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Abstract

The first heat kernel coefficients are calculated for a dispersive ball
whose permittivity at high frequency differs from unity by inverse powers
of the frequency. The corresponding divergent part of the vacuum energy
of the electromagnetic field is given and ultraviolet divergencies are seen
to be present. Also in a model where the number of atoms is fixed the
pressure exhibits infinities. As a consequence, the ground-state energy for
a dispersive dielectric ball cannot be interpreted easily.

The ground-state energy for a dielectric ball shows ultraviolet divergencies
still lacking physical understanding. This is an unsatisfactory situation, not only
for general reasons but also in view of the rapid experimental progress.

The canonical way to investigate the ultraviolet divergencies is to calculate
the corresponding heat kernel coefficients. For the dielectric (nondispersive) ball
this had been done in [1] and for the dielectric cylinder in [2], where it had been
shown, for instance, that the coefficient a2 is zero in dilute order and nonzero
beyond. In the present note we calculate the relevant heat kernel coefficients for
a dielectric ball with dispersion.

Dispersion means a frequency dependent permittivity, ε(ω). This is motivated
by the expectation that for high frequency the permittivity tends to unity so
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that the ultraviolet modes contribute less to the ground-state energy and the
divergencies become weaker.

It is reasonable to assume the asymptotic behavior of ε(ω) to be

ε(ω) = 1 − ε1

ω2
+

ε2

ω4
+ . . . (1)

for ω → ∞. Higher terms do not contribute to the ultraviolet divergencies. Let
us note that this asymptotic behavior is typical for solid state models, the Drude
and plasma models for instance. In the latter, the parameter ε1 in Eq. (1) has
the meaning of the plasma frequency squared.

We remind the reader of some basic formulas. In zeta functional regularization
the ground-state energy is given by [3, 4]

E0(s) =
µ2

2

∑
j

λ1−2s
j , (2)

where λj are the corresponding (discrete) energy eigenvalues. It can be expressed
in terms of the corresponding zeta function,

E0(s) =
µ2

2
ζ(s − 1

2
). (3)

Here µ is an arbitrary parameter with the dimension of a mass. Dropping the so
called Minkowski space contribution the zeta function can be represented as

ζ(s) =
sin πs

π

∞∑
l=1

(2l + 1)
∫ ∞

0
dk k−2s ∂

∂k
ln fl(ik), (4)

where fl(ik) is the Jost function of the corresponding scattering problem. A
detailed explanation of these and related formulas can be found in [1, 7, 8].

The heat kernel coefficients can be obtained from the zeta function by means
of

an = (4π)3/2 Res
s = 3

2
− n

Γ(s)ζ(s) (5)

and the divergent part of the ground-state energy in zeta functional regularization
is given by (for a massless field)

Ediv
0 (s) =

−a2

32π2

(
1

s
+ 2 lnµ − 2

)
. (6)

Here we drop contributions from a1/2 and a3/2, as these coefficients will turn out
to vanish for the problem considered.

It is known that in the zeta function regularization there is a smaller number of
singular contributions to the vacuum energy than in other regularization schemes.
For example, in the regularization

E0(δ) =
1

2

∑
j

λj e−δλj (7)
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with an exponentially damping function the divergent part of the ground-state
energy is

Ediv
0 (δ) =

1

16π2

(
2

δ2
a1 + ln δ a2

)
, (8)

again with the Minkowski space contribution already subtracted and dropping
the terms with a 1

2
and a 3

2
.

The Jost function for the problem at hand is known. For convenience, during
the calculation we put the radius R of the dielectric ball equal to one, R = 1.
The dependence on R is recovered by dimensional arguments. With the notation
ν = l + 1/2, the Jost function consists of contributions from the TE and the TM
modes,

fl(ik) = ∆TE
ν (ik) ∆TM

ν (ik) (9)

(l = 1, 2, . . .) with

∆TE
ν (ik) = ε−

ν
2

(√
εs′e − se′

)
, (10)

∆TM
ν (ik) = ε−

ν
2

(
1√
ε
s′e − se′

)
. (11)

Here the abbreviations

s ≡ sl(q) =

√
πq

2
Iν(q), (12)

e ≡ el(k) =

√
2k

π
Kν(k), (13)

are used where Iν(q) and Kν(k) are the modified Bessel functions. The prime
denotes the differentiation with repect to the argument of these functions. The
arguments of the Bessel functions are related by

q =
√

εk. (14)

The factors ε−
ν
2 in (10) and (11) follow from the normalization condition of the

regular solution of the scattering problem, for details see the example of a square
well potential in [7]. This is of importance since we consider ε depending on k.
We mention that these representations hold in the presence of arbitrary frequency
dispersion, as has been noted in [5] (see also [6]).

In order to get the residues according to Eq. (5) it is sufficient to approximate
the Jost function by its uniform asymptotic expansion for large k and ν keeping
z ≡ k

ν
fixed. Using the well known expansions [10], we obtain

ln fl(ik) = ν
(
2
(
η(
√

εz) − η(z)
)
− ln ε

)
+ ln

(
ε

1
4 s̃′ẽ − ε−

1
4 s̃ẽ′

)
+ ln

(
ε−

1
4 s̃′ẽ − ε

1
4 s̃ẽ′

)
≡ D0 + DTE + DTM , (15)
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where the tilde denotes the Bessel functions without the exponential factors. Now
we use the expansion

ε(ik) = 1 +
ε1

k2
+

ε2

k4
+ . . . (16)

as well as the known expression for η, for example η′(z) =
√

1 + z2/z, and obtain

D0 =
1

ν
ε1

√
1 + z2 − 1

z2
+

1

ν3

(
ε2

√
1 + z2 − 1

z4
− ε2

1

4

(
√

1 + z2 − 1)2

z4
√

1 + z2

)
+ . . . (17)

For DTE and DTM we obtain

DTE = ln

⎧⎨
⎩1

2

⎡
⎣
(

1 + εz2

1 + z2

) 1
4

(1 + C) (1 + B) +

(
1 + εz2

1 + z2

)− 1
4

(1 + A) (1 + D)

⎤
⎦
⎫⎬
⎭

(18)
and

DTM = ln

⎧⎨
⎩1

2

⎡
⎣ε− 1

2

(
1 + εz2

1 + z2

) 1
4

(1 + C) (1 + B) + ε
1
2

(
1 + εz2

1 + z2

)− 1
4

(1 + A) (1 + D)

⎤
⎦

+
(
ε−

1
2 − ε

1
2

) (1 + A)(1 + B)

4ν((1 + z2)(1 + εz2))
1
4

}
, (19)

where we used the same abbreviations for the Debye polynomials as in [1]. We
need them in the first nontrivial order only, A = u1(tq)/ν, B = −u1(t)/ν, C =
v1(tq)/ν and D = −v1(t)/ν with t = 1/

√
1 + z2 and tq = 1/

√
1 + εz2. Inserting

now the expansion (16) of ε we obtain finally

DTE = − 1

ν3

ε1

16

z2

(1 + z2)5/2
+ . . . (20)

and

DTM = − 1

ν3

ε1

16

z4 + 4z2 + 4

z2(1 + z2)5/2
+ . . . . (21)

We have to insert these expansions, Eqs. (17), (20), (21), into the Jost function,
Eq. (9), and the latter, then, into the zeta function, Eq. (4). Performing there
the variable substitution k = νz, the sum over ν can be carried out which gives
Hurwitz zeta functions,

ζH(s;
3

2
) =

∞∑
l=1

(
l +

1

2

)−s

. (22)

In summary, we obtain

ζ(s) = 2
sin πs

π

{
ζH(2s;

3

2
)
∫ ∞

0
dz z−2s ∂

∂z
ε1

√
1 + z2 − 1

z2
(23)
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+ζH(2s + 2;
3

2
)
∫ ∞

0
dz z−2s ∂

∂z

[
ε2

√
1 + z2 − 1

z4
− ε2

1

4

(
√

1 + z2 − 1)2

z4
√

1 + z2

−ε1

8

z4 + 2z2 + 2

z2(1 + z2)5/2

]}
.

Now it is easy to extract the heat kernel coefficients using Eq. (5). The
rightmost pole is at s = 1/2 resulting from the first Hurwitz zeta function. It
yields

a1 = −8π

3
ε1. (24)

The next pole is at s = −1
2
. It results from the integral in the first line of Eq.

(23), ∫ ∞

o
dz z−2s ∂

∂z

√
1 + z2 − 1

z2
=

−1

2
√

π
sΓ(−1 − s)Γ(s +

1

2
).

Further contributions result from the pole of the second Hurwitz zeta function.
Taking all contributions together we obtain

a2 =
4π

3
ε2
1 +

16π

3
ε2, (25)

where a term linear in ε1 cancelled out between TE and TM contributions. To
a1, (24), and a2, (25), the TE and TM modes give equal contributions.

Formulas (24) and (25) are the main result of this paper. In order to draw
more physical conclusions we restore the dependence on R. From [ε1] = R−2,
[ε2] = R−4, [a1] = R and [a2] = R−1 we get

a1 = −8π

3
ε1R

3, a2 =
4π

3
ε2
1R

3 +
16π

3
ε2R

3.

Now the divergent part of the ground-state energy reads in zeta functional regu-
larization

Ediv
0 (s) =

−1

32π2

(
1

s
+ 2 ln µ − 2

) (
ε2
1 + 4ε2

)
V, (26)

where V = 4π
3

R3 is the volume of the ball, and in the regularization Eq. (7),
using the exponentially damping function, it is

Ediv
0 (δ) =

1

16π2

(−2ε1

δ2
+
(
ε2
1 + 4ε2

)
ln δ

)
V. (27)

These results show that for a dispersive dielectric ball ultraviolet divergencies are
present in a fashion similar to that for the nondispersive case.

We add some remarks.
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1. In both regularizations the ground-state energy energy is divergent. Be-
cause of a2 �= 0, even after the removal of the diverging contributions an
arbitrariness (e.g., ln µ in Eq. (26)) remains in the finite part.

The model, Eq. (1), chosen for the permittivity reflects the physical as-
sumption that for high frequencies the dielectric ball becomes transparent.
From the results, Eqs. (26) and (27), in particular from the contribution
of ε2, it follows that this is insufficient in order to get a satisfactory phys-
ical interpretation. Although the dependence of the divergencies on the
dielectric properties is considerably simpler than in [1], we are left with the
same conclusions as for the nondispersive case that for a dielectric body
substantial changes in the physical context are necessary [1].

2. In the sense of renormalization one might try to absorb the divergent contri-
butions into some classical part. For example, in the bag model, ultraviolet
divergent contributions proportional to the volume like Eqs. (26) and (27)
can be put into a redefinition of the bag constant. However, in the present
case we do not have any classical energy which could be associated with
the dielectric ball. In addition, we don’t have any normalization condition
which might help to fix the arbitrariness.

3. As compared with the nondispersive case, [1], the non vanishing of a2 is a
common feature. The only known exception is the vanishing of a2 in the
dilute approximation, i.e., to order (ε − 1)2 for ε → 1, which allowed the
ground-state energy to have a physical meaning and ensures that the results
of different calculations coincide. However, as it was shown in [9] and [1],
this is a peculiarity of a ball with sharp boundaries. For a dielectric body
with non sharp boundaries, i.e., with the permittivity ε(r) being a smooth
function of the radius, a2 is non zero even in the dilute approximation.

4. One might hope that the pressure (force per unit surface) is ultraviolet
finite rather than the vacuum energy itself. For this end one has to divide
by the surface (4πR2) of the ball and to take the derivative with respect to
the radius. As the divergent part of the ground-state energy is proportional
to the volume of the ball the pressure contains a divergent constant.

5. One may assume the dielectric ball to be an idealization of a number of
polarizable atoms. Then a change in the radius leaving the number of atoms
fixed requires a change in ε according to (ε− 1)V = const as discussed, for
instance, in [11, 12, 13]. In this case, by means of Eq. (1), ε1,2V = const
follows. Due to the presence of ε2

1 in (26) and (27), again, a divergent
contribution is present.

6. An investigation similar to the present one had been recently carried out
in [14], where the divergent part of the Casimir energy had been calculated
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for the plasma model in zeta functional regularization. This is equivalent
to calculate the contribution of ε1 to the heat kernel coefficient a2 and is in
agreement with Eq. (25).

7. In the perturbative approach described in [11] divergencies proportional to
the surface area were found. It would be very desirable to understand the
origin of the different predictions in the different schemes used.
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