
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Direct Domain Decomposition using

the Hierarchical Matrix Technique

by

Wolfgang Hackbusch

Preprint no.: 23 2002

Direct Domain Decomposition

using the Hierarchical Matrix Technique∗

Wolfgang Hackbusch
Max-Planck-Institut Mathematik in den Naturwissenschaften,

Inselstr. 22, D-04103 Leipzig, Germany
wh@mis.mpg.de

1 Introduction

In the time when the domain decomposition technique developed, direct solvers were quite common. We come
back to direct methods, however, the term “direct” has another meaning. The usual understanding of a direct
method is:

Given a matrix A and a vector b,
produce the solution x of Ax = b.

Here, we require a much more mighty procedure:

Given a matrix A and a vector b,

approximate the inverse A−1 and x =
(
A−1

) ∗ b.

The technique of hierarchical matrices allows to perform this step with an almost optimal storage and operation
cost Õ(n) for n × n matrices related to elliptic operators. The symbol Õ(n) means the order O(n) up to a
logarithmic factor, i.e., there is a (small) number α such that

Õ(n) = O (n logα n) .

In Section 2, we describe the underlying problem of a non-overlapping domain decomposition and the
corresponding system of equations. It is interesting to remark that

• rough (exterior and) interior boundaries are allowed, i.e., no smoothness conditions on the subdomains
or the interior boundary (skeleton) are necessary.

• inside of the subdomains, L∞-coefficient are allowed (i.e., jumping coefficients, oscillatory coefficients,
etc.). There is no need to place the skeleton along jump lines. A proof concerning robustness against
rough boundaries and non-smooth coefficients is given in [2]. If, however, it happens that the coefficients
are piecewise constant or analytic in the subdomains, a further improvement is possible using a new
technique of Khoromskij and Melenk [7] (see Subsection 3.2).

The two items mentioned above allow to create the subdomains independent of smoothness considerations,
instead we may use load balancing arguments.

Further advantages will be mentioned in the Section 3, where the direct solution is explained.
The basic of the solution method are the hierarchical matrices which are already described in several papers

(cf. [4], [5]). An introduction is given in [1]. We give an outline of the method in Section 4.
Although the method of hierarchical matrices could be applied immediately to the global problem, the

domain decomposition helps to achieve a parallelisation of the solution process. The details are discussed in
Section 5.

∗Invited lecture at the 14th International Confernce on Domain Decomposition Conference, January 6-11, 2002 in Cocoyoc,
Mexico.

1

Figure 1: Domain decomposition with nonsmooth interfaces

We conclude this contribution in Section 6 with numerical example for the inversion of finite element
stiffness matrices. We take an example with extremely nonsmooth coefficients to support the remark from
above.

2 Non-Overlapping Domain Decomposition

Let the domain Ω be decomposed into p non-overlapping subdomains Ωi, i = 1, . . . , p (cf. Figure 1). The
skeleton Σ consists of the interior interfaces:

Σ :=
(⋃p

i=1
∂Ωi

)
\ ∂Ω.

For a simpler finite element realisation we may assume (in 2D) that Ωi are polygons. Then Σ is a union of
straight lines. In 3D, Σ may consist of flat faces. As mentioned in the introduction, there is no need for Ωi to
form a regular macro element. Later, we will assume that all Ωi contain a comparable number of degrees of
freedom to achieve a load balance in the parallelisation process.

Let Ii be the index set of interior degrees of freedom in Ωi (the precise definition of j ∈ Ii is that the
corresponding basis function bj satisfies1 supp (bj) ⊂ Ωi). All remaining indices are associated with the
skeleton and its set is denoted by IΣ. Hence, we arrive at the decomposition of the global index set I into

I = I1 ∪ · · · ∪ Ip ∪ IΣ (disjoint union).

As usual, the total dimension is denoted by
n := #I. (2.1)

The FE system Au = f has the structure⎡
⎢⎢⎢⎢⎢⎣

A11 O · · · O A1,Σ

O A22 · · · O A2,Σ

...
...

. . .
...

...
O O · · · App Ap,Σ

AΣ,1 AΣ,2 · · · AΣ,p AΣΣ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1

u2

...
up

uΣ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f1

f2

...
fp

fΣ

⎤
⎥⎥⎥⎥⎥⎦ (2.2)

when we order the unknowns in the sequence I1, . . . , Ip, IΣ.
As usual in domain decomposition, we assume that besides A all submatrices Aii are invertible, i.e., the

subdomain problems are solvable.
In the case of a non-matching domain decomposition (mortar FEM), the elimination of all slave nodes by

means of the mortar condition yields again the system (2.2), where IΣ is the index set of all mortar nodes
(cf. [3]).

1Note that by definition the support supp (bj) is always in Ω, also if the nodal point lies on ∂Ω.

2

3 Direct Solution Process

3.1 Description of Single Steps

The system (2.2) can be reduced to the Schur complement equation

SuΣ = gΣ, (3.1)

where
S := AΣΣ −

p∑
i=1

AΣ,iA
−1
ii Ai,Σ, (3.2)

gΣ := fΣ −
p∑

i=1

AΣ,iA
−1
ii fi. (3.3)

The remaining variables ui are the result of

ui := A−1
ii (fi − Ai,ΣuΣ) for i = 1, . . . , p. (3.4)

An obvious solution method which is usually not used because one is afraid of the bad complexity O(n−3)
of standard solvers is the following:

Step 1a produce the inverse matrix A−1
ii ,

Step 1b form the products AΣ,i ∗
(
A−1

ii

)
and

(
AΣ,iA

−1
ii

) ∗ Ai,Σ,

Step 1c compute the vectors
(
AΣ,iA

−1
ii

) ∗ fi,

Step 2a form the sum S = AΣΣ −∑p
i=1

(
AΣ,iA

−1
ii Ai,Σ

)
,

Step 2b compute the vector gΣ = fΣ −∑p
i=1

(
AΣ,iA

−1
ii fi

)
,

Step 3a produce the inverse matrix S−1,

Step 3b compute the vector uΣ =
(
S−1

) ∗ gΣ,

Step 4 compute the vectors ui =
(
A−1

ii

) ∗ [fi − Ai,Σ ∗ uΣ] .

Terms in round brackets are already computed quantities. The necessary operations are indicated by ◦−1, ∗,
−,
∑

.
In the sequel we follow the Steps 1-4 with the following modifications: Steps 1a,1b,2a,3a are performed

only approximately up to an error ε. Usually2, one wants ε to will similar to the discretisation error, i.e.,

ε = O(hκ) = O(n−β), (3.5)

where h is the step size (if there is a quasi-uniform one) and κ is the consistency order. Then β = κ/d holds,
where d is the spatial dimension:

Ω ⊂ R
d. (3.6)

In the non-uniform finite element case, one expects an discretisation error O(n−β) for an appropriate trian-
gulation. In that case ignore the middle term in (3.5).

Allowing approximation errors of order O(ε), the technique of hierarchical matrices explained in the next
section will be able to perform all Steps 1a-4 with storage and computer time of order Õ(n). Hence, the costs
are similar to usual iterative DD methods. One of the advantages of the direct method is its robustness and
the relative easy implementation. To be precise: It is not such simple to implement the hierarchical matrix
method for the first time, but as soon as one has programmed this method, it can be used without modification
for different FE applications as well as for the Schur equation SuΣ = gΣ with the (fully populated) matrix S.

Finally we remark that A−1 can be computed in Step 5:

A−1 =

⎡
⎢⎢⎢⎢⎣

. . .
... · · · ...

· · · δijA
−1
ii + A−1

ii Ai,ΣS−1AΣ,jA
−1
jj · · · −A−1

ii Ai,ΣS−1

...
. . .

...
· · · −S−1AΣ,jA

−1
jj · · · S−1

⎤
⎥⎥⎥⎥⎦ .

2If one performs only the Steps 1a,1b,2a and 3a to get a rough approximation of S−1 for the purpose of preconditioning, ε
may be of fixed order O(1), e.g., ε = 1/10.

3

However, we should make use of the representation by

A−1 =

⎡
⎢⎢⎢⎣

A−1
11 O O O

O
. . . O O

O O A−1
pp O

O O O O

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

A−1
11 A1,Σ

...
A−1

pp Ap,Σ

−I

⎤
⎥⎥⎥⎦ [S−1AΣ,1A

−1
11 · · · S−1AΣ,pA

−1
pp −S−1

]
. (3.7)

3.2 Improvement for Piecewise Smooth Coefficients

We mentioned that the approach from above is also efficiently working if the subproblems corresponding
to the FE matrices Aii involve nonsmooth coefficients of the elliptic differential equation. If, on the other
hand, we know that the coefficients in one subdomain are constant (or analytic), one can exploit this fact
by applying a more appropriate finite element discretisation. In [7] a so-called boundary concentrated finite
element method is described which allows to solve the local problem with a number of unknowns proportional
to area(∂Ωi)/hd−1. This number is usually by a factor h smaller than the number of degrees of freedom in a
classical FEM, although the same resolution is obtained at the boundary.

We do not discuss this modification in the subdomains in the following, i.e., we consider a traditional FEM.

4 Hierarchical Matrices

It is to be remarked that the method of hierarchical matrices does not apply to any matrix but only to those
related to elliptic (pseudo-) differential operators. In our application, Aii as well as their inverse matrices
are related to the local elliptic problem, while S is a nicely behaving pseudo-differential operator composed
from local Steklov operators. Nevertheless, the method is of black-box character since its description does not
depend on certain features of the involved matrices. Only the success of this kind of approximation depends
on the ellipticity properties.

In the following, we give an introduction into the definition and construction of H-matrices. The interested
reader will find more details in [4], [5] and [1].

4.1 The Main Ingredients

We have to introduce

1. the index set I and the geometric properties of its indices;
2. the cluster tree T (I);
3. the block-cluster tree T (I × I);
4. the admissibility criterion;
5. the (minimal admissible) partitioning of the matrix;
6. rank-k matrices;
7. the definition of an H-matrix;
8. the (approximations of the) operations A + B, A ∗ B, A−1;
9. the estimates for the storage and operation costs.

First, we give an preview of these topics. The cluster tree T (I) describes how the whole index set can be
partitioned into smaller pieces, which are needed, e.g., when we want to define a subblock of a vector. The
block-cluster tree T (I × I) does the same for the matrix. Among the blocks contained in T (I × I) we can
choose a collection of disjoint blocks covering I × I. Then we get a partitioning of the matrix into various
blocks. An example is given in Figure 2.

The choice of this partitioning P is the essential part. It should contain as few blocks as possible to make
the costs as low as possible. On the other hand, the approximation error must be sufficiently small. For this
purpose, all blocks have to satisfy an admissibility condition. Then, filling all blocks (e.g., in Figure 2) by
matrices of rank smaller or equal some k, we obtain an H-matrix from the class H(P, k). The results of A+B,
A ∗B, A−1 for A, B ∈ H(P, k) will, in general, not be again in H(P, k), but they can be approximated in this
class by a cost of O(n).

4

Figure 2: Block partitioning P for the unit circle

4.2 The Index Set and the Geometrical Data

As input for the algorithm we only need the description of the index set I (e.g., {1, . . . , n} or list of nodal
points, etc.) and a characteristic subset X(i) ⊂ R

d associated with i ∈ I. For a collocation method, this may
be the nodal point, i.e., X(i) = {xi} . The appropriate choice for a Galerkin method is

X(i) = supp (φi) , where φi is the FE-basis function associated with i ∈ I. (4.1)

4.3 The Cluster Tree T (I)

Formally, the cluster tree T (I) has to satisfy

1. T (I) ⊆ P(I) (i.e., each node of T (I) is a subset of the index set I).

2. I is the root of T (I).

3. If τ ∈ T (I) is a leaf, then #τ = 1 (i.e., the leaves consist only one index, τ = {i}).
4. If τ ∈ T (I) is not a leaf, then it has exactly two sons and is their disjoint union.

All nodes of T (I) are called “clusters”. For each τ ∈ T (I), we denote the set of its sons by S(τ) ⊂ T (I).
In practice, the condition #τ = 1 is replaced by #τ ≤ CT , e.g., with CT = 32. The condition for a binary

tree (“exactly two sons”) in Part 4 can easily be generalised, although a binary tree is quite reasonable.
The sets X(i) introduced above can immediately be generalised to all clusters by

X(τ) =
⋃
i∈τ

X(i) ⊂ R
d for all τ ∈ T (I). (4.2)

Using the Euclidean metric in R
d, we define the diameter of a cluster and the distance of a pair of clusters:

diam (τ) = sup {|x − y| : x, y ∈ X(τ)} for τ ∈ T (I),
dist (τ, σ) = inf {|x − y| : x ∈ X(τ), y ∈ X(σ)} for τ, σ ∈ T (I).

The practical construction of T (I) must take care that the clusters are as compact as possible, i.e., diam (τ)
should be as small as possible for a fixed number #τ of indices. One possible construction is the recursive
halving of bounding boxes as illustrated in Figure 3. Note that this procedure applies to any irregular FE
triangulation in any spatial dimension.

5

Figure 3: Dyadic clustering of the unit circle.

4.4 The Block-Cluster Tree T (I × I)

The tree T (I × I) is completely defined by means of T (I) when we use the following canonical choice. Let
I × I belong to T (I × I). For all τ × σ ∈ T (I × I) with τ and σ not being leaves, assign the sons τ ′ × σ′ to
T (I × I), where τ ′ ∈ S(τ) and σ′ ∈ S(σ). Again, we write S(τ × σ) for the set of sons of τ × σ.

Remark 4.1 a) If T (I) is a binary tree (as described by condition 4 from above), then T (I × I) is quad-tree.
b) All “blocks” or “block-clusters” b from T (I×I) have the product form b = τ ×σ with τ, σ ∈ T (I). Indices

i ∈ τ belong the rows of b, while j ∈ σ are column indices.

The set T (I × I) provides a rich choice of larger and smaller blocks, which we can select to construct the
partitioning of Subsection 4.6.

4.5 The Admissibility Condition

Let b = τ × σ be a block from T (I × I). If τ or σ is a leaf in T (I) (i.e., #τ = 1 or #σ = 1), then also b is a
leaf in T (I × I). In this case, b is accepted as “admissible”. Otherwise, we recall diam and dist defined via
(4.2) and require an admissibility condition like

max (diam (τ) , diam (σ)) ≥ 2η dist (τ, σ) , (4.3)

where, e.g., η may be chosen as 1
2 . Even the weaker requirement

min (diam (τ) , diam(σ)) ≥ 2η dist (τ, σ)

makes sense. Conditions of this form are known from panel clustering or from matrix compression in the case
of wavelet bases.

It turns out that (4.3) is the appropriate condition to ensure that the rank-k matrices introduced below
will lead to the desired accuracy.

4.6 The Partitioning

A partitioning of I × I is a set P ⊂ T (I × I), so that all elements (blocks) are disjoint and I × I = ∪b∈P b. The
coarsest partitioning is P = {I × I}, while the finest one consists of all leaves of T (I × I). In the first case we
consider the matrix as one block, in the latter case each entry forms a one-by-one block.

We say that P is an admissible partitioning, if all b ∈ P are admissible. The second of the trivial examples
is such an admissible partitioning, since by definition one-by-one blocks are admissible. However, the second
example leads to the standard (costly) representation.

To obtain a representation which is as data-sparse as possible but still ensuring the desired accuracy, we
choose the admissible partitioning with the minimal number of blocks. The construction of this optimal P
is as follows. Start with P := {I × I}. Since I × I is definitely not admissible, we divide it into its sons
s ∈ S(I × I) and replace I × I by the sons: P := (P\ {I × I}) ∪ S(I × I). Similarly, we check for every new
b ∈ P, whether it is admissible. If not, P := (P\ {b}) ∪ S(b).

Under mild condition, one proves that the construction of T (I) by means of bounding boxes are explained
above, leads to #P = Õ(n).

6

4.7 Rk-Matrices

Except when #τ = 1 or #σ = 1, we represent all block matrices as so-called Rk-matrices represented by 2k
vectors aι ∈ R

τ , b�ι ∈ R
σ,

M =
∑k

ι �=1
aιb

�
ι

or in matrix form: M = AB� with A ∈ R
τ,k, B ∈ R

k,σ. Note that all matrices of rank ≤ k can be represented
in this form. The storage equals k ∗ (#τ + #σ) .

4.8 H(P, k)-Matrices

For any partition P and all k ∈ N, we define

H(P, k) :=
{
A ∈ R

I×I : rank(A|b) ≤ k for all b ∈ P
}

as the set of hierarchical matrices for the partitioning P of I×I and the maximal rank k. Here, A|b = (Aij)(i,j)∈b

is the block matrix corresponding to b ∈ P. A|b is represented as Rk-matrix.
There are generalisations i) where the integer k is replaced by a function k : P → N (variable rank) and

ii) where the condition rank(A|b) ≤ k is replaced by the stronger requirement that A|b belongs to a tensor
space Vτ ⊗ Vσ with min (dim Vτ , dim Vσ) = k (see [6]).

4.9 H-Matrix Operations

The simplest operations is the matrix-vector operation (A, x) �→ A ∗ x. Obviously, subblocks of x must be
multiplied by A|b and the partial results are summed up. Since A|b are Rk-matrices, A|b ∗ x|σ needs only
simple scalar products. The overall cost is Õ(n).

The addition of two H(P, k)-matrices can be performed blockwise and yields a result in H(P, 2k).
Truncating all blocks to rank ≤ k (e.g., by means of SVD) gives the approximate result in H(P, k) with
a cost of Õ(n).

The approximative multiplication of two matrices can be performed recursively exploiting the hierarchical
structure of the partitioning P (see [1]). The costs are again Õ(n).

The block Gauss elimination (of a 2 × 2 block matrix) allows to reduce the inversion of the whole matrix
to the inversion of the first block and Schur complement together with additions and multiplications. This
yields a recursive algorithm for computing the inverse matrix approximately with cost Õ(n).

5 Parallelisation

5.1 First Approach

We recall the disjoint splitting of I into the subsets I1, . . . , Ip, IΣ. For the purpose of load balance we assume
that p processors are available and that the cardinalities #Ii (i = 1, . . . , p) are of similar size, i.e.,

#Ii ∼ n

p
(i = 1, . . . , p) . (5.1)

The computations in Steps 1a-4 of Section 3 contain three different phases:

Phase I Steps 1a-c
Phase II Steps 2a-3b
Phase III Step 4

Obviously, Phases I and III contain completely independent tasks for each i = 1, . . . , p. Hence, assuming p
processors, these phases are parallelisable without any communication. The work cost for each processor is
Õ(#Ii) = Õ(n

p) according to (5.1).
The summation

∑p
i=1 in Steps 2a,b needs log2 (p) steps3 to collect and add the terms. The computations

of the Steps 3a,b are performed on one processor, i.e., no parallelisation is used in Phase II. The cost of Phase
II amounts to Õ(#IΣ).

3We remark that the log2 (p) factor can be ignored because of our definition of Õ(·).

7

In Phase III, uΣ has to be copied to each processor. Then Step 4 can be performed with a cost of
Õ(#Ii) = Õ(n

p).
Similarly, the data can be distributed so that all p processors in Phase I,III need Õ(#Ii) storage, while

the one processor of Phase II requires a storage of Õ(#IΣ).
We may add a Phase IV, where Step 5 (computation of A−1) is performed. For this purpose, the

quantities A−1
ii Ai,Σ, S−1

(
AΣ,iA

−1
ii

)
from (3.7) are still to be computed, while AΣ,iA

−1
ii are already known

from Step 1b.
In total, the whole computation of the phases I-III leads to a cost of Õ(n

p) + Õ(#IΣ). We next assume
that subdomains related to Ii are determined such there surface is of minimal order, i.e., the set IΣ,i =

{j ∈ IΣ : j neighboured to some k ∈ Ii} has a cardinality of O
(
(#Ii)

(d−1)/d
)

= O
(
(n

p)(d−1)/d
)

. Hence,

O(#IΣ) = O

(
p

(
n

p

)(d−1)/d
)

= O
(
p1/dn(d−1)/d

)
, (5.2)

where d is the spatial dimension. Under the assumption (5.2), the work equals W = Õ
(

n
p + p1/dn(d−1)/d

)
. If

n is fixed, the optimal number of processors is p = O
(
n1/(d+1)

)
and leads to

W = Õ
(
nd/(d+1)

)
.

If, alternatively, the number p of processors is given, the appropriate scaling of n yields n = O
(
pd+1

)
.

We summarise in

Remark 5.1 A parallel treatment in the Phases I and III with p = O(n1/(d+1)) processors leads to a work
W = Õ(nd/(d+1)). The distributed memory requirements are also Õ(nd/(d+1)). A possible Phase IV requires a
work and local storage of the same size.

5.2 Multiple DD Levels in Phase I

In the previous subsection it was assumed that the Steps 1a-c are performed by means of the H-matrix
arithmetic. An alternative is to compute A−1

ii in Step 1a again by a DD approach using a further subdivision
of Ii into Ii,j (j = 1, . . . , qi) and Ii,Σ. Due to the representation (3.7), the matrix multiplication in Step 1b can
be parallel in qi processors. The vector operation in Step 1c needs O(pi) communications to add up all partial
results. The work needed to perform Steps 1a-c for a particular i is given by Remark 5.1: Under the natural
assumptions from above about the subdivision into Ii,1, . . . , Ii,qi , Ii,Σ and assuming qi = O((#Ii)

1/(d+1)), the
work for Phase I is reduced to Õ((#Ii)

d/(d+1)) (instead of Õ(#Ii)).
Assume (5.1) and qi = q = O((n

p)1/(d+1)) for all i, the total work is W = Õ
(
(n

p)
d

d+1 + p1/dn
d−1

d

)
, which

is minimal for p = n
1

d+1+d2 , when

W = Õ(n
d2

d+1+d2).

Remark 5.2 a) The parallel two-level DD approach as described above reduces the work and storage to

Õ(n
d2

d+1+d2), where P = pq = O(n
d+1

d+1+d2) processors are used. These exponents are 4
7 and 3

7 in the case
of d = 2. Note that three different kinds of parallelism appear: i) there are P = pq problems to be solved in
parallel for the index sets Ii,j (i = 1, . . . , p and j = 1, . . . , q) , ii) p tasks on Ii,Σ, iii) 1 task on IΣ.

b) There is an obvious generalisation to an L-level DD approach. The exponents for the three-level case
are

W = Õ(n
d3

(d+1)(1+d2)), P = O(n
d+1+d2

(d+1)(1+d2)).

The numbers for d = 2 and L = 3 are W = Õ(n
8
15) and P = O(n

7
15). For general L, W = Õ(nωL) and

P = O(n1−ωL), where the exponents ωL converges to limωL = d−1
d , i.e.,

W → Õ(n
d−1

d), P → O(n
1
d).

8

5.3 DD in Phase II

In the previous subsection, we have improved the performance in Phase I, while Phase II (Steps 2a-3b) remains
unparallelised. The only side effect was that the number p of subdomains (of the first level) could be chosen
smaller so that #IΣ was decreasing.

Now we also parallelise Phase II, but it turns out that this approach is equivalent with the approach in
Subsection 5.2. Consider a non-overlapping domain decomposition of Ω by Ωi, i = 1, . . . , p, which is organised
in a hierarchical way, i.e., there is a coarser decomposition Ω̂k, k = 1, . . . , K, so that Ω̂k ⊃ ⋃i∈Jk

Ωi for disjoint
subsets satisfying

⋃K
k=1 Jk = {1, . . . , p}.

Ω1 Ω2

Ω3 Ω4

Ω5 Ω6

Ω7 Ω8

Ω9 Ω10

Ω11 Ω12

Ω13 Ω14

Ω15 Ω16

Coarse DD (double lines) and fine DD (single lines)

In the picture above, the first coarse subset is Ω̂1 corresponding to the fine subsets Ωi for i ∈ J1 = {1, . . . , 4}.
The skeleton Σ̂ of the coarse domain decomposition (double lines in the picture) is a subset of the skeleton Σ
of the fine domain decomposition: Σ̂ ⊂ Σ. The set Σ\Σ̂ consists of non-connected parts Σk ⊂ Ω̂k, k = 1, . . . , K.
The Schur complement system corresponding to Σ has again the structure of system (2.2), where now the sets
I1, . . . , Ip, IΣ correspond to Σ1, . . . , Σp, Σ̂. Hence, the methods from Subsection 5.1 apply again. The multiple
application can be done as in Subsection 5.2.

Remark 5.3 The Schur complement system for the skeleton Σ̂ from above can (identically) obtained in three
different ways: a) eliminate directly all interior nodes in Ω̂k, k = 1, . . . , K; b) follow Subsection 5.2 and
eliminate the interior nodes in Ω̂k by means of the secondary domain decomposition by Ωi, i ∈ Jk; c) compute
first the Schur complement system for the finer skeleton Σ and eliminate the nodes from Σk, k = 1, . . . , K.
The approaches b) and c) differ only in the ordering of the unknowns.

6 Numerical Example

Since the critical question is the ability to compute the approximate inverse of a FE matrix, we give numerical
results for this step. Furthermore, we choose an example with jumping coefficients.

Consider the differential equation

− div (σ(x)∇u(x)) = f(x) in Ω = [0, 1]2,
u = 0 on Γ = ∂Ω,

where the function σ : R
2 → R>0 defined on Ω has values depicted in the following figure:

σ=1

σ=100

σ=0.01

σ(x, y) =

8>>>>>>>><
>>>>>>>>:

0.01 |x + y − 1| < 0.05 or
(0.1 ≤ ‖(x, y)‖ < 0.2)
and (|x − y| ≥ 0.05)

100 |x − y| < 0.05 or
(0.3 ≤ ‖(x, y)‖ < 0.4)
and (|x + y − 1| ≥ 0.05)

1 otherwise

We introduce a regular finite element discretisation which leads to the sparse n × n matrix, where
n ∈ {322, 642, 1282, 2562}. The inversion algorithm applied to A yields the approximation A−1

H . The
relative error ‖A−1 − A−1

H ‖2/‖A−1‖2 is bounded by ‖I − A−1
H A‖2. The later values are given in

9

n = degree of freedom
k 322 642 1282 2562

1 3.5+1 1.1+2 3.1+2 9.5+2
2 2.4-0 1.7+1 1.3+2 4.3+2
3 6.0-1 3.9-0 1.3+1 5.4+1
4 9.4-2 1.0-0 3.4-0 1.0+1
5 2.6-2 2.8-1 7.6-1 6.6-0
6 1.1-3 7.7-2 2.8-1 1.3-0
7 3.9-5 2.1-2 4.8-2 2.3-1
8 9.6-6 1.3-3 1.6-2 4.2-2
9 7.8-6 4.5-4 3.4-3 6.2-3
10 7.0-7 2.9-4 9.7-4 2.5-3
15 5.1-12 7.9-9 8.3-7 1.6-6
20 5.9-12 2.5-11 4.5-9 6.3-9

Due to the multiplication by A, these values increase with n like ‖I − A−1
H A‖2 ≈ n

10 ∗ 0.26k, confirming the
exponential convergence with respect to the rank k. Note that equal approximation errors are obtained when
k is chosen proportional to log n.

Quite similar numbers as above are obtained in the case of a differential equation with smooth coefficient
σ. This underlines that the smoothness or regularity of the boundary value problem does not deteriorate the
approximation by H-matrices. Tests with irregular triangulations in more complicated domains give again
similar approximations.

Further examples can be seen from [2].

Acknowledgment. The numerical tests from the previous section are produced by Dr. L. Grasedyck (Uni-
versity Kiel).

References

[1] S. Börm, L. Grasedyck, and W. Hackbusch: Introduction to hierarchical matrices with applications. MPI
Report 18, 2002. Submitted.

[2] M. Bebendorf and W. Hackbusch: Existence of H-Matrix approximants to the inverse FE-matrix of elliptic
operators with L∞-coefficients. MPI Report 21, 2002. Submitted.

[3] D. Braess, M. Dryja, and W. Hackbusch: Grid transfer for nonconforming FE-discretisations with appli-
cation to non-matching grids. Computing, 63: 1–25, 1999.

[4] W. Hackbusch: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.
Computing, 62: 89–108, 1999.

[5] W. Hackbusch and B. Khoromskij: A sparse H-matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing, 64: 21–47, 2000.

[6] W. Hackbusch, B. Khoromskij, and S. A. Sauter: On H2-matrices. In H.-J. Bungartz, R.H.W. Hoppe, and
C. Zenger, editors, Lectures on Applied Mathematics, pages 9–29. Springer-Verlag, Berlin, 2000.

[7] B. Khoromskij and M. Melenk: Boundary concentrated finite element methods. MPI Report 45, 2001.
Submitted.

10

