Max-Planck-Institut
fiir Mathematik

in den Naturwissenschaften

Leipzig

An example in the gradient theory of
phase transitions

by

Camillo De Lellis

Preprint no.: 32

2002







AN EXAMPLE IN THE GRADIENT THEORY OF
PHASE TRANSITIONS

CAMILLO DE LELLIS (SNS!)

ABSTRACT. We prove by giving an example that when n > 3 the
asymptotic behavior of functionals [, ]VZul? + (1 — [Vu|?)?/e is
quite different with respect to the planar case. In particular we
show that the one-dimensional ansatz due to Aviles and Giga in
the planar case (see [2]) is no longer true in higher dimensions.
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singular perturbation, Ginzburg-Landau.

1. INTRODUCTION

This paper is devoted to the study of the asymptotic behavior of
functionals

(1) F2(u):= /Q (e\v%\? + G_Lﬂ> QCR"

as € | 0, where u maps €2 into R. This problem was raised by Aviles
and Giga in [2] in connection with the mathematical theory of liquid
crystals and more recently by Gioia and Ortiz in [8] for modeling the
behavior of thin film blisters. Recently many authors have studied the
planar case giving strong evidences that, as conjectured by Aviles and
Giga in [2], the sequence (F.) I'-converge (in the strong topology of
Wh3: see [1] for a discussion of such a choice and a rigorous setting)
to the functional

rew = { e

Here Jy, denotes the set of points where Vu has a jump and |Vut —
Vu~|is the amount of this jump. Of course the first line of the previous
definition makes sense only for particular choices of u, such as piecewise
C!. For a rigorous setting the reader should think about a suitable
function space S which contains piecewise C!' functions and on which
we can give a precise meaning to the above integral (for example a
natural choice would be {u|Vu € BV'}; however this space turns out

IVut — Vu~|PBdHmL if [Vu| =1, u e Wb

otherwise .
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not to be the natural one: we refer again to [1] for a discussion of this
topic).

Partial results in proving Aviles and Giga’s conjecture (i.e. com-
pactness of minimizers of F¥, estimates from below on F(u.) and a
suitable weak formulation for the problem of minimizing F' subject to
some boundary conditions) can be found in [1], [3], [5], [6], [7].

In their first work Aviles and Giga based their conjecture on the
following ansatz (which they made in the case n = 2):

Conjecture 1.1. Let us choose a map w : @ — R (with Q C R"
bounded open set containing 0) such that:

(a) w is Lipschitz and satisfies the eikonal equation |Vw| = 1;
(b) Vw is constant in {x; < 0} and in {x; > 0}.
Let us define E = inf{liminf. F*(u.) : ||u. — w|w1s — 0}. Then
there exists a family of functions w. such that
(i) the component of Vw. perpendicular to (1,0,...,0) is constant;
(i) w. — w in W3,
(iii) lim F®(w.) = E.

This ansatz has been proved by Jin and Kohn in [7] for n = 2.
It reduces the problem of finding F to a one dimensional problem in
the calculus of variations which can be explicitly solved. This analysis
leads to the result £ = F}(w), which means that at w the T-limit of
F% exists and coincides with F}(w). With a standard cut and paste
argument (see [4]) it can be proved that the same happens for every w
which is piecewise affine. In the next section we will prove the following
theorem

Theorem 1.2. Let u be the function u(xy,ze,x3) = |x3] and C the
cylinder {|z1|? + |z2|> < 1}. Then there exists (uy) such that
(a) every uy is piecewise affine (being the union of a finite number of
affine pieces) and satisfies the eikonal equation;
(b) limy, FS (ug) < FS(u);
(c) ug — u strongly in WP for every p < oo.
The proof can be easily generalized to every n > 3. As an easy corol-

lary we get that the one-dimensional ansatz fails for n > 3. Moreover
this failure means that F' cannot be the I'-limit of F for n > 3.

Corollary 1.3. The one-dimensional ansatz is not true for n > 3.

Proof. As already observed, being every wu, piecewise affine, there is a
family of functions wuy . such that u . converge to uy in WP (for every
p < oo) and lim, F¥(up.) = FS(ug). A standard diagonal argument
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gives a sequence (uy.k)) strongly converging to u in W' such that
limy, FE(k) (U ery) < F<(u). O

2. THE EXAMPLE

In this section we prove Theorem 1.2. First of all we recall the
following fact.

(Curl) If v : R® — R” is a piecewise constant vector field, then v is a
gradient if and only if for every hyperplane of discontinuity 7 the
right trace and the left trace of v have same component parallel
to .

The building block of the construction of Theorem 1.2 is the following
vector field, depending on a parameter ¢ € (0,7/2). First of all we fix
in R? a system of cylindrical coordinates (r,6,z) and then we call A
the cone given by {z > 0,7 < 1,(1—7r) > ztan ¢} and A’ the reflection
of A with respect to the plane {z = 0}. Hence we put

v(r,0,z) =(0,0,1) if z>0and (r,0,2) £ A
v(r, 0, z) = (sin(2¢),0 + m,cos(2¢)) if z>0and z € A
v(r,0,z) =(0,0,—1) if z<0and (r,0,2) & A’
v(r, 0, z) = (sin(2¢),0 + m, — cos(2¢)) if z<0and z € A'.

It is easy to see that v maps every plane {6 = a} U {0 = o + 7} into
itself. Moreover the restrictions of v to these planes all look like as in
the following picture

zZ
v

planar section
of the field v

Lemma 2.1. The vector field v is the gradient of a function w. More-
over there is a sequence of piecewise affine functions wy, such that

(a) wy — w strongly in WP for every p;



4 CAMILLO DE LELLIS
(b) F(wy) — EL(w) for every open set  CC R3.

Proof. We consider the restriction of v to the plane P := {6 = 0}U{0 =
m}. As already noticed v maps this plane into itself. Moreover its
restriction to it satisfies condition (Curl), hence on P v is the gradient
of a scalar function w. Moreover we can find such a w so that it is
identically zero on the line {z = 0} N P. Hence w is symmetric with
respect to the z axis and so we can extend w to the whole three-
dimensional space so to build a cylindrically symmetric function. It is
easy to check that the gradient of such a function is equal to v.

We call this function w as well and we will prove that it satisfies
conditions (a) and (b) written above.

(a) Our goal is approximating v with piecewise constant gradient
fields. First of all we do it in the upper half-space {z > 0}. For every
n we take a regular n-agon B,, which is inscribed to the circle of radius
1 and lies on the plane {z = 0}. The vertices of this n-agon are given
by V; := (1, 2imw/n,0).

Hence we construct the pyramid A™ with vertex V' := (0, 0, cot ¢) and
base B,. In the pyramid we identify n different regions A},..., A},
where every A? is given by the tetrahedron with vertices (0,0,0), V,
Vi, Vig1. After this we put v, equal to (0,0, 1) outside A™ and in every
Al we put

v (1,0, 2) = (sin 2¢, ™ + (2i 4+ 1)7/n, cos 2¢).

It is easy to see that v, satisfies condition (Curl), hence it is the gradient
of some function w,. Moreover we can choose w, in such a way that it
is identically 0 on {z = 0}. Then we extend w,, to the lower half space
{z < 0} just by imposing w,(r, 0, —z) = w,(r,0, z). It is not difficult
to see that Vw, converges strongly to Vw in L = for every p.

(b) Now we check that the previous construction satisfies also the
second condition of the Lemma. We fix an open set Q CC R? and we
observe that both w,, and w satisfy the eikonal equation in 2. Moreover
we call L} the triangle with vertices V', V;, V; ;1 and L™ the union of L}
(so L™ is the “lateral surface” of the pyramid A™). Finally we denote
by L the lateral surface of the cone A, i.e. the set {(1 —r) = ztan ¢}.

(i) The amount of jump of v, (i.e. |v;7 — v |) on L™ is constant and
equal to the value of [v™ —v~| on L. Moreover the area of L™ is
converging to the area of L. The same happens on the symmetric
sets in the lower half-space {z < 0}.

(ii) Let us call B the base of the cone. The right and left traces of
v, coincides with those of v on B, U ({z = 0} \ B). Moreover the
area of B\ B, is converging to zero.
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(iii) The vector fields v, are discontinuous also on the triangles 7"
joining V', (0,0,0) and V; (and on the symmetric triangles lying
on {z < 0}). The amount of jump of v,, on each of these triangles
is given by

lvt — v | = 2sin(n/n).

Moreover the area of everyone is given by (cot ¢)/2. Hence
/ |o — v [PdH? = 4n cot ¢ sin® 7 /n.
UiTin

The right hand side goes to zero as n — oo and this completes
the proof.

O

Proof of Theorem 1.2 First of all we pass from the cartesian co-
ordinates of the statement to the cylindrical coordinates (7,6, z) given
by x3 = z, x1 = rcosf, x5 = rsinf (and sometimes we will denote the
elements of R? with (y, 2), where y € R? and z € R).

We take w as in the previous lemma. First of all let us compute
FZ(w) where C is the cylinder {r < 1}. As in the previous proof we
call L the lateral surface of the cone, that is the set {r — 1 = ztan ¢}.
The value of [Vw'™ — Vw™| on the surface L is given by 2sin ¢ and the
area of L is given by 7/sin ¢: the same happens for the symmetric of
L lying on the half-space {z < 0}. On the base of the cylinder we have
|IVwt — Vw™| = 2| cos 2¢|. Hence

a(¢) :== FS(u) — FS(w) = g[8 — 8cos®2¢ — 16sin” )

and it can be easily checked that for ¢ close enough to zero, a(¢) is
positive.

Therefore let us fix an « for which a(«) > 0 and let us agree that w is
constructed as in the previous lemma by choosing ¢ = «. Given p > 0
and © € R? we define w, , in the cylinder C, , := {(y,2) : |y — 2| <
pt C R? as w, ,(y, 2) = pw((y — x)/p, z/p). Tt is easy to see that

(2) Fgro(u) = Fre (we,p) = ala)p?

Let us fix € and take p such that pcot o < €. Thanks to Besicovitch
Covering Lemma we can cover H? almost all D := {z = 0,r < 1} with
a disjoint countable family of closed discs D; such that every D; has
radius r; < p, center x; and is contained in D. We construct u. by
putting u. = w,, ,, in the cylinder Cy, ,,.

Since Vu, coincides with Vu in {z > ¢} and satisfies the eikonal
equation, it is easy to see that u. — wu locally in the strong topology of
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WP, Moreover equation (2) implies that

Fg(u) = Fo(us) =y a(a)r} = al«).
(2

At this point, using the previous Lemma we can approximate the
function u. in the cylinders C;, ,, with piecewise affine functions in such
a way that their traces coincide with the trace of u. on the boundary
of Cy, - Using standard diagonal arguments for every ¢ we can find
a sequence of piecewise affine functions u* which converge in WP to
u. and such that F<(u*) — F%(u.). Moreover, again using diagonal
arguments, we can construct the sequence u” so that each one is a finite
union of affine pieces.

Finally, one last diagonal argument, gives a sequence w; suh that

(a) 1y is a finite union of affine pieces;
(b) limy F< () < F<(u);
(c) @y, — u strongly in WP for every p < oc.
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