimization of the same functional in the class of functions u such that their graphs are currents which have no boundary in $\Omega \times \mathbb{R}^{3}$ and $\operatorname{det} \nabla u \geq 0$ a.e.. The second one is equivalent to minimization of the energy

$$
\int_{\Omega}\left(|\nabla u|^{p}+\varphi(\operatorname{det} \nabla u)\right) d x+\left\|\partial G_{u}\right\|\left(\Omega \times \mathbb{R}^{3}\right)
$$

among all the maps u such that:
(i) their graphs are rectifiable currents with boundary given by

$$
\partial G_{u}\left\llcorner\Omega \times \mathbb{R}^{3}=\sum_{i}\left\{x_{i}\right\} \times \partial F_{i}\right.
$$

where every F_{i} is a Caccioppoli set;
(ii) $G_{u}+\sum\left\{x_{i}\right\} \times F_{i}$ has degree 1 or 0 as generalized graph in a.e. y in the target.
In Section 6 we have shown that the domain of the first problem is not closed under the $W^{1,2}$ topology. Hence we have a sequence of good functions u_{n} which are converging to a function u such that the boundary ∂G_{u} is nontrivial in $\Omega \times \mathbb{R}^{3}$. Moreover u does not even fall in the class \mathcal{A}_{c}. Indeed, if we take the sequence of currents given by $G_{u_{n}}$ we notice that they are converging to a current T which is composed by G_{u} plus a nontrivial current V. Being the limit of a sequence of currents with no boundary in $\Omega \times \mathbb{R}^{3}$ we have that $G_{u}+V$ has no boundary as well.

With respect to the sequence constructed in the proof of Theorem 6.3, it is not difficult to check that the boundary of G_{u} is given by

$$
\{A\} \times S^{2}-\{B\} \times S^{2}
$$

where A and B are the two points given by $(0,0,0)$ and $(1,0,0)$. We notice that the "hole" opened in $(1,0,0)$ has the "wrong" sign and cannot be interpreted as the boundary given by the opening of a cavity! Hence the "vertical current" V must be a cylinder which connects $\{A\} \times S^{2}$ and $\{B\} \times S^{2}$ (this singularity is often called "dipole" in the literature on harmonic maps).

We conclude that in order to use Giaquinta, Modica and Souček's theory one has to deal with functions which create singularities which are more complicate than cavities.

Acknowledgments

We would like to thank Gianni Royer for bringing the problem to our attention and for many interesting discussions. Also, stimulating discussions with Luigi Ambrosio, Morten Hagdrup, Bernd Kirchheim and Stefan Müller are gratefully acknowledged.

This research was partially supported by the EU TMR network "Phase Transitions in Crystalline Solids", contract FMRX-CT98-0229.

Appendix A

Lemma A.1. Let $A, C \subset \mathbb{R}^{n}$ be two Caccioppoli sets and let us denote by A^{*} and C^{*} the sets of points with density 1 with respect to A and C. Suppose that:
(i) at least one of them is not \mathbb{R}^{n};
(ii) $\mathcal{H}^{n-1}\left(\partial^{*} A \cap C^{*}\right)=\mathcal{H}^{n-1}\left(\partial^{*} C \cap A^{*}\right)=0$.

Then $|A \cap C|=0$ and hence $A^{*} \cap C^{*}=\emptyset$.

Proof. We notice that $A \cap C$ is a Caccioppoli set and that $x \in \partial^{*}(A \cap C)$ if and only if

$$
\lim _{r \rightarrow 0} \frac{|A \cap C \cap B(x, r)|}{\omega_{n} r^{n}}=\frac{1}{2} .
$$

Furthermore we notice that condition (ii) implies that for \mathcal{H}^{n-1} a.e. $x \in \mathbb{R}^{n}$ either one of the sets A and C has density 0 in x, or they have both density 1 . It follows that $\mathcal{H}^{n-1}\left(\partial^{*}(A \cap C)\right)=0$ and so either $A \cap C$ is a set of Lebesgue measure zero, or is \mathbb{R}^{n} minus a set of measure zero. The second possibility is excluded by condition (i) and this ends the proof.

Appendix B. $W^{1,2}$ NORMS IN CYLINDRICAL AND SPHERICAL COORDINATES

Let (r, θ, ϕ) be spherical coordinates, with

$$
\mathbf{r}=r\left(\mathbf{e}_{1} \cos \theta+\sin \theta\left(\mathbf{e}_{2} \cos \phi+\mathbf{e}_{3} \sin \phi\right)\right),
$$

and ($u_{r}, u_{\theta}, u_{\phi}$) be spherical components of \mathbf{u} (here we use boldface for vectors). Assume $u_{\phi}=\phi$, with u_{r} and u_{θ} independent on ϕ. Then, a simple calculation gives

$$
\begin{gather*}
\int_{\Omega}|\nabla \mathbf{u}|^{2}=2 \pi \int_{\Omega}\left[\left(\partial_{r} u_{r}\right)^{2}+\left(\frac{\partial_{\theta} u_{r}}{r}\right)^{2}+\left(u_{r} \partial_{r} u_{\theta}\right)^{2}+\left(\frac{u_{r} \partial_{\theta} u_{\theta}}{r}\right)^{2}\right. \\
\left.+\left(\frac{u_{r} \sin u_{\theta}}{r \sin \theta}\right)^{2}\right] r^{2} \sin \theta d r d \theta \tag{27}
\end{gather*}
$$

Now consider cylindrical coordinates (x, y, ϕ), such that $\mathbf{r}=x \mathbf{e}_{1}+$ $y\left(\mathbf{e}_{2} \cos \phi+\mathbf{e}_{3} \sin \phi\right)$, but still express u in spherical components. Then,

$$
\begin{align*}
\int_{\Omega}|\nabla \mathbf{u}|^{2}=2 \pi \int_{\Omega} & {\left[\left(\partial_{x} u_{r}\right)^{2}+\left(\partial_{y} u_{r}\right)^{2}+\left(\frac{\partial_{\theta} u_{r}}{y}\right)^{2}+\left(u_{r} \partial_{y} u_{\theta}\right)^{2}+\right.} \\
& \left.\left(\frac{u_{r} \partial_{\theta} u_{\theta}}{y}\right)^{2}+\left(\frac{u_{r} \sin u_{\theta}}{y \sin \theta}\right)^{2}\right] y d x d y \tag{28}
\end{align*}
$$

References

[1] Acerbi, E. and Dal Maso, G., New lower semicontinuity results for polyconvex integrals, Calc. Var. Partial Differential Equations 2 (1994), 329-371.
[2] Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2000.
[3] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403.
[4] Ball, J.M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A 306 (1982), 557-611.
[5] Bauman P., Phillips D., and Owen N. C., Maximal smoothness of solutions to certain Euler-Lagrange equations from nonlinear elasticity, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 241-263.
[6] Brezis H., Nirenberg L., Degree theory and BMO: Part 1, compact manifolds without boudaries, Selecta Math. (N.S.) 1 (1995), 197-263.
[7] Ciarlet, P. G. and Nečas, J., Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal. 97 (1987), 171-188.
[8] Dacorogna B., Moser J., On a partial differential equation involving the jacobian determinat, Ann. IHP Anal. Non Lin. 7 (1990), 1-26.
[9] De Lellis C., Fine properties of currents and applications to distributional Jacobians, To appear in Proc. Roy. Soc. Edinburgh Sect. A.
[10] Federer H., Geometric measure theory, Classics in Mathematics, Springer Verlag, Berlin, 1969.
[11] Fonseca I. and Gangbo W., Degree theory in analysis and applications, Oxford Lecture Series in Mathematics and its Applications, 2, Clarendon Press, Oxford, 1995.
[12] Giaquinta M., Modica G., Souček J., Cartesian currents in the calculus of variations, vol. 1, 2, Springer Verlag, Berlin, 1998.
[13] Malý, J., Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 681-691.
[14] Malý J., Lower semicontinuity of quasiconvex integrals, Manuscripta Math. 85 (1994), 419-428.
[15] Müller S., Spector S., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rat. Mech. Anal. 131 (1995), 1-66.
[16] Šverák V., Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal. 100 (1988), 105-127.

Sergio Conti, Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany

E-mail address: conti@mis.mpg.de
Camillo De Lellis, Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany

E-mail address: delellis@mis.mpg.de

