Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

Partial regularity for the Landau-Lifshitz equation in small dimensions (revised version: April 2002)

by

Roger Moser

Partial regularity for the Landau-Lifshitz equation in small dimensions

Roger Moser
MPI for Mathematics in the Sciences
Inselstr. 22-26, D-04103 Leipzig, Germany

March 13, 2002

Abstract

We show that in $n \leq 4$ space dimensions, weak solutions of the LandauLifshitz equation of the ferromagnetic spin chain are smooth in an open set with a complement of vanishing n-dimensional Hausdorff measure with respect to the parabolic metric.

1 Introduction

For $n=2,3$, or 4 , let $\Omega \subset \mathbb{R}^{n}$ be an open set and $T>0$. We consider solutions $u=\left(u^{1}, u^{2}, u^{3}\right): \Omega \times(0, T) \rightarrow \mathbb{S}^{2}$ of the Landau-Lifshitz equation

$$
\begin{equation*}
\partial_{t} u=-\alpha u \times(u \times \Delta u)-\beta u \times \Delta u, \tag{1}
\end{equation*}
$$

where $\alpha>0$ and $\beta \in \mathbb{R}$ are given constants. Here $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ is the standard 2 -sphere, and \times denotes the vector product in \mathbb{R}^{3}. By rescaling the time axis, we can normalize the equation so that

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=1 \tag{2}
\end{equation*}
$$

We will henceforth assume that (2) holds. It is then easy to see that for classical solutions, (1) is equivalent to

$$
\begin{equation*}
\partial_{t} u=\alpha \Delta u+\alpha|\nabla u|^{2} u-\beta u \times \Delta u, \tag{3}
\end{equation*}
$$

and also to

$$
\begin{equation*}
\alpha \partial_{t} u+\beta u \times \partial_{t} u=\Delta u+|\nabla u|^{2} u . \tag{4}
\end{equation*}
$$

We are in particular interested in weak solutions of the Landau-Lifshitz equation in the version (4). We define

$$
H^{1}\left(\Omega^{\prime}, \mathbb{S}^{2}\right)=\left\{u \in H^{1}\left(\Omega^{\prime}, \mathbb{R}^{3}\right):|u|=1 \text { almost everywhere }\right\}
$$

for any open subset Ω^{\prime} of \mathbb{R}^{n} or $\mathbb{R}^{n} \times \mathbb{R}$, and call a map $u \in H^{1}\left(\Omega \times(0, T), \mathbb{S}^{2}\right)$ a weak solution of the Landau-Lifshitz equation, if

$$
\left.\int_{0}^{T} \int_{\Omega}\left(\left.\left\langle\alpha \partial_{t} u+\beta u \times \partial_{t} u-\right| \nabla u\right|^{2} u, \phi\right\rangle+\left\langle\partial_{\gamma} u, \partial_{\gamma} \phi\right\rangle\right) d x d t=0
$$

for all $\phi \in C_{0}^{\infty}\left(\Omega \times(0, T), \mathbb{R}^{3}\right)$, where $\partial_{\gamma}=\frac{\partial}{\partial x^{\gamma}}$, and where $\langle\cdot, \cdot\rangle$ denotes the standard scalar product in \mathbb{R}^{3}. Here and throughout the paper we sum over repeated Greek indices from 1 to n. For compact manifolds (instead of Ω) as domains, Guo-Hong [18] proved the existence of global weak solutions to the Cauchy problem for (4).

In the special case $\alpha=1$ (and $\beta=0$), the Landau-Lifshitz equation reads

$$
\begin{equation*}
\partial_{t} u=\Delta u+|\nabla u|^{2} u \tag{5}
\end{equation*}
$$

which is the heat flow for harmonic maps, i. e. the negative L^{2}-gradient flow of the energy functional

$$
E(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x
$$

for $u \in H^{1}\left(\Omega, \mathbb{S}^{2}\right)$. In general, (4) differs from (5) by a rotation of the vector $\partial_{t} u$ by the fixed angle $\arcsin \beta$ in the tangent space of \mathbb{S}^{2} at u. Since $\alpha>0$, the equation retains its parabolicity with this transformation.

For the heat flow for harmonic maps, there is the following partial regularity result, due to Feldman [12] (and proved in a different version independently by Chen-Li-Lin [5]). If a map $u \in H^{1}\left(\Omega \times(0, T), \mathbb{S}^{2}\right)$ satisfies (5) and a certain stability condition, then there exists an open set $\mathcal{R} \subset \Omega \times(0, T)$, such that $u \in C^{\infty}\left(\mathcal{R}, \mathbb{S}^{2}\right)$, and the n-dimensional Hausdorff measure of $(\Omega \times(0, T)) \backslash \mathcal{R}$ with respect to the parabolic metric $d((x, s),(y, t))=\max \{|x-y|, \sqrt{|s-t|}\}$ (subsequently called the n-dimensional parabolic Hausdorff measure) vanishes. Even better results hold for the case $n=2$. Namely, under certain conditions, weak solutions of (5) are smooth except at finitely many points. This follows from a uniqueness result of Freire [13, 14] for the Cauchy problem and the construction of such solutions by Struwe [22]. These results for dimension 2 have been extended to the Landau-Lifshitz equation by Chen-Guo [4], Chen-Ding-Guo [3], and Ding-Guo [8, 9] (with some inaccuracy in the arguments however; see Section 1.4 in [19]).

The question that we study in this note is whether partial regularity can also be obtained for weak solutions of (4) in higher dimensions. The answer is yes if $n \leq 4$. The reason why we have to restrict ourselves to small dimensions is the following. For the equation (5), a main tool for proving regularity is a monotonicity formula which was discovered by Struwe [23], and certain estimates derived from it. For the Landau-Lifshitz equation, no such formula is available. If n is however at most 4 , we can nevertheless derive a monotonicity inequality that serves our purpose. Our main result then is that under a certain stability condition, any weak solution of (4) is smooth in an open set that has a complement of vanishing n-dimensional parabolic Hausdorff measure.

2 The stability condition

Even for solutions of the heat flow for harmonic maps, no partial regularity result holds without any additional conditions. Indeed there is an example, due to Rivière [21], of a weak solution of the elliptic problem (giving rise to a timeindependent weak solution of (4) for any parameters α, β), which is nowhere continuous.

In [12], Feldman proposed a stability condition for weak solutions of (5), which is a parabolic version of the usual stationarity condition for the elliptic case, and which allows to prove a local energy inequality and the monotonicity formula of Struwe [23] for such solutions. We impose a similar condition on weak solutions of (4).

But first, we introduce a convenient abbreviation.
Notation. For $p \in \mathbb{S}^{2}$, let $R_{p}: T_{p} \mathbb{S}^{2} \rightarrow T_{p} \mathbb{S}^{2}$ denote the rotation $R_{p} v=\alpha v+$ $\beta p \times v$.

Definition 2.1 Let $u \in H^{1}\left(\Omega \times(0, T), \mathbb{S}^{2}\right)$ be a weak solution of (4). Consider for $\xi \in C_{0}^{\infty}\left(\Omega \times(0, T), \mathbb{R}^{n}\right)$ and $\tau \in C_{0}^{\infty}(\Omega \times(0, T),[0, \infty))$ the variation

$$
\tilde{u}_{\sigma}(x, t)=u(x+\sigma \xi(x, t), t+\sigma \tau(x, t))
$$

which consists of maps in $H^{1}\left(\Omega \times(0, T), \mathbb{S}^{2}\right)$ for small $|\sigma|$. We say that u satisfies the stability condition, if for all such ξ and τ, the inequality

$$
\int_{0}^{T} \int_{\Omega}\left\langle R_{u} \partial_{t} u,\left.\left(\frac{\partial}{\partial \sigma} \tilde{u}_{\sigma}\right)\right|_{\sigma=0}\right\rangle d x d t+\left.\left(\partial_{\sigma}^{+} \int_{0}^{T} E\left(\tilde{u}_{\sigma}(\cdot, t)\right) d t\right)\right|_{\sigma=0} \leq 0
$$

holds, where ∂_{σ}^{+}denotes the right hand derivative with respect to σ.
Remark. A simple integration by parts shows that smooth solutions of the Landau-Lifshitz equation satisfy the stability condition.

Lemma 2.1 Let $u \in H^{1}\left(\Omega \times(0, T), \mathbb{S}^{2}\right)$ be a weak solution of (4) which satisfies the stability condition. Let $\phi \in C_{0}^{\infty}\left(\Omega, \mathbb{R}^{n}\right)$ and $\tau \in C_{0}^{\infty}(\Omega \times(0, T),[0, \infty))$. Then

$$
\begin{equation*}
\int_{\Omega \times\{t\}}\left(\phi \cdot\left\langle R_{u} \partial_{t} u, \nabla u\right\rangle-\frac{1}{2} \operatorname{div} \phi|\nabla u|^{2}+\partial_{\gamma} \phi^{\delta}\left\langle\partial_{\gamma} u, \partial_{\delta} u\right\rangle\right) d x=0 \tag{6}
\end{equation*}
$$

for almost every $t \in(0, T)$, and

$$
\begin{align*}
\int_{\Omega \times\left\{t_{2}\right\}} \tau|\nabla u|^{2} d x- & \int_{\Omega \times\left\{t_{1}\right\}} \tau|\nabla u|^{2} d x \tag{7}\\
& \leq \int_{t_{1}}^{t_{2}} \int_{\Omega}\left(\partial_{t} \tau|\nabla u|^{2}-\nabla \tau \cdot\left\langle\nabla u, \partial_{t} u\right\rangle-\alpha \tau\left|\partial_{t} u\right|^{2}\right) d x d t
\end{align*}
$$

for almost all t_{1}, t_{2} with $0 \leq t_{1} \leq t_{2} \leq T$.
Proof. Inequality (7) is proved exactly like Proposition 8 in [12]. Like Proposition 7 in [12], we prove the equality

$$
\int_{\Omega \times\left(t_{1}, t_{2}\right)}\left(\xi \cdot\left\langle R_{u} \partial_{t} u, \nabla u\right\rangle-\frac{1}{2} \operatorname{div} \xi|\nabla u|^{2}+\partial_{\gamma} \xi^{\delta}\left\langle\partial_{\gamma} u, \partial_{\delta} u\right\rangle\right) d z=0
$$

for all $\xi \in C_{0}^{\infty}\left(\Omega \times(0, T), \mathbb{R}^{n}\right)$ and almost all t_{1}, t_{2} with $0 \leq t_{1} \leq t_{2} \leq T$. From this, (6) follows immediately.

From (6) we can now deduce a monotonicity inequality.

Lemma 2.2 For $n=3$ or 4 , let $u \in H^{1}\left(\Omega \times(0, T), \mathbb{S}^{2}\right)$ be a weak solution of (4) which satisfies the stability condition. Suppose $B_{s}\left(x_{0}\right) \subset B_{r}\left(x_{0}\right) \subset \Omega$. Set

$$
\Phi(\rho, t)=\rho^{2-n} \int_{B_{\rho}\left(x_{0}\right) \times\{t\}}\left(|\nabla u|^{2}-\frac{2}{n-2}\left\langle\left(x-x_{0}\right) \cdot \nabla u, R_{u} \partial_{t} u\right\rangle\right) d x
$$

for $s \leq \rho \leq r$, and for all $t \in(0, T)$ such that this is well-defined. Then

$$
\begin{align*}
\Phi(r, t) & -\Phi(s, t) \tag{8}\\
& =2 \int_{B_{r}\left(x_{0}\right) \backslash B_{s}\left(x_{0}\right)}\left(\frac{\left|\left(x-x_{0}\right) \cdot \nabla u\right|^{2}}{\left|x-x_{0}\right|^{n}}-\frac{\left\langle\left(x-x_{0}\right) \cdot \nabla u, R_{u} \partial_{t} u\right\rangle}{(n-2)\left|x-x_{0}\right|^{n-2}}\right) d x
\end{align*}
$$

for almost every $t \in(0, T)$. In particular, we have

$$
\begin{align*}
s^{2-n} \int_{B_{s}\left(x_{0}\right) \times\{t\}}|\nabla u|^{2} d x \leq & 4 r^{2-n} \int_{B_{r}\left(x_{0}\right) \times\{t\}}|\nabla u|^{2} d x \tag{9}\\
& +8 r^{4-n} \int_{B_{r}\left(x_{0}\right) \times\{t\}}\left|\partial_{t} u\right|^{2} d x
\end{align*}
$$

for almost every $t \in(0, T)$.
Proof. The estimate (9) follows from (8) by Young's inequality. To prove (8), we use the usual arguments.

The following can be done for almost every fixed $t \in(0, T)$. Set $v(x)=u(x, t)$ and $w(x)=R_{u(x, t)} \partial_{t} u(x, t)$. We assume for simplicity that $x_{0}=0$. Inserting test functions of the form $\phi(x)=\eta_{k}(|x|) x$ into (6) for smooth functions η_{k} : $[0, \infty) \rightarrow[0, \infty)$ which converge to the characteristic function of $[0, \rho)$ (where $s \leq \rho \leq r)$, we prove that

$$
\int_{B_{\rho}(0)}\left((n-2)|\nabla v|^{2}-2\langle x \cdot \nabla v, w\rangle\right) d x=\int_{\partial B_{\rho}(0)}\left(\rho|\nabla v|^{2}-\frac{2}{\rho}|x \cdot \nabla v|^{2}\right) d o .
$$

Hence

$$
\begin{aligned}
\frac{d}{d \rho}\left(\rho ^ { 2 - n } \int _ { B _ { \rho } (0) } \left(|\nabla v|^{2}-\right.\right. & \left.\left.\frac{2}{n-2}\langle x \cdot \nabla v, w\rangle\right) d x\right) \\
& =2 \int_{\partial B_{\rho}(0)}\left(\rho^{-n}|x \cdot \nabla v|^{2}-\frac{\rho^{2-n}}{n-2}\langle x \cdot \nabla v, w\rangle\right) d o
\end{aligned}
$$

Integrating this over the interval (s, r) yields (8), and the proof is complete.

Remarks

(i) Whereas everything else in this paper works regardless of the dimension of the domain, this is where we use the restriction $n \leq 4$.
(ii) The same computations give a monotonicity inequality similar to (9) for any solution $u \in H^{1}\left(\Omega, \mathbb{S}^{2}\right)$ of the equation

$$
\Delta u+|\nabla u|^{2} u=w
$$

with $w \in L^{2}\left(\Omega, \mathbb{R}^{3}\right)$, or the corresponding equation for different target manifolds, provided that a condition similar to (6) is satisfied. This might be of independent interest, in particular in view of certain inequalities in [20].

3 Energy decay

Many of the arguments which follow are well-known and have been used before to prove partial regularity for harmonic maps or for the heat flow for harmonic maps (cf. $[1,5,11,12,20]$). We only have to adapt them to the present situation.

The following inequality was proved in this form by Feldman [12] (cf. also [2, 6]).
Lemma 3.1 Let $f, h \in H^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, such that $\operatorname{div} g \in L^{2}\left(\mathbb{R}^{n}\right)$ in the distribution sense, and

$$
\sup _{x_{0} \in \mathbb{R}^{n}, r>0}\left(r^{2-n} \int_{B_{r}\left(x_{0}\right)}|\nabla h|^{2} d x\right)=A^{2}<\infty
$$

Then

$$
\left|\int_{\mathbb{R}^{n}} f g \cdot \nabla h d x\right| \leq C A\left(\|\nabla f\|_{L^{2}}\|g\|_{L^{2}}+\|f\|_{L^{2}}\|\operatorname{div} g\|_{L^{2}}\right)
$$

for a universal constant C.
Using this, we can estimate the energy of solutions of (4) which satisfy the stability condition as follows.

Lemma 3.2 For any $\delta>0$ there exists a number $\epsilon_{0}>0$, such that for any weak solution $u \in H^{1}\left(P_{r}\left(z_{0}\right), \mathbb{S}^{2}\right)$ of (4) satisfying the stability condition, the inequality

$$
\begin{equation*}
r^{-n} \int_{P_{r}\left(z_{0}\right)}|\nabla u|^{2} d z \leq \epsilon^{2} \leq \epsilon_{0}^{2} \tag{10}
\end{equation*}
$$

implies

$$
r^{-n} \int_{P_{r / 8}\left(z_{0}\right)}|\nabla u|^{2} d z \leq \delta \epsilon^{2}+C_{1} r^{-n-2} \int_{P_{r}\left(z_{0}\right)}\left|u-(u)_{P_{r}\left(z_{0}\right)}\right|^{2} d z
$$

for a constant $C_{1}=C_{1}(\alpha, \delta)$, where

$$
(u)_{P_{r}\left(z_{0}\right)}=\frac{1}{\left|P_{r}\left(z_{0}\right)\right|} \int_{P_{r}\left(z_{0}\right)} u d z
$$

Proof. Note first that all the quantities appearing in the lemma are invariant under the transformation $(x, t) \mapsto\left(r x+x_{0}, r^{2} t+t_{0}\right)$. We may thus assume that $P_{r}\left(z_{0}\right)=P_{1}(0)$.

Given a number $\lambda \in(0,1)$, we infer from (7) that there exists a set $\Lambda \subset$ $\left(-\frac{1}{2}, \frac{1}{2}\right)$ of measure $|\Lambda| \leq \lambda$, such that

$$
\int_{B_{1 / 2}(0) \times\{t\}}\left|\partial_{t} u\right|^{2} d x \leq \frac{C \epsilon^{2}}{\lambda}
$$

for all $t \in\left(-\frac{1}{2}, \frac{1}{2}\right) \backslash \Lambda$. Here and in the sequel, we denote by C indiscriminately any constant which depends only on the parameter α. Moreover, for almost every $t \in\left(-\frac{1}{2}, \frac{1}{2}\right)$, we have

$$
\int_{B_{1 / 2}(0) \times\{t\}}|\nabla u|^{2} d x \leq C \epsilon^{2}
$$

by the same inequality, and for almost all $t \notin \Lambda$, we even obtain the estimate

$$
\sup _{B_{r}\left(x_{0}\right) \subset B_{1 / 4}(0)}\left(r^{2-n} \int_{B_{r}\left(x_{0}\right) \times\{t\}}|\nabla u|^{2} d x\right) \leq \frac{C \epsilon^{2}}{\lambda}
$$

from (9). Pick a t with these properties.
Choose $\zeta \in C_{0}^{\infty}\left(B_{1 / 4}(0)\right)$ with $0 \leq \zeta \leq 1, \zeta \equiv 1$ in $B_{1 / 8}(0)$, and $|\nabla \zeta| \leq 16$.
Note that

$$
\begin{align*}
\int_{B_{1}(0) \times\{t\}} \zeta|\nabla u|^{2} d x= & -\int_{B_{1}(0) \times\{t\}} \zeta\left\langle u-(u)_{P_{1}(0)}, R_{u} \partial_{t} u\right\rangle d x \\
& \left.+\left.\int_{B_{1}(0) \times\{t\}} \zeta\left\langle u-(u)_{P_{1}(0)},\right| \nabla u\right|^{2} u\right\rangle d x \tag{11}\\
& -\int_{B_{1}(0) \times\{t\}} \nabla \zeta \cdot\left\langle u-(u)_{P_{1}(0)}, \nabla u\right\rangle d x .
\end{align*}
$$

Since u takes values in \mathbb{S}^{2} almost everywhere, we have

$$
|\nabla u|^{2} u^{i}=\sum_{j=1}^{3} \nabla u^{j} \cdot\left(u^{i} \nabla u^{j}-u^{j} \nabla u^{i}\right)
$$

Furthermore,

$$
\operatorname{div}\left(u^{i} \nabla u^{j}-u^{j} \nabla u^{i}\right)=u^{i} w^{j}-u^{j} w^{i},
$$

where $w=R_{u} \partial_{t} u$, and hence

$$
\begin{aligned}
\left\|\operatorname{div}\left(\zeta\left(u^{i} \nabla u^{j}-u^{j} \nabla u^{i}\right)\right)\right\|_{L^{2}} & \leq 32\|\nabla u(\cdot, t)\|_{L^{2}\left(B_{1 / 4}(0)\right)}+2\left\|\partial_{t} u(\cdot, t)\right\|_{L^{2}\left(B_{1 / 4}(0)\right)} \\
& \leq \frac{C \epsilon}{\sqrt{\lambda}}
\end{aligned}
$$

Extending the functions $u-(u)_{P_{1}(0)}$ and ∇u appropriately to \mathbb{R}^{n} and applying Lemma 3.1, we find that

$$
\left.\left.\int_{B_{1}(0) \times\{t\}} \zeta\left\langle u-(u)_{P_{1}(0)},\right| \nabla u\right|^{2} u\right\rangle d x \leq \frac{C \epsilon^{3}}{\lambda}+C \epsilon^{2} \int_{B_{1}(0) \times\{t\}}\left|u-(u)_{P_{1}(0)}\right| d x .
$$

Using Hölder's and Young's inequality to estimate the other terms on the right hand side of (11) and the second term on the right hand side above, we obtain

$$
\int_{B_{1 / 8}(0) \times\{t\}}|\nabla u|^{2} d x \leq\left(\frac{C \epsilon}{\lambda}+\frac{\delta}{2}\right) \epsilon^{2}+\frac{C}{\delta \lambda} \int_{B_{1}(0) \times\{t\}}\left|u-(u)_{P_{1}(0)}\right|^{2} d x
$$

Hence

$$
\int_{P_{1 / 8}(0)}|\nabla u|^{2} d x \leq\left(\frac{C \epsilon}{\lambda}+C \lambda+\frac{\delta}{2}\right) \epsilon^{2}+\frac{C}{\delta \lambda} \int_{P_{1}(0)}\left|u-(u)_{P_{1}(0)}\right|^{2} d x
$$

With the right choice of λ and ϵ_{0}, this implies the claim.
Lemma 3.3 There exists a constant $c>0$, such that for any $\theta \in\left(0, \frac{1}{2}\right]$, there is a number $\epsilon_{0}>0$ with the following property. For any weak solution $u \in$ $H^{1}\left(P_{r}\left(z_{0}\right), \mathbb{S}^{2}\right)$ of (4), satisfying (7) and the small energy condition (10), we have

$$
(\theta r)^{-n-2} \int_{P_{\theta r}\left(z_{0}\right)}\left|u-(u)_{P_{\theta r}\left(z_{0}\right)}\right|^{2} d z \leq c \theta^{2} \epsilon^{2}
$$

Proof. We may assume again that $P_{r}\left(z_{0}\right)=P_{1}(0)$. Suppose the claim were false. Then for any fixed $c>0$ we could find a number $\theta \in\left(0, \frac{1}{2}\right]$ and weak solutions $u_{k} \in H^{1}\left(P_{1}(0), \mathbb{S}^{2}\right)$ of (4), satisfying (7), such that

$$
\begin{equation*}
\int_{P_{1}(0)}\left|\nabla u_{k}\right|^{2} d z=: \epsilon_{k}^{2} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{12}
\end{equation*}
$$

but

$$
\begin{equation*}
\int_{P_{\theta}(0)}\left|u_{k}-\left(u_{k}\right)_{P_{\theta}(0)}\right|^{2} d z>c \theta^{n+4} \epsilon_{k}^{2} \tag{13}
\end{equation*}
$$

Set $v_{k}=\frac{1}{\epsilon_{k}}\left(u_{k}-\left(u_{k}\right)_{P_{\theta}(0)}\right)$. This sequence is bounded in $H^{1}\left(P_{1 / 2}(0), \mathbb{R}^{3}\right)$ by (12) and (7), thus we may assume that it converges weakly in $H^{1}\left(P_{1 / 2}(0), \mathbb{R}^{3}\right)$ and strongly in $L^{2}\left(P_{1 / 2}(0), \mathbb{R}^{3}\right)$ to a map $v \in H^{1}\left(P_{1 / 2}(0), \mathbb{R}^{3}\right)$. Obviously,

$$
\int_{P_{\theta}(0)} v d z=0 \quad \text { and } \quad \int_{P_{1 / 2}(0)}|\nabla v|^{2} d z \leq 1
$$

Moreover we may assume that u_{k} converges strongly in $L^{2}\left(P_{1 / 2}(0), \mathbb{R}^{3}\right)$ to some constant $p \in \mathbb{S}^{2}$ as $k \rightarrow \infty$. Then for any $\phi \in C_{0}^{\infty}\left(P_{1 / 2}(0), \mathbb{R}^{3}\right)$, we have

$$
\begin{aligned}
\int_{P_{1 / 2}(0)}\left(\left\langle\alpha \partial_{t} v\right.\right. & \left.\left.+\beta p \times \partial_{t} v, \phi\right\rangle+\left\langle\partial_{\gamma} v, \partial_{\gamma} \phi\right\rangle\right) d z \\
& =\lim _{k \rightarrow \infty} \frac{1}{\epsilon_{k}} \int_{P_{1 / 2}(0)}\left(\left\langle\alpha \partial_{t} u_{k}+\beta u_{k} \times \partial_{t} u_{k}, \phi\right\rangle+\left\langle\partial_{\gamma} u_{k}, \partial_{\gamma} \phi\right\rangle\right) d z \\
& =\lim _{k \rightarrow \infty} \frac{1}{\epsilon_{k}} \int_{P_{1 / 2}(0)}\left|\nabla u_{k}\right|^{2}\left\langle u_{k}, \phi\right\rangle d z=0 .
\end{aligned}
$$

Thus v satisfies

$$
\alpha \partial_{t} v+\beta p \times \partial_{t} v-\Delta v=0
$$

or, equivalently,

$$
\partial_{t} v+\alpha p \times(p \times \Delta v)+\beta p \times \Delta v-\frac{1}{\alpha}\langle p, \Delta v\rangle p=0 .
$$

This is a linear parabolic system, and standard estimates yield

$$
\int_{P_{\theta}(0)}|v|^{2} d z \leq C \theta^{n+4}
$$

Choosing $c>C$, we obtain a contradiction to (13) by the strong L^{2}-convergence of v_{k} to v.

Combining Lemma 2.1, Lemma 3.2, and Lemma 3.3, we obtain immediately the following energy decay estimate.

Proposition 3.1 There exists a constant $c>0$, such that for every $\theta \in(0,1]$ there is a number $\epsilon_{0}>0$ with the following property. If $u \in H^{1}\left(P_{r}\left(z_{0}\right), \mathbb{S}^{2}\right)$ is a solution of (4) which satisfies the stability condition, then (10) implies

$$
(\theta r)^{-n} \int_{P_{\theta r}\left(z_{0}\right)}|\nabla u|^{2} d z \leq c \theta^{2} \epsilon^{2}
$$

4 Partial Regularity

Finally, we are able to prove the main results.
Proposition 4.1 There exist constants $\epsilon_{0}>0$ and $c_{k l}<\infty(k, l=0,1,2, \ldots)$, such that any weak solution $u \in H^{1}\left(P_{r}\left(z_{0}\right), \mathbb{S}^{2}\right)$ of (4), which satisfies the stability condition and (10), is smooth in $P_{r / 2}\left(z_{0}\right)$ with

$$
\begin{equation*}
\left\|\partial_{t}^{l} \nabla^{k} u\right\|_{L^{\infty}\left(P_{r / 2}\left(z_{0}\right)\right.} \leq c_{k l} r^{-k-2 l} \epsilon, \quad k, l=0,1,2, \ldots \tag{14}
\end{equation*}
$$

Proof. Proposition 3.1 implies that for any $\lambda \in(0,1)$, if $\epsilon_{0}>0$ is sufficiently small, we have under the conditions above

$$
\int_{P_{s}\left(z_{1}\right)}\left(|\nabla u|^{2}+s^{2}\left|\partial_{t} u\right|^{2}\right) d z \leq C_{1} s^{n+2 \lambda}
$$

for any $z_{1} \in P_{3 r / 4}\left(z_{0}\right)$ and $s \in\left(0, \frac{r}{4}\right)$, where C_{1} is a constant depending only on λ and α. By Lemma 4.1 in [5], u is λ-Hölder continuous in $P_{3 r / 4}\left(z_{0}\right)$ with respect to the parabolic metric. In particular it is the solution of a parabolic systems with Hölder continuous leading coefficients. Lipschitz continuity for u can now be proved like in [12] (Lemma 21), using the fundamental solutions for general parabolic systems, as constructed e. g. in Chapter 9 of [15], instead of the fundamental solution for the heat equation. A bootstrapping argument eventually gives higher regularity. The bounds in (14) follow from a scaling argument. We omit the details.

Theorem 4.1 Let $u \in H^{1}\left(\Omega \times(0, T), \mathbb{S}^{2}\right)$ be a weak solution of (4), satisfying the stability condition. There exists an open set $\mathcal{R} \subset \Omega \times(0, T)$ with a complement of vanishing n-dimensional parabolic Hausdorff measure, such that $u \in C^{\infty}\left(\mathcal{R}, \mathbb{S}^{2}\right)$.

Proof. Consider the relatively closed set \mathcal{S} of all points $z_{0} \in \Omega \times(0, T)$ such that

$$
\liminf _{r \backslash 0}\left(r^{-n} \int_{P_{r}\left(z_{0}\right)}|\nabla u|^{2} d z\right) \geq \epsilon_{0}^{2}
$$

where $\epsilon_{0}>0$ is the constant from Proposition 4.1. Then the n-dimensional parabolic Hausdorff measure of \mathcal{S} vanishes. This is proved by a standard covering argument (cf. Lemma 11 in [16]).

If $z_{0} \in \mathcal{R}=(\Omega \times(0, T)) \backslash \mathcal{S}$, then we can find a radius $r>0$, such that the conditions of Proposition 4.1 are satisfied. Regularity in \mathcal{R} thus follows immediately.

Acknowledgement. This work was supported by a fellowship of the Swiss National Science Foundation.

References

[1] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443.
[2] S. Chanillo, Sobolev inequalities involving divergence free maps, Comm. Partial Differential Equations 16 (1991), 1969-1994.
[3] Y. Chen, S. Ding, and B. Guo, Partial regularity for two-dimensional Landau-Lifshitz equations, Acta Math. Sinica (N.S.) 14 (1998), 423-432.
[4] Y. Chen and B. Guo, Two-dimensional Landau-Lifshitz equation, J. Partial Differential Equations 9 (1996), 313-322.
[5] Y. Chen, J. Li, and F.-H. Lin, Partial regularity for weak heat flows into spheres, Comm. Pure Appl. Math. 48 (1995), 429-448.
[6] R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286.
[7] A. DeSimone, R. V. Kohn, S. Müller, and F. Otto, Magnetic microstructures - a paradigm of multiscale problems, ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford, 2000, pp. 175-190.
[8] S. Ding and B. Guo, Initial-boundary value problem for the Landau-Lifshitz system. I. Existence and partial regularity, Progr. Natur. Sci. (English Ed.) 8 (1998), 11-23.
[9] , Initial-boundary value problem for the Landau-Lifshitz system. II. Uniqueness, Progr. Natur. Sci. (English Ed.) 8 (1998), 147-151.
[10] W. E and C. J. García-Cervera, Effective dynamics for ferromagnetic thin films, J. Appl. Phys. 171 (2001), 370-374.
[11] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), 101-113.
[12] M. Feldman, Partial regularity for harmonic maps of evolution into spheres, Comm. Partial Differential Equations 19 (1994), 761-790.
[13] A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets, Comment. Math. Helv. 70 (1995), 310-338, correction in Comment. Math. Helv. 71 (1996), 330-337.
[14] \qquad , Uniqueness for the harmonic map flow in two dimensions, Calc. Var. Partial Differential Equations 3 (1995), 95-105.
[15] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, 1964.
[16] M. Giaquinta and E. Giusti, Partial regularity for the solutions to nonlinear parabolic systems, Ann. Mat. Pura Appl. (4) 97 (1973), 253-266.
[17] G. Gioia and R. D. James, Micromagnetics of very thin films, Proc. R. Soc. Lond. A 453 (1997), 213-223.
[18] B. Guo and M. C. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. Partial Differential Equations 1 (1993), 311-334.
[19] P. Harpes, Ginzburg-Landau type approximatins for the Landau-Lifshitz flow and the harmonic map flow in two space dimensions, Ph.D. thesis, ETH Zürich, 2001.
[20] R. Moser, Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps, to appear in Math. Z.
[21] T. Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995), 197-226.
[22] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558-581.
[23] \qquad , On the evolution of harmonic maps in higher dimensions, J. Differential Geom. 28 (1988), 485-502.

