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Abstract

We show that in n ≤ 4 space dimensions, weak solutions of the Landau-
Lifshitz equation of the ferromagnetic spin chain are smooth in an open
set with a complement of vanishing n-dimensional Hausdorff measure with
respect to the parabolic metric.

1 Introduction

For n = 2, 3, or 4, let Ω ⊂ R
n be an open set and T > 0. We consider solutions

u = (u1, u2, u3) : Ω × (0, T ) → S
2 of the Landau-Lifshitz equation

∂tu = −αu × (u × ∆u) − β u × ∆u, (1)

where α > 0 and β ∈ R are given constants. Here S
2 ⊂ R

3 is the standard
2-sphere, and × denotes the vector product in R

3. By rescaling the time axis,
we can normalize the equation so that

α2 + β2 = 1. (2)

We will henceforth assume that (2) holds. It is then easy to see that for classical
solutions, (1) is equivalent to

∂tu = α ∆u + α |∇u|2u − β u × ∆u, (3)

and also to
α ∂tu + β u × ∂tu = ∆u + |∇u|2u. (4)

We are in particular interested in weak solutions of the Landau-Lifshitz
equation in the version (4). We define

H1(Ω′, S2) =
{
u ∈ H1(Ω′, R3) : |u| = 1 almost everywhere

}
for any open subset Ω′ of R

n or R
n × R, and call a map u ∈ H1(Ω × (0, T ), S2)

a weak solution of the Landau-Lifshitz equation, if∫ T

0

∫
Ω

(
〈
α ∂tu + β u × ∂tu − |∇u|2u, φ

〉
+ 〈∂γu, ∂γφ〉) dx dt = 0

1



for all φ ∈ C∞
0 (Ω × (0, T ), R3), where ∂γ = ∂

∂xγ , and where 〈·, ·〉 denotes the
standard scalar product in R

3. Here and throughout the paper we sum over
repeated Greek indices from 1 to n. For compact manifolds (instead of Ω) as
domains, Guo–Hong [18] proved the existence of global weak solutions to the
Cauchy problem for (4).

In the special case α = 1 (and β = 0), the Landau-Lifshitz equation reads

∂tu = ∆u + |∇u|2u, (5)

which is the heat flow for harmonic maps, i. e. the negative L2-gradient flow of
the energy functional

E(u) =
1
2

∫
Ω

|∇u|2 dx

for u ∈ H1(Ω, S2). In general, (4) differs from (5) by a rotation of the vector
∂tu by the fixed angle arcsinβ in the tangent space of S

2 at u. Since α > 0, the
equation retains its parabolicity with this transformation.

For the heat flow for harmonic maps, there is the following partial regularity
result, due to Feldman [12] (and proved in a different version independently by
Chen–Li–Lin [5]). If a map u ∈ H1(Ω × (0, T ), S2) satisfies (5) and a certain
stability condition, then there exists an open set R ⊂ Ω × (0, T ), such that
u ∈ C∞(R, S2), and the n-dimensional Hausdorff measure of (Ω × (0, T ))\R
with respect to the parabolic metric d((x, s), (y, t)) = max{|x − y|,√|s − t|}
(subsequently called the n-dimensional parabolic Hausdorff measure) vanishes.
Even better results hold for the case n = 2. Namely, under certain conditions,
weak solutions of (5) are smooth except at finitely many points. This follows
from a uniqueness result of Freire [13, 14] for the Cauchy problem and the
construction of such solutions by Struwe [22]. These results for dimension 2
have been extended to the Landau-Lifshitz equation by Chen–Guo [4], Chen–
Ding–Guo [3], and Ding–Guo [8, 9] (with some inaccuracy in the arguments
however; see Section 1.4 in [19]).

The question that we study in this note is whether partial regularity can
also be obtained for weak solutions of (4) in higher dimensions. The answer is
yes if n ≤ 4. The reason why we have to restrict ourselves to small dimensions
is the following. For the equation (5), a main tool for proving regularity is a
monotonicity formula which was discovered by Struwe [23], and certain esti-
mates derived from it. For the Landau-Lifshitz equation, no such formula is
available. If n is however at most 4, we can nevertheless derive a monotonicity
inequality that serves our purpose. Our main result then is that under a certain
stability condition, any weak solution of (4) is smooth in an open set that has
a complement of vanishing n-dimensional parabolic Hausdorff measure.

2 The stability condition

Even for solutions of the heat flow for harmonic maps, no partial regularity
result holds without any additional conditions. Indeed there is an example, due
to Rivière [21], of a weak solution of the elliptic problem (giving rise to a time-
independent weak solution of (4) for any parameters α, β), which is nowhere
continuous.
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In [12], Feldman proposed a stability condition for weak solutions of (5),
which is a parabolic version of the usual stationarity condition for the elliptic
case, and which allows to prove a local energy inequality and the monotonicity
formula of Struwe [23] for such solutions. We impose a similar condition on
weak solutions of (4).

But first, we introduce a convenient abbreviation.

Notation. For p ∈ S
2, let Rp : TpS

2 → TpS
2 denote the rotation Rpv = α v +

β p × v.

Definition 2.1 Let u ∈ H1(Ω× (0, T ), S2) be a weak solution of (4). Consider
for ξ ∈ C∞

0 (Ω × (0, T ), Rn) and τ ∈ C∞
0 (Ω × (0, T ), [0,∞)) the variation

ũσ(x, t) = u(x + σξ(x, t), t + στ(x, t)),

which consists of maps in H1(Ω×(0, T ), S2) for small |σ|. We say that u satisfies
the stability condition, if for all such ξ and τ , the inequality

∫ T

0

∫
Ω

〈
Ru∂tu, ( ∂

∂σ ũσ)|σ=0

〉
dx dt +

(
∂+

σ

∫ T

0

E(ũσ(·, t)) dt

)∣∣∣∣∣
σ=0

≤ 0

holds, where ∂+
σ denotes the right hand derivative with respect to σ.

Remark. A simple integration by parts shows that smooth solutions of the
Landau-Lifshitz equation satisfy the stability condition.

Lemma 2.1 Let u ∈ H1(Ω×(0, T ), S2) be a weak solution of (4) which satisfies
the stability condition. Let φ ∈ C∞

0 (Ω, Rn) and τ ∈ C∞
0 (Ω × (0, T ), [0,∞)).

Then ∫
Ω×{t}

(
φ · 〈Ru∂tu,∇u〉 − 1

2
div φ |∇u|2 + ∂γφδ 〈∂γu, ∂δu〉

)
dx = 0 (6)

for almost every t ∈ (0, T ), and∫
Ω×{t2}

τ |∇u|2 dx −
∫

Ω×{t1}
τ |∇u|2 dx (7)

≤
∫ t2

t1

∫
Ω

(∂tτ |∇u|2 −∇τ · 〈∇u, ∂tu〉 − α τ |∂tu|2) dx dt

for almost all t1, t2 with 0 ≤ t1 ≤ t2 ≤ T .

Proof. Inequality (7) is proved exactly like Proposition 8 in [12]. Like Proposi-
tion 7 in [12], we prove the equality∫

Ω×(t1,t2)

(
ξ · 〈Ru∂tu,∇u〉 − 1

2
div ξ |∇u|2 + ∂γξδ 〈∂γu, ∂δu〉

)
dz = 0

for all ξ ∈ C∞
0 (Ω × (0, T ), Rn) and almost all t1, t2 with 0 ≤ t1 ≤ t2 ≤ T . From

this, (6) follows immediately. �

From (6) we can now deduce a monotonicity inequality.
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Lemma 2.2 For n = 3 or 4, let u ∈ H1(Ω × (0, T ), S2) be a weak solution of
(4) which satisfies the stability condition. Suppose Bs(x0) ⊂ Br(x0) ⊂ Ω. Set

Φ(ρ, t) = ρ2−n

∫
Bρ(x0)×{t}

(
|∇u|2 − 2

n − 2
〈(x − x0) · ∇u, Ru∂tu〉

)
dx

for s ≤ ρ ≤ r, and for all t ∈ (0, T ) such that this is well-defined. Then

Φ(r, t) − Φ(s, t) (8)

= 2
∫

Br(x0)\Bs(x0)

( |(x − x0) · ∇u|2
|x − x0|n − 〈(x − x0) · ∇u, Ru∂tu〉

(n − 2)|x − x0|n−2

)
dx.

for almost every t ∈ (0, T ). In particular, we have

s2−n

∫
Bs(x0)×{t}

|∇u|2 dx ≤ 4r2−n

∫
Br(x0)×{t}

|∇u|2 dx (9)

+ 8r4−n

∫
Br(x0)×{t}

|∂tu|2 dx

for almost every t ∈ (0, T ).

Proof. The estimate (9) follows from (8) by Young’s inequality. To prove (8),
we use the usual arguments.

The following can be done for almost every fixed t ∈ (0, T ). Set v(x) = u(x, t)
and w(x) = Ru(x,t)∂tu(x, t). We assume for simplicity that x0 = 0. Inserting
test functions of the form φ(x) = ηk(|x|)x into (6) for smooth functions ηk :
[0,∞) → [0,∞) which converge to the characteristic function of [0, ρ) (where
s ≤ ρ ≤ r), we prove that∫

Bρ(0)

((n − 2)|∇v|2 − 2 〈x · ∇v, w〉) dx =
∫

∂Bρ(0)

(
ρ|∇v|2 − 2

ρ
|x · ∇v|2

)
do.

Hence

d

dρ

(
ρ2−n

∫
Bρ(0)

(
|∇v|2 − 2

n − 2
〈x · ∇v, w〉

)
dx

)

= 2
∫

∂Bρ(0)

(
ρ−n|x · ∇v|2 − ρ2−n

n − 2
〈x · ∇v, w〉

)
do.

Integrating this over the interval (s, r) yields (8), and the proof is complete. �

Remarks.

(i) Whereas everything else in this paper works regardless of the dimension
of the domain, this is where we use the restriction n ≤ 4.

(ii) The same computations give a monotonicity inequality similar to (9) for
any solution u ∈ H1(Ω, S2) of the equation

∆u + |∇u|2u = w

with w ∈ L2(Ω, R3), or the corresponding equation for different target
manifolds, provided that a condition similar to (6) is satisfied. This might
be of independent interest, in particular in view of certain inequalities in
[20].
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3 Energy decay

Many of the arguments which follow are well-known and have been used before
to prove partial regularity for harmonic maps or for the heat flow for harmonic
maps (cf. [1, 5, 11, 12, 20]). We only have to adapt them to the present situation.

The following inequality was proved in this form by Feldman [12] (cf. also [2, 6]).

Lemma 3.1 Let f, h ∈ H1(Rn) and g ∈ L2(Rn, Rn), such that div g ∈ L2(Rn)
in the distribution sense, and

sup
x0∈Rn,r>0

(
r2−n

∫
Br(x0)

|∇h|2 dx

)
= A2 < ∞.

Then ∣∣∣∣
∫

Rn

f g · ∇h dx

∣∣∣∣ ≤ CA(‖∇f‖L2‖g‖L2 + ‖f‖L2‖ div g‖L2)

for a universal constant C.

Using this, we can estimate the energy of solutions of (4) which satisfy the
stability condition as follows.

Lemma 3.2 For any δ > 0 there exists a number ε0 > 0, such that for any
weak solution u ∈ H1(Pr(z0), S2) of (4) satisfying the stability condition, the
inequality

r−n

∫
Pr(z0)

|∇u|2 dz ≤ ε2 ≤ ε20 (10)

implies

r−n

∫
Pr/8(z0)

|∇u|2 dz ≤ δε2 + C1r
−n−2

∫
Pr(z0)

|u − (u)Pr(z0)|2 dz

for a constant C1 = C1(α, δ), where

(u)Pr(z0) =
1

|Pr(z0)|
∫

Pr(z0)

u dz.

Proof. Note first that all the quantities appearing in the lemma are invariant
under the transformation (x, t) 
→ (rx+x0, r

2t+ t0). We may thus assume that
Pr(z0) = P1(0).

Given a number λ ∈ (0, 1), we infer from (7) that there exists a set Λ ⊂
(− 1

2 , 1
2 ) of measure |Λ| ≤ λ, such that∫

B1/2(0)×{t}
|∂tu|2 dx ≤ Cε2

λ

for all t ∈ (− 1
2 , 1

2 )\Λ. Here and in the sequel, we denote by C indiscriminately
any constant which depends only on the parameter α. Moreover, for almost
every t ∈ (− 1

2 , 1
2 ), we have∫

B1/2(0)×{t}
|∇u|2 dx ≤ Cε2
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by the same inequality, and for almost all t �∈ Λ, we even obtain the estimate

sup
Br(x0)⊂B1/4(0)

(
r2−n

∫
Br(x0)×{t}

|∇u|2 dx

)
≤ Cε2

λ

from (9). Pick a t with these properties.
Choose ζ ∈ C∞

0 (B1/4(0)) with 0 ≤ ζ ≤ 1, ζ ≡ 1 in B1/8(0), and |∇ζ| ≤ 16.
Note that∫

B1(0)×{t}
ζ|∇u|2 dx = −

∫
B1(0)×{t}

ζ
〈
u − (u)P1(0), Ru∂tu

〉
dx

+
∫

B1(0)×{t}
ζ
〈
u − (u)P1(0), |∇u|2u〉 dx (11)

−
∫

B1(0)×{t}
∇ζ · 〈u − (u)P1(0),∇u

〉
dx.

Since u takes values in S
2 almost everywhere, we have

|∇u|2ui =
3∑

j=1

∇uj · (ui∇uj − uj∇ui).

Furthermore,
div(ui∇uj − uj∇ui) = uiwj − ujwi,

where w = Ru∂tu, and hence

‖ div(ζ(ui∇uj − uj∇ui))‖L2 ≤ 32‖∇u(·, t)‖L2(B1/4(0)) + 2‖∂tu(·, t)‖L2(B1/4(0))

≤ Cε√
λ

.

Extending the functions u− (u)P1(0) and ∇u appropriately to R
n and applying

Lemma 3.1, we find that∫
B1(0)×{t}

ζ
〈
u − (u)P1(0), |∇u|2u〉 dx ≤ Cε3

λ
+ Cε2

∫
B1(0)×{t}

|u − (u)P1(0)| dx.

Using Hölder’s and Young’s inequality to estimate the other terms on the right
hand side of (11) and the second term on the right hand side above, we obtain∫

B1/8(0)×{t}
|∇u|2 dx ≤

(
Cε

λ
+

δ

2

)
ε2 +

C

δλ

∫
B1(0)×{t}

|u − (u)P1(0)|2 dx.

Hence∫
P1/8(0)

|∇u|2 dx ≤
(

Cε

λ
+ Cλ +

δ

2

)
ε2 +

C

δλ

∫
P1(0)

|u − (u)P1(0)|2 dx.

With the right choice of λ and ε0, this implies the claim. �

Lemma 3.3 There exists a constant c > 0, such that for any θ ∈ (0, 1
2 ], there

is a number ε0 > 0 with the following property. For any weak solution u ∈
H1(Pr(z0), S2) of (4), satisfying (7) and the small energy condition (10), we
have

(θr)−n−2

∫
Pθr(z0)

|u − (u)Pθr(z0)|2 dz ≤ cθ2ε2.

6



Proof. We may assume again that Pr(z0) = P1(0). Suppose the claim were
false. Then for any fixed c > 0 we could find a number θ ∈ (0, 1

2 ] and weak
solutions uk ∈ H1(P1(0), S2) of (4), satisfying (7), such that∫

P1(0)

|∇uk|2 dz =: ε2k → 0 as k → ∞, (12)

but ∫
Pθ(0)

|uk − (uk)Pθ(0)|2 dz > cθn+4ε2k. (13)

Set vk = 1
εk

(uk − (uk)Pθ(0)). This sequence is bounded in H1(P1/2(0), R3) by
(12) and (7), thus we may assume that it converges weakly in H1(P1/2(0), R3)
and strongly in L2(P1/2(0), R3) to a map v ∈ H1(P1/2(0), R3). Obviously,∫

Pθ(0)

v dz = 0 and
∫

P1/2(0)

|∇v|2 dz ≤ 1.

Moreover we may assume that uk converges strongly in L2(P1/2(0), R3) to some
constant p ∈ S

2 as k → ∞. Then for any φ ∈ C∞
0 (P1/2(0), R3), we have∫

P1/2(0)

(〈α ∂tv + β p × ∂tv, φ〉 + 〈∂γv, ∂γφ〉) dz

= lim
k→∞

1
εk

∫
P1/2(0)

(〈α ∂tuk + β uk × ∂tuk, φ〉 + 〈∂γuk, ∂γφ〉) dz

= lim
k→∞

1
εk

∫
P1/2(0)

|∇uk|2 〈uk, φ〉 dz = 0.

Thus v satisfies
α ∂tv + β p × ∂tv − ∆v = 0,

or, equivalently,

∂tv + α p × (p × ∆v) + β p × ∆v − 1
α
〈p, ∆v〉 p = 0.

This is a linear parabolic system, and standard estimates yield∫
Pθ(0)

|v|2 dz ≤ Cθn+4.

Choosing c > C, we obtain a contradiction to (13) by the strong L2-convergence
of vk to v. �

Combining Lemma 2.1, Lemma 3.2, and Lemma 3.3, we obtain immediately the
following energy decay estimate.

Proposition 3.1 There exists a constant c > 0, such that for every θ ∈ (0, 1]
there is a number ε0 > 0 with the following property. If u ∈ H1(Pr(z0), S2) is a
solution of (4) which satisfies the stability condition, then (10) implies

(θr)−n

∫
Pθr(z0)

|∇u|2 dz ≤ cθ2ε2.
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4 Partial Regularity

Finally, we are able to prove the main results.

Proposition 4.1 There exist constants ε0 > 0 and ckl < ∞ (k, l = 0, 1, 2, . . .),
such that any weak solution u ∈ H1(Pr(z0), S2) of (4), which satisfies the sta-
bility condition and (10), is smooth in Pr/2(z0) with

‖∂l
t∇ku‖L∞(Pr/2(z0) ≤ cklr

−k−2lε, k, l = 0, 1, 2, . . . (14)

Proof. Proposition 3.1 implies that for any λ ∈ (0, 1), if ε0 > 0 is sufficiently
small, we have under the conditions above∫

Ps(z1)

(|∇u|2 + s2|∂tu|2) dz ≤ C1s
n+2λ

for any z1 ∈ P3r/4(z0) and s ∈ (0, r
4 ), where C1 is a constant depending only

on λ and α. By Lemma 4.1 in [5], u is λ-Hölder continuous in P3r/4(z0) with
respect to the parabolic metric. In particular it is the solution of a parabolic
systems with Hölder continuous leading coefficients. Lipschitz continuity for u
can now be proved like in [12] (Lemma 21), using the fundamental solutions
for general parabolic systems, as constructed e. g. in Chapter 9 of [15], instead
of the fundamental solution for the heat equation. A bootstrapping argument
eventually gives higher regularity. The bounds in (14) follow from a scaling
argument. We omit the details. �

Theorem 4.1 Let u ∈ H1(Ω × (0, T ), S2) be a weak solution of (4), satisfy-
ing the stability condition. There exists an open set R ⊂ Ω × (0, T ) with a
complement of vanishing n-dimensional parabolic Hausdorff measure, such that
u ∈ C∞(R, S2).

Proof. Consider the relatively closed set S of all points z0 ∈ Ω × (0, T ) such
that

lim inf
r↘0

(
r−n

∫
Pr(z0)

|∇u|2 dz

)
≥ ε20,

where ε0 > 0 is the constant from Proposition 4.1. Then the n-dimensional
parabolic Hausdorff measure of S vanishes. This is proved by a standard cov-
ering argument (cf. Lemma 11 in [16]).

If z0 ∈ R = (Ω × (0, T ))\S, then we can find a radius r > 0, such that
the conditions of Proposition 4.1 are satisfied. Regularity in R thus follows
immediately. �
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