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Abstract. We prove by giving an example that when n ≥ 3 the
asymptotic behavior of functionals

∫
Ω ε|∇2u|2 + (1 − |∇u|2)2/ε is

quite different with respect to the planar case. In particular we
show that the one-dimensional ansatz due to Aviles and Giga in
the planar case (see [2]) is no longer true in higher dimensions.

Keywords: Phase transitions, Γ–convergence, asymptotic analysis,
singular perturbation, Ginzburg–Landau.

1. Introduction

This paper is devoted to the study of the asymptotic behavior of
functionals

FΩ
ε (u) :=

∫
Ω

(
ε|∇2u|2 +

(1 − |∇u|2)2

ε

)
Ω ⊂ Rn(1)

as ε ↓ 0, where u maps Ω into R. This problem was raised by Aviles
and Giga in [2] in connection with the mathematical theory of liquid
crystals and more recently by Gioia and Ortiz in [8] for modeling the
behavior of thin film blisters. Recently many authors have studied the
planar case giving strong evidences that, as conjectured by Aviles and
Giga in [2], the sequence (Fε) Γ-converge (in the strong topology of
W 1,3: see [1] for a discussion of such a choice and a rigorous setting)
to the functional

FΩ
∞(u) :=

{
1
3

∫
J∇u

|∇u+ −∇u−|3dHn−1 if |∇u| = 1, u ∈ W 1,∞

+∞ otherwise .

Here J∇u denotes the set of points where ∇u has a jump and |∇u+ −
∇u−| is the amount of this jump. Of course the first line of the previous
definition makes sense only for particular choices of u, such as piecewise
C1. For a rigorous setting the reader should think about a suitable
function space S which contains piecewise C1 functions and on which
we can give a precise meaning to the above integral (for example a
natural choice would be {u|∇u ∈ BV }; however this space turns out
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not to be the natural one: we refer again to [1] for a discussion of this
topic).

Partial results in proving Aviles and Giga’s conjecture (i.e. com-
pactness of minimizers of FΩ

ε , estimates from below on FΩ
ε (uε) and a

suitable weak formulation for the problem of minimizing F subject to
some boundary conditions) can be found in [1], [3], [5], [6], [7].

In their first work Aviles and Giga based their conjecture on the
following ansatz (which they made in the case n = 2):

Conjecture 1.1. Let us choose a map w : Ω → R (with Ω ⊂ Rn

bounded open set containing 0) such that:

(a) w is Lipschitz and satisfies the eikonal equation |∇w| = 1;
(b) ∇w is constant in {x1 < 0} and in {x1 > 0}.
Let us define E := inf{lim infε FΩ

ε (uε) : ‖uε − w‖W 1,3 → 0}. Then
there exists a family of functions wε such that

(i) the component of ∇wε perpendicular to (1, 0, . . . , 0) is constant;
(ii) wε → w in W 1,3;
(iii) lim FΩ

ε (wε) = E.

This ansatz has been proved by Jin and Kohn in [7] for n = 2.
It reduces the problem of finding E to a one dimensional problem in
the calculus of variations which can be explicitly solved. This analysis
leads to the result E = FΩ

∞(w), which means that at w the Γ-limit of
FΩ

ε exists and coincides with FΩ
∞(w). With a standard cut and paste

argument (see [4]) it can be proved that the same happens for every w
which is piecewise affine. In the next section we will prove the following
theorem

Theorem 1.2. Let u be the function u(x1, x2, x3) = |x3| and C the
cylinder {|x1|2 + |x2|2 < 1}. Then there exists (uk) such that

(a) every uk is piecewise affine (being the union of a finite number of
affine pieces) and satisfies the eikonal equation;

(b) limk F C
∞(uk) < FC

∞(u);
(c) uk → u strongly in W 1,p for every p < ∞.

The proof can be easily generalized to every n ≥ 3. As an easy corol-
lary we get that the one-dimensional ansatz fails for n ≥ 3. Moreover
this failure means that F cannot be the Γ–limit of FΩ

ε for n ≥ 3.

Corollary 1.3. The one–dimensional ansatz is not true for n ≥ 3.

Proof. As already observed, being every uk piecewise affine, there is a
family of functions uk,ε such that uk,ε converge to uk in W 1,p (for every
p < ∞) and limε F C

ε (uk,ε) = F C
∞(uk). A standard diagonal argument
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gives a sequence (uk,ε(k)) strongly converging to u in W 1,p such that
limk F C

ε(k)(uk,ε(k)) < FC
∞(u).

2. The example

In this section we prove Theorem 1.2. First of all we recall the
following fact.

(Curl) If v : Rn → Rn is a piecewise constant vector field, then v is a
gradient if and only if for every hyperplane of discontinuity π the
right trace and the left trace of v have same component parallel
to π.

The building block of the construction of Theorem 1.2 is the following
vector field, depending on a parameter φ ∈ (0, π/2). First of all we fix
in R3 a system of cylindrical coordinates (r, θ, z) and then we call A
the cone given by {z > 0, r < 1, (1− r) > z tanφ} and A′ the reflection
of A with respect to the plane {z = 0}. Hence we put

v(r, θ, z) = (0, 0, 1) if z > 0 and (r, θ, z) 	∈ A
v(r, θ, z) = (sin(2φ), θ + π, cos(2φ)) if z > 0 and z ∈ A
v(r, θ, z) = (0, 0,−1) if z < 0 and (r, θ, z) 	∈ A′

v(r, θ, z) = (sin(2φ), θ + π,− cos(2φ)) if z < 0 and z ∈ A′.

It is easy to see that v maps every plane {θ = α} ∪ {θ = α + π} into
itself. Moreover the restrictions of v to these planes all look like as in
the following picture

z
v

r

planar section
of the field v

φ

Lemma 2.1. The vector field v is the gradient of a function w. More-
over there is a sequence of piecewise affine functions wk such that

(a) wk → w strongly in W 1,p
loc for every p;
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(b) FΩ
∞(wk) → FΩ

∞(w) for every open set Ω ⊂⊂ R3.

Proof. We consider the restriction of v to the plane P := {θ = 0}∪{θ =
π}. As already noticed v maps this plane into itself. Moreover its
restriction to it satisfies condition (Curl), hence on P v is the gradient
of a scalar function w. Moreover we can find such a w so that it is
identically zero on the line {z = 0} ∩ P . Hence w is symmetric with
respect to the z axis and so we can extend w to the whole three-
dimensional space so to build a cylindrically symmetric function. It is
easy to check that the gradient of such a function is equal to v.

We call this function w as well and we will prove that it satisfies
conditions (a) and (b) written above.

(a) Our goal is approximating v with piecewise constant gradient
fields. First of all we do it in the upper half-space {z > 0}. For every
n we take a regular n-agon Bn which is inscribed to the circle of radius
1 and lies on the plane {z = 0}. The vertices of this n-agon are given
by Vi := (1, 2iπ/n, 0).

Hence we construct the pyramid An with vertex V := (0, 0, cotφ) and
base Bn. In the pyramid we identify n different regions An

1 , . . . , An
n,

where every An
i is given by the tetrahedron with vertices (0, 0, 0), V ,

Vi, Vi+1. After this we put vn equal to (0, 0, 1) outside An and in every
An

i we put

vn(r, θ, z) ≡ (sin 2φ, π + (2i + 1)π/n, cos 2φ).

It is easy to see that vn satisfies condition (Curl), hence it is the gradient
of some function wn. Moreover we can choose wn in such a way that it
is identically 0 on {z = 0}. Then we extend wn to the lower half space
{z < 0} just by imposing wn(r, θ,−z) = wn(r, θ, z). It is not difficult
to see that ∇wn converges strongly to ∇w in Lp

loc for every p.

(b) Now we check that the previous construction satisfies also the
second condition of the Lemma. We fix an open set Ω ⊂⊂ R3 and we
observe that both wk and w satisfy the eikonal equation in Ω. Moreover
we call Ln

i the triangle with vertices V , Vi, Vi+1 and Ln the union of Ln
i

(so Ln is the “lateral surface” of the pyramid An). Finally we denote
by L the lateral surface of the cone A, i.e. the set {(1 − r) = z tan φ}.

(i) The amount of jump of vn (i.e. |v+
n − v−

n |) on Ln is constant and
equal to the value of |v+ − v−| on L. Moreover the area of Ln is
converging to the area of L. The same happens on the symmetric
sets in the lower half–space {z < 0}.

(ii) Let us call B the base of the cone. The right and left traces of
vn coincides with those of v on Bn ∪ ({z = 0} \B). Moreover the
area of B \ Bn is converging to zero.
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(iii) The vector fields vn are discontinuous also on the triangles T n
i

joining V , (0, 0, 0) and Vi (and on the symmetric triangles lying
on {z < 0}). The amount of jump of vn on each of these triangles
is given by

|v+
n − v−

n | = 2 sin(π/n).

Moreover the area of everyone is given by (cotφ)/2. Hence∫
∪iT n

i

|v+
n − v−

n |3dH2 = 4n cotφ sin3 π/n.

The right hand side goes to zero as n → ∞ and this completes
the proof.

Proof of Theorem 1.2 First of all we pass from the cartesian co-
ordinates of the statement to the cylindrical coordinates (r, θ, z) given
by x3 = z, x1 = r cos θ, x2 = r sin θ (and sometimes we will denote the
elements of R3 with (y, z), where y ∈ R2 and z ∈ R).

We take w as in the previous lemma. First of all let us compute
F C
∞(w) where C is the cylinder {r < 1}. As in the previous proof we

call L the lateral surface of the cone, that is the set {r − 1 = z tan φ}.
The value of |∇w+ −∇w−| on the surface L is given by 2 sin φ and the
area of L is given by π/ sin φ: the same happens for the symmetric of
L lying on the half–space {z < 0}. On the base of the cylinder we have
|∇w+ −∇w−| = 2| cos 2φ|. Hence

a(φ) := F C
∞(u) − F C

∞(w) =
π

3
[8 − 8 cos3 2φ − 16 sin2 φ]

and it can be easily checked that for φ close enough to zero, a(φ) is
positive.

Therefore let us fix an α for which a(α) > 0 and let us agree that w is
constructed as in the previous lemma by choosing φ = α. Given ρ > 0
and x ∈ R2 we define wx,ρ in the cylinder Cx,ρ := {(y, z) : |y − x| ≤
ρ} ⊂ R3 as wx,ρ(y, z) = ρw((y − x)/ρ, z/ρ). It is easy to see that

F Cx,ρ
∞ (u) − F Cx,ρ

∞ (wx,ρ) = a(α)ρ2(2)

Let us fix ε and take ρ such that ρ cotα < ε. Thanks to Besicovitch
Covering Lemma we can cover H2 almost all D := {z = 0, r ≤ 1} with
a disjoint countable family of closed discs Di such that every Di has
radius ri < ρ, center xi and is contained in D. We construct uε by
putting uε ≡ wxi,ρi

in the cylinder Cxi,ρi
.

Since ∇uε coincides with ∇u in {z ≥ ε} and satisfies the eikonal
equation, it is easy to see that uε → u locally in the strong topology of
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W 1,p. Moreover equation (2) implies that

F C
∞(u) − F C

∞(uε) =
∑

i

a(α)r2
i = a(α).

At this point, using the previous Lemma we can approximate the
function uε in the cylinders Cxi,ρi

with piecewise affine functions in such
a way that their traces coincide with the trace of uε on the boundary
of Cxi,ρi

. Using standard diagonal arguments for every ε we can find
a sequence of piecewise affine functions uk

ε which converge in W 1,p to
uε and such that F C

∞(uk
ε) → F C

∞(uε). Moreover, again using diagonal
arguments, we can construct the sequence uk

ε so that each one is a finite
union of affine pieces.

Finally, one last diagonal argument, gives a sequence ũk suh that

(a) ũk is a finite union of affine pieces;
(b) limk F C

∞(ũk) < FC
∞(u);

(c) ũk → u strongly in W 1,p for every p < ∞.
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