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Abstract. Dually flat manifolds constitute fundamental mathemat-
ical objects of information geometry. This note establishes some facts
on the global properties and topology of dually flat manifolds which,
in particular, provide answers to questions and problems in global
information geometry posed by Amari and Amari-Nagaoka.

Introduction

Having emerged from the study of geometrical properties of manifolds
of probability distributions, information geometry is nowadays applied
in a broad variety of different fields and contexts which include, for
instance, information theory, stochastic processes, dynamical systems
and time series, statistical physics, quantum systems, and the mathe-
matical theory of neural networks (compare [A1], [A2], [AN], and the
further references given there).

It is well known that dual flatness constitutes a a fundamental
mathematical concept of information geometry. However, due to the
fact that the global theory of dually flat manifolds is still far from
being complete, its range of applications still suffers certain limitations
since often only matters of mainly a local nature can be successfully
pursued. Consequently, there is a strong need and desire for a further
understanding of the global characteristics of dually flat manifolds.
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In particular, in [AN], the recent comprehensive treatise of the
subject, in this regard the following basic problems and questions
have been posed (see [AN], p. 180; cf. [A2]):

1. Let (M, g) be a Riemannian manifold. Does there always exist a
dually flat structure on M , i.e., a pair of affine connections ∇ and
∇∗ such that (M, g,∇,∇∗) is dually flat?

2. If the answer to Question 1 is negative, find conditions and invari-
ants which characterize the spaces for which this is possible.

3. Analyze the global structure of dually flat spaces.

The present note sets out to investigate and clarify several aspects
of the general global structure and topology of affinely flat and dually
flat manifolds which are of importance to global information geome-
try. The facts established here provide in particular answers to the
questions and problems from [AN] mentioned above. The remaining
parts of the paper are organized as follows: Section 1 is devoted to
the statements of the principal global and topological results, whose
complete proofs are given in section 3. Their implications, especially
in view of the above-mentioned questions, are discussed in section 2.
We will freely use standard notions and facts from differential geom-
etry and topology which can be found in, e.g., [Sa], [Spi], and [Spa].
Besides being positive dimensional, smooth, and without boundary,
all manifolds in question will be assumed to be connected, since all of
our statements carry over verbatim to connected components.

1. The Global Structure and Topology

of dually flat manifolds

Following Amari (cf. [A1]), a dually flat manifold is defined as a
smooth Riemannian manifold (M, g) equipped with a pair of flat
torsion-free affine connections ∇ and ∇∗ which are dual to each other
in the sense that for all vector fields X, Y, Z on M ,
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X g(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ) .

Our first result shows that there exist in fact general topological
obstructions to the existence of dually flat structures:

1.1 Theorem Let (M, g,∇,∇∗) be a dually flat manifold. If M is
compact, then the fundamental group π1(M) of M must be infinite.

1.2 Corollary Compact Riemannian manifolds with trivial or finite
fundamental group do never admit dually flat structures.

We proceed by analyzing the global structure of dually flat mani-
folds under a completeness condition on one of the connections.

Notice that in many interesting situations and examples where du-
ally flat manifolds (M, g,∇,∇∗) arise in information geometry, (at
least) one of the two given connections on M is in fact complete in
the sense that all of its geodesics are defined on the whole real line.
This holds, for example, in the following important cases (cf. [AN]):

• (M, g) is an exponential family of probability distributions equipped
with the Fisher metric, ∇ = ∇(e) is the exponential connection
which is Fisher dual to the canonical mixture connection ∇∗ =
∇(m) on M . Here the exponential connection ∇(e) is complete
(whereas ∇(m) is not complete).

• (M, g) is the set of positive density operators on a finite dimen-
sional Hilbert space equipped with the Bogoliubov inner product,
∇ = ∇(e) is the exponential connection and ∇∗ = ∇(m) the mix-
ture connection on M . Here again it holds that the exponential
connection ∇(e) is complete (though ∇(m) is not).
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For dually flat manifolds for which one of the given connections is
complete in the above sense, now the following structure result holds:

1.3 Theorem Let (M, g,∇,∇∗) be a dually flat manifold of di-
mension m. If one of the two connections on M , say, ∇, is com-
plete, then there exists a connection-preserving diffeomorphism Φ :
(M,∇) → (Rm/Γ,∇Γ), where Γ ∼= π1(M) is a subgroup of the group
R

m
� GL(m, R) of affine motions of R

m which acts freely and prop-
erly discontinuously on R

m, and where ∇Γ denotes the connection on
R

m/Γ which is induced by the canonical flat affine connection on R
m.

1.4 Corollary Let (M, g,∇,∇∗) be a dually flat manifold of di-
mension m. If one of the two connections on M is complete, then
the universal covering of M is diffeomorphic to Euclidean space R

m

and the fundamental group π1(M) of M is isomorphic to a subgroup
of the group of affine motions of R

m which acts freely and properly
discontinuously on R

m.

1.5 Corollary Let (M, g,∇,∇∗) be a dually flat manifold. If one
of the two connections on M is complete, then the higher homotopy
groups πk(M) of M must vanish for all 2 ≤ k ∈ N.

Notice that for a complete affine connection ∇ on a manifold M it is
in general false that any two points in M could be joined by a geodesic
of ∇. This property, which is of special importance in applications,
does in general not even hold if the manifold M is compact. It is
therefore worth noting that dually flat manifolds actually do enjoy it:

1.6 Theorem Let (M, g,∇,∇∗) be a dually flat manifold of dimen-
sion m. If one of the two connections on M , say, ∇, is complete,
then any two points in M can be joined by a ∇-geodesic.
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2. First Consequences and Applications

Theorem 1.1 and Corollary 1.2 show that for compact manifolds there
are general topological obstructions for the existence of dually flat
structures which are even independent of the metric of the manifold.
In particular, Corollary 1.2 yields a negative answer to Question 1
and a partial answer to Problem 2.

Theorem 1.3 gives a complete topological classification of dually
flat manifolds under the completeness assumption on one of the con-
nections and provides therefore in this case a complete answer to
Problems 2 and 3. Moreover, Corollary 1.4 and 1.5 provide further
and strong topological obstructions the existence of such dually flat
structures by showing that any such manifold must be aspherical and
possess a fundamental group of a very restricted type.

Theorem 1.6 illustrates in view of Problem 3 another special fea-
ture of the global structure of dually flat manifolds and justifies, in
particular, projection constructions along geodesics which are a basic
and widely-used tool of information geometry.

Applications of the above structure results to questions of quantum
information geometry will be given in a sequel to this paper.

3. Proofs

The results of section 1 will follow from more general statements about
manifolds with complete flat connections and parallel torsion. We be-
gin by introducing some notation as well as relevant facts whose details
can be found in [Hi] and the references cited in the introduction.

Let G be a connected Lie group and Aut(G) denote the group of
continuous automorphisms of G. Then G � Aut(G) is a group with
group multiplication (λ, k) · (µ, l) = (λ · k(µ), k ◦ l), and an effective
action of G � Aut(G) on G is given as follows: If (λ, k) ∈ G � Aut(G)
and g ∈ G, then (λ, k) · g = λ · k(g).
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On the Lie group G there exists a canonical complete flat affine con-
nection ∇ which is characterized by the fact that it is the one for which
all left invariant vector fields on G are parallel. Moreover, G�Aut(G)
is isomorphic to the group of affine transformations of ∇, i.e., isomor-
phic to the group of connection-preserving diffeomorphisms G → G.
This can be seen as follows: If φ : G → G is a diffeomorphism, then
φ is connection-preserving if and only if φ∗(g) = g, where g denotes
the Lie algebra of G. Thus the group of connection-preserving diffeo-
morphisms of G contains all left translations and all automorphisms
of G. On the other hand, if φ is a connection-preserving diffeomor-
phism of G, set λ := φ(id), so that λ−1 ◦ φ leaves g invariant. Thus
λ−1 ◦ φ is an automorphism of G and φ = λ · (λ−1 ◦ φ). Therefore
the group of connection-preserving diffeomorphisms of G is isomor-
phic to G � Aut(G). It is also easily seen that the torsion tensor of
the complete flat connection ∇ is invariant under parallel translation,
and if Γ < G � Aut(G) is a subgroup which acts properly discontin-
uously and freely on G, then the quotient space G/Γ is a manifold
with fundamental group isomorphic to Γ and carries an induced flat
and complete connection ∇Γ whose torsion tensor is invariant under
parallel transport as well.

Theorem 1.3 is now a consequence of the following more general
structure statement. It is a slight extension of results of Hicks (cf.
[Hi]) on affinely flat manifolds whose torsion tensor does not neces-
sarily have to vanish but is covariantly constant.

Theorem 3.1 Let (M,∇) be a manifold with a flat connection whose
torsion tensor is invariant under parallel translation. If ∇ is com-
plete, then there exists a connection-preserving diffeomorphism Φ :
(M,∇) → (G/Γ,∇Γ), where G is a connected and simply connected
Lie group, Γ ∼= π1(M) is a subgroup of the affine group G � Aut(G)
acting freely and properly discontinuously on G, and ∇Γ denotes the
connection induced from the canonical connection on G for which all
left invariant vector fields are parallel.
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Proof of Theorem 3.1 Let M satisfy the assumptions of the theo-
rem. Consider the universal covering M̃ of M , and let Γ denote the
group of deck transformations of this covering which acts freely and
properly discontinuously on M̃ . Since the projection M̃ → M = M̃/Γ
is a local diffeomorphism, M̃ carries a complete flat connection whose
torsion tensor is invariant under parallel translation and which in-
duces the given connection on M . Since M̃ is simply connected, by
([Hi], Thm. 5) M̃ is connection-preserving diffeomorphic to a simply
connected Lie group G equipped with its canonical connection.

The Lie group G is determined as follows (compare [Hi]): The
flatness of the connection on M̃ and the invariance of its torsion tensor
under parallel transport imply that the vector fields on M̃ , which are
invariant under the parallel transport defined by this connection, form
a finite-dimensional Lie algebra which in turn uniquely determines a
simply connected and connected Lie group G.

Since each deck transformation is connection-preserving, Γ is iso-
morphic to a subgroup of G � Aut(G) which acts freely and properly
discontinuously on G, so that Theorem 3.1 is proved. �

Proof of Theorem 1.3 If M satisfies the assumptions of Theorem
1.3, the torsion-freeness of ∇ implies (see the formula given in [Hi])
that the structural constants of the Lie algebra which appears in the
proof of Theorem 3.1 are all trivial so that the Lie group in question
here is simply flat Euclidean space R

m. �

Proof of Corollary 1.4 and Corollary 1.5 Corollary 1.4 follows
directly from Theorem 1.3. Corollary 1.5 is a consequence of Corollary
1.4 and the fact that for a topological space whose universal covering
is contractible all higher homotopy groups vanish. �

Proof of Theorem 1.6 Suppose that M has dimension m so that
by Theorem 1.3 there exists a connection-preserving diffeomorphism
Φ : (M,∇) → (Rm/Γ,∇Γ), where ∇Γ denotes the connection on
R

m/Γ which is induced by the canonical flat affine connection on R
m.

7



Given two points p, q ∈ M = R
m/Γ, choose corresponding points

P, Q ∈ R
m which project down to p and q, respectively. Now P and

Q can be joined by a geodesic in R
m whose projection is a ∇ = ∇Γ-

geodesic in M . �

Proof of Theorem 1.1 Let M be a compact manifold with a flat and
torsion-free affine connection ∇. Let M̃ be the universal covering of
M . Using the fact that the holonomy group of the induced connection
on M̃ is trivial since M̃ is simply connected, one easily sees that M̃
admits a flat Riemannian metric g̃ whose geodesics project onto the
∇-geodesics of M . Suppose that the fundamental group of M is finite.
Then M̃ is compact as well, and therefore the metric g̃ is complete.
However, a complete and simply connected flat Riemannian manifold
is isometric to some Euclidean space. This is a contradiction. �

Proof of Corollary 1.2 This is obvious from Theorem 1.1. �
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