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Abstract

We characterize the coarsening dynamics associated with a convec-
tive Cahn-Hilliard equation in one space dimension. First, we derive a
sharp-interface theory based on a quasi-static matched asymptotic anal-
ysis. Two distinct types of discontinuity (kink and anti-kink) arise due
to the presence of convection, and their motions are governed to leading
order by a nearest-neighbors interaction dynamical system. Numerical
simulations of the kink/anti-kink dynamics display marked self-similarity
in the coarsening process, and reveal a pinching mechanism, identified
through a linear stability analysis, as the dominant coarsening event. A
self-similar period-doubling pinching ansatz is proposed for the coarsening
process, and an analytical coarsening law, valid over all length scales, is
derived. Our theoretical predictions are in good agreement with numerical
simulations that have been performed both on the sharp-interface model
and the original PDE.

1 Introduction

The Cahn-Hilliard equation governs the spinodal decomposition of binary al-
loys under isothermal conditions [1]. Here, an initially spatially homogeneous
high-temperature mixture is driven to segregate by a uniform reduction in tem-
perature (quenching). A fine-grained phase mixture is initially formed, and this
morphology subsequently coarsens into larger-scale structures with a character-
istic length scale L(t). The Cahn-Hilliard theory utilizes an order parameter
(phase fraction) with an associated double-well bulk (Helmhotz) free energy
to describe this process. Among the properties of the CH theory [2] are the
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phase selection rule for the mixture through a bi-tangent construction on the
free energy, and the logarithmically slow coarsening rate in one space dimenison
[3]:

L(t) ∼ ln t.

The process of thermal facetting, in which a planar crystalline surface breaks
up into hill (anti-kink) and valley (kink) structures following a change in tem-
perature, is analogous to spinodal decomposition. The facetting transition in
which a crystal surface is allowed to anneal in equilibrium with its vapor (or in
vacuum), has also been modeled with equations of CH type [5, 6], in which the
orientation of the local tangent plane serves as a (vector) order parameter and
the surface tension induces an effective free energy. Here, the surface tension
is sufficiently anisotropic that certain crystal surfaces are thermodynamically
unstable and hence missing in the crystal equilibrium state (Wulff shape [7]).
Stable facets correspond to bi-tangent points of the surface free energy, and the
hill-valley structures coarsen with a rate depending on the mechanism of facet
growth as well as the effective dimensions of the structure [8].

If the evolution of a crystal morphology possesses growth of some kind, then
convective terms augment the CH structure [8, 9, 10]. Provided the strength
of convection is small enough, spinodal decomposition reminiscent of CH again
arises. However, because the convective term breaks the mirror symmetry x →
−x, several distinctions arise. In particular, the bi-tangent contruction for stable
phases is destroyed, and kinks and anti-kinks are no longer symmetrically related
[11]; this reflects the non-equilibrium nature of the growth process. This in turn
results in enhanced coarsening rates relative to the CH theory. We remark that
for sufficiently large convection the solutions do not coarsen in time but rather
preserve fine-scale spatial oscillations. A study of this transition from coarsening
to kinetic roughening, which is associated to the spatio-temporal chaos of the
Kuramoto-Sivashinsky equation, has been carried out in [12].

A convective Cahn-Hilliard equation has been derived for the growth of ther-
modynamically unstable crystal surface into a hypercooled melt [10]. Here the
crystal growth is controlled by attachment kinetics, which provides an addi-
tional flux of the order parameter, and emerges as a Burgers-type convection
term. Convective - or driven - Cahn-Hilliard equations have also appeared as
models for quenching of a homogeneous high temperature binary alloys in an
external field [13], and unstable epitaxial growth with desorption [14].

In this paper we study the coarsening dynamics of a convective Cahn-Hilliard
equation in one space dimension. In dimensionless form

qt − qqx =
(
q3 − q − ε2qxx

)
xx

, (1.1)

where the small parameter ε sets a length scale for transitions in x from negative
to positive values of q (kink) or vice-versa (anti-kink). This equation has been
derived as a model for kinetically controlled growth of two dimensional crystals
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Figure 1: Schematic representation of a facetted 2-D crystal growing into its
melt with a direction of solidification at π/4 to the principal crystallographic
directions [1, 0] and [0, 1].

[10], and subsequently generalised in [15] following a geometric model proposed
in [9]. In this setting q denotes the slope of the crystal surface; see Figure 1.

We perform a matched asymptotic analysis as ε → 0+, that leads to a sharp
interface theory of kink/anti-kink interaction valid over all non-dimensional
length scales L � ε. The convection-induced asymmetry between kink and
anti-kink induces a convection-diffusion flux between neighbors, which in turn
drives these discontinuities in a manner given by the Rankine-Hugoniot relation;
recall that q is a conserved quantity. Through order O(ε) this results in a near-
est neighbor interaction between kinks and anti-kinks. The resulting dynamical
system generalizes the theory of Emmot and Bray [13], which is valid only for
dimensionless length scales ε � L � 1, to all length scales.

The dynamical system coarsens in time through the coalescence of kinks
and anti-kinks. Numerical simulations reveal a marked self-similarity in the
coarsening path, and also pinpoint the initially surprising prevalence of a par-
ticular ternary coalesence event. This pinching event involves the coalesence of
two kinks with an anti-kink which results in a single kink remaining. A linear
stability analysis of an initially periodic array of kink/anti-kinks confirms the
observation by identifying a dominant instability which, when followed in to the
nonlinear regime, displays such pinching.

We propose a self-similar period-doubling ansatz as a description of the
coarsening process. It involves an initial disturbance of a spatially periodic array
of kink/anti-kinks in the direction of the dominant linear-instability eigenvector
by a scale invariant magnitude. This disturbance captures both the dominant
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instability and the statistical deviations of the system. The resulting solution
subsequently pinches in an explicitly calculable time, yielding a periodic array
of twice the initial period. Motivated by the numerically observed self-similarity
of the coarsening path, we iterate the above construction yielding our ansatz.
A theoretical coarsening law for the mean length as a function of time, which is
valid over all length scales, then follows from the ansatz. When we restrict our
analysis to L � 1 we recover the scaling law

L(t) ∼ ct1/2,

previously deduced by Emmot and Bray [13]. However, since we also describe
the coarsening path, we are also able to identify the scaling constant c. In
addition, our results agree with the numerically computed coarsening rates of
Golovin et. al. [12], which apply to length scales ε << L < ∞.

2 The statement of the problem

We consider the following one-dimensional convective Cahn-Hilliard equation:

qt̄ − Vqqx̄ = µ
(
q3 − q − γ2qx̄x̄

)
x̄x̄

(2.1)

where the dimensionless order parameter q(x̄, t̄) is a function of space x̄ ∈ R

and time t̄, V is a speed ([V ] = LT−1), µ is a mobility ([µ] = L2T−1) and γ

is a microscopic length scale ([γ] = L). Equation (2.1) serves, for example, as
a phenomenological model of facetting in kinetically controlled crystal growth
[10].

The convection coupled to diffusion supplies the Peclet length scale lP given
by

lP =
µ

V
,

We now re-scale (2.1) with respect to the length scale lP and time scale tP = µ
V2 .

Setting

x =
x̄

lP
, and t =

t̄

tP
,

we arrive at the dimensionless form

qt − qqx =
(
q3 − q − ε2qxx

)
xx

, (2.2)

where
ε =

γ

lP
.

Now when ε ∼ 1, the morphologies of solutions do not coarsen in time but
rather remain rough [12]. This is related to the fact that formally the convective
Cahn-Hilliard approaches the Kuramoto-Sivashinsky (KS) equation as ε → ∞,
and solutions of the (KS) eqauation are known to display spatio-temporal chaos.
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Figure 2: A representative sequence of kinks and anti-kinks

We consider the regime of disparate length scales

ε =
γ

lP
� 1.

Here the spatially homogeneous state q = 0 is unstable and upon disturbance
develops a periodic structure of alternating kinks and anti-kinks with wavelength
λ ∼ γ, as determined from a linear stability analysis (see Fig. 2).

The solution subsequently coarsens in time with a morphology that has a
characteristic length scale, lM (the morphological length scale). Three natural
regimes arise in this process and have been previously analysed numerically
[12, 13]:

γ � lM � lP Power law (P)
γ � lM � lP Intermediate regime (I)
γ � lP � lM Logarithmically slow (L)

The details of the morphological evolution in the intermediate regime is partic-
ularly interesting because of the unexpected persistence of the preceding power
law behavior that is observed [12].

3 Sharp interface theory

The governing equation (2.2) is singularly perturbed in the limit ε → 0+. In this
section we perform the associated matched asymptotic expansions. Since the
parameter ε sets a length scale for transitions, we shall see that the associated
outer problem yields a sharp-interface theory.
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3.1 Asymptotic analysis for γ � lP

We refer to (2.2) as the outer equation, since ε → 0+ yields a singular pertur-
bation. The inner equation arises from re-scaling to the inner length scale ε (in
units of lP). Since the kinks and anti-kinks are in general moving, we need to
select an inner co-ordinate with respect to a moving frame. So, for the kink at
x = k(t; ε), we take the inner-coordinate X to be

X =
x − k(t; ε)

ε
,

and re-write (2.2) in terms of the inner solution Q(X, t) = q(x, t) as

ε2Qt − εk̇QX − εQQX =
(
Q3 − Q − QXX

)
XX

; (3.1)

similarly for the anti-kink a(t).

Remark 1 We give a complete matched asymptotic analysis through order O(ε)
in the Appendix. Therein, we establish that the kink velocity k̇(t) (with respect to
the Peclet length scale) is of order O(ε) since ε = 0 corresponds to a stationary
solution.

Since the kink and anti-kink velocities are of order O(ε) (see Appendix)
it follows that (3.1) is asymptotically equivalent through order O(ε) with the
time-independent equation

−εQQX =
(
Q3 − Q − QXX

)
XX

. (3.2)

Now (3.2) has two exact solutions K(X) and A(X), identified in [11], given
by

K(X) :=

(
1 +

ε√
2

)1/2

tanh

[(
1 +

ε√
2

)1/2

X

]
(Kink) (3.3)

and

A(X) := −

(
1 −

ε√
2

)1/2

tanh

[(
1 −

ε√
2

)1/2

X

]
, (Anti-Kink) (3.4)

which will be matched to the outer solutions.

Remark 2 There is a family of stationary profiles associated with the transition
from positive to negative values of q [13], while the anti-kink profile is the unique
profile connecting negative to positive values of q. Our choice of kink leads to a
Dirichlet outer problem.

We note here that the asymptotic values as X → ∞ of K(X) and A(X) are

lim
X→±∞ K(X) = ±

(
1 +

ε√
2

)1/2

,

lim
X→±∞ A(X) = ∓

(
1 −

ε√
2

)1/2

.
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Figure 3: The 0(ε) sharp interface limit

We see that the presence of convection (ε �= 0) introduces a fundamental
asymmetry between kinks and anti-kinks, which is not present in the CH the-
ory (ε = 0). On a deeper level, this asymmetry is a reflection of the non-
equilibrium nature of the underlying phase-transformation process when con-
vection is present.

We now match these inner solutions to the outer solution, which we represent
in the form

q(x, t) = q0(x, t) + q1(x, t)ε + O(ε2).

It follows from the matched asymptotic analysis presented in the Appendix that
the combined approximation qc := q0 + q1ε is equivalent through order 0(ε)
with the conservation law

qc
t + Jx = 0 for (x, t) ∈ R × [0, ∞), (3.5)

with flux J given by

J =

⎧⎨
⎩

−qc − qc
x x ∈ (k(t), a(t) )

qc − qc
x x ∈ (a(t), k(t) )

, (3.6)
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and subject to the Dirichlet boundary conditions

qc(k(t)−) = −1 − 1

2
√

2
ε qc(k(t)+) = 1 + 1

2
√

2
ε

qc(a(t)−) = 1 − 1
2
√

2
ε qc(a(t)+) = −1 + 1

2
√

2
ε ,

(3.7)

where qc(k(t)−) and qc(k(t)+) denote the limiting value of qc as the kink
location k(t) is approached from the left and the right respectively; similarly
for the anti-kinks; see Figure 3.

It follows from the conservation law (3.5) that the speed of the kink k̇(t)
(k-shock) is given by the Rankine-Hugoniot relation

k̇(t)[q]k(t) = [J]k(t), (R)

where [J]k(t) and [q]k(t) denote, respectively, the jump in the flux J and the
order parameter q across the kink at x = k(t); similarly for the anti-kink.

Since the kink and anti-kink velocities are order O(ε), it follows that (3.5)
is equivelent through order O(ε) with the quasi-static condition

Jx = 0. (3.8)

Utilizing the notation of Figure 3, the function qc can now be computed from
(3.6), (3.7) and (3.8) yielding

qc (x) =

⎧⎨
⎩

−1 − ε
2
√

2
+ ε√

2
1−e[x−al(t)−L−]

1−e−L− al(t) ≤ x ≤ k (t)

1 + ε
2
√

2
− ε√

2
1−e−[x−k(t)]

1−e−L+ k (t) ≤ x ≤ ar (t) ;
(3.9)

The flux J between a kink and anti-kink now follows by direct calculation from
(3.6) and appears as

J =
ε

2
√

2

1

eL − 1
, (3.10)

where L = |k(t) − a(t)| is the distance between the neighbouring kink and anti-
kinks.

The O(ε) composite solution, obtained from matching inner and outer so-
lutions, is plotted in Figure 2 for a choice of parameters associated with the
regime γ � lM � lP . We note that the kink amplitude is suppressed while
the anti-kink amplitude is barely affected. This circumstance is either enhanced
or diminished by the respective increase or decrease of the separation between
kink and anti-kink.

4 Kink-antikink dynamics

We have envisioned the solutions to (2.1) as an alternating sequence of kinks
K [X − k(t)] and anti-kinks A [X − a(t)], which are matched through the outer
variable x associated with the Peclet length scale lP; the points k(t) and a(t)
being the kink and anti-kink locations, respectively. We now present a study of
the dynamical system associated with these locations.
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Figure 4: Kink and anti-kink dynamical system

4.1 The coarsening dynamical system

We consider an alternating sequence of kinks and anti-kinks placed on a domain,
either the unbounded line or a circle of prescribed circumference The velocities
of the kinks k̇(t) and anti-kinks ȧ(t) through order 0(ε) follow from (R), (3.7)
and (3.10) and satisfy

k̇(t) = ε̃
[
f̂
(
L+

)
− f̂

(
L−

)]
(4.1)

ȧ(t) = ε̃
[
f̂
(
L−

)
− f̂

(
L+

)]
, (4.2)

where ε̃ = ε/4
√

2,

f̂(l) :=
1

el − 1
, (4.3)

and L+ and L− denote the distance (arc-length) to the right and left neighbors
of the kink or antikink; see Figure 4.

The outcome of encounters between kinks and anti-kinks is readily visualized
via the facetted-crystal application. First, if a pair meet, they annihilate since
the interpolating facet disappears. Now in the case of coalescence of higher
order, e.g. the ternary collision, a parity law arises. Namely, even groupings
annihilate, and odd groupings result in the appearance of the dominant type.
So, for example, in the case of two kinks colliding with a single anti-kink, we
obtain a kink. Through this process of annihilation the average length scale of
the structure grows.

Remark 3 The dynamical system is non-standard since the dimension of the
system shrinks in time as particles annihilate. We coin the term coarsening
dynamical system to denote such dimensional reducing systems.
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Figure 5: Numerical simulation of kink/anti-kink dynamics on a circle of circum-
ference 1. The kink trajectories are marked in red and the anti-kink trajectories
in blue. Note that the kink marked k1 coalesces with the anti-kink marked a1.

4.2 Simulations

A numerical code simulating the kink/anti-kink dynamics (4.1) and (4.2) has
been written using Mathematica. We treated the problem of n kink/anti-kink
pairs on a circle of prescribed circumference L (i.e. periodic boundary conditions
on an interval of length L) for ε � 1. For initial conditions we take an array
of evenly spaced particles with separation d := L/2n (see Figure 4), and then
perturb each location by a random distance taken from a normal distribution
centered at 0 with covariance d/20. Coalescence of particles is identified when
the distance between two particles come within the prescribed tolerance, ε/10.

We present in figure 5 the result of a numerical simulation for 25 kink/anti-
kink pairs placed on a domain of unit length with ε = 0.005. An initially sur-
prising feature of the simulations is the prevalence of pinching events, whereby
two kinks converge on an anti-kink resulting in an anti-kink. One can also note
a marked degree of self-similarity during coarsening with pinching appearing as
the major coalescence event The coarsening stops at the appearance of a single
kink/anti-kink pair, which subsequently preserve a fixed separation.

4.3 Linear Stability Analysis

Here we perform a linear stability analysis of an alternating array of equally
spaced kink/anti-kinks on a circle. We then deduce the stability for the line as
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the limit of infinite circumference for the circle.
Let l0 be the separation of an equi-spaced array of kink/antikinks on a

circle of circumference 4nl0 (n ∈ N). The linearization of the 4n dimensional
dynamical system (4.1) and (4.2) about this state yields the 4n × 4n matrix

A = −f̂′(l0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 ... 0 −1

1 −2 1 0 ... 0

0 −1 2 −1 0 ... 0

0 1 −2 1 0 0

. . .

. . .

0 ... 0 −1 2 −1

1 0 ... 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose eigenvalues determine the instability of the uniform state. Notice that the
each successive row is a simple cyclic permutation of the previous row followed
by multiplication by −1, and also, −f′(l0) > 0.

We now present a characterization of the eigenvalues and eigenvectors of A.
in terms of the complex 4n’th roots of unity:

rj := ei( π
2n )j where j = 0, 1, ..., 4n − 1

First, for each j = 0, 1, ..., we define the k’th component of the vectors u(j),v(j) ∈
C4n as follows:

u(j)
k = (rj)

k , v(j)
k = (−rj)

k k = 1, ..., 4n.

We claim for each j = 1, ..., 2n − 1, that the vectors ej, ωj given by

ej :=

[
1 + cos

(
jπ

2n

)]1/2

uj +

[
1 − cos

(
jπ

2n

)]1/2

vj,

ωj :=

[
1 + cos

(
jπ

2n

)]1/2

uj −

[
1 − cos

(
jπ

2n

)]1/2

vj

are eigenvectors of A with associated eigenvalues

λj = 2 sin
(

jπ

2n

)
, γj = −2 sin

(
jπ

2n

)
,

respectively. This follows from a general theorem on alternating circulant matri-
ces motivated by this work [16]. Furthermore, the vectors u0,v0 are generalised
eigenvectors of A with eigenvalue 0, and the set of vectors

{u0,v0, e1, ..., en−1, ω1, ..., ωn−1}

constitute a basis for C
4n.

The largest eigenvalue of 2 is attained when j = n, and the associated
eigenvector is the 4-periodic vector

en = [1, 0, −1, 0, ...].

11
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Figure 6: The period doubling ansatz

We note that in this most unstable direction the anti-kinks remain fixed and
the kinks are “pinched” pairwise. Also, the structure of this unstable mode is
independent n; i.e of the circumference of the circle. Hence, we conclude that
this is the most unstable mode for the unbounded line as well.

5 Coarsening dynamics

We introduce here a coarsening ansatz for the sharp interface theory. It is based
on several working hypotheses:

• The dominant mode of instability arises from the linearised problem.

• The coarsening solutions are self-similar; motivated by the numerical sim-
ulations.

• The statistical component of an evolution may be characterized through
a scale-invariant disturbance used to initiate the coarsening.

Based on these ansatzen we deduce a theoretical coarsening law for the average
length scale as a function of time. It stands in excellent agreement with results
obtained from direct simulation of the model equations. A precise description
follows.

5.1 The coarsening ansatz

An equally spaced array of kink/antikinks on a domain I (circle or line) is an
unstable critical point for the dynamical system (4.1) and (4.2). Motivated by
the linear stability analysis of Section 4.3, we study the initial-value problem
associated with a scale-invariant disturbance of this state in the direction of
the most unstable eigenvector. Specifically, we fix the location of the anti-kinks
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while pairwise pinching the kinks together by a scale invariant distance ηl0,
where l0 is the initial separation and η > 0 is a fixed small constant; see Figure
6.

It follows from the symmetry of the initial data that the solution is a periodic
extension of the elementary initial-value problem involving two pairs of kinks
and anti-kinks on a circle of circumference 4l0, subject to the dynamics given
by (4.1) and (4.2) and the initial conditions illusrated in Figure 7. One sees that
the anti-kinks will remain fixed as the solution evolves, while the two kinks move
towards the initially closer anti-kink. They subsequently coalesce at the anti-
kink, leaving a kink, in a finite time T characterized by the simple target-time
problem:

ds

dt
= ε̃

[
f̂(l0 − s) − f̂(l0 + s)

]
s(0) = ηl0

s(T−) = l0,

Applied to Figure 6 we see that the an initial morphological length scale l0 will
be doubled in the doubling time T .

We may explicitly calculate T as a function of the initial length l0, and η:

T = T̂(l0, η) =
1

ε̃

∫ l0

ηl0

ds

f(l0 − s) − f(l0 + s)

=
1

ε̃

(
el0/2 + e−l0/2

) [
arctanh

(
e−

ηl0
2

)
− arctanh

(
e−

l0
2

)]
−

1

ε̃

(
ln

[
e

1−η
2 l0

]
+ ln

[
el0 − 1

]
− ln

[
el0 − el0(1−η)

])
. (5.1)

Remark 4 We view the dimensionless parameter η as measuring the deviation
of lengths in the coarsening structure from the mean length. Of course, this
implicitly assumes that the distribution of lengths around the mean is scale-
invariant throughout the coarsening. One may chose to go beyond self-similarity
and assume a dependence of η on the length scale l.

5.2 Theoretical coarsening law

Assuming self similarity in the coarsening process, we may iterate this period
doubling ansatz. This yields a geometric increase in the length scale in a known
time period. Idealizing the initial-length scale to be infinitesimally small relative
to the observed length scales, we deduce the following (implicit) theoretical
coarsening law for the morphological length scale lM as a function of time t.

t =

i=∞∑
i=1

T̂

(
lM
2i

, η

)
(5.2)
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Figure 7: Elementary pinching event

A numerical plot of this theoretical scaling law is displayed in Figure 8 for
ε̃ = .001 and η = .001. A numerical plot of the associated “infinitesimal scaling
exponent” is shown in Figure 9. One notes the surprising persistence of the
scaling L(t) ∼ t1/2 for ε � L ∼ 0(1), followed by a transition to the exponentially
slow regime as L → ∞.

The scaling law L(t) ∼ t1/2, which arises in the the regime L � 1, may be
understood by the following scaling arguement. First, there are two types of
length intervals between kink and anti-kink, distinguished by whether a kink
or anti-kink appears at the left end-point, and which we denote by Lk and La

respectively. It follows from (4.1) and (4.2) that

L̇k(t) = ε̃

(
1

eL−
a − 1

−
1

eL+
a − 1

)
(5.3)

L̇a(t) = ε̃

(
1

eL+
k − 1

−
1

eL−
k − 1

)
(5.4)

where the superscripts + and − denote right and left neighboring intervals.
Noting that

1

eL − 1
∼

1

L
as L → 0+ ,

the system (5.3) and (5.4) has the asymptotic form

L̇k(t) = ε̃

(
1

L−
a

−
1

L+
a

)
(5.5)

L̇a(t) = ε̃

(
1

L+
k

−
1

L−
k

)
(5.6)
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Figure 8: Numerical plot of the theoretical scaling law based on the period
doubling ansatz.

as L → 0+. Now, (5.5) and (5.6) are invariant with respect to the scaling

t → λ2t, l → λl. (5.7)

Hence, if there exists a universal law for the growth of the a characteristic length
scale L(t) associated with the dynamical system (5.5) and (5.6), then

L(t) ∼ t1/2.

However, since we have specified a coarsening path, we are also able to identify
the scaling constant from our theoretical formula as follows. First, the doubling
time (5.1) has the asymptotic form

T̂ (lM, η) =
1

4

(
η2 − 2 ln η − 1

)
l2M as lM → 0+.

Hence, the theoretical scaling law (5.2) yields

lM =

√
3

η2 − 2 ln η − 1
t1/2 as lM → 0+.

Note that scaling constant c(η) :=
√

3
η2−2 ln η−1

is monotone increasing in the
interval η ∈ (0, 1), and furthermore

lim
η→0+

c(η) = 0 and lim
η→1−

c(η) = ∞.

One may envision determining η from a numerical simulation of the full problem.
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Figure 9: The “infinitesimal scaling exponent” based on the period doubling
ansatz.

6 Conclusions

We have considered the coarsening dynamics of a two-phase convective Cahn-
Hilliard equation. A sharp interface theory for the evolution of phase boundaries
is derived through a matched asymptotic expansion arising when the phase
boundary width ε → 0+. To leading order the system is described by a nearest
neighbour dynamical system which coarsens in time through the coalesence of
phase boundaries. A pinching mechanism is identified through a linear stability
analysis as the dominant coarsening event. This is confirmed by numerical
simulations, which furthermore display a marked self-similarity in the coarsening
path. A self-similar period doubling ansatz, involving a scale invariant recursion
of the elementary pinching mechanism, is subsequently proposed as a description
of the entire coarsening path. This yields, in turn, a theoretical coarsening
law of the morphological length scale lM as a function of time t which is in
good qualitative agreement with both the direct computations of the coarsening
dynamical system performed here, and also the numerical simulations of the
convective Cahn-Hilliard equation [12].

The coarsening dynamical system approach developed here offers a flexi-
ble framework for the identification of coarsening laws in 1-D systems where
localised structures (defects) interact. It embodies the principle that the evolu-
tion of structure is essentially determined by the local structure of the defects
and there mutual interaction.
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Mathematics in the Sciences (MIS), Leipzig in the initial stages of this project
and later by the NSF N.I.R.T. grant # DMR-0102794. SHD was supported by
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A Matched asymptotic analysis

The governing equation (2.2) is singularly perturbed in the limit ε → 0+, and
so is referred to as the outer equation. In this section we perform the associated
matched asymptotic expansions. Since the parameter ε sets a length scale
for transitions, we shall see that the associated outer problem yields a sharp-
interface theory.

We assume the asymptotic expansion of (2.2) takes the form

q = q0(x) + q1(x)ε + ... (Outer expansion)
k(t, ε) = k0(t) + k1(t)ε + ... (Kink expansion)
a(t, ε) = a0(t) + a1(t)ε + .... (Anti-kink expansion)

The inner equation arises from re-scaling to the inner length scale ε (in units
of lP). Since the kinks k(t; ε) and anti-kinks a(t; ε) are in general moving, we
need to select an inner co-ordinate with respect to a moving frame. So, for the
kink at x = ki(t; ε) , we take the inner-coordinate X to be

X =
x − k(t; ε)

ε
,

and re-write (2.2) in terms of the inner solution Q(X, t) = q(x, t) as

ε2Qt − εk̇(t; ε)QX − εQQX =
(
Q3 − Q − QXX

)
XX

. (A.1)

We proceed in a similar fashion for the anti-kink a(t).
Now q satifies the conservation law

qt + Jx = 0

where
J = −Ŵ ′(q)x +

ε

2
q2 + ε2qxxx. (A.2)

Hence, across the kinks and anti-kinks we have the Rankine-Hugoniot relation:

k̇(t)[q]k(t;ε) = [J]k(t;ε), (R)

where [J]k(t;ε) and [q]k(t;ε) denote, respectively, the jump in the flux J and the
order parameter q across the kink at x = k(t; ε); similarly for the anti-kink.

Before proceeding with the matching, we convert the free boundary-value
problem associated with the outer solution to a fixed domain by introducing
the following co-ordinate transformation. Assume that the initial distribution
of kink and anti-kink locations is given by ki, ai ∈ R (i ∈ Z) where

ki < ai < ki+1 ∀i ∈ Z

17



We define Ψ : R × [O, T) × [0, ε̄) → R, through

Ψ(y, t, ε) :=

⎧⎪⎨
⎪⎩

ki(t, ε) + ai(t,ε)−ki(t,ε)
ai−ki (y − ki) x ∈ (ki, ai )

ai−1(t, ε) + ki(t,ε)−ai−1(t,ε)
ki−ai−1

(y − ai−1) x ∈ (ai−1, ki )

,

Now we introduce the velocity field V(y, t; ε) := Ψt(y, t, ε);

V(y, t; ε) =

⎧⎪⎨
⎪⎩

k̇i(t, ε) + ȧi(t,ε)−k̇i(t,ε)
ai−ki (y − ki) x ∈ (ki, ai )

ȧi−1(t, ε) + k̇i(t,ε)−ȧi−1(t,ε)
ki−ai−1

(y − ai−1) x ∈ (ai−1, ki )

,

and the piecewise constant (in y) stretch function S(y, t; ε):

S(y, t; ε) :=
1

∂Ψ
∂y

=

⎧⎪⎨
⎪⎩

ai−ki

ai(t,ε)−ki(t,ε) y ∈ (ki, ai )

ki−ai−1

ki(t,ε)−ai−1(t,ε) y ∈ (ki, ai−1 )

,

The outer equation (2.2) then takes the form

qt − Vqy − Sqqy = S2
[
Ŵ ′(q) − ε2S2qyy

]
yy

(A.3)

on each open interval (ki, ai) and (ai, ki+1).
Asymptotic match to O(1):
Setting ε = 0 we deduce from (A.1) that the inner solution has the form

Q0(X) := tanh X (A.4)

about the kink k(t; ε), and similarly, accross the anti-kink a(t; ε) we deduce

Q0(X) := − tanhX. (A.5)

We now match the leading order inner solutions (A.4) and (A.5) to the outer
solution. Taking first an kink/anti-kink interval (ki, ai) and matching to order
O(1) we deduce, from (A.3), (A.4), and (A.5), the following boundary-value
problem

(q0)t −
ai

0(t) − ki
0(t)

ai − ki
q0(q0)y =

(
ai

0(t) − ki
0(t)

ai − ki

)2 [
(q0)3 − q0

]
yy

q0

[
ki, t

]
= 1 = q0

[
ai, t

]
,

from which we conclude

q0(y, t) ≡ 1 for y ∈ (ki, ai). (A.6)

We deduce in a similar manner that

q0(y, t) ≡ −1 for y ∈ (ai, ki+1). (A.7)
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Noting (A.2), (A.6), and (A.7), it follows from the Rankine-Hugoniot relation
(R) that

k̇i
0(t) = 0 and ȧi

0(t) = 0. (A.8)

Asymptotic match to O(ε):
From (A.8) we see that the kink and anti-kink velocities are of order O(ε)

and therefore (A.1) is asymptotically equivalent through order O(ε) with the
time-independent equation

−εQQX =
(
Q3 − Q − QXX

)
XX

. (A.9)

Now (3.2) has two exact solutions K(X) and A(X) given by

K(X) :=

(
1 +

ε√
2

)1/2

tanh

[(
1 +

ε√
2

)1/2

X

]
(Kink)

and

A(X) := −

(
1 −

ε√
2

)1/2

tanh

[(
1 −

ε√
2

)1/2

X

]
, (Anti-Kink)

which will be matched to the outer solution. We note here that the asymptotic
values as X → ∞ of K(X) and A(X) are

lim
X→±∞ K(X) = ±

(
1 +

ε√
2

)1/2

, (A.10)

lim
X→±∞ A(X) = ∓

(
1 −

ε√
2

)1/2

. (A.11)

Returning to (A.3), we note that S = 1 + 0(ε) since k̇(t; ε) = 0(ε) = ȧ(t; ε).
So, it follows from (A.3), (A.6), (A.7) and the 0(ε) matching with (A.10) and
(A.11) that q1 satisfies the following boundary value problem:

(q1)t − (q1)y = [2q1]yy

q1

(
ki, t

)
=

1

2
√

2
, for q1

(
ai, t

)
= −

1

2
√

2
.

Also, proceeding in a similar manner for the anti-kink/kink interval (ai, ki+1),
we arrive at the companion boundary value problem

(q1)t + (q1)x = [2q1]xx

q1(ai, t) =
1

2
√

2
, for q1(ki+1, t) = −

1

2
√

2

We conclude that

q1(y, t) = q1(y) :=

⎧⎨
⎩

1
2
√

2
+ 1√

2
1−e[y−ai−(ki+1−ai)]

1−e−(ki+1−ai)
ai ≤ y ≤ ki+1

1
2
√

2
− ε√

2
1−e−[y−ki]

1−e−(ai−ki)
ki ≤ y ≤ ai.

(A.12)
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Hence, it follows from the Rankine-Hugoniot R, (A.2) and (A.12) that

k̇i
1(t) =

1

4
√

2

[
f̂
(
ai − ki

)
− f̂

(
ki − ai−1

)]
(A.13)

ȧi
1(t) =

1

4
√

2

[
f̂
(
ai − ki

)
− f̂

(
ki+1 − ai

)]
, (A.14)

where
f̂(l) :=

1

el − 1
.
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