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Abstract. Let Ω be a bounded domain in IR2, let H be a 2 × 2 matrix with det (H) = 1. Let ε > 0 and
consider the functional Iε (u) :=

R
Ω dist (Du (z) , SO (2) ∪ SO (2) H) + ε

˛
˛D2u (z)

˛
˛ dL2z over the class BF of

Lipschitz functions from Ω satisfying affine boundary condition F . It can be shown by convex integration
that there exists F �∈ SO (2) ∪ SO (2) H and u ∈ BF with I0 (u) = 0. In this paper we begin the study of the
asymptotics of mε := infBF ∩W2,1 Iε for such F . This is the simplest minimisation problem involving surface

energy in which we can hope to see the effects of convex integration solutions. The only known lower bounds
are lim infε→0

mε
ε

= ∞. In this paper we link the behavior of mε to the minimum of I0 over a suitable class

of piecewise affine functions. Let {τi} be a triangulation of Ω by triangles of diameter less than h and let Ah
F

denote the class of continuous functions that are piecewise affine on a triangulation {τi}. For function u ∈ AF

let ũ ∈ Ah
F be the interpolant, i.e. the function we obtain by defining ũ�τi

to be the affine interpolation of u

on the corners of τi. We show that if for some small β > 0 there exists u ∈ BF ∩ C2 ∩ Bilip with

Iε (u)

ε
≤ ε−β

then for h ≈ ε
√

β the interpolant ũ ∈ Ah
F satisfies I0 (ũ) ≤ h1−c

√
β .

Note that it is conjectured that infv∈Ah
F

I0 (v) ≈ h
1
3 and it is trivial that infv∈Ah

F
I0 (v) ≥ c0h so we reduce

the problem of non-trivial lower bounds on infBF ∩C2∩Bilip
Iε
ε

to the problem of non-trivial lower bounds on

infv∈Ah
F

I0. This latter point will be addressed in a forthcoming paper.
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1. Introduction

In the 1980’s from the work of Ball, James [1], [2] and Chipot, Kinderlehrer [5] a now well known model
for solid-solid phase transformations arose. In the model, microstructures observed in phase mixtures where
explained in terms of energy minimisation of deformations of the material.

Let u : Ω → IR3 be a deformation of the material which occupies a reference configuration Ω, the total free
energy of this deformation is given by

I (u) =
∫

Ω

φ (Du (x) , θ) dL3x (1)

where φ (., θ) is the free energy per unit volume in Ω at temperature θ. We fix θ and we normalize φ such that
infF φ (F, θ) = 0.

Formation of microstructure was shown to be closely related to the behavior of minimising sequences of I.
Many features of minimising sequences can be understood from the set {F : φ (F ) = 0}. This set is known as
the energy wells of the functional I.

Certain natural assumptions on the behavior of φ, in particular frame indifference, imply that K has to be
of the form

K = {SO (3)Ai : i = 1, 2, . . . n} (2)
where the Ai are symmetry related and depend on the action of the phase transition.

Given F ∈Mn×n let BF denote the set of functions u : Ω → IRn satisfying u (x) = F (x) for all x ∈ ∂Ω. The
set of F for which infu∈BF I = 0 turns out to agree with the quasiconvex hull Kqc (see [22] for the relevant
notions). For any F ∈ int (Kqc) it is possible to lower the energy of functional I with a relatively simple
function u ∈ BF that is built up from a simple (finite) layering of regions on which Du is made to be affine,
these functions are known as laminates .

Mathematically speaking, the first real surprise in this theory is the existence of exact minimisers of func-
tional I. Formally; given F ∈ Kqc there exists a function u ∈ BF such that

Du (x) ∈ K for a.e. x ∈ Ω. (3)

Even though functional I is not quasiconvex (by the very existence of such exact solutions) and therefor not
lower semicontinuous with respect to weak convergence, absolute minimizers exist and can be constructed.

Following the work of Dacorogna and Marcellini [8], Müller and Šverák [18], and later by Sychev [24] and
Kirchheim [10] there now exist a wide variety of methods to prove the existence of such solutions.

The approach of Müller, Šverák was to apply the theory of convex integration developed by Gromov [12];
convex integration is a far reaching generalisation of the methods developed by Nash and Kuiper in their work
on isometric embeddings.

Dacorogna and Marcellini used Baire category methods that were introduced by Cellina [3] and developed
by DeBlasi and Pianigiani in the context of Cauchy problems for ordinary differential inclusions.

The method of Müller, Šverák is in some sense more constructive in that the functions u satisfying (3) are
the limit in the W 1,1 norm of a sequence of explicitly constructed functions. These functions are, roughly
speaking, “laminate like” in nature. Surprisingly, strong convergence in W 1,1 norm is achieved by making the
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functions oscillate faster and faster. The limiting function is a wild object. In fact it has been proved that
solutions to (3) must be such that Du �∈ BV (Ω), see [7].

So exact minimisers of functional I are only possible due to the fact that I takes no account of the ”cost”
of oscillations. This is physically unrealistic. Since oscillations in minimisers occur when the derivative of the
function jumps from one well, say SO (3)Ai, to another well SO (3)Aj , the ”amount” of oscillation is related
to the total ”surface area” of the regions in which the derivative of the minimizer lies in specific wells, this is
referred to as the surface energy . The bulk energy is the

∫
Ω
φ (·) dL2x part of the functional.

Functional I was designed to model situations for which the surface energy is small. From the mathematical
perspective the simplest adaption of the functional that takes account of surface energy is:

Iε (u) =
∫

Ω

φ (Du (x)) + ε
∣∣D2u (x)

∣∣ dL2x (4)

This functional is minimised over functions u ∈W 2,1 (Ω) ∩ BF .

1.1. The question: The effect of Surface Energy on Microstructure. The question of interest is
whether the unexpected existence of exact solutions to inclusion (3) having affine boundary condition has any
effect on the scaling of infW 2,1∩BF

Iε as ε→ 0. In some sense this could be expected, in words; as ε→ 0 surface
energy becomes arbitrarily cheap, we can concern ourselves less and less with oscillations and just concentrate
on minimizing the bulk part of the functional. It may there for be reasonable to expect that minimisers for
sufficiently small ε are something like slightly smoothed out solutions of (3).

This question is important because convex integration solutions are important. Recently, long standing
questions as to the regularity of systems of elliptic and parabolic equations have received surprising counter
examples via convex integration methods, [20], [21]. Specifically it has been proved there exist nowhere C1

solutions to the Euler Lagrange equations of a strictly quasiconvex functional. This is in contrast to the
well known result of Evans [9] that minimisers of strictly quasiconvex functions are C1,α on a dense open,
full measure subset of Ω. In [21] a parabolic system that starts from smooth initial data and evolves into a
function that is nowhere C1 is exhibited.

Let K = SO (2) ∪ SO (2)H , F ∈ intKqc. The differential inclusion

Du ∈ K a.e. (5)

for function u ∈ BF is the simplest convex integration result. And the minimisation problem

inf
u∈BF ∩W 2,1

Iε (u) (6)

is the simplest “physical” situation where we could hope to see the effects of convex integration. The question
of asymptotics of infBF

Iε

ε is a simple case of the more fundamental question; how much do convex integration
solutions oscillate?

The only known lower bounds on (6) are infu∈BF

Iε(u)
ε → ∞ which follows from the result of Dolzmann,

Müller [7].
As a consequence of Šverák’s characterization of the wells K, [23] (namely that the quasiconvex hull is in

the second laminate convex hull) it is easy to see

inf
u∈BF ∩W 2,1

Iε (u)
ε

< cε−
2
3 .

If convex integration type solutions start having an effect on our functional for sufficiently small ε then we
can expect to be able to ”beat” the scaling cε−

2
3 . Conversely if it could be shown that infAF ∩W 2,1

Iε

ε ≥ c′ε−
2
3

this would say that convex integration solutions do not affect functional Iε.
Note that the only method by which non-trivial lower bounds on surface energy have previously been

obtained for simplified (finite well) versions of functional Iε is to use the smallness of the bulk energy of
function u to show that u must lie close to the affine boundary condition. Since the affine boundary condition
is a non-trivial laminate convex combination of matrices in the wells, the only way u can remain close the
affine boundary is if the derivative of u, going up through region Ω, jumps continuously from one well to
another. In this way lower bounds on surface energy can be easily harvested [17],[13].
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In our case, by the very existence of convex integration solutions, functions even with zero bulk energy need
not behave anything like the affine boundary. Hence it is necessary to somehow use the smallness of surface
and bulk energies in combination to control the function.

The main contribution of this paper is to reduce the problem of (non-trivial) lower bounds for Iε

ε to the
problem of (non-trivial) lower bounds for the finite element approximation of I. In the follow up to this
paper [14] we will establish such bounds. Before stating our results we need to introduce the notation and
background to explain the scaling of the finite element approximations of I.

2. Background and Notation

We let H denote a diagonal matrix of the form

H =
(
σ̃ 0
0 σ̃−1

)
for some σ̃ ∈ (0, 1). Let σ = min

{
σ̃, 10000−1

}
and we assume throughout that σ is radically smaller than any

small constant that might appear in the proof.
Let P (a, φ1, φ2, r) denote the parallelogram centered on a of side length equal to r with sides parallel to

φ1 and φ2. We will refer to this as a skewcube .
We let F (a, v1, v2) denote the parallelogram centered on a with one side parallel to v1 of length |v1| and

the other side parallel to v2 of length |v2|.
We will often be required to consider ODEs of the form

X (0) = x0 and
dX

dt
(t0) = DΨ (X (t0))

where Ψ is some C2 scalar function. Informally when we use the expression “run X forward in time until
it hits ..“ we consider the set {X (t) : t > 0} and we find the smallest t1 > 0 such that X (t1) reaches the
boundary of some set. The expression “run X backward in time until it hits ..“ is defined similarly.

Let

D (σ) :=
{
M ∈M2×2 : sup

v∈S
|Mv| ≤ 1

σ2
and inf

v∈S
|Mv| ≥ σ2

}
.

and we let

AF (Ω) =
{
u ∈ C2 (int (Ω)) : u (x) = F (x) for x ∈ ∂Ω and Du (x) ∈ D (σ) for any x ∈ int (Ω)

}
.

We will be considering minimisers of functional Iε over this function class. As we will be dealing with the
case det (H) = 1 a solution to the differential inclusion (5) is given by method of Müller and Šverák ([19]).
Their method yields easily the existence of a sequence uk ∈ AF (Ω) such that uk → u in W 1,1 (Ω) for some
Lipschitz function u that solves (5).

In this paper we will have to deal with many constants, all of them in one way or the other dependent on
the eigenvalues of H . We adopt the following convention; constants that carry through the whole proof from
lemma to lemma will be denoted c1, c2, . . . . Inside each lemma the “local” constant will be denoted c1, c2, . . . .
In each lemma “we start the clock back” and begin by numbering our local constants from c1. We also make
the convention that c1 ≤ c2 ≤ c3 . . . .

2.1. Finite Element Approximations. As is standard in finite element approximations, we will say a
triangulation (denoted 	ε) of Ω of size ε is a collection of pairwise disjoint triangles {τi} all of diameter ε such
that

Ω ⊂
⋃

τi∈�ε

τi.

Given a function u, we can approximate u uniformly by a function ũ that is piecewise affine on the triangles
of 	ε by letting ũ�τi

be the affine map we obtain from interpolating u on the corners of τi. We will call ũ
the F.E. approximation of u. When we replace the function class of a minimisation problem with respect to
functional J , with a the class of F.E. approximations to the functions in the function class, this is known as
the finite element approximation to J .
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Finite element approximations of functionals such as I have received much interest, for example see [15],[17],
[4]. In this paper our interest in these approximations comes mainly from the fact that they provide a conve-
nient intermediary step for the study of surface energy problems: Given a triangulation for which the edges
of the triangles are not parallel to the rank-1 connections of the wells K, every time the F.E. approximation
to a function jumps from one well to another, there must be at least one triangle which is nowhere near the
wells. More informally; if for example we have an F.E. approximation to a laminate, every triangle that cuts
through an interface between the regions where the derivative of the laminate takes different wells will be such
that the affine map we get from interpolating the laminate on the corners of the triangle will have its linear
part some distance from the wells.

In this way, F.E. approximations reflect a competition between “surface energy” as given by the error con-
tributed from jumps in the derivative, and bulk energy which in the case of “laminate like” F.E. approximations
is basically the width of the interpolation layer.

F.E. approximations of a three well functional Ĩ of the form I, over a function class having affine boundary
condition in the second laminate convex hull of the wells have been studied by Chipot [4] and the author
[13]. If 	h denotes a triangulation of size h and Ah

F denotes the set of functions that are piecewise affine on
	h satisfying the affine boundary condition F . Chipot showed infu∈Ah

F
Ĩ (u) ≤ Ch

1
3 and the lower bound of

infu∈Ah
F
Ĩ (u) ≥ ch

1
3 was provided by the author. From Šverák’s characterization [23] we even know the exact

arrangement of rank-1 connections between the wells SO (2) ∪ SO (2)H and a matrix in the interior of the
quasiconvex hull. The finite well functional studied in [13] precisely mimics these rank-1 connections. We feel
confident in conjecturing:

Conjecture 1. Let K := SO (2)∪ SO (2)H, H =
(

σ 0
0 σ−1

)
. Let 	h be a triangulation of Ω of size h with the

edges of the triangles not in the set of rank-1 direction of K.
Let Ah

F denote the set of function with affine boundary condition F that are piecewise affine on the trian-
gulation 	h. Let d (·, B) denote the Euclidean distance away from set B. Let I (u) :=

∫
Ω
d (Du (x) ,K) dL2x

then we have
inf

u∈Ah
F

I (u) ≥ ch
1
3

The contribution of this paper that is most recognizably relevant to the asymptotics of infu∈AF

Iε(u)
ε is to

reduce the proof of lower bounds of the form infu∈AF

Iε(u)
ε ≥ ε−β (for sufficiently small β) to lower bounds of

the form infv∈Ah
F
I (v) ≥ h1−c

√
β for h ≈ ε

√
β .

3. Statement of Results

Theorem 1. Given region Ω and triangulation 	ε with triangulation size ε. Let m1 ≥ 2048. Let v ∈ AF (Ω).
If we have for some small ε ∫

Ω

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x ≤ εm1

and ∫
Ω

∣∣D2v (x)
∣∣ dL2x ≤ ε

− 4096
m1

then the F.E. approximation ṽε of v on 	ε satisfies

I (ṽε) ≤ cε
1− 8192

m1 .

This Theorem is basically a consequence of the following Theorem.

Theorem 2. Given region Ω and triangulation 	ε with triangulation size ε. Let m0 ≥ 2048. Let v ∈ AF (Ω)
and let skewcube S := P (a, φ1, φ2, cε) be such that N ε

σ2
(S) ⊂ Ω. If for some small κ > 0 we have∫

S

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x ≤ κ
7m0

2 +8ε2

then either
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• ∫
S

∣∣D2v (x)
∣∣ dL2x ≥ c0κε

• or given triangle τi ∈ 	ε containing a, if Li denotes the linear part of the affine map obtain from
interpolating v on the corners of τi then

d (Li, SO (2) ∪ SO (2)H) < κ
m0
1024 .

Theorem 1 has as an easy corollary

Corrolary 1. Given region Ω and triangulation 	h with triangulation size h. Let m1 ≥ 2048. If v ∈ AF (Ω)
is such that

Iε (v)
ε

≤ ε
− 2048

m2
1

then for h := ε
m2

1−2048

m3
1 , the F.E. approximation ṽh of v on 	h satisfies

I (ṽh) ≤ h
1− 8192

m1 .

The bulk of this paper will be devoted to proving Theorem 2.

Acknowledgments: I am greatly indebted to Bernd Kirchheim for the many useful conversations and
suggestions that facilitated my entry into this subject. Thanks to Bob Jerrard for many suggestions, expla-
nations and for great generosity with his time during our stay at the MPI, similar thanks to Micheal Sychev.
Thanks also to Stefan Müller for improvements to the introductory sections. This work was carried out with
the support of an EPDI fellowship, mostly during the author’s stay at the MPI in Leipzig and completed
during the winter at the Mathematics Department of the University of Jyäskylä, the hospitality of both these
institutes is gratefully acknowledged.
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4. Plan of Proof

The proof is long, but essentially made up of only four basic ideas. We explain them in chronological order
(which is not the order they appear in the proof) because this still seems the best way to explain how the
proof builds up.

4.1. The pull back idea. To begin with note that there are two linearly independent vectors φ1 and φ2 such
that |Hφi| = 1 for i = 1, 2. See for example Fig. 14. Every unit vector between φ1 and φ2 (denoted by Ξ2)
will be mapped by H to a vector of size strictly less than 1. Similarly every vector between −φ1 and −φ2

(denoted by Ξ1) will by shrunk by H . For this reason Ξ1 ∪ Ξ2 will be called the shrink directions.
Now the most basic example of a function satisfying the affine boundary condition that minimizes bulk

energy is a laminate . In the reference configuration this can be seen as a function defined on a collection of
strips running parallel to either φ1 or φ2 for which the derivative of the laminate alternates from one strip
to the next from being in SO (2) to being in SO (2)H . For simplicity, let us suppose for the time being the
strips are parallel to φ1 and let us denote the laminate by u. Now if all our strips are of width w, by Fubini
and the fact that det (H) = 1 and |Hφ1| = 1 we know that the images of our strips under the action of u will
be to send them to strips of width w, as shown Fig. 1.

φ 1

φ 2
Ξ

Ξ

Q
R

TS

P

1

2

Figure 1

Now if we want a path that travels through the strips in the image in the quickest way possible (i.e. a
path that goes from one strip to the next with the minimum length possible) then clearly such a path would
traverse at right angles to the strips in the image, as shown in Fig. 1. Let P denote this path. Now we consider
the pull back of P in the image. Let t (z) denote the tangent to the path u−1 (P ) at point z, so we have the
following formula: H1 (P ) =

∫
u−1(P ) |Du (x) t (x)| dH1x. Let Q denote a subsegment of the path that is given

by the path intersected with one strip in the image (denoted S, see Fig. 1) for which Du�u−1(S) ∈ SO (2). Now
H1 (Q) = w and as u−1 (Q) connects the edges of u−1 (S), so H1

(
u−1 (Q)

) ≥ w. Since Du�u−1(S) ∈ SO (2)
we have

w = H1 (Q) =
∫

u−1(Q)

|Du (x) t (x)| dH1x = H1
(
u−1 (Q)

)
.

Thus u−1 (Q) must be a straight line going through S perpendicular to φ1. Now let R denote the subsegment
of the path given by the path intersected with a strip in the image (denoted by T ) for which the Du�u−1(T ) ∈
SO (2)H . It should be obvious that u−1 (R) is not going to be a line perpendicular to φ1, since if our laminate
pulled back two linearly independent straight lines to straight lines it would be affine. On the other hand, by
the same argument as for Q, if u−1 (R) isn’t perpendicular to φ1 and so H1

(
u−1 (R)

)
> w, then (by the fact

that u is a laminate and so u−1 (R) is a straight line) all the points x ∈ u−1 (R) must be such that t (x) ∈ Ξ1,
i.e. t (x) must be in the shrink directions. We examine the situation more closely, see Fig. 2.

Now u−1 (Q) needs to connect the edges of u−1 (T ) (which are of course distance w apart) whilst keeping
the integral

∫
u−1(Q) |Du (x) t (x)| dH1x small. As can be seen from Fig. 14, the vector that shrinks most under

the action of H is right in the middle of −φ1, −φ2. We denote this vector by ψ0
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φ 1

φ 2

Ξ

w

<>1

u (T)−1

Ξ

1

2

Figure 2

Let W be the straight line connecting the edges of u−1 (T ), which minimizes
∫

W
|Ht (x)| dH1x. In deciding

the angle of W there is a compromise between having W close to parallel with ψ0 and trying to keep the
length of W not too much bigger than w. Its an exercise to calculate the optimal direction , we will denote it
♦1.

Now u−1 (Q) connects the edges of u−1 (T ) and w = H1 (Q) =
∫

u−1(Q) |Ht (x)| dH1x. So since w minimizes
we must have that

∫
W |Ht (x)| dH1x ≤ w. If the inequality was strictly less, then as u (W ) connects the edges

of T , so we would have

w >

∫
W

|Ht (x)| dH1x = H1 (u (W )) ≥ w,

contradiction. So u−1 (Q) is the minimiser and hence u−1 (Q) must be parallel to ♦1.
So we know exactly what the pull back of p looks like; in strips in the reference with derivative in SO (2)

it is forms a line perpendicular to φ1. And in strips in the reference with derivative in SO (2)H it is forms a
line parallel to ♦1. As shown on Fig. 1.

Now we wish to apply what we have learned to a general function v : Ω → IR2 with small bulk energy (i.e.∫
Ω
d (Dv (x) , SO (2) ∪ SO (2)H) dL2x < εL2 (Ω)). We take lines through the reference going in direction φ1

going through Ω and consider their image under v, as shown in Fig. 3.

φ 1

φ 2
Ξ

l
l

v(l ) v(l )

<w

12

2
1

2

Figure 3
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Suppose for two lines l1, l2 we have that v (l1), v (l2) are distance less than w apart at some point, as shown.
Let l be the line of length less than w joining v (l1) to v (l2). We consider the pull back v−1 (l). Let n1 denote
the anticlockwise normal to φ1. Now as we have an L1 bound we know that most of the points x ∈ v−1 (l) are
close to the wells, if x ∈ v−1 (l) such that Du (x) ∈ N√

ε (SO (2)) it doesn’t matter which direction the tangent
t (x) is in. On the other hand for those x ∈ v−1 (l) such that Dv (x) ∈ N√

ε (SO (2)H) the worst thing that
can happen is that t (x) = ♦1. But even in this case (as we know from the example we studied) l will “fill up”
according to how far in direction n1 path v−1 (l) travels. So we have

H1 (l) =
∫

v−1(l)

|Dv (x) t (x)| dH1x ≥ (1 −√
ε)L1

(
Pφ⊥

1

(
v−1 (l)

))
=
(
1 −√

ε
)
w.

So this implies the images of lines l1 and l2 must be (by at least (1 −√
ε)w) “pushed over” from one another.

This is our first restriction on the geometry of the function we want to study, just coming from smallness of
bulk energy.

4.2. ODE method. We consider the same picture as before but from a different perspective. So l1, l2, . . . are
lines in direction φ1 going through Ω and we consider the images v (l1) , v (l2) , . . . . Now supposing we were
on a point x ∈ v (l1) and we wanted to get to v (l2) via a path of the shortest length.

φ 1

φ 2
Ξ

v(l )v(l )2 1 ll 12

x
ψ(  )x1

2

Figure 4

The most natural way to do it would be to consider the vector field given by the derivative of the function
Ψ1 : v (Ω) → IR2 defined by Ψ1 (x) := v−1 (x) · n1. If we “follow” the vector field from point x it will indeed
take us along the optimal path to v (l2). But “following” a vector field is exactly finding an integral curve for
a vector field, which means solving the following ODE

X (0) = x
dX

dt
(t1) = DΨ1 (X (t1)) .

Now if point y ∈ {X (t) : t > 0} is such that Dv
(
v−1 (y)

) ∈ N√
ε (SO (2) ∪ SO (2)H) we calculate that

DΨ1 (y) = Dv−T (y) · n1. Letting R
(
v−1 (y)

)
S
(
v−1 (y)

)
:= Dv

(
v−1 (y)

)
be the polar decomposition of

Dv
(
v−1 (y)

)
(i.e. R

(
v−1 (y)

) ∈ SO (2) and S
(
v−1 (y)

) ∈M sym) we haveDv−T (y)n1 = R
(
v−1 (y)

)
S−1
(
v−1 (y)

)
n1

and as S
(
v−1 (y)

) ∈ N√
ε ({Id,H}) so either S

(
v−1 (y)

) ∈ N√
ε (Id) and so

∣∣S (v−1 (y)
)
n1

∣∣ ≈ 1 or S
(
v−1 (y)

) ∈
N√

ε (H) and so
∣∣S (v−1 (y)

)
n1

∣∣ ≈ ∣∣H−1n1

∣∣ = 1 (see Fig. 14). So assuming the path of the vector field is such
that Dv stays close to the wells, if Λ is a connected subset of the set {X (t) : t > 0} with end points e ∈ v (l2),
s ∈ v (l1) and with the property

∫
Λ
d
(
Dv
(
v−1 (x)

)
, SO (2) ∪ SO (2)H

)
dH1x < εH1 (Λ) then

|Ψ1 (e) − Ψ1 (s)| =
∣∣(v−1 (e) − v−1 (s)

) · n1

∣∣ ≈ H1 (Λ) .

The precise statement of this is given by Lemma 3. So on Fig. 4, if v−1 (s) ∈ l1 and v−1 (e) ∈ l2 then
H1 (Λ) ≈ w, however if Λ is a wavy line, then |e− s| < H1 (Λ) and so we have e ∈ v (l2) is distance less than
w away from s ∈ v (l1). This contradicts the “pull back” idea. And so Λ must form a nearly straight line.
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4.3. The Coarea Alternative. From the “pull back idea” and the “ODE method” it seems we are able to
gain quite a lot of control of our function v just by using bulk energy. The catch is that whilst it is not hard
(by Fubini and the Area Formula) to find lines in the image for which Dv

(
v−1 (·)) stays close to the wells, its

much harder to find integral curves to the vector field DΨ1 with this property. We require a kind of curvilinear
version of Fubini and this of course is nothing other than the Coarea formula.

To invoke the Coarea formula we need to define a function Θ1 : v (Ω) → IR such that the level sets Θ−1
1 (t)

form integral curves of DΨ1. By smoothness of u and hence of DΨ1 and so by uniqueness of ODE solutions, its
easy to see that such a function exists. Let a be the center of Ω, in its crudest possible manifestation we define
Θ1 in the following way: For any x ∈ v (Ω) we run the ODE that forms the integral curve of DΨ1 containing x
until we reach v ((a+ 〈φ1〉) ∩ Ω) (for easy reasons the integral curve must intersect this 1-set at only one point)
we define p (x) to be the point of v ((a+ 〈φ1〉) ∩ Ω) that we reach, then we define Θ1 (x) := v−1 (p (x)) · φ1.
Let J (x) := d

(
Dv
(
v−1 (x)

)
, SO (2) ∪ SO (2)H

)
, the coarea formula tells us∫

Ω

J (x) |DΘ1 (x)| dL2x =
∫

IR

∫
Θ−1

1 (t)

J (x) dH1xdL1t.

So assuming the expression on the left hand side is small we are guaranteed the existence of many integral
curves with small bulk energy. However by the existence of an abundance of functions with arbitrarily small
bulk energy that are nothing like close to being affine, smallness of

∫
Ω J (x) |DΘ1 (x)| dL2x is obvious a non-

trivial issue. It is here that we finally have to use the information we have about the surface energy of
v.

If
∫

v(Ω)
J (x) |DΘ1 (x)| dL2x is large, then we must (by an application of the coarea formula with re-

spect to the lines v ((z + 〈φ1〉) ∩ Ω) using |DΨ1| as the Jacobian) be able to find a point z ∈ Ω such that∫
v((z+〈φ1〉)∩Ω) J (x) dH1x is very small but∫

v((z+〈φ1〉)∩Ω)

J (x) |DΘ1 (x)| dL2x is big. (7)

So there must exist a set B ⊂ v ((z + 〈φ1〉) ∩ Ω) of quite small H1 measure such that
∫

B |DΘ1 (x)| dH1x is
big. Now considering the pull back of the integral curves into the reference configuration gives us Figure 5.

φ 1

φ 2
Ξ

a1

b
d1

c

1

1

z

a

2

Figure 5

We arrive at this diagram in the following way: Firstly its an exercise to see that lines of the form v (〈φ1〉 + z)
form integral curves to DΘ1. So we can find a collection of intervals [ak, bk] ⊂ (〈φ1〉 + z) such that∫

S
k v([ak,bk])

|DΘ1 (x)| dH1x =
∑
k∈IN

Θ1 (bk) − Θ1 (ak) is big.

On the other hand by definition of Θ1 this means the integral curves running from the endpoints of each
interval [ak, bk] must be splayed out as is shown. We let ck denote the point in a + 〈φ1〉 reached from ak by
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the pullback of the integral curve that goes through v (ak) and let dk be the point in a+ 〈φ1〉 reached from bk
by the pullback of the integral curve that goes through v (bk), as shown on Fig. 5.

Recall by polar decomposition of the derivative; Dv (x) =: R (x)S (x) we have R (x) ∈ SO (2), S (x) ∈
M sym. Its a calculation to see that if t (x) denotes the tangent to pull back of the integral curve at x, then

t (x) := S−1 (x)S−1 (x)n1. (8)

Now we know from the fundamental theorem of calculus that the integral of the difference of the tangents
to the pull backs of the integral curves starting at ak, bk must be bigger than |ck−dk|

2 . From (8) the difference
in tangents from one curve to the next is a lower bound for the difference in Dv between these two curves, so
we have an inequality of the following form.∫

Ω

∣∣D2v (x)
∣∣ dL2x ≥

∑
k

|ck − dk|
2

≈ 1
2

∫
B

|DΘ1 (x)| dH1x ≈ c0

∫
v(z+〈φ1〉)

J (x) |DΘ1 (x)| dH1x.

So we have the “Coarea alternative” either∫
Ω

∣∣D2v (x)
∣∣ dL2x is not small

or ∫
v(Ω)

J (x) |DΘ1 (x)| dL2x is small

and we can find many integral curves with small bulk energy. The most basic form of the coarea alternative
is given by Lemma 10.

4.4. Finite element reduction. If we have region Π such that
∫

v(Π) J (x) |DΘi (x)|dL2x is small for i = 1, 2,
by the pull back idea and the ODE method we know that we can find many integral curves of the form Θ−1

1 (t)
and Θ−1

2 (t) (where Θi denotes the level set function for Ψi) which form approximate straight lines. We know
from our analysis of the laminate example in section 4.1, exactly what the pull back of straight lines look
like. Since Dv stays close to the wells along our integral curves Θ−1

i (t), by the same arguments we end up
being able to show that the pull back of Θ−1

1 (t) and Θ−1
2 (t) have very much the same form. Informally; our

control of the integral curves
{
Θ−1

1 (t) : t ∈ R
}

says that our function v has to be something like a laminate
with strips parallel to φ1. And our control of integral curves

{
Θ−1

2 (t) : t ∈ R
}

says that v has to be something
like a laminate with strips parallel to φ2. The only way v can be both these things is if Dv�Π ≈ R1H for some
R1 ∈ SO (2) or Dv�Π ≈ R2 for some R2 ∈ SO (2).

So the natural idea is to cut Ω into triangular subregions (i.e. take a triangulation of Ω) of roughly fixed
size. Denote these regions as {τi}. For each τi, by the “coarea alternative” and what we have shown, either∫

τi

∣∣D2v (x)
∣∣ dL2x is not small

or
Dv�τi

≈ RS

for some R ∈ SO (2) and some S ∈ {Id,H}. So if we let ṽ be the function we obtain by interpolating v on
the corners of each τi (i.e. for each τi the affine function we obtain from interpolating v on the corners of τi
is given by ṽ�τi

), then we can expect I (ṽ) to be quite small, assuming the bulk and surfaces energies of v are
small enough.

This is how we reduce the problem to the problem of lower bounds for the finite element approximation of
I.

In truth, the “coarea alternative” we apply to each τi is considerably more subtle than the argument de-
scribed here, but the basic ideas are the same. When needed we will preface the proof of the more intricate
lemmas with a preproof to indicate how the argument goes.
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5. Preliminary Lemmas

5.1. The vector field DΨi.

5.1.1. Traveling in Cones.
Here we set up one of the basic lemmas about integral curves to the vector field DΨi. Quite simply this lemma
says that when we pull back with v−1 one such integral curve, the resulting curve will be a Lipschitz graph over
the line φ⊥i . More informally, the pull back of the integral curve will always travel in cones. The proof is just
a calculation.

Lemma 1. Let v ∈ AF (Ω). Let φ1, φ2 ∈ S1 be the rank-1 directions of H, let ni ∈ S1 be the counterclockwise
normal to φi for i = 1, 2. Let

X+ (x, v, α) :=
{
z ∈ IR2 :

∣∣(z − x) · v⊥∣∣ ≤ α (z − x) · v, (z − x) · v > 0
}
.

be the standard one sided cone. For i ∈ {1, 2} given function v ∈ AF (Ω) we can define a function Ψi : v (Ω) →
IR in the following way:

Ψi (x) = v−1 (x) · ni.

By smoothness of v the vector field
DΨi : v (Ω) → IR2

is smooth. For any x0 ∈ IR2 if we solve the ODE
dX

dt
(t) = DΨ (X (t))

X(0) = x0,

then the path X has the property

v−1 (X (t)) ∈ X+

(
v−1 (x0) , ni,

1
σ6

)
∀ t ∈ IR+ ∩ {t : X (t) ∈ v (Ω)}

and

v−1 (X (t)) ∈ X+

(
v−1 (x0) ,−ni,

1
σ6

)
∀ t ∈ IR− ∩ {t : X (t) ∈ v (Ω)}

Proof. Let i ∈ {1, 2} and let
Ψi (x) = v−1 (x) · ni.

Given x0 ∈ IR2 and let X : IR+ → IR2 be a solution of the ode; X (0) = x0,
dX

dt
(t0) = DΨi (X (t0)) .

Let z0 = X (t0) for some t0 > 0, so
dX

dt
(t0) = DΨi (z0)

and note
DΨi (z0) = D

(
v−1 (z0) · ni

)
= Dv−T

(
v−1 (z0)

)
ni. (9)

Since det (Dv (x)) > σ2 for every x ∈ IR2, we have the following decomposition;

Dv (x) = R (x)S (x) (10)

for some R (x) ∈ SO (2) and some positive definite symmetric matrix S (x). So

Dv−T
(
v−1 (z0)

)
= R
(
v−1 (z0)

)
S−1
(
v−1 (z0)

)
. (11)

Hence
dX

dt
(t0) = R

(
v−1 (X (t0))

)
S−1
(
v−1 (X (t0))

)
ni. (12)

Let Y : IR+ → IR2 be the path defined by

Y (t) := v−1 (X (t)) ,
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so for any t0 > 0 let vt0 be the (non-normalised) tangent to path Y at point Y (t0), so

vt0 =
dY

dt
(t0) = Dv−1 (X (t0))

dX

dt
(t0) , (13)

and as Dv−1 (X (t0)) =
(
Dv
(
v−1 (X (t0))

))−1 putting (10), (12) and (13) together

[Dv (Y (t0))] vt0

(10)
= [R (Y (t0))S (Y (t0))] vt0

(13)
=

dX

dt
(t0)

(12)
=

[
R (Y (t0))S−1 (Y (t0))

]
ni.

This gives;
vt0 =

[
S−1 (Y (t0))S−1 (Y (t0))

]
ni. (14)

Now its easy to see that S−1 (·)S−1 (·) is symmetric. If we let λ2 > 0 and λ2 > 0 denote the eigenvalues of
S−1 then the eigenvalues S−1 (·)S−1 (·) will be λ2

2 > 0 and λ2
2 > 0 and in particular there exits a unitary

matrix U such that UTS−1 (·)S−1 (·)U = D where D is a diagonal matrix with entries λ2
2 and λ2

2. So for any
m =

(
m1
m2

) ∈ S1, letting m̃ = UTm we have

m · S−1 (·)S−1 (·)m = m̃ ·Dm̃ = λ2
1m

2
1 + λ2

2m
2
2 > σ2

and so we have
dY

dt
(t0) · ni ≥ σ2. (15)

Now from (13) and (14) we have∣∣∣∣dYdt (t0)
∣∣∣∣2 =

∣∣(S−1 (Y (t0)) · S−1 (Y (t0))
) · ni

∣∣2 ≤ 1
σ4
. (16)

Note from (15), (16) we have

Y (t) ∈ X+

(
v−1 (x0) , ni,

1
σ6

)
(17)

for all t > 0.
In exactly the same way, if we solve the ode X (0) = x0 and

dX

dt
(t0) = −DΨi (X (t0))

we can show that if Y (t0) = v−1 (X (t0)) then

Y (t) ∈ X+

(
v−1 (x0) ,−ni,

1
σ6

)
, (18)

and this completes the proof. �
5.1.2. The level set function.
As noted in the introduction (section 4.3), we will need to integrate up our integral curves with with the coarea
formula. To do this we require a function whose level sets form the integral curves. Here such a function is
defined and its basic properties are proved.

Lemma 2. Let v ∈ AF (Ω) and let S = P (a, φ1, φ2, ε) be such that N ε
σ9

(S) ⊂ Ω. Let i ∈ {1, 2} and let
Ψi (x) := v−1 (x) · ni.

Take q ∈ S. We define Υq := (q + 〈φ1〉) ∩ Ω. We can define function

Θi
q : v (S) → IR

such that for any x0 ∈ v (S), the path defined by the ODE

X(0) = x0

dX

dt
(t) = DΨi (X (t))

(19)
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is such that there exists a unique t0 ∈ IR for which

X (t0) ∈ v
(
Υi

q

)
,

{X (t) : t ∈ IR} = Θi −1
q

(
Θi

q (X (t0))
)
.

and
sup

x∈v(S)

∣∣Θi
q (x)
∣∣ < 2ε

σ2
. (20)

Proof. To start, we note that for any x0 ∈ v (S) by smoothness of v on Ω0 we can uniquely solve the ode
X(0) = x0

dX

dt
(t) = DΨi (X (t)) .

(21)

Let s (x0) be the first point of ∂v (Ω) to be hit by the path X going backwards in time from x0. And let
e (x0) be the first point of ∂v (Ω) to be hit by the path X going forwards in time from x0. Let π1 ∈ IR be the
unique number such that X (π1) = s (x0) and let π2 ∈ IR be the unique number such that X (π2) = e (x0). By
definition; for any t ∈ [π1, π2] we have v (t) ∈ v (Ω). Let I (t0) := {X (t) : t ∈ [π1, π2]}. Let T (x0) := [π1, π2].

Now I (x0) is the continuous image of a connected interval, so is connected.
By Lemma 1 we know{

v−1 (X (t)) : t ∈ IR+ ∩ T (x0)
} ⊂ X+

(
v−1 (x0) , ni,

1
σ6

)
{
v−1 (X (t)) : t ∈ IR− ∩ T (x0)

} ⊂ X+

(
v−1 (x0) ,−ni,

1
σ6

)
.

(22)

So from (22) we have that for any x ∈ P〈n⊥
i 〉
(
v−1 (I (x0))

)
we have P−1

〈n⊥
i 〉 (x) ∩ v−1 (I (x0)) consists of one

point.
So since P〈n⊥

1 〉
(
v−1 (I (x0))

)
is a connected set, if v−1 (I (x0))∩Υi

q = ∅ it can only be because path X has
run out of region v (Ω) before crossing v

(
Υi

a

)
. However since any point x0 ∈ S is at least distance ε

σ7 away
from ∂Ω by (22) this can not happen. So the exists a unique point t0 ∈ IR such that X (t0) ∈ v

(
Υi

q

)
.

Now we define Θi
q : v (S) → IR as follows; For any x0 ∈ v (S) let X be the solution of

X(0) = v (x0)
dX

dt
(t) = DΨi (X (t)) .

Let t (x0) ∈ IR be the unique real number such that v−1 (X (t (x0))) ∩ Υq �= ∅. We define

Θi
q (x0) := v−1 (X (t (x0))) · φi,

by uniqueness of t (x0), Θi
q (x0) is well defined and its clear that Θi −1

q

(
Θi

q (x0)
)

= {X (t) : t ∈ IR}. �
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5.1.3. Integrating along integral curves.
As mentioned in the introduction, section 4.2, one of the main observations in this proof is that for integral
curves for which the derivative Dv

(
v−1 (·)) stays close the wells, we have that |DΨi (·)| ≈ 1. So for a subseg-

ment U of such an integral curve of DΨi with end points s and e, the H1 (U) is approximately |Ψi (e) − Ψi (s)|.
This is the contents of the statement of Lemma 3, the proof is just a calculation.

Lemma 3. Let v ∈ AF (Ω). Let S := P (a, φ1, φ2, ε) ⊂ Ω and let i ∈ {1, 2}. Suppose we have for some t0 ∈ IR
we have a connected subset U ⊂ Θi −1

a (t0) ∩ v (S) such that∫
U

J (x) dH1x ≤ αH1 (U) . (23)

If we let s, e be the endpoints of U then we have(
1 − c1α

σ4

)
|Ψi (e) − Ψi (s)| ≤ H1 (U) ≤

(
1 +

c1α

σ4

)
|Ψi (e) − Ψi (s)| .

Proof. For each x ∈ U since K is compact we can find P (x) ∈ K such that

d
(
Dv
(
v−1 (x)

)
,K
)

=
∣∣Dv (v−1 (x)

)− P (x)
∣∣ .

Let E (x) = Dv
(
v−1 (x)

)− P (x).
Let B =

{
x ∈ U : d

(
Dv
(
v−1 (x)

)
, SO (2)

)
= d
(
Dv
(
v−1 (x)

)
, SO (2)H

)}
this is a closed set and since we

have (23) we know
H1 (B) < c1αH

1 (U) . (24)
Let

R =
{
x ∈ U : d

(
Dv
(
v−1 (x)

)
, SO (2)

)
< d
(
Dv
(
v−1 (x)

)
, SO (2)H

)}
.

And let
S =

{
x ∈ U : d

(
Dv
(
v−1 (x)

)
, SO (2)H

)
< d
(
Dv
(
v−1 (x)

)
, SO (2)

)}
.

Now S and R are open in Θ−1
a (q) and so

R = ∪nKn and S = ∪nIn

where In and Kn are open connected sets in U .
Let sn be the starting point of segment In (the point coming from the right) and let en be the endpoint.

For each x ∈ In let tx ∈ S1 denote the tangent to the curve In at point x. We will show∫
In

DΨi (x) tx − 3 |E (x)|
σ4

dH1x < H1 (In) <
∫

In

DΨi (x) tx +
3 |E (x)|
σ4

dH1x. (25)

To begin with note ∫
In

DΨi (x) tx dH1x = Ψi (en) − Ψi (sn) .

Recall,
R (·)S (·) = Dv (·) (26)

is the polar decomposition of of Dv (·).
We have already calculated that DΨi (x) = R

(
v−1 (x)

)
S−1
(
v−1 (x)

)
ni. We let X : IR → IR2 be a solution

of
X(0) = sn

dX

dt
(t) = DΨi (X (t)) .

(27)

Let Y (s) = v−1 (X (s)). We also have calculated that
dY

dt
(s) = S−1 (Y (s))S−1 (Y (s))ni, (28)

for s > 0. Let x0 ∈ In and let s0 > 0 be such that X (s0) = x0. So as v (Y (s0)) = X (s0) we have
dX

dt
(s0) = Dv (Y (s0))

dY

dt
(s0) , (29)
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and as Dv (Y (s0)) = R (Y (s0))S (Y (s0)) so by (26), (28) and (29) we have

DΨi (x0) =
dX

dt
(s0)

(28),(29)
= R (Y (s0))S (Y (s0))S−1 (Y (s0))S−1 (Y (s0))ni

= R (Y (s0))S−1 (Y (s0))ni. (30)

So to estimate the length of DΨi (x0) we need only know S−1 (Y (s0))ni however as we know Dv (Y (s0)) =:
P (Y (s0)) + E (Y (s0)) for some P (Y (s0)) ∈ SO (2)H we have

S (Y (s0))
2 = Dv (Y (s0))

T
Dv (Y (s0))

= (P (Y (s0)) + E (Y (s0)))
T (P (Y (s0)) + E (Y (s0)))

= P (Y (s0))P (Y (s0))
T + E (Y (s0))

T
P (Y (s0)) + E (Y (s0))P (Y (s0))

T

+E (Y (s0))E (Y (s0))
T
, (31)

and recall P (Y (s0)) = R̃H for some R̃ ∈ SO (2) and so P (Y (s0))
T
P (Y (s0)) = HTRTRH = HTH . So

S (Y (s0))
2 ∈ N 3|E(x)|

σ2

(
H2
)

and so

S−1 (Y (s0)) ∈ N 3|E(x)|
σ4

(
H−1
)
. (32)

And we claim for i = 1, 2; ∣∣H−1ni

∣∣ = 1. (33)

First we have to calculate φ1, φ2 and subsequently n1, n2. So we require∣∣∣∣( σ̃ 0
0 1

σ̃

)(
a
b

)∣∣∣∣ = (σ̃a)2 +
(
b

σ̃

)2

= 1,

for vector ∣∣∣∣( a
b

)∣∣∣∣ = 1.

To simplify expression we let λ = 1
σ̃ .

So a2 = 1 − b2 and inserting this into the first equation we have

σ̃2
(
1 − b2

)
+ λ2b2 = σ̃2 +

(
λ2 − σ̃2

)
b2 = 1.

Hence

b2 =
1 − σ̃2

λ2 − σ̃2
,

a2 = 1 − b2 =

(
λ2 − σ̃2

)− (1 − σ̃2
)

λ2 − σ̃2
=

λ2 − 1
λ2 − σ̃2

.

Thus

φ1 =

⎛⎝ √ λ2−1
λ2−σ̃2√
1−σ̃2

λ2−σ̃2

⎞⎠ φ2 =

⎛⎝ √ λ2−1
λ2−σ̃2

−
√

1−σ̃2

λ2−σ̃2

⎞⎠ . (34)

And hence

n1 =

⎛⎝ −
√

1−σ̃2

λ2−σ̃2√
λ2−1

λ2−σ̃2

⎞⎠ n2 =

⎛⎝ √ 1−σ̃2

λ2−σ̃2√
λ2−1

λ2−σ̃2

⎞⎠ . (35)
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Thus

∣∣H−1ni

∣∣ =

∣∣∣∣∣∣
(
λ 0
0 σ̃

)⎛⎝ ±
√

1−σ̃2

λ2−σ̃2√
λ2−1

λ2−σ̃2

⎞⎠∣∣∣∣∣∣
=

∣∣∣∣∣∣
⎛⎝ ±λ

√
1−σ̃2

λ2−σ̃2

σ̃
√

λ2−1
λ2−σ̃2

⎞⎠∣∣∣∣∣∣
= λ2

(
1 − σ̃2

)
(λ2 − σ̃2)

+ σ̃2

(
λ2 − 1

)
(λ2 − σ̃2)

=
λ2 − σ̃2

λ2 − σ̃2

= 1. (36)

So we have proved (33).
Thus from (32), (30) and (33) we have that

|DΨi (x0)| ∈
(

1 − 3 |E (x)|
σ4

, 1 +
3 |E (x)|
σ4

)
. (37)

Let

β (x0) := |DΨi (x0)| =
∣∣∣∣dXdt (s0)

∣∣∣∣ . (38)

Now as X is a solution of (27) we have

tx0 =
dX
dt (s0)∣∣dX
dt (s0)

∣∣ =
DΨi (x0)
β (x0)

. (39)

and so from (39)

DΨi (x0) · tx0 = β (x0) tx0 · tx0

= β (x0) .

And so from (37) and (38)∫
In

DΨi (x) tx dH1x ∈
(
H1 (In) −

∫
In

3 |E (x)|
σ4

dH1x,H1 (In) +
∫

In

3 |E (x)|
σ4

dH1x

)
which implies (25).

Now we argue a similar inequality for the {Kn}. So let en, sn be endpoints of segment Kn. From (31) we
see that S

(
v−1 (x)

) ∈ N 3|E(x)|
σ4

(I) for any x ∈ Kn so again we have∫
Kn

DΨi (x) tx − 3 |E (x)|
σ4

dH1x ≤ H1 (Kn) ≤
∫

Kn

DΨi (x) tx +
3 |E (x)|
σ4

dH1x. (40)

Now from (25) we have∑
n

∫
In

DΨi (x) tx − 3 |E (x)|
σ4

dH1x ≤
∑

n

H1 (In) ≤
∑

n

∫
In

DΨi (x) tx +
3 |E (x)|
σ4

dH1x

(41)

and from (40) we have∑
n

∫
Kn

DΨi (x) tx − 3 |E (x)|
σ4

dH1x ≤
∑

n

H1 (Kn) ≤
∑

n

∫
Kn

DΨi (x) tx +
3 |E (x)|
σ4

dH1x.

(42)
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Since for any subsegment I ⊂ U where I has endpoint a and b we have∫
I

DΨi (x) txdH1x = Ψi (b) − Ψi (a) = P〈φ⊥
i 〉
(
v−1 (I)

)
.

Let  =
∫
Θ−1

a (t)∩v(S)
3|E(x)|

σ4 dH1x, note that by assumption we know  < 3α
σ4H

1 (U). Putting together (41)
and (42) we have that∑

n

L1
(
P〈φ⊥

1 〉
(
v−1 (Kn) ∪ v−1 (In)

))− ≤
∑

n

H1 (Kn) +H1 (In)

≤
∑

n

L1
(
P〈φ⊥

1 〉
(
v−1 (Kn) ∪ v−1 (In)

))
+. (43)

Since we know from (24)

H1

(
U\
(⋃

n

(Kn ∪ In)

))
≤ c1αH

1 (U)

so

H1

(
v−1

(
U\
(⋃

n

(Kn ∪ In)

)))
≤ c1αH

1 (U)
σ2

(44)

and thus we have from (43) and (44)

H1 (U) ≤
(∑

n

H1 (Kn) +H1 (In)

)
+ c1αH

1 (U)

≤
∑
n∈IN

L1
(
P〈φ⊥

1 〉
(
v−1 (Kn) ∪ v−1 (In)

))
+ + c1αH

1 (U)

≤ L1
(
P〈φ⊥

1 〉
(
v−1 (U)

))
+
(

3
σ4

+
2c1
σ2

)
αH1 (U) . (45)

and similarly

L1
(
P〈φ⊥

1 〉
(
v−1 (U)

))− ( 3
σ4

+
2c1
σ2

)
αH1 (U) ≤

∑
n∈IN

H1 (Kn) +H1 (In)

≤ H1 (U)

and this establishes our claim.
�

5.2. The pullback idea.
This next lemma is a formalization of what has been described in section 4.1 of introduction as the pull back
idea. Essentially what it means is that for a function v of small bulk energy, lines of the form v (〈φ1〉 + z1),
v (〈φ1〉 + z2) are pushed over from one another. A better explanation can be obtained from section 4.1 of the
introduction.

Lemma 4. Given function v ∈ AF (Ω). Let S = P (a, φ1, φ2, ε) be such that S ⊂ Ω. Let i ∈ {1, 2}. For any
b, e ∈ v (S), let η := [b, e] if we have ∫

η

J (z)dH1z < α |b− e|

then

|e− b| > (1 − 2σ−2√α) |Ψi (e) − Ψi (b)| .
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Proof. Now letting tx ∈ S1 denote the tangent to the curve v−1 (η) at point x.∫
η

J (z)dH1z =
∫

v−1(η)

|Dv (x) tx| J (v (x)) dH1x

≥ σ2

∫
v−1(η)

J (v (x)) dH1x,

so we have

σ−2α |b− e| ≥
∫

v−1(η)

J (v (x)) dH1x.

Now v−1 (η) connects v−1 (b) to v−1 (e). Let

T =
{
x ∈ v−1 (η) : J (v (x)) <

√
α
}
,

so we know that
H1
(
v−1 (η) \T ) ≤ σ−2√α |b− e| . (46)

Now T is the countable union of connected segments In ⊂ v−1 (η). Now let an, bn be the end points of the
segment In. For i ∈ {1, 2} we will show

|v (an) − v (bn)| ≥ L1
(
P〈φ⊥

i 〉 (In)
)
−√

αH1 (In) (47)

Now recall we calculated ni at (35) (where λ := σ̃−1)

n1 =

⎛⎜⎝ −
√

1−σ̃2
1

σ̃2 −σ̃2√
1

σ̃2 −1
1

σ̃2 −σ̃2

⎞⎟⎠ =

⎛⎝ −
√

σ̃2(1−σ̃2)
(1−σ̃2)(1+σ̃2)√

1−σ̃2

(1−σ̃2)(1+σ̃2)

⎞⎠ =

⎛⎝ − σ̃√
(1+σ̃2)
1√

(1+σ̃2)

⎞⎠ , n2 =

⎛⎝ σ̃√
(1+σ̃2)

1√
(1+σ̃2)

⎞⎠
now as a first step to proving equation (47) we will prove the following:
We firstly we define the shrink directions. Let Ξ2 be the subset of vectors of S1 between φ1 and φ2 and let Ξ1 be
the subset of vectors of S1 between −φ1 and −φ2. Its easy to see that for any v ∈ S1, |Hv| ≤ 1 ⇔ v ∈ Ξ1 ∪Ξ2

hence the name shrink directions.
Claim Let i ∈ {1, 2}. We will show that there exists vector ♦i ∈ Ξi such that for any ψ ∈ Ξi

|Hψ| ≥ ψ · ni +
c2 (ang (ψ,♦i))

2

4
. (48)

First we consider the inequality

|Hψ| ≥ ψ · n2 +
c2 (ang (ψ,♦2))

2

4
. (49)

Let

ψ =
(

cos a
sin a

)
, (50)

so equation (49) is equivalent to√
σ̃2 cos2 a+

sin2 a

σ̃2
≥ σ̃ cos a√

σ̃2 + 1
+

sin a√
σ̃2 + 1

+
c2 (ang (ψ,♦2))

2

4
. (51)

and we will prove (51) in due course. Firstly we will show why inequality (48) for i = 1 follows from inequality
(49). Give ψ ∈ S1 of the form (50) we define

ψ̄ =
( − cosa

sin a

)
. (52)

When we calculate ♦1 and ♦2 it will turn out that ♦̄1 = ♦2, see (247) in the Appendix.
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Hence (see fig 6) if we have (49) then∣∣∣H̃φ∣∣∣ =
∣∣∣H̃φ̄∣∣∣

≥ φ̄ · n2 +
c2
(
ang
(
φ̄,♦2

))2
4

= φ · n1 +
c2 (ang (φ,♦1))

2

4
,

so all that remains is to establish (49) which as we noted is equivalent to (51).
The proof of inequality (51) is quite involved, partly due to the fact its sharp. Let

f (a) := σ̃2 cos2 a+
sin2 a

σ̃2
− σ̃2 cos2 a

σ̃2 + 1
− sin2 a

σ̃2 + 1
− 2σ̃ cos a sin a

σ̃2 + 1
,

so

f (a) = σ̃2 cos2 a
(

1 − 1
σ̃2 + 1

)
+ sin2 a

(
1
σ̃2

− 1
σ̃2 + 1

)
− 2σ̃ cos a sin a

σ̃2 + 1(
σ̃2 + 1

)
f (a) = σ̃4 cos2 a+ sin2 a

(
σ̃2 + 1
σ̃2

− 1
)
− 2σ̃ cos a sina

σ̃2
(
σ̃2 + 1

)
f (a) = σ̃6 cos2 a+ sin2 a− 2σ̃3 cos a sin a,

now using standard trigonometric identities we have

σ̃2
(
σ̃2 + 1

)
f (a) = σ̃6

(
1 + cos 2a

2

)
+

1 − cos 2a
2

− σ̃3 sin 2a

2σ̃2
(
σ̃2 + 1

)
f (a) =

(
σ̃6 − 1

)
cos 2a− 2σ̃3 sin 2a+ σ̃6 + 1.

Now
2σ̃2
(
σ̃2 + 1

)
f ′ (a) = −2

(
σ̃6 − 1

)
sin 2a− 4σ̃3 cos 2a

So

f ′ (ã) = 0 ⇔ −2 sin 2ã
(
σ̃6 − 1

)− 4σ̃3 cos 2ã = 0

⇔ −2 sin 2ã
(
σ̃6 − 1

)
= 4σ̃3 cos 2ã

⇔ tan 2ã =
2σ̃3

(1 − σ̃6)
. (53)

Now as ã is chosen from an interval of length less than π, there is only one ã for which (53) is true. Let

♦2 :=
(

cos ã
sin ã

)
. (54)

Let p =
√(

4σ̃6 + (1 − σ̃6)2
)

=
(
1 + σ̃6

)
, so sin 2ã = 2σ̃3

p and cos 2ã = (1−σ̃6)
p . Now

2σ̃
(
σ̃2 + 1

)
f (ã) =

(
σ̃6 − 1

)
cos 2ã− 2σ̃3 sin 2ã+ σ̃6 + 1

= −
(
σ̃6 − 1

)2
p

− 4σ̃6

p
+ σ̃6 + 1

= −
(
4σ̃6 +

(
σ̃6 − 1

)2)
p

+ σ̃6 + 1

= − (σ̃6 + 1
)

+ σ̃6 + 1
= 0.

Now note
2σ̃2
(
σ̃2 + 1

)
f ′′ (a) = −4

(
σ̃6 − 1

)
cos 2a+ 8σ̃2 sin 2a. (55)

Before continuing we need to estimate the lenght of Ξi. Observe fig 6.
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φ

φ1

2−φ

−φ 1

2

<><>

p 0

21

1Ξ Ξ2

Figure 6

We let p0 =
(
φ1 + φ⊥1

)∩ {x : x · e2 = 0}. Its clear from fig 6 that H1 (Ξ2) ≤ 2 |φ1 − p0|. So we have to find
point p0. From (34) we see that p0 is given by the following formula

p0 := φ1 + λ0

⎛⎜⎜⎝
√(

1−σ̃2

σ̃−2−σ̃2

)
−
√(

σ̃−2−1
σ̃−2−σ̃2

)
⎞⎟⎟⎠

where λ0 > 0 is some number such that

e2 ·

⎛⎜⎜⎝φ1 + λ0

⎛⎜⎜⎝
√(

1−σ̃2

σ̃−2−σ̃2

)
−
√(

σ̃−2−1
σ̃−2−σ̃2

)
⎞⎟⎟⎠
⎞⎟⎟⎠ = 0. (56)

Now by (34), (56) is equivilant to

√(
1 − σ̃2

σ̃−2 − σ̃2

)
= λ0

√(
σ̃−2 − 1
σ̃−2 − σ̃2

)
⇔ λ0 =

√(
1−σ̃2

σ̃−2−σ̃2

)
√(

σ̃−2−1
σ̃−2−σ̃2

) =

√(
1 − σ̃2

σ̃−2 − 1

)
= σ̃.

So

|φ1 − p0| =

∣∣∣∣∣∣∣∣λ0

⎛⎜⎜⎝
√(

1−σ̃2

σ̃−2−σ̃2

)
−
√(

σ̃−2−1
σ̃−2−σ̃2

)
⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ = σ̃.

Thus we have the estimate we want;
H1 (Ξ2) = H1 (Ξ1) ≤ 2σ̃.

Now we will use this together with (55) to get a lower bound on f ′′ for those a ≥ such that
(

cos a
sin a

) ∈ Ξ2:
Since a ∈ [0, σ̃] ⊂ [0, 1) so from (55)

2σ̃2
(
σ̃2 + 1

)
f ′′ (a) ≥ min

{
4
(
1 − σ̃6

)
, 8σ̃2
}

(cos 2a+ sin 2a)

≥ min
{
4
(
1 − σ̃6

)
, 8σ̃2
}

(cos 2 + sin 2)

>
min
{
4
(
1 − σ̃6

)
, 8σ̃2
}

4
.

And so

f ′′ (a) ≥ min
{
4
(
1 − σ̃6

)
, 8σ̃2
}

8σ̃2 (σ̃2 + 1)
. (57)



22 LOWER BOUNDS FOR THE TWO WELL PROBLEM

Now note that for a < 0 such that
(

cos a
sin a

) ∈ Ξ2, since |a| < σ̃ < 1 we know that cos a > 0 and sin a < 0 so
we have that√(

σ̃2 cos2 a+
sin2 a

σ̃2

)
− σ̃ cos a√

σ̃2 + 1
− sin a√

σ̃2 + 1
> σ̃ cos a− σ̃ cos a√

σ̃2 + 1
− sina√

σ̃2 + 1

= σ̃

(
1 − 1√

σ̃2 + 1

)
cos a+

|sin a|√
σ̃2 + 1

> min
{
σ̃

(
1 − 1√

σ̃2 + 1

)
,

1√
σ̃2 + 1

}
(|cos a| + |sin a|)

>
1
4

min
{
σ̃

(
1 − 1√

σ̃2 + 1

)
,

1√
σ̃2 + 1

}
(58)

From (57) and (58) we let

c2 := min

{ (
1 − σ̃6

)
32σ̃2 (σ̃2 + 1)

,
1

16 (σ̃2 + 1)
,
σ̃

64

(
1 − 1√

1 + σ̃2

)
,

1
64

√
1 + σ̃2

}
and we define t (x) := 8c2 (x− ã). We have

• f ′ (ã) = t (ã) = 0.
• By (57), for all a ∈ [0, σ̃] we have f ′′ (a) − t′ (a) ≥ 0 and hence for any a ∈ [max {ã, σ̃} , 0] we have
f ′ (a) − t (a) ≥ 0 and for any a ∈ [0,max {ã, 0}] we have f ′ (a) − t (a) ≤ 0.

So for any a ∈ [0, σ̃] we have∫ a

ã

f ′ (x) − t (x) dL1x = f (a) − 8c2 (a− ã)2 ≥ 0.

which is equivalent to

σ̃2 cos2 a+
sin2 a

σ̃2
≥ σ̃2 cos2 a+ sin2 a+ 2σ̃ cos a sina

σ̃2 + 1
+ 8c2 (a− ã)2 (59)

.
Now in order to understand (59) note that(

σ̃ cos a+ sina√
(σ̃2 + 1)

)2

+ 8c2 (a− ã)2 ≤ 1
(σ̃2 + 1)

+ σ̃2 < 2

if we let g (x) :=
√
x, we note that g′ is greater than 1√

2
on the interval [0, 2] and so by considering the integral

of g′ between
(

σ̃ cos a+sin a√
(σ̃2+1)

)2

and
(

σ̃ cos a+sin a√
(σ̃2+1)

)2

+ 8c2 (a− ã)2.

We get √√√√(( σ̃ cos a+ sin a√
σ̃2 + 1

)2

+ 8c2 (a− ã)2
)

−
(
σ̃ cos a+ sina√

σ̃2 + 1

)
≥ 8c2√

2
(a− ã)2 .

So putting this together with (59)√(
σ̃2 cos2 a+

sin2 a

σ̃2

)
≥ σ̃ cos a+ sina√

(σ̃2 + 1)
+

8c2√
2

(a− ã)2

and this establishes the claim for a ∈ [0, σ̃].
Now we need to deal with the case a ∈ [−σ̃, 0]. Since σ̃ ∈ (0, 1) from (58) we have√(

σ̃2 cos2 a+
sin2 a

σ̃2

)
− σ̃ cos a√

σ̃2 + 1
− sin a√

σ̃2 + 1
≥ 8c2√

2
(a− ã)2 ,

as (ang (ψ,♦2))
2 ≤ 10 (a− ã)2 this completes the proof of (51).
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So for each x ∈ In we know that for some G (x) ∈ SO (2) ∪ SO (2)H and some E (x) ∈ M2×2 with
‖E (x) ‖ < √

α we have
Dv (x) = G (x) + E (x) .

Now from (48)

|[Dv (x)]ψ| > |(G (x) + E (x))ψ|
≥ |G (x)ψ| − |E (x)ψ|
> ψ · ni −

√
α.

So

H1 (v (In)) =
∫

In

|Dv (x) · tx| dH1x

≥
∫

In

tx · ni −
√
αdH1x

= (an − bn) · ni −
√
αH1 (In) .

Now (an − bn) ·ni = L1
(
P〈φ⊥

i 〉 (In)
)

and as v (In) is a straight line, so H1 (v (In)) = |v (an) − v (bn)| and thus
we have established inequality (47). Now by the fact that the line segments connecting v (an) and v (bn) are
subsets of η and by using (47) we have,

|e− b| = H1 (η)

≥
∞∑

k=1

|v (an) − v (bn)|

≥
( ∞∑

k=1

L1
(
P〈φ⊥

i 〉 (In)
))

−√
α

( ∞∑
k=1

H1 (In)

)
. (60)

Now from (46)

L1
(
P〈φ⊥

i 〉
(
v−1 (η) \ (∪nIn)

))
< σ̃2√α |b− e| ,

and thus
L1
(
P〈φ⊥

i 〉 (∪nIn)
)
> L1

(
P〈φ⊥

i 〉
(
v−1 (η)

))− σ̃2√α |b− e| .
So inserting this into equation (60) we have

|e− b| = L1
(
P〈φ⊥

i 〉
(
v−1 (η)

))− σ̃2√α |b− e| − √
αH1

(
v−1 (η)

)
≥ |Ψi (e) − Ψi (s)| − 2σ̃2

√
α |b− e| .

�

5.2.1. Forcing integral curves into straight lines.
This coming lemma is elementary. If we have the conditions to invoke both Lemma 3 and Lemma 4 then (as
indicated in section 4.2 of the introduction) we get sufficiently strict bounds from above on the length of the
curves and bounds from below on the distance between the end points that we are able to force the integral
curves to run in straight lines.

Lemma 5. Let v ∈ AF (Ω).
Given skew rectangular region R = F (a,wφ2, rφ1) where w

r < σ2. We assume N w
σ2 (R) ⊂ Ω.

Define Θa
i : R→ IR as in Lemma 2.

Suppose for some t ∈ (a+ 〈φi〉) ∩R we have∫
Θa −1

i (t)

J (x) dH1x ≤ αw (61)
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then let s be the first point of Θa −1
i (t) (going backwards in time) to hit ∂R and e be the first point (going

forwards) to hit ∂R. Let U denote the connected component of Θa −1
i (t) between s and e, then firstly by Lemma

3 (
1 − c1α

σ4

)
|Ψi (e) − Ψi (s)| ≤ H1 (U) ≤

(
1 +

c1α

σ4

)
|Ψi (e) − Ψi (s)| .

If in addition we have ∫
N w

σ2
(R)

T (x) dL2x ≤ α3w2 (62)

then
Θa −1

i (t) ∩R ∈ Nc3
√

αw (lt)

for lt := t+ l, l ∈ G (1, 2).

Proof. So U is the connected component of Θi −1
a (t0)∩ v (S) between s and e. We will show U has to lie very

close to [s, e].
Let w0 := sup

{∣∣∣P(e−s)⊥ (e− z)
∣∣∣ : z ∈ U

}
and let  ∈ U be the point such that∣∣∣P(e−s)⊥ (e−)

∣∣∣ = w0.

From figure 7, it should be clear that H1 (U) ≥
√(

|e− s|2 + w2
0

)
.

s

e

Θ  (   )
i−1

t 0

w 0

nv(S)

v(a)

ϖ

Figure 7

Now from (61), by Lemma 3 we have

H1 (U) ≤ |Ψi (e) − Ψi (s)|
(
1 +

c1α

σ4

)
. (63)

By Fubini we know that for some p ∈
(
s+ 〈(e− s)⊥〉

)
∩Bαw (s) we have∫

(p+〈s−e〉)∩v(S)

J (x) dH1x ≤ σ−2α2w.

So let q ∈ (p+ 〈s− e〉) ∩Bαw (e). By Lemma 4 we have

|p− q| ≥ |Ψi (p) − Ψi (q)| (1 − 2σ−6α
)
.

and by bilipshitness and the fact that |e− s| > c1w this gives

|s− e| ≥ |Ψi (s) − Ψi (e)| (1 − 4σ−6α
)
. (64)
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So by (63) and (64) we have

w2
0 +
(|Ψi (s) − Ψi (e)| (1 − 4σ−6α

))2
≤ |e− s|2 + w2

0

≤ (H1 (U)
)2

≤
(
|Ψi (s) − Ψi (e)|

(
1 +

c1α

σ4

))2

≤ |Ψi (s) − Ψi (e)|2 + 2
c1α

σ4
ε |Ψi (s) − Ψi (e)|2 +

( c1α

σ4
|Ψi (s) − Ψi (e)|

)2

.

So
8c1α

σ12
|Ψi (e) − Ψi (s)|2 ≥ w2

0 .

Thus
w0 ≤ c3

√
αw. (65)

So let Γ0 := t0 + 〈s− e〉, (65) implies
U ⊂ Nc3

√
αw (Γ0) (66)

and this concludes the proof of the Lemma.
�
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6. Fundamental Lemmas

6.1. Precise control on the pullbacks of integral curves that form straight lines.
This coming Lemma is fundamental. We know from Lemma 5 that when we have the conditions to invoke
Lemma 3 and Lemma 4 the integral curves are forced into something like straight lines. In this lemma we
obtain very precise information about the pull back of such integral curves, we show that they are in effect,
very much like the pullback of straight lines in the image of laminates. The proof is heuristically quite similar
to the way we analyzed the the pullback of the straightline in the laminate in section 4.1 of the introduction.

Lemma 6. Let v ∈ AF (Ω). Let i ∈ {1, 2}.
Given skew rectangular region R := F (a,wφ2, rφ1) where w

r < σ2. We assume N w
σ2 (R) ⊂ Ω. Let a be the

central point of R and define Θa
i : R→ IR as in Lemma 2. Let α > 0 be a sufficiently small number.

Suppose for some t ∈ (a+ 〈φi〉) ∩B w
σ4

(a) we have∫
Θa −1

i (t)∩R

J (x) dH1x ≤ αw. (67)

And we have the bulk energy estimate∫
P(a,φ1,φ2, w

σ2 )
d (Dv (x) , SO (2) ∪ SO (2)H) dL2x ≤ α3w2 (68)

then let s be the first point of Θa −1
i (t) (going backwards in time) to hit ∂R and e be the first point (going

forwards) to hit ∂R. Let U denote the connected component of Θa −1
i (t) between s and e, then the following

statement holds true.
Firstly recall by Lemma 5 and Lemma 3 we have

• (
1 − c1α

σ4

)
|Ψi (s) − Ψi (e)| ≤ H1 (U) ≤

(
1 +

c1α

σ4

)
|Ψi (s) − Ψi (e)| . (69)

• For some lt := l+ v (t), l ∈ G (1, 2) we have

U ∈ Nc3
√

αw (lt) . (70)

We define the clockwise normal wt, to lt as follows. If we let ϑ ∈ lt ∩B√
αw (e) and ξ ∈ lt ∩B√

αw (s) then
we define wt to be the clockwise normal to vector ϑ−ξ

|ϑ−ξ| .
We will prove that.
Given At := N√

αw (lt) ∩R. There exists a set Bt ⊂ At with the following properties; L2 (At\Bt) ≤ c̃4α
5
8w2

and for any x ∈ Bt we have ∣∣Dv (v−1 (x)
)
φ1 − wt

∣∣ < c4
√
α (71)

Proof. So to begin with, as noted in the statement, the first part is just from Lemma 5 and Lemma 3. Now
by Fubini, the area formula and assumption (68) we can find the existence of a set

C ⊂ (l⊥ + v (t)
) ∩B√

αw (t) with L1 (C) >
(
1 − σ−2

√
α
)
2
√
αw (72)

and the property that for any s ∈ C we have∫
(l+s)∩v(R)

J (x) dH1x < αw. (73)

Now as Θa −1
i (s)∩v (R) is connected (by Lemma 1) if we let η denote the connected component of (l + s)∩

v (R) containing s, we will show that the endpoints of η must be within c3σ
−4

√
αw of the endpoints of

Θa −1
i (s) ∩R. Formally; let s̃ denote the endpoint of η closest to s, and let ẽ denote the endpoint closest to

e. We will show
ẽ ∈ Nc3σ−4√αw (e) and s̃ ∈ Nc3σ−4√αw (s) . (74)

To see this firstly note by bilipschitzness from (70) and by the fact that ẽ, s̃ ∈ v (∂R) we have

v−1 (s̃) ∈ N c3
√

α

σ2

(
v−1
(
Θa −1

i (s)
)) ∩ ∂R and v−1 (ẽ) ∈ N c3

√
α

σ2

(
v−1
(
Θa −1

i (s)
)) ∩ ∂R. (75)
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v (s)
−1 ~

v (e)−1 ~

Figure 8

By Lemma 1 we know v−1
(
Θa −1

i (s)
)

only passes through each side of R once, so as is shown on fig 8, the end
points of v−1

(
Θa −1

i (s)
)∩R are given by v−1 (e), v−1 (s). Formally v−1

(
Θa −1

i (s)
)∩∂R =

{
v−1 (e) , v−1 (s)

}
and so by (75) and the fact that s, s̃ are the (say) rightmost endpoints of Θa −1

i (s), η respectively, e, ẽ are
the (say) leftmost endpoints; by bilipschitzness we have (74).

Note that from (74) and (69) we have that

|ẽ− s̃| ≤ H1 (U) + 4c3σ
−4√αw

≤ (
1 + 8c3σ

−4√α) |Ψi (ẽ) − Ψi (s̃)| . (76)

And in the same way
|ẽ− s̃| ≥ (1 − 8c3σ

−4√α) |Ψi (ẽ) − Ψi (s̃)| . (77)
It is also not hard to see that

L1 ((ls + v (s)) ∩ v (R) \η) ≤ c1
√
αw. (78)

v(t)t
v (     (t))Θ

a −1 Θ (t)
a −1

Figure 9

This essentially follows from fig 9. The reader who is already convinced is invited to skip the next paragraph.
By Lemma 1 we know that v−1

(
Θa −1

i (s)
)

must go through v (R) at a definite angle. And so the line
l + v (s) must cut through the boundary of v (R) quite cleanly. Formally, if we let L denote the right hand
side boundary of R then diam (v (L) ∩ (l + v (t))) ≤ c1

√
αw since otherwise by (70) we would be able to

find points y1, y2 ∈ Θa −1
i (s) with |y1 − y2| > c1

2

√
αw and d (y1, v (L)) <

√
αw, d (y2, v (L)) <

√
αw and by

bilipschitzness, assuming constant c1 is chosen big enough this contradicts Lemma 1.
Let

K :=
{
x ∈ η : d

(
Dv
(
v−1 (x)

)
, SO (2)

)
< d
(
Dv
(
v−1 (x)

)
, SO (2)H

)}
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let
L :=

{
x ∈ η : d

(
Dv
(
v−1 (x)

)
, SO (2)H

)
< d
(
Dv
(
v−1 (x)

)
, SO (2)

)}
and let

E :=
{
x ∈ η : d

(
Dv
(
v−1 (x)

)
, SO (2)H

)
= d
(
Dv
(
v−1 (x)

)
, SO (2)

)}
.

Now for some constant c2 := c (σ) we have

c2L
1 (E) ≤

∫
η

d (Dv (x) , SO (2) ∪ SO (2)H) dL1x

≤ √
αw. (79)

Which implies L1 (E) ≤ c−1
2

√
αw.

Now K is the countable union of connected subintervals {Kn}, ie. K =
⋃

n∈INKn and similarly L =⋃
n∈IN Ln.
Let

A0 =
{
n ∈ IN :

∫
Kn

d
(
Dv
(
v−1 (x)

)
, SO (2)

)
dL1x ≤ √

αH1 (Kn)
}

and let

B0 =
{
n ∈ IN :

∫
Ln

d
(
Dv
(
v−1 (x)

)
, SO (2)H

)
dL1x ≤ √

αH1 (Ln)
}
.

As v is C2 on the compact set Ω we know A0 and B0 are finite. We also know∑
n∈Ac

0

√
αL1 (Kn) +

∑
n∈Bc

0

√
αL1 (Ln) ≤

∑
n∈Ac

0

∫
Kn

d
(
Dv
(
v−1 (x)

)
, SO (2)

)
dL1x

+
∑

n∈Bc
0

∫
Ln

d
(
Dv
(
v−1 (x)

)
, SO (2)H

)
dL1x

≤
∫

(ls+s)∩v(R)

J (x) dH1x

≤ αw.

So ∑
n∈Ac

0

L1 (Kn) +
∑

n∈Bc
0

L1 (Ln) ≤ √
αw. (80)

We point out that from Lemma 3 we have(
1 − σ−4c1

√
α
)
L1
(
Pφ⊥

i
(Ik)
)
≤ L1 (v (Ik)) ≤ (1 + σ−4c1

√
α
)
L1
(
Pφ⊥

i
(Ik)
)
. (81)

Let n1 = Card (A0) andm1 = Card (B0). Let {Ik : k = 1, . . . n1 +m1} be a reordering of the set {Kj : j ∈ A0}∪
{Lk : k ∈ B0} so that I1 is the rightmost interval. I2 the second rightmost interval, ectra.

Note from from the fact that η = K ∪ L ∪ E, (80), (79) and bilipschitzness we have

H1

(
v−1 (η) \

n1+m1⋃
k=1

Ik

)
≤ 2c−1

2 σ−2
√
αw. (82)

Let m2 := m1 + n1. Now we consider point v−1 (s̃) to be the start of the path v−1 (η) and point v−1 (ẽ) to
be the end. So going from right to left in this way; we denote the first point of segment Ik by αk and the last
point βk. Let dk = βk − αk for k = 1, 2 . . .m2. See figure 10.

Let e0 = α1 − v−1 (s̃) and em2 = v−1 (ẽ) − βm2 . Also let ek = αk+1 − βk for k ∈ {1, 2, . . .m2 − 1}. So we
have

v−1 (ẽ) − v−1 (s̃) =
m2∑
k=1

dk +
m2∑
j=0

ej . (83)
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ξ1

2ξ
φ1

φ2

n

R  (e)
−1

0

η

−1

α

v (   )−1

v ( )s
−1

1d

e1

d2

e2

3d
3e

d4

e 4

e0

1

v (e)~

~

~

Figure 10

Let Ek be the subsegment of v−1 (η) between βk and αk+1 for k = 1, 2 . . .m2 − 1. Let E0 be the subsegment
between v−1 (s̃) and α1 and let Em2 be the subsegment between βm2 and v−1 (ẽ). So we know

m2⋃
j=1

Ij ∪
m2⋃
j=0

Ej = v−1 (η) (84)

and thus from (82) and (84) we have

m2∑
j=0

|ej | ≤
m2∑
j=0

H1 (Ej)

≤ 2c−1
2 σ−2√αw. (85)

Now let K1 = {k ∈ {1, . . .m2} : d (Dv (x) , SO (2)H) < d (Dv (x) , SO (2)) ∀ x ∈ Ik} and let K2 = {1, . . .m2} \K1.
For subsegment Ik for k ∈ K1 we have that∫

Ik

|Dv (z) · tz| dH1z ≥
∫

Ik

(1 − 2d (Dv (x) , SO (2)H)) |Htz| dH1z

≥ |Hdk| − 2σ−2
√
αH1 (Ik)

≥ (
1 − 2σ−4

√
α
) |Hdk| . (86)

And for subsegment Ik with k ∈ K2 we have∫
Ik

|Dv (z) · tz| dH1z ≥ (1 − 2σ−4√α) |dk| . (87)

So let d̃ =
∑

k∈K2
dk and ũ =

∑
k∈K1

dk, so since {1, 2, . . .m2} = K1 ∪ K2 and from (85) and (83) we have∣∣∣(v−1 (ẽ) − v−1 (s̃)
)− (d̃+ ũ

)∣∣∣ ≤ 2c−1
2 σ−2

√
αw. (88)



30 LOWER BOUNDS FOR THE TWO WELL PROBLEM

So from (86) and (87) we also have

|ẽ− s̃| =
∫

v−1(η)

|Dv (z) tz| dH1z

≥
m2∑
k=1

∫
Ik

|Dv (z) tz| dH1z

≥
∑

k∈K2

(
1 − 2σ−4√α) |dk| +

∑
k∈K1

(
1 − 2σ−4√α) |Hdk|

≥ (
1 − 2σ−4√α) (∣∣∣d̃∣∣∣+ |Hũ|

)
. (89)

Letting ẽ =
∑m2

j=0 ej from (83) we have v−1 (ẽ)−v−1 (s̃) = d̃+ũ+ ẽ and so by (88) we know |ẽ| ≤ 2c−1
2 σ−2

√
αw.

Step 1
The first thing we will show is that vector ũ points in direction ♦1 and vector d̃ points in direction n1.

Strictly speaking this is not necessary for the proof however as it will be of great physiological comfort to
know that where ũ and d̃ point and as it will serve as an introduction to the ideas we will use repeatedly we
give the details.

Formally; we will show

ang
(
ũ

|ũ| ,♦i

)
< c4α

1
8 (90)

and

ang

⎛⎝ d̃∣∣∣d̃∣∣∣ , ni

⎞⎠ < c4α
1
8 . (91)

Now from (49) Lemma 4 we have that

|Hψ| ≥ ψ · ni +
c2

4
(ang (ψ,♦i))

2

for all ψ ∈ Ξi.

v (  )e
−1

v (  )
−1

s

ξ

Ξ

Ξ

~ d

1φ

φ2

α
~

~

|(v (e)−v (s)).n |
−1−1 ~ ~

1

φ 1
n

1<>

u~ 

1

2

Figure 11

Its easy to see from fig 3 that ũ
|ũ| ∈ Ξ1 since otherwise either ũ is very small or∣∣∣d̃∣∣∣+ |Hũ| >

∣∣∣d̃∣∣∣+ |ũ| >> ∣∣v−1 (ẽ) − v−1 (s̃)
∣∣
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however by (89) this implies |ẽ− s̃| >> ∣∣v−1 (ẽ) − v−1 (s̃)
∣∣ and this contradicts (76).

So

|Hũ| = |ũ|
∣∣∣∣H ũ

|ũ|
∣∣∣∣ > |ũ|

(
ũ · ni

|ũ| +
c2

4

(
ang
(
ũ

|ũ| ,♦i

))2
)
.

As can be easily seen from figure 11 we have∣∣∣d̃∣∣∣ ≥ (v−1 (ẽ) − (v−1 (s̃) + ũ
)) · ni − 2c−1

2 σ−2
√
αw. (92)

So

|Hũ| +
∣∣∣d̃∣∣∣ ≥ ũ · ni +

c2 |ũ|
4

(
ang
(
ũ

|ũ| ,♦i

))2

+
(
v−1 (ẽ) − v−1 (s̃)

) · ni − ũ · ni − 2c−1
2 σ−2

√
αw

=
(
v−1 (ẽ) − v−1 (s̃)

) · ni +
c2 |ũ|

4

(
ang
(
ũ

|ũ| ,♦i

))2

− 2c−1
2 σ−2

√
αw. (93)

Hence by (76), (89), (93) we have

8σ−4c3
√
αw +

(
v−1 (ẽ) − v−1 (s̃)

) · ni ≥ H1 (η)

≥ (
1 − 2σ−4√α) (∣∣∣d̃∣∣∣+ |Hũ|

)
≥ ∣∣(v−1 (ẽ) − v−1 (s̃)

) · ni

∣∣+ c2 |ũ|
4

(
ang
(
ũ

|ũ| ,♦i

))2

− 4c−1
2 σ−2

√
αw.

Thus
|ũ|
4

(
ang
(
ũ

|ũ| ,♦i

))2

≤ c3
√
αw.

So either |ũ| < α
1
4w or we have

c3
√
αw ≥ α

1
4w

4

(
ang
(
ũ

|ũ| ,♦i

))2

⇐⇒ 4c3α
1
4 ≥
(

ang
(
ũ

|ũ| ,♦i

))2

⇐⇒ 2
√
c3α

1
8 ≥ ang

(
ũ

|ũ| ,♦i

)
and so we have established (90).

Now we establish (91). To start, we know

|Hũ| ≥ |ũ · ni| (94)

from (48), Lemma 4. Now by (88)

d̃ · ni + ũ · ni ≥
(
v−1 (ẽ) − v−1 (s̃)

) · ni − 2c−1
2 σ−2√αw (95)

and
∣∣∣d̃∣∣∣ =√∣∣∣d̃ · ni

∣∣∣2 +
∣∣∣d̃ · φi

∣∣∣2 as we have seen before, since
∣∣∣d̃∣∣∣ < 1 we have√∣∣∣d̃ · ni

∣∣∣2 +
∣∣∣d̃ · φi

∣∣∣2 −√∣∣∣d̃ · ni

∣∣∣2 =
∫ |d̃·ni|2+|d̃·φi|2

|d̃·ni|2
x−

1
2

2
dL1x

≥

∣∣∣d̃ · φi

∣∣∣2
2

. (96)

so putting (94), (95), (96) we get

∣∣∣d̃∣∣∣+ |Hũ|
(94),(96)

≥
∣∣∣d̃ · ni

∣∣∣+ |ũ · ni| +

∣∣∣d̃ · φi

∣∣∣2
2

(95)

≥ (
v−1 (ẽ) − v−1 (s̃)

) · ni +

∣∣∣d̃ · φi

∣∣∣2
2

− 2c−1
2 σ−2

√
αw. (97)
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So putting (97) together with (76) (recall s̃,ẽ are the endpoints of η), (89) and (88) we get(
1 + 8c3σ

−4√α) ∣∣((v−1 (ẽ) − v−1 (s̃)
) · ni

∣∣ ≥ H1 (η)

≥ (
1 − 2σ−4√α) (∣∣∣d̃∣∣∣+ |Hũ|

)
≥ (

1 − 2σ−4
√
α
) ((

v−1 (ẽ) − v−1 (s̃)
) · ni − 2c−1

2 σ−2
√
αw
)

+

∣∣∣d̃ · φi

∣∣∣2
4

.

So

2c−1
2 σ−2

√
αw + 10c3σ

−4
√
α
∣∣(v−1 (ẽ) − v−1 (s̃)

) · ni

∣∣ ≥
∣∣∣d̃ · φi

∣∣∣2
4

,

thus

c̃4
√
αw ≥

∣∣∣d̃ · φi

∣∣∣2
4

=

∣∣∣d̃∣∣∣2
4

∣∣∣∣∣∣ d̃∣∣∣d̃∣∣∣ · φi

∣∣∣∣∣∣
2

.

So √
c̃4α

1
4
√
w ≥

∣∣∣d̃∣∣∣
2

∣∣∣∣∣∣ d̃∣∣∣d̃∣∣∣ · φi

∣∣∣∣∣∣
assuming

∣∣∣d̃∣∣∣ ≥ α
1
8
√
w we have

√
c̃4σ

−2α
1
8 ≥
∣∣∣∣∣∣ d̃∣∣∣d̃∣∣∣ · φi

∣∣∣∣∣∣
which establishes (91).

Step 2
Now we use similar arguments to establish that most of the subsegments {Ik : k ∈ K2} lie roughly parallel

to ni and most of the subsegments {Ik : k ∈ K1} lie roughly parallel to ♦i.
Let P2 :=

{
k ∈ K2 : ang

(
dk

|dk| , ni

)
> α

1
16

}
and P1 :=

{
k ∈ K1 : ang

(
dk

|dk| ,♦i

)
> α

1
16

}
. Firstly we will show

that for any k ∈ P1 ∪ P2 we have

L1 (v (Ik)) ≥
(

1 +
c2α

1
8

16

)
L1
(
P〈φ⊥

i 〉 (Ik)
)
. (98)

Look at case k ∈ P2, see fig 12. Firstly, we know from Lemma 1 that ang
(

dk

|dk| , ni

)
≤ π. So

kI

|dk |ang(dk/      ,n )i

d k

φ 1

φ 2

1n

φ 1
perpP<     >(I  )k

Figure 12

|dk|2 ≥
(
L1
(
Pφ⊥

i
(Ik)
))2

+
(

sin ang
(
dk

|dk| , ni

)
L1
(
Pφ⊥

i
(Ik)
))2

≥
(
L1
(
Pφ⊥

i
(Ik)
))2
(

1 +
(
sinα

1
16

)2
)
. (99)



LOWER BOUNDS FOR THE TWO WELL PROBLEM 33

Now as we have seen before, by considering the integral
∫ 1+

“
sin α

1
16

”2

1
x− 1

2

2 dL1x

L1
(
Pφ⊥

i
(Ik)
)√(

1 +
(
sinα

1
16

)2
)

≥ L1
(
Pφ⊥

i
(Ik)
)⎛⎜⎝1 +

(
sinα

1
16

)2

4

⎞⎟⎠ (100)

And since |sinx− x| ≤ (∑∞
n=3

1
n!

)
x3, assuming α > 0 is small enough (in the applications of this lemma,

α will be some power of κ or ε and so will indeed be small enough) we have
(
sinα

1
16

)2

≥ α
1
8

2 .
So putting this together with (99) and (100) we have

|dk| ≥ L1
(
Pφ⊥

i
(Ik)
)(

1 +
α

1
8

8

)
. (101)

Now as ∫
v(Ik)

d
(
Dv
(
v−1 (x)

)
, SO (2)

)
dL1x ≤ √

αL1 (v (Ik)) ,

we have that ∫
Ik

d (Dv (z) , SO (2)) dH1z ≤ σ−2
√
αL1 (v (Ik))

≤ σ−4√αH1 (Ik) . (102)

For each z ∈ Ik let R (z) ∈ SO (2) be such that |Dv (x) −R (z)| = d (Dv (z) , SO (2)). So by (101) and
(102) we have

L1 (v (Ik)) =
∫

Ik

|Dv (z) t (z)|dH1z

≥
∫

Ik

|R (z) t (z)| dH1z −
∫

Ik

d (Dv (z) , SO (2)) dH1z

≥ H1 (Ik)
(
1 − σ−4√α)

≥ |dk|
(
1 − σ−4√α)

≥ L1
(
Pφ⊥

1
(Ik)
)(

1 +
α

1
8

8

)(
1 − σ−4

√
α
)

≥ L1
(
Pφ⊥

1
(Ik)
)(

1 +
α

1
8

16

)
for α small enough. This establishes the claim in the case k ∈ P1.

Let k ∈ P2. Observe the fig 13.

kI

φ

φ1

2

1<>

Figure 13
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As before letting T (z) ∈ SO (2)H be such that |Dv (z) − T (z)| = d (Dv (z) , SO (2)H) we have from (102)

L1 (v (Ik)) =
∫

Ik

|Dv (z) t (z)|dH1z

≥
∫

Ik

|T (z) t (z)| dH1z −
∫

Ik

d (Dv (z) , SO (2)H) dH1z

≥
∫

Ik

|T (z) t (z)| dH1z − σ−4√αH1 (Ik) . (103)

And we know ∫
Ik

|T (z) t (z)| dH1z =
∫

Ik

|Ht (z)| dH1z

≥ |dk|
∣∣∣∣H dk

|dk|
∣∣∣∣ . (104)

Now by (48) Lemma 4 we know

∣∣∣∣H dk

|dk|
∣∣∣∣ ≥ dk

|dk| · ni +
c2

4

(
ang
(
dk

|dk| ,♦i

))2

≥ dk

|dk| · ni +
c2α

1
8

4
. (105)

Putting together (103),(104) and (105) gives

L1 (v (Ik)) ≥ dk · ni +
c2 |dk|

4
α

1
8 − σ−4

√
αH1 (Ik)

Now dk·ni = L1
(
Pφ⊥

i
(Ik)
)

and so |dk| ≥ L1
(
Pφ⊥

i
(Ik)
)

and by Lemma 1 we haveH1 (Ik) ≤ σ−4L1
(
Pφ⊥

i
(Ik)
)
.

So

L1 (v (Ik)) ≥ L1
(
Pφ⊥

i
(Ik)
)(

1 +
c2α

1
8

4

)
− σ−4√αH1 (Ik)

≥ L1
(
Pφ⊥

i
(Ik)
)(

1 +
c2α

1
8

8

)

for small enough α, hence we have established (98).
Step 3 In this step we bound the cardinality of P1 and P2.
Recall by (76) and (77)

|s̃− ẽ| ∈
(
L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

)) (
1 − 8c3σ

−4√α) , L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

)) (
1 + 8c3σ

−4√α)) (106)

and from (82)

L1

(
[s̃, ẽ] \

⋃
k∈K1∪K2

v (Ik)

)
≤ 2c−1

2 σ−4√α |s̃− ẽ| . (107)
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Now using (106), (81) and (98) we have(
1 + 8c3σ

−4
√
α
)
L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

)) ≥ |s̃− ẽ|
≥

∑
k∈K1∪K2

L1 (v (Ik))

≥
∑

k∈P1∪P2

L1 (v (Ik)) +
∑

k∈(K1∪K2)\(P1∪P2)

L1 (v (Ik))

≥
(

1 +
c2α

1
8

16

) ∑
k∈P1∪P2

L1
(
Pφ⊥

i
(Ik)
)

+
(
1 − σ−4c1

√
α
) ∑

k∈(K1∪K2)\(P1∪P2)

L1
(
Pφ⊥

i
(Ik)
)

≥
∑

k∈K1∪K2

L1
(
Pφ⊥

i
(Ik)
)

+
∑

k∈P1∪P2

c2α
1
8

16
L1
(
Pφ⊥

i
(Ik)
)

−σ−4c1
√
α |s̃− ẽ| . (108)

Now from (82) we have

L1

(
Pφ⊥

i

(
v−1 ([s̃, ẽ]) \

⋃
k∈K1∪K2

Ik

))
≤ 4c−1

2 σ−2√α |s̃− ẽ| . (109)

Putting this together with (108) we get(
1 + 8c3σ

−4
√
α
)
L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

)) ≥ L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

))− 4c−1
2 σ−2

√
α |s̃− ẽ|

+
∑

k∈P1∪P2

c2α
1
8

8
L1
(
Pφ⊥

i
(Ik)
)
− σ−4√α |s̃− ẽ| .

Which implies ∑
k∈P1∪P2

α
1
8L1
(
Pφ⊥

i
(Ik)
)
≤ c5

√
α |s̃− ẽ| .

So by bilipschitzness and Lemma 1 we have

σ−2c5α
3
8L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

)) ≥ c5α
3
8 |s̃− ẽ|

≥
∑

k∈P1∪P2

L1
(
Pφ⊥

i
(Ik)
)

≥ σ2
∑

k∈P1∪P2

H1 (Ik) . (110)

By Lemma 1 this gives us a bound on the cardinality of P1 ∪ P2 of the following form

σ−6c5α
3
8H1

(
v−1 ([s̃, ẽ])

) ≥ ∑
k∈P1∪P2

H1 (Ik) . (111)

As a consequence by (82) we have

H1

⎛⎝v−1 ([s̃, ẽ]) \
⋃

k∈K1∪K2\(P1∪P2)

Ik

⎞⎠ ≤ H1

(
v−1 ([s̃, ẽ]) \

⋃
k∈K1∪K2

Ik

)
+H1

( ⋃
k∈P1∪P2

Ik

)

≤ 2c5σ−6α
3
8H1

(
v−1 ([s̃, ẽ])

)
. (112)

Step 4
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Now let

O2 :=

{
k ∈ K2\P2 : ∃ Jk ⊂ Ik with H1 (Jk) ≥

(
1 − α

1
8

)
H1 (Ik)

and for each z ∈ Jk, ang (t (z) , ni) > α
1
32

}
(113)

and let

O1 :=

{
k ∈ K1\P1 : ∃ Jk ⊂ Ik with H1 (Jk) ≥

(
1 − α

1
8

)
H1 (Ik)

and for each z ∈ Jk, ang (t (z) ,♦i) > α
1
32

}
(114)

We will show that for k ∈ O1 ∪O2

L1 (v (Ik)) ≥
(

1 +
c2α

1
16

8

)
L1
(
Pφ⊥

i
(Ik)
)
. (115)

First we consider the case k ∈ O1 because its more intricate.
As before letting t (z) be the tangent to Ik at z and letting U (z) ∈ SO (2)H be such that d (Dv (z) , SO (2)H) =

|Dv (z) − U (z)| we have by definition of the set {Ik : k = 1, . . .m0} that

∫
Ik

d (Dv (z) , SO (2)H) dH1z ≤ √
αH1 (Ik) .

Now using again (48) from Lemma 4 and for the final inequality using Lemma 1 we have

L1 (v (Ik)) =
∫

Ik

|Dv (z) t (z)| dH1z

≥
∫

Ik

|Ht (z)| dH1z −√
αH1 (Ik)

≥
∫

Jk

|Ht (z)|dH1z +
∫

Ik\Jk

|Ht (z)| dH1z −√
αH1 (Ik)

≥ L1
(
Pφ⊥

i
(Jk)
)(

1 +
c2α

1
16

4

)
−√

αH1 (Ik)

≥ L1
(
Pφ⊥

i
(Ik)
)(

1 +
c2α

1
16

4

)
− 4α

1
8H1 (Ik)

≥ L1
(
Pφ⊥

i
(Ik)
)(

1 +
c2α

1
16

8

)
. (116)

The case where k ∈ O1 can be argued with a simple Pythagoras type argument. We do not go into the
details.

Step 5
Now in the same way as we showed the cardinality of P1 and P2 are bounded, we will show the cardinality

of O1 and O2 are bounded. The reader who is already convinced is invited to skip to Step 6.
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Using (81), (112), (106) and (115) we have(
1 + 8c3σ

−4√α)L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

)) (106)

≥ |s̃− ẽ|
≥

∑
k∈(K1∪K2\(P1∪P2∪O1∪O2))

L1 (v (Ik)) +
∑

k∈O1∪O2

L1 (v (Ik))

(81),(115)

≥ (
1 − σ−4c1

√
α
) ∑

k∈(K1∪K2\(P1∪P2∪O1∪O2))

L1
(
Pφ⊥

i
(Ik)
)

+

(
1 +

c2α
1
16

8

) ∑
k∈O1∪O2

L1
(
Pφ⊥

i
(Ik)
)

=
∑

k∈(K1∪K2)\(P1∪P2)

L1
(
Pφ⊥

i
(Ik)
)

+
c2α

1
16

8

∑
k∈O1∪O2

L1
(
Pφ⊥

i
(Ik)
)

−σ−4c1
√
αL1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

))
(112)

≥ L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

))
+

c2α
1
16

8

∑
k∈O1∪O2

L1
(
Pφ⊥

i
(Ik)
)

−
(
c1
√
ασ−4 − 2c5σ−6α

3
8

)
L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

))
.

Putting things together we have

c2α
1
16

8

∑
k∈O1∪O2

L1
(
Pφ⊥

i
(Ik)
)
≤ c6α

3
8L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

))
so by Lemma 1 ∑

k∈O1∪O2

H1 (Ik) ≤ σ−2
∑

k∈O1∪O2

L1
(
Pφ⊥

i
(Ik)
)

≤ 8σ−2c−1
2 c6α

1
4L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

))
. (117)

Step 6

Claim 1. We will show the existence of a set Y ⊂ [s̃, ẽ] with L1 ([s̃, ẽ] \Y ) ≤
(
1 − c7α

1
8

)
|s̃− ẽ| for which if we

let R∗ be the clockwise rotation by π
2 and let wt := R∗

(
ẽ−s̃
|ẽ−s̃|
)

for any z ∈ Y we have

Dv
(
v−1 (x)

)
φi ∈ Nc8

√
α (wt) . (118)

Proof of Claim:
Let D := (K1\ (P1 ∪O1)) ∪ (K2\ (P2 ∪O2)). For any k ∈ D ∩K1 (by definition (114)) we have

H1
({
x ∈ Ik : ang (t (z) ,♦i) > α

1
32

})
≤ α

1
8H1 (Ik)

so Wk :=
{
x ∈ Ik : ang (t (z) ,♦i) ≤ α

1
32

}
is such that H1 (Wk) ≥

(
1 − α

1
8

)
H1 (Ik).

Similarly, for any k ∈ D ∩K2 (by definition (113)), Wk :=
{
x ∈ Ik : ang (t (z) , ni) ≤ α

1
32

}
is such that

H1 (Wk) ≥
(
1 − α

1
8

)
H1 (Ik) .

So from (111) and (117) we have∑
k∈P1∪P2∪O1∪O2

H1 (Ik) ≤ 9σ−6c−1
2 c6α

1
4L1
(
Pφ⊥

i

(
v−1 ([s̃, ẽ])

))
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so from the definition of D and by (82) and Lemma 1 we have

H1

(
v−1 ([s̃, ẽ]) \

⋃
k∈D

Ik

)
≤ 11σ−6c−1

2 c−1
2 c6α

1
4H1

(
v−1 ([s̃, ẽ])

)
. (119)

Note from (73) we have ∫
v−1(η)

d (Dv (z) , SO (2) ∪ SO (2)H) dH1x ≤ σ−2α2w.

Take z ∈ (⋃k∈D Wk

)∩{z ∈ v−1 (η) : d (Dv (z) , SO (2) ∪ SO (2)H) < α
1
2

}
. We have that either z ∈ ⋃k∈D∩K1

Wk

or z ∈ ⋃k∈D∩K2
Wk. Supposing the later, then

ang (t (z) , ni) ≤ α
1
32 . (120)

Now as we have already calculated (Lemma 1, (14)) t (z) :=
[
S−1 (z)S−1 (z)

]
ni where Dv (z) := R (z)S (z)

is the polar decomposition of the matrix Dv (z). So S (z) ∈ N√
α ({H, Id}).

Its a lengthy calculation to see that
H−1H−1ni = ♦i (121)

for i = 1, 2. The proof is relegated to the Appendix 1.
So we know that Dv (z) ∈ N√

α (SO (2)) or Dv (z) ∈ N√
α (SO (2)H) and we can not have the latter case

because that would imply t (z) :=
[
S−1 (z)S−1 (z)

]
ni ∈ Nc9

√
α (♦i) which contradicts (120) and so we must

have S (z) ∈ B√
α (Id).

Let R1 ∈ SO (2) be the rotation such that

R1ni =
ẽ− s̃

|ẽ− s̃| . (122)

Let t (z) denote the (non-normalised) tangent to the curve v−1 (η); formally t (z) := [Dv (z)]−1 ẽ−s̃
|ẽ−s̃| , as

already noted, since Dv (z) ∈ N√
α (SO (2)) we know

S (x) ∈ B√
α (Id) (123)

as this (by the fact that t (z) :=
[
S−1 (z)S−1 (z)

]
ni) implies |t (z) − ni| < c7

√
α and using (122) we have

|Dv (z)ni −R1ni| ≤ |Dv (z) t (z) −Dv (z)ni| + |Dv (z) t (z) −R1ni|
≤ σ−2 |t (z) − ni|
≤ σ−2c7

√
α.

So letting R∗ be the clockwise rotation by π
2 we have by (123) and (122)

σ−2c7
√
α ≥ |Dv (z)ni −R1ni|

=
∣∣∣∣R (z)R∗−1φi − ẽ− s̃

|ẽ− s̃|
∣∣∣∣−√

α

=
∣∣∣∣Dv (z)φi −R∗

(
ẽ− s̃

|ẽ− s̃|
)∣∣∣∣− 2

√
α. (124)

Now in the case z ∈ ⋃k∈D∩K1
Wk, from (121) we can see S (z) ∈ B√

α (H). Let R2 ∈ SO (2) be the rotation
such that R2H

−1ni = ẽ−s̃
|ẽ−s̃| .

Observe figure 14.
As can be seen from figure 14 letting R∗ again denote the clockwise rotation by π

2 , R∗ −1φi = ni and
R∗ −1Hφi = H−1ni. Now

Dv (z) t (z) = R (z)S (z)
[
S−1 (z)S−1 (z)

]
ni = R (z)S−1 (z)ni,

so ∣∣Dv (z) t (z) −R (z)H−1ni

∣∣ ≤ ∣∣S−1 (z) −H−1
∣∣ ≤ c8

√
α.
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n

H n

H

φ

φ

1

1

1

1

θ

θ

φ−φ

−φ 1

22
Hφ2

−1

Figure 14

Again as Dv (z) t (z) = ẽ−s̃
|ẽ−s̃| so (as R∗H−1ni = Hφi) by multiplying through on the right by R∗ this gives∣∣∣∣R∗

(
ẽ− s̃

|ẽ− s̃|
)
−R (z)Hφi

∣∣∣∣ ≤ c8
√
α

so as S (z) ∈ B√
α (H) ∣∣∣∣R∗

(
ẽ− s̃

|ẽ− s̃|
)
−Dv (z)φi

∣∣∣∣ ≤ 2c8
√
α. (125)

And as ẽ−s̃
|ẽ−s̃| = ϑ−ξ

|ϑ−ξ| this gives ∣∣∣∣R∗
(
ϑ− ξ

|ϑ− ξ|
)
−Dv (z)φi

∣∣∣∣ < 2c8
√
α.

So let Y = v
(⋃

k∈D Wk

) ∩ {z ∈ Ik : d (Dv (z) , SO (2) ∪ SO (2)H) <
√
α}. Now as H1

(⋃
k∈D Ik\Wk

) ≤
α

1
8
∑

k∈D H1 (Ik) ≤ α
1
8 |s̃− ẽ| so by bilipschitzness H1

(⋃
k∈D v (Ik) \v (Wk)

) ≤ σ−2α
1
8 |s̃− ẽ|. So by (119)

and (73) we have
H1 ([s̃, ẽ] \Y ) ≤ c9α

1
8 |s̃− ẽ| (126)

and for any x ∈ Y , by (124), (125), letting wt := R∗
(

ϑ−ξ
|ϑ−ξ|

)
we have∣∣Dv (v−1 (x)

)
φi − wt

∣∣ < 2c8
√
α. (127)

and this establishes claim 1. ♦
Now recall we chose η as a subset of (ls + v (s))∩ v (R) when s was an arbitrary point in the set C (see 72).

So η and hence Y depend implicitly on s, now it will be convenient to make the dependence explicit. So let
ηs := η and Ys := Y .

Let Bt :=
⋃

s∈C Ys. And recall At := N√
αw (lt) ∩ v (R). Now from (78) and (126) we have for every s ∈ C

L1 (ls ∩ v (R) \Ys) ≤ 2c9α
1
8 |s̃− ẽ|

and from (72) we have

L2 (At\Bt) ≤
∫

(l⊥+t)∩B√
αw(t)

L1 (ls ∩ v (R) \Ys) dL1s

≤ 2c9α
1
8 |e− s|L1 (C) + |e− s|L1

((
l⊥ + t

) ∩B√
αw (t) \C)

≤ 4c9α
5
8w2.

And by (127) and point x ∈ Bt satisfies (71) and the proof is complete.
�
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7. The Coarea alternative: Part I

In section 4.3 we described the “coarea alternative”, roughly speaking, this was that for a function v on a
region S (diameter ε say) with small bulk energy and small “coarea integral” with respect to the level set
functions Θ1 and Θ2, function v on S must behave very much like an affine map whose linear part is in
SO (2) ∪ SO (2)H. And for a function v with small bulk energy and not small “coarea integral”, v must
oscillate by a not small amount in S. If we argue in the simplest way, for a function with small bulk energy
(say

∫
S d (Dv (x) , SO (2) ∪ SO (2)H)dL2x ≤ κm0ε, for some large integer m0) then

∫
S

∣∣D2v (x)
∣∣2 dL2x ≤ κε

implies
∫

v(S) J (x)
∣∣DΘi (x)

∣∣ dL2x ≤ κε2 for i ∈ {1, 2} and from this we can show that the linear part (denoted
by L) of the affine map obtained form interpolating v on the corners of a triangle inside S is such that.

d (L, SO (2) ∪ SO (2)H) < κ
1
8 (128)

So we take a triangulation {τi} of Ω (with triangulation size ε), by the “alternative”, for all triangles τi with
small bulk energy, either: (1); the linear part Li of the interpolation of v on τi is such that Li is less than κ

1
8

away from the wells. Or, (2);
∫

τi

∣∣D2v (x)
∣∣ dL2x > κε. If we want to apply this to finite element approximations

we end up having to argue as follows: We can for simplicity assume all triangles τi have very low bulk
energy. Let κ = εα for some α > 0 we decide on later. Let B1 :=

{
τi : d (Li, SO (2) ∪ SO (2)H) > ε

α
8
}
. If∫

Ω

∣∣D2v (x)
∣∣ dL2x ≤ ε−β then Card (B1) ≤ ε−β−α−1. So if ṽ denotes the function obtained by taking the affine

interpolation of v on the triangulation {τi} then we have.∫
Ω

d (Dṽ (x) , SO (2) ∪ SO (2)H)dL2x ≤
∑

τi∈B1

σ−2ε2 + ε
α
8

≤ σ−2ε1−β−α + ε
α
8 . (129)

Now matter how small β is or how we chose α as we expect
∫
Ω
d (Dṽ (x) , SO (2) ∪ SO (2)H) dL2x ≈ ε

1
3 we

do not get any kind of contradiction from this!

φ 1

φ 2

Figure 15

Hence we need a much more subtle invocation of the coarea alternative. What we failed to do, is to exploit the
extremely good control we have on bulk energy. Recall, we bounded the coarea integral

∫
v(S) J (x)

∣∣DΘi (x)
∣∣ dL2x

for i = 1, 2 from above by the surface energy. We did this by considering the pullbacks of the integral curves
and we obtained a picture like fig 5. The point being somehow that if the bulk energy is sufficiently small
we can chose the line (z + 〈φ1〉) for which

∫
v(z+〈φ1〉) J (x) dH1x is small but

∫
v(z+〈φ1〉) J (x)

∣∣DΘ1 (x)
∣∣ dH1x

is not small, to be very close to the line (a+ 〈φ1〉). So all the oscillation we pick up from the argument is
concentrated in a thin strip around (a+ 〈φ1〉). This leads us naturally to the idea of considering the coarea
integral in a thin strips parallel to φi running though S. As shown in fig 15.
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Let
{
Ci

k

}
denote the set of strips, width κm0ε going through S in direction φi and let Θi

k denote the level set
function defined in each strip, then we have

∑
k (κε)−1 ∫

v(Ci
k) J (x)

∣∣DΘi
k (x)
∣∣ dL2x ≤ κε. So “on average”

we can except to have (κε)−1 ∫
v(Ci

k) J (x)
∣∣DΘi

k (x)
∣∣ dL2x ≤ κm0κε. Thus we can find many integral curves in

v (Ck) with. ∫
Θi−1

k
(t)∩v(C

k)
J (x) dH1x ≤ κ

m0
2 κm0ε. (130)

This gives us very good control over the short length of our little integral curves. Note we get better and better
control by taking more and columns and the only thing we need to take more columns is lower bulk energy.
This is how we exploit our control on bulk energy. So for any subskewcube Sk,l ⊂ C1

l ∩ C2
l we have many

integral curves with respect to both Θ1
k and Θ2

k for which (130) is true.
Now we argue as indicated in the introduction. Lemma 6 says that the pullback of the integral curves with
respect to Θi

k must look very much like laminates whose interfaces (in the reference configuration) are parallel
to φi for i = 1, 2. So v�S must look very much like a laminate with respect to both φ1 and φ2 and the only
way this can happen is if v�S ≈ R1H for some R1 ∈ SO (2) or v�S ≈ R2 for some R2 ∈ SO (2). So we have
very good control on a large number of subskewcubes inside our subcube S, by using this in combination with
smallness of bulk and surface energy, we will in Lemma 9 show that for a triangle τ contained in S, the linear
part of the affine interpolation of v on τ (denoted by L) will be such that d (L, SO (2) ∪ SO (2)H) < κ

m0
1024 ε

where m0 is some large integer depending on bulk energy. By inserting this “strengthened” “coarea alternative”
into the calculation (129) we see that we obtain unrealistic upper bounds on the scaling of the finite element
approximation. This is how the coarea alternative works.

Proposition 1. Given skewcube S := P (a, φ1, φ2, c̃ε) ⊂ Ω.
Assume we have;

• ∫
S

d (Dv (x) ,K)dL2x ≤ κ
7m0

2 +8ε2. (131)

• Let
{
C

(p)
k : k ∈ {1, . . . [κm0 ] + 1}

}
denote the set of columns width κm0ε going through S, parallel to

φp.
Let a(p)

k denote the center point in C
(p)
k . Let Θ(p)

k denote the level set function defined with respect

to the line
{
a
(p)
k + 〈φk〉

}
. Let E(p)

k = Nc5κm0ε

(
C

(p)
k

)
∩ S for k = 1, 2, . . . , [κ−m0 ] + 1.

From (131), for each p ∈ {1, 2} we can find a distinct set of numbers
{
kp
1 , . . . k

p
Qp

0

}
⊂ {1, . . . [κ−m0 ]}

with Qp
0 ≥
(
1 − κ

m0
2

)
[κ−m0 ] and∫

v

„
E

(p)
k

p
j

« J (x) dL2x ≤ κ3m0+7ε2

for each j ∈ {1, . . .Qp
0}.

We assume we have the following inequalities
Q0∑
j=1

∫
v

„
E

(p)
k

p
j

« J (x)
∣∣∣DΘ(p)

kp
j

∣∣∣ dL2x ≤ κm0+1ε2 (132)

for p = 1 and p = 2.
• ∫

S

∣∣D2v (x)
∣∣ dL2x < εκ.

then we following statement holds true:
Let {

Li,j := P (ai,j , φ1, φ2, κ
m0ε) : i, j ∈ {1, 2, . . . [κ−m0

]
+ 1
}}
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be a set of pairwise disjoint skewcubes such that S ⊂ ∪i,i∈{1,...[κ−m0 ]+1}Li,j. Let

Si,j := P (ai,j , φ1, φ2, c8κ
m0ε)

for some constant c8 > 1 we will decide on later.
There exists a set G0 ⊂ {Si,j : i, j ∈ {1, . . . [κ−m0 ] + 1}} such that

•
L2
({
x ∈ Si,j : d (Dv (x) , Ri,jTi,j) > κ

m0
16

})
< 20σ−8c̃4c

2
7κ

m0
64 (εκm0)2

for some Ri,j ∈ SO (2), Ti,j ∈ {Id,H}
•

Card (G0) ≥ 1 − 16σ−2κ
m0
8

κ2m0

Before proving this we need to prove a number of elementary Lemmas first.

7.1. Integral curves in a controlled subskewcube must run parallel.
This lemma is the essential step in showing that a controlled subskewcube (ie. a subskewcube Sk1,k2 ⊂ C1

k1
∩C2

k2

for columns C1
k1

, C2
k2

such that
∫

v
“

Ci
ki

” J (x)
∣∣DΘi

k (x)
∣∣ dL2x is small for i = 1, 2) is such that v�Sk1 ,k2

is very

much like a laminate with respect to both rank-1 directions. Essentially what we show is that integral curves
given by level sets of the form Θi −1

ki
(t1) and Θi −1

ki
(t2) are roughly parallel. The proof is more or less a

calculation. We know that if we consider the pullback of an integral curve then (by Lemma 6) for most points
x ∈ v−1

(
Θi

ki
(t)
)
, Dv (x)φi points in the clockwise normal direction to Θi

ki
(t) (recall Θi

ki
(t) is very much close

to being a line). Let a denote the center of the skewcube. We chose t1, t2 ∈ {a+ 〈φ1〉} and t3 ∈ {a+ 〈φ2〉}
such that Θ2

k2
(t3) crosses Θ1

k1
(t1), Θ1

k1
(t2). If it happens that the intersection points v−1

(
Θ2

k2
(t3) ∩ Θ1

k1
(t1)
)

and v−1
(
Θ2

k2
(t3) ∩ Θ1

k1
(t2)
)

are such that Dv (·) at these points lie close to different components of the wells
(ie. Dv

(
v−1
(
Θ2

k2
(t3) ∩ Θ1

k1
(t1)
)) ≈ SO (2) and Dv

(
v−1
(
Θ2

k2
(t3) ∩ Θ1

k1
(t2)
)) ≈ SO (2)H or vice versa) by

the fact that the angle between the normals to the lines Θ2
k2

(t3) and Θ1
k1

(t1) is roughly the same as the angle
between Dv (·)φ1 and Dv (·)φ2 at this intersection point, and this is in turn prescribed by which component
of the wells Dv (·) is in, so the intersection points belonging to different components means that the angle of
the lines Θ2

k2
(t3) and Θ1

k1
(t3) at their intersection point will be radically different from the angle of the lines

Θ2
k2

(t3) and Θ1
k1

(t2) at their intersection point. Hence the lines Θ1
k1

(t1) and Θ1
k2

(t2) will be so radically
non-parallel that (assuming we chose t1, t2 close enough to a) Θ1

k1
(t1) ∩Θ1

k2
(t2) �= ∅. This is a contradiction

and so the intersection points must be near the same component of the wells. Given this fact, almost exactly
the same argument implies that the angle between the lines Θ2

k2
(t3), Θ1

k1
(t1) is very close to the angle between

the lines Θ2
k2

(t3) and Θ1
k1

(t2) and this means Θ1
k2

(t1) is almost parallel to Θ1
k1

(t2).

Lemma 7. Let v ∈ AF (Ω). Given skew cube S := P (a, φ1, φ2, c6w) with the following properties:

• S is contain in a skew rectangles R1 := F (a, c7wφ0, r1φ2) ⊂ Ω and R2 := F (a, r2φ0, c7wφ2) ⊂ Ω with
w
ri
< σ2 for i = 1, 2 and c7 is some constant bigger than c6.

• We have a level set function Θa
i : Ri → IR for i = 1, 2 such that if we let

Gi :=

{
t ∈ (a+ 〈φi〉) ∩B w

σ2
(a) :

∫
Θa −1

i (t)∩Ri

J (x) dH1x ≤ αw

}
we have

L1
(
(a+ 〈φi〉) ∩B w

σ4
(a) \Gi

)
≤ αw for i ∈ {1, 2} . (133)

• ∫
N w

σ2
(S)

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x ≤ α3w2. (134)

The following holds true:
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• Firstly recall by Lemma 5 we have that for each t ∈ Gi, let et be the first point (going forward in time)
to hit ∂R and st be the first point (going backward in time) to hit ∂R. Let Ut be the connected subset
subset of Θa −1

i (t) between et and st then we have for some lt ∈ G (1, 2)

Ut ⊂ Nc3
√

αw (lt + v (t)) .

• Let Dt := N
α

1
16 w
4

(lt + v (t)) ∩ R. As before, we define the clockwise normal to lt by wt := R∗ ẽt−s̃t

|ẽt−s̃t|
where ẽt ∈ (lt + v (t)) ∩B√

αw (et), s̃t ∈ (lt + v (t)) ∩B√
αw (st) and R∗ is a clockwise rotation by π

2 .
There exists a set Ct ⊂ Dt such that

L2 (Dt\Ct) ≤ σ−6 c̃4α
3
16w2

and for any x ∈ Ct we have∣∣Dv (v−1 (x)
)
φi − wt

∣∣ ≤ 128c4σ
−5α

1
16 .

Secondly for any two points t1, t2 ∈ G1∩B
(
a, w

σ

)
and t3 ∈ G2∩B

(
a, w

σ

)
if we let θ1 ∈ Θa −1

1 (t1)∩Θa −1
2 (t3)

and θ2 ∈ Θa −1
1 (t2) ∩ Θa −1

2 (t3) then we can find S ∈ {H, I} such that
•

L2

({
x ∈ B

α
1
16 w
4

(θi) : Dv (z) �∈ N√
α (SO (2)S)

})
≤ 4σ−6c̃4α

3
16w2.

for i = 1, 2.
• For any two points t1, t2 ∈ Gi ∩B

(
a, w

σ

)
we have

|wt1 − wt2 | ≤ 2048c4σ
−6α

1
16 .

Proof. To begin with we assume c6 > σ−7 so we have Bσ−5w (v (a)) ⊂ v (S). This gives us some room to work
in.

Step 1.
For k ∈ {1, 2}, let

Ck :=
{
y ∈ N

α
1
16 w
4

(v (tk) + ltk
) ∩B w

4σ5
(v (a)) :

∣∣Dv (v−1 (y)
)
φi − wtk

∣∣ < 128σ−5c4α
1
16

}
,

we will show that

L2

(
N

σ2α
1
16 w
4

(v (tk) + ltk
) \Ck

)
≤ σ−6c4α

3
16w2.

First by (133) we can pick a chain of points{
zk

n : n = 1, 2, . . .N0

} ⊂ G1 ∩B
α

1
16 w
σ2

(a)

such that

B
α

1
16 w
σ2

(a) ∩ {a+ 〈φ1〉} ⊂
N0⋃

n=1

Bσ4√αw

(
zk

n

) ∩ {a+ 〈φ1〉} .

Note N0 ≤ α
1
16 w

σ6α
1
2 w

= σ−6α− 7
16 . By Lipschitzness for v, in particular the fact that Lip (v) ≤ σ−2 we have

B
α

1
16 w

(v (a)) ∩ v ({a+ 〈φ1〉}) ⊂ v

(
B

α
1
16 w
σ2

(a) ∩ {a+ 〈φ1〉}
)

⊂
N0⋃

n=1

v
(
B√

ασ4w

(
zk

n

) ∩ {a+ 〈φ1〉}
)

⊂
N0⋃

n=1

B√
ασ2w

(
v
(
zk

n

)) ∩ v ({a+ 〈φ1〉}) .

Now as B w
σ5

(v (a)) ⊂ v
(
P
(
a, φ1, φ2,

w
σ7

)) ⊂ v (S) we consider the integral curves given by
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α1/32 w/σ

Figure 16

{
Θa −1

1

(
zk

n

) ∩B w
σ5

(v (a)) : n = 1, 2, . . .N0

}
.

We know that this set is disjoint by uniqueness of solutions of ODE and of course by Lemma 5 we have

Θa −1
1

(
zk

n

) ∩B w
σ5

(v (a)) ⊂ Nc3
√

αw

(
v
(
zk

n

)
+ lzk

n

)
. (135)

Now as can be seen from fig 17.

v(t)

N0v(z   )

1
kv(z   )

w/σ2

k

Figure 17

({
v
(
zk

N0

)
+ lzk

N0

}
∩B w

2σ5
(v (a))

)
∩
({
v
(
zk
1

)
+ lzk

1

}
∩B w

2σ5
(v (a))

)
= ∅, (136)

since otherwise by (135) and the fact that
∣∣v (zk

1

)− v
(
zk

N0

)∣∣ > σ2α
1
16w we have(

Θk −1
1

(
zk
1

) ∩B w
σ5

(v (a))
)
∩
(
Θk −1

1

(
zk

N0

) ∩B w
σ5

(v (a))
)

= ∅ (137)

and this is a contradiction.
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Now since we have (136), as can be seen from fig 17, for any point y ∈
{
v
(
zk
1

)
+ lzk

1

}
∩ B w

4σ5
(v (a)) we

have
α

1
16w

2
<

∣∣v (zk
1

)− v
(
zk

N0

)∣∣
2

< d
(
y,
{
v
(
zk

N0

)
+ lzk

N0

}
∩B w

4σ5
(v (a))

)
< 2

∣∣v (zk
1

)− v
(
zk

N0

)∣∣
<

4α
1
16w

σ4
. (138)

Now in the same way as (136), since
∣∣v (zk

m

)− v
(
zk

m+1

)∣∣ ≤ √
ασ2w, for m ∈ {1, 2, . . .N0 − 1} and for any

y ∈
{
v
(
zk

m+1

)
+ lzk

m+1

}
∩B w

4σ5
(v (a)) we have

d
(
y,
{
v
(
zk

m

)
+ lzk

m

} ∩B w
2σ5

(v (a))
)

< σ−2
∣∣v (zk

m

)− v
(
zk

m+1

)∣∣
<

√
αw, (139)

since otherwise we will have that(
Θk −1

1

(
zk

m

) ∩B w

2σ5
(v (a))

)
∩
(
Θk −1

1

(
zk

m+1

) ∩B w

2σ5
(v (a))

)
�= ∅.

And again in the same way as (136) for any y ∈ {v (zk
m

)
+ lzk

m

} ∪ {v (zk
N0

)
+ lzk

N0

}
∩B w

4σ5
(v (a)) we have

α
1
16w

4
<

1
2

min
{∣∣v (zk

1

)− v (a)
∣∣ , ∣∣v (zk

N1

)− v (a)
∣∣} | < d

(
y, {v (t) + lt} ∩B w

4σ5
(v (a))

)
.

Thus the set N
α

1
16 w
4

(v (t) + lt) ∩ B w
4σ5

(a) is contained in the region of B w
4σ5

(a) between the two lines(
v
(
zk
1

)
+ lzk

1

)
∩B w

4σ5
(a) and

(
v
(
zk

N0

)
+ lzk

N0

)
∩B w

4σ5
(a).

Now (139) implies that for any m ∈ {1, 2, . . .N0 − 1} we have(
v
(
zk

m+1

)
+ lzk

m+1

)
∩B w

4σ5
(v (a)) ⊂ N√

αw

(
v
(
zk

m

)
+ lzk

m

) ∩B w
4σ5

(v (a)) . (140)

As any point z ∈ N
α

1
16 w
4

(v (t) + lt) ∩ B w
4σ5

(v (a)) is either on line
(
v
(
zk

m

)
+ lzk

m

) ∩ B w
4σ5

(v (a)) for k =

1, . . .N0 or lies between two such lines. So from (140) we have

N
α

1
16 w
4

(v (t) + lt) ∩B w
4σ5

(v (a)) ⊂
N0⋃

m=1

N√
αw

(
v
(
zk

m

)
+ lzk

m

) ∩B (a, w
4σ5

)
. (141)

For eachm ∈ {1, 2, . . .N0} let wm := w
(
zk

m

)
be the clockwise normal to lzk

m
. Let Am := N√

αw

(
v
(
zk

m

)
+ lzk

m

)∩
R. By Lemma 6 we know that there exists a set Bm ⊂ Am such that L2 (Am\Bm) ≤ c̃4α

5
8w2 and for any

x ∈ Bm we have
∣∣Dv (v−1 (x)

)
φi − wm

∣∣ ≤ c4
√
α

Now we can see from the fig 18.

w(z  )km

w/4σ 5

α1/16
/4

w

Figure 18

The difference in angle between wm1 andwm2 for anym1,m2 ∈ {1, 2, . . .N0} is less than 2 tan−1
(
16σ−5α

1
16

)
so we must have |wm1 − wm2 | ≤ 64σ−5α

1
16 .
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So by (141) if we let Ck :=
{
y ∈ N

α
1
16 w
4

(v (tk) + ltk
) ∩B w

4σ5
(v (a)) :

∣∣Dv (v−1 (y)
)
φi − wk

∣∣ ≤ 128c4σ
−5α

1
16

}
we see

N
α

1
16 w
4

(v (tk) + ltk
) \Ck ⊂

N0⋃
m=1

Am\Bm.

Thus

L2

(
N

α
1
16 w
4

(v (tk) + ltk
) \Ck

)
≤ N0c̃4α

5
8w2

≤ σ−6 c̃4α
3
16w2. (142)

Step 2.
Firstly we note that from the fact we established in Lemma 6, namely that path v−1

(
Θa −1

i (t)
) ∩ R has

its tangents mostly in directions ni and ♦i. We can see from the figure 19, for t1, t2 ∈ G1 ∩B w
σ2

(a) and point
t3 ∈ G2 ∩B w

σ2
(a) the points given by

θ1 ∈ Θa −1
1 (t1) ∩ Θa −1

2 (t3) and θ2 ∈ Θa −1
1 (t2) ∩ Θa −1

2 (t3)

are such that v−1 (θ1) , v−1 (θ1) ∈ B w
σ3

(a).

φ2

a

t 2

t 1

t 3

<>

φ1

1

2<>

Figure 19

So by Lipschitzness we have
θ1, θ2 ∈ B w

σ5
(v (a)) . (143)

Observe the figure 20.

v(t )

v(t )

v(t )

1

2

3

θ

θ

1

2

l

l

l

t 1

t 3

t 2

Figure 20
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Now as θ1 ∈ N√
αw (lt1 + v (t1)) ∩N√

αw (lt3 + v (t3)) and as the angle between lines lt1 and lt3 can not be

too sharp (by 143) if we let θ̃1 := (v (t1) + lt1) ∩ (v (t3) + lt3) then we have
∣∣∣θ1 − θ̃1

∣∣∣ < c1
√
αw.

Similarly if we let θ̃2 := (v (t3) + lt3) ∩ (v (t2) + lt2) we have
∣∣∣θ2 − θ̃2

∣∣∣ < c1
√
αw. So

B
α

1
16 w
4

(
θ̃1

)
⊂
(
N

α
1
16 w
4

(lt1 + v (t1)) ∩B w
4σ5

(a)
)
∩
(
N

α
1
16 w
4

(lt3 + v (t3)) ∩B w
4σ5

(a)
)

and

B
α

1
16 w
4

(
θ̃2

)
⊂
(
N

α
1
16 w
4

(lt2 + v (t2)) ∩B w
4σ5

(a)
)
∩
(
N

α
1
16 w
4

(lt3 + v (t3)) ∩B w
4σ5

(a)
)
.

So by (142) we have

L2

(
B

α
1
4 w
16

(
θ̃1

)
\ (C1 ∪ C3)

)
≤ 2σ−6 c̃4α

3
16w2

and

L2

(
B

α
1
16 w
4

(
θ̃2

)
\ (C2 ∪ C3)

)
≤ 2σ−6c̃4α

3
16w2.

Now by assumption (134) we can find sets; F1 ⊂ B
α

1
16 w
4

(θ1) ∩ C1 ∩ C3 such that

L2 (F1) ≥ π

2

(
α

1
16w

4

)2 (
1 − 64σ−6c̃4α

1
16

)
and for any z ∈ F1 we have Dv

(
v−1 (z)

) ∈ N√
α (SO (2) ∪ SO (2)H). In the same way we can find

F2 ⊂ B
α

1
16 w
4

(θ1) ∩ C2 ∩ C3 such that L2 (F2) ≥ π
2

(
α

1
16 w
4

)2 (
1 − 64σ−6c̃4α

1
16

)
and for any z ∈ F2 we

have Dv
(
v−1 (z)

) ∈ N√
α (SO (2) ∪ SO (2)H).

We will show if we have a point z1 ∈ F1 such that Dv
(
v−1 (z1)

) ∈ N√
α (SO (2)) and z2 ∈ F2 such that

Dv
(
v−1 (z2)

) ∈ N√
α (SO (2)H) we get a contradiction from the fact that wt1 and wt2 (the orientations of lt1

and lt2 respectively) must point in the same direction.
Formally; we will show that for some S ∈ {H, Id} we have{

Dv
(
v−1 (z)

)
: z ∈ F1 ∪ F2

} ⊂ N√
α (SO (2)S) . (144)

Before we do so we will have to establish some things about wt1 (the clockwise normal of line lt1) and wt2

(the clockwise normal to line lt2).
Step 3 We will show wt1 · wt2 ∈ [ 45 , 1].
Firstly we note that since we can run the ODE all the way to the boundary of S, as |t1 − t2| < w

σ and(
Θa −1

1 (t1) ∩ v (S)
) ∩ (Θa −1

1 (t2) ∩ v (S)
)

= ∅
assuming the constant c6 has been chosen big enough, the lines lt1 and lt2 must be roughly parallel, see fig 21.

v(S)

l

l

t1

t2

t1

t 2

Figure 21

Now we consider the pullback of lines lt1 , lt2 in the reference. See figure 22. By bilipschitzness we know
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a

t

t

2

y

v(   )

1

t1

t2v(   )

Figure 22

N
σ2α

1
16 w
4

(
v−1 (v (tk) + ltk

)
) ∩B w

σ3
(a) ⊂ v−1 (Ck) ∩B w

σ3
(a) for k = 1, 2.

And by Step 1 or (142)

L2

({
z ∈ N

σ2α
1
16 w
4

(
v−1 (v (tk) + ltk

)
) ∩B w

σ3
(a) : |Dv (y)φ1 − wtk

| > 128c4σ
−5α

1
16

})
≤ σ−8 c̃4α

3
16w2.

So we can find a point y0 ∈ {a+ φ⊥1
} ∩B

α
1
16 w

(a) such that

L1

({
z ∈ N

σ2α
1
16 w
4

(
v−1 (v (tk) + ltk

) ∩B w

σ3
(a)
)
∩ (y0 + 〈φ1〉) : |Dv (y)φ1 − wtk

| > 128c4σ
−5α

1
16

})
≤ σ−8c̃4α

1
8w

for k = 1, 2.
Let

Υk := N
σ2α

1
16

4

(
v−1 (ltk

) ∩B w
σ3

(a)
)
∩ (y0 + 〈φ1〉)

for k = 1, 2 and let

Υ̃k :=
{
y ∈ Υk : |Dv (y)φi − wtk

| < 128c4σ
−5α

1
16

}
for k = 1, 2. In words; for any z1 ∈ Υ̃1 we know that wt1 is (approximately) equal to Dv (z1)φ1 and for any
z2 ∈ Υ2 we have that wt2 is (approximately) equal to Dv (z2)φ1. And L1

(
Υk\Υ̃k

)
≤ σ−8α

1
8w.

So as lt1 and lt2 are roughly parallel we have (for big enough constant c1) we have wt1 · wt2 ∈ [45 , 1] or
wt1 · wt2 ∈ [−1,− 4

5

]
. Recall we want to show wt1 · wt2 ∈ [ 45 , 1]. Suppose not; so wt1 · wt2 ∈ [−1,− 4

5

]
.

As Dv (z)φ1 is the tangent to the line v ({y0 + 〈φ1〉} ∩ S) at point v (z) we have that v (Υk) (which is a
connected segment of v ({y0 + 〈φ1〉} ∩ S)) has for most of its points, a tangent pointing roughly in direction
wt2 .

Formally, we can prove (just by considering the integral v (z) − v (y0) =
∫ z

y0
Dv (x)φidL

1x) that if we let
ξk := v−1 (ltk

) ∩ {y0 + 〈φ1〉} then

H

(
v (Υk) ,

[
v (ξk) − σ2α

1
16w

4
wt2 , v (ξk) +

σ2α
1
16w

4
wt2

])
≤ c2α

1
16w. (145)
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More important however is that for z1 ∈ Υ̃1 and z2 ∈ Υ̃2 we have that Dv (z1)φ1 and Dv (z2)φ1 point
in roughly opposite directions. The only way this can happen is if v ((a+ 〈φi〉) ∩ S) “turns around” by π as
shown on fig 23.

1z

z2

l t1

l t2

(2)

(2)
1

2

v(e   )

v(e   )

Σ
Υ

Υ

Dv(z )φ2 1

Dv(z )φ21

1

1

2v(z  )

v(z  )

2

1

φ1

Figure 23

Now let e(2)1 and e(2)2 be the endpoints of Υ2 as shown, from (145) we have that N√
αw (lt2) passes in between

v
(
e
(2)
1

)
and v

(
e
(2)
2

)
. Let Σ := v

([
e
(2)
1 , t1

])
. Its easy to see that

Pl⊥t2

([
v
(
e
(2)
1

)
, v
(
e
(2)
2

)])
⊂ Pl⊥t2

(Σ)

and so its clear that N√
αw (lt2) must pass through both v (Υk) and Σ which implies

Θa −1 (t2) ∩B
(
a,
w

σ5

)
∩ v (Υk) �= ∅

and
Θa −1 (t2) ∩B

(
a,
w

σ5

)
∩ Σ �= ∅.

By Lemma 1 Θa −1 (t2) can only pass through v ({y0 + 〈φ1〉}) once so this is a contradiction. Thus we have
finally established that wt1 · wt2 ∈ [ 45 , 1].

Before continuing on our mission to establish (144) we note the following. If θ1 denotes the angle between
φ1 and φ2 then the angle between Hφ1 and Hφ2 is given by π − θ1. This can be seen either by direction
calculation or by noting that since detH = 1 and |Hφ1| = |Hφ2| = 1 a parallelogram with sides parallel to
φ1, φ2 must be sent to parallelogram with the same volume and same side length and hence the same pair of
internal angles.

Now we can proceed with the proof of (144). See fig 24.
We start with point z1. Now we know Dv

(
v−1 (z1)

) ≈ R0 for some R0 ∈ SO (2). Since z1 ∈ C1 we
know Dv

(
v−1 (z)

)
φ1 ≈ R0φ1 points (roughly) in the direction to wt1 as shown. Similarly since z ∈ C3,

Dv
(
v−1 (z)

)
φ2 ≈ R0φ2 points (roughly) in the direction wt3 . So the angle between lines lt1 and lt3 at the

intersection point is approximately the angle between φ1 and φ2.
Now we go to point z2. We have Dv

(
v−1 (z2)

) ≈ R1H for some R1 ∈ SO (2). As z2 ∈ C3 we have
Dv
(
v−1 (z2)

)
φ2 ≈ R2Hφ2 points in the direction wt3 as shown. And as z2 ∈ C2 we should have that
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θ

π−θ

Dv(v (z ))

φ

φ

1 1

1 2

−1

−1

Dv(v (z ))

z1

Dv(v (z ))φ22−1

z2

Dv(v (z ))φ12−1

v(t  )

v(t  )1

2

v(t  )3

w

w

wt2

t3

t4

l

lt 2

t 3

lt 1

Figure 24

Dv
(
v−1 (z2)

)
φ1 ≈ Hφ1 should point in the direction wt2 however as the action of H on φ1 and φ2 is to

stretch them apart so that Hφ1 and Hφ2 meet at angle of π− θ1, as we can see from the diagram Hφ1 points
in the opposite direction to wt2 so this is a contradiction.

In an identical way we get a contradiction from the possibility that z1 ∈ F1 withDv
(
v−1 (z1)

) ∈ N√
α (SO (2)H)

and z2 ∈ F2 with Dv
(
v−1 (z2)

) ∈ N√
α (SO (2)). So there exists S ∈ {Id,H} such that

Dv
(
v−1 (z)

) ∈ SO (2)S for each z ∈ F1 ∪ F2.

This completes the proof of the first part of the lemma.
Now we establish the second part of the lemma. See fig 25.

θ

Dv(v (z ))

φ

φ

1 1

1 2

−1

−1

Dv(v (z ))

z1

z2
v(t  )

v(t  )1

2

v(t  )3

w

w

wt2

t3

t4

θ

Dv(v (z ))φ22−1

Dv(v (z ))φ1−1 2

2

1 l

lt 2

lt 3

t 1

Figure 25

By the first part of the lemma Dv
(
v−1 (z1)

) ∈ B√
α (R0) for some R0 ∈ SO (2) and Dv

(
v−1 (z2)

) ∈
B√

α (R1) for some R1 ∈ SO (2).
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Similarly to as before. As z1 ∈ C1 ∩ C3 we have∣∣Dv (v−1 (z1)
)
φ1 − wt1

∣∣ ≤ 128c4σ
−5α

1
128

and ∣∣Dv (v−1 (z1)
)
φ2 − wt3

∣∣ ≤ 128c4σ
−5α

1
128 .

And so the angle between wt1 and wt3 is within 512c4σ
−5α

1
16 of the angle between φ1 and φ2.

Formally; let θ1 be the angle between wt1 and wt3 and let θ2 be the angle between wt2 and wt3 . So we have

|wt1 · wt3 − φ1 · φ2| ≤ |wt1 · (wt3 −R0φ2)| + |R0φ2 · (wt1 −R0φ1)|
≤ ∣∣wt3 −Dv

(
v−1 (z1)

)
φ2

∣∣+ ∣∣Dv (v−1 (z1)
)
φ2 −R0φ2

∣∣+ ∣∣wt1 −Dv
(
v−1 (z1)

)
φ1

∣∣
+
∣∣Dv (v−1 (z1)

)
φ1 −R0φ1

∣∣
≤ 512c4σ

−6α
1
16 . (146)

In exactly the same way we can see

|wt2 · wt3 − φ1 · φ2| ≤ 512c4σ
−6α

1
16

and so putting things together we get

|(wt1 − wt2) · wt3 | ≤ 1024c4σ
−6α

1
16 . (147)

Let R∗ be a rotation by π
2 in the clockwise direction, we have

|wt1 ·R∗wt3 − φ1 ·R∗φ2| ≤ |wt1 · (R∗wt3 −R∗R0φ2)| + |R∗R0φ2 · (wt1 −R0φ1)|
≤ ∣∣wt3 −Dv

(
v−1 (z1)

)
φ2

∣∣+ ∣∣Dv (v−1 (z1)
)
φ2 −R0φ2

∣∣+ ∣∣wt1 −Dv
(
v−1 (z1)

)
φ1

∣∣
+
∣∣Dv (v−1 (z1)

)
φ1 −R0φ1

∣∣
≤ 512c4σ

−6α
1
16 . (148)

And in the same way we can see |wt2 ·R∗wt3 − φ1 · R∗φ2| ≤ 512c4σ
−6α

1
16 so |(wt1 − wt2) ·R∗wt3 | ≤

1024c4σ
−6α

1
16 . Together with (147) this implies |wt1 − wt2 | ≤ 2048c4σ

−6α
1
16 .

�
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7.2. Controlled subskewcubes have derivative mostly in one well.
This next lemma essentially follows from Lemma 6, as most of the integral curves given by

{
Θi −1

k1
(t) : t ∈ IR

}
are straight parallel lines for i = 1, 2. Given that from Lemma 6 we know that Dv (·)φi is clockwise the normal
to these classes of “lines” for i = 1, 2, we only have to show that significant subskewcube of our skewcube is
contained within a neighborhood of these lines to conclude that for most points x within this subskewcube, the
directions of Dv (x)φ1 and Dv (x)φ2 are roughly fixed. So (as a weak conclusion) we have that most points
in our subskewcube are such that Dv (·) remain close to one component of the wells.

Lemma 8. Given skew cube S := P (a, φ1, φ2, c6w) with the following properties:
• S is contained in skew rectangles R1 := F (a, c7wφ2, r1φ1), R2 := F (a, r2φ2, c7wφ1) with w

ri
< σ2 for

i = 1, 2 where c7 is some constant bigger than c6.
• We have level set functions Θa

i : Ri → IR such that if we let

Gi :=

{
t ∈ (a+ 〈φi〉) ∩B w

σ6
(a) :

∫
Θa −1

i (t)∩Ri

J (x) dH1x ≤ αw

}
we have

L1
(
(a+ 〈φi〉) ∩B w

σ6
(a) \Gi

)
≤ αw (149)

for i = 1, 2.
• ∫

N w
σ2

(S)

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x < α3w2

then if we take skewcube S̃ := P (a, φ1, φ2, c8w) (for some constant c8 strictly less than c7) there exists
rotation R0 ∈ SO (2) and S ∈ {Id,H} such that

L2
({
x ∈ S̃ : |Dv (x) −R0S| > √

α
})

< 20σ−8c̃4α
1
8w2.

Proof. This lemma follows from Lemma 6 in a relatively straightforward way. Let

t1 := ∂P

(
a, φ1, φ2,

2w
σ2

)
∩ {a+ λφ1 : λ > 0} , t2 := ∂P

(
a, φ1, φ2,

2w
σ2

)
∩ {a+ λφ1 : λ ≤ 0} .

t3 := ∂P

(
a, φ1, φ2,

2w
σ2

)
∩ {a+ λφ2 : λ > 0} , t4 := ∂P

(
a, φ1, φ2,

2w
σ2

)
∩ {a+ λφ2 : λ ≤ 0} .

Observe fig 26.

t4

t1

t3

t2

v(t3)

v(t2)

v(t1)

v(t4)

θ t 1

θ t 1v(     ) l 1

φ1

2φ

a

v(a)

Figure 26

Take point ϑt1 ∈ G1 ∩ [t1, t2]. By Lemma 1 and bilipschitzness we have that line [v (t1) , v (t2)] is some
distinct angle away from line l1 := lϑt1

. Specifically there exists a constant c1 := c (σ) ∈ (0, 1) such that

L1
(
Pl⊥1

([v (t1) , v (t2)])
)
≥ c1 |v (t1) − v (t2)| .
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Similarly if we chose point ϑt2 ∈ G2 ∩ [t3, t4] let l2 := lϑt2
we have

L1
(
Pl⊥1

([v (t3) , v (t4)])
)
≥ c1 |v (t3) − v (t4)| .

So for some c2 := c (σ) we have

Bc2w (v (a)) ⊂ P−1
l⊥1

(
Pl⊥1

([v (t1) , v (t2)])
)

(150)

and
Bc2w (v (a)) ⊂ P−1

l⊥2

(
Pl⊥2

([v (t3) , v (t4)])
)
.

Let Q1 := P〈l⊥1 〉 ([v (t1) , v (t2)]) and Q2 := P〈l⊥2 〉 ([v (t3) , v (t4)]). We cut Q1 into intervals of width α
1
16 w
2 .

Formally, we can find a set
{
B

α
1
16 w
8

(
ζ1
k

)
: k = 1, 2, . . .M0

}
that are pairwise disjoint, with

{
ζ1
k : k = 1, 2, . . .M0

} ⊂
Q2,

Q2 ⊂
M0⋃
k=1

B
α

1
16 w
4

(
ζ1
k

)
and M0 :=

[
4L1(Q1)

α
1
16 w

]
+ 1 ≤ 5

[
α

1
16

]
.

Similarly we cut Q1 into intervals of width α
1
16 w
2 . So we find

{
B

α
1
16 w
8

(
ζ2
k

)
: k = 1, 2, . . .M1

}
that are

pairwise disjoint, with
{
ζ2
k : k = 1, 2, . . .M1

} ⊂ Q2,

Q2 ⊂
M1⋃
k=1

B
α

1
16 w
4

(
ζ1
k

)
and M1 :=

[
4L1(Q2)

α
1
16 w

]
+ 1 ≤ 5

[
α− 1

16

]
.

Now as v ([t1, t2]) is connected, for each k ∈ {1, 2, . . .M0} we have P−1
l⊥1

(
ζ1
k

) ∩ v ([t1, t2]) �= ∅. So we can

pick q1k ∈ P−1
l⊥1

(
ζ1
k

) ∩ v ([t1, t2]) for k ∈ {1, 2, . . .M0} and q2k ∈ P−1
l⊥2

(
ζ2
k

) ∩ v ([t3, t4]) for k ∈ {1, 2, . . .M1}.
Now observe fig 27 below.

v(t2)

v(t4)

v(t1)

v(t3)

φ

Q2

Q1

φ1

2

1l

2l

Figure 27

By (149) for each k ∈ {1, 2, . . .M0} we must be able to chose τ1
k ∈ Nαw

(
v−1
(
q1k
)) ∩ G1 and for each

k ∈ {1, 2, . . .M1} we can chose τ2
k ∈ Nαw

(
v−1
(
q1k
)) ∩G2 so we have

Q1 ⊂
M0⋃
k=1

B
α

1
16 w
4

(
Pl⊥1

(
v
(
τ1
k

)))
(151)
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and

Q2 ⊂
M1⋃
k=1

B
α

1
16 w
4

(
Pl⊥1

(
v
(
τ2
k

)))
. (152)

Now by Lemma 6 we know wτ1
k

(the clockwise normal to lτ1
k
) and w1 is the clockwise normal to l1 are such

that ∣∣∣wτ1
k
− w1

∣∣∣ < 2048σ−6α
1
16 for any k ∈ {1, 2, . . .N0} (153)

Observe fig 28.

τ k
1v(     )

w

τkl

~
l1

1

k

1/16cos 5000 α−6σ

Figure 28

As the angle between wτ1
k

and w1 is less than 5000σ−6α
1
16 , if we let l̃1k be the line centered on v

(
τ1
k

)
parallel

to l1 as can be seen from fig 28

N
α

1
16 w
4

(
l̃1k

)
⊂ N

5000σ−6α
1
16 w

(
lτ1

k

)
. (154)

So by Lemma 7, (153) and (154)

L2

({
x ∈ N

α
1
16 w
4

(
l̃1k

)
∩R1 :

∣∣Dv (v−1 (x)
)
φ1 − w1

∣∣ > 6000σ−6α
1
16

})
≤ L2

({
x ∈ N

α
1
16 w
σ7

(
˜lτ1
k

)
∩R1 :

∣∣∣Dv (v−1 (x)
)
φ1 − wτ1

k

∣∣∣ > 3000σ−6α
1
16

})
≤ σ−6 c̃4α

3
16w2.

However from (150) and (151) we have

Bc2w (v (a)) ⊂
N0⋃
k=1

N
α

1
16 w
4

(
l̃1k

)
∩R1.

If we let l̃2k be the line centered on v
(
τ2
k

)
parallel to l2 for each k ∈ {1, 2, . . .N1}. In exactly the same we

have

Bc2w (v (a)) ⊂
N1⋃
k=1

N
α

1
16 w
4

(
l̃2k

)
∩R2.

So

L2
({
x ∈ Bc2w (v (a)) :

∣∣Dv (v−1 (x)
)
φ1 − w1

∣∣ > 6000σ−6α
1
16

})
≤

N0∑
k=1

L2
({
x ∈ N

α
1
16 w

(
l̃1k

)
∩Ri :

∣∣Dv (v−1 (x)
)
φ1 − w1

∣∣ > 3000σ−6α
1
16

})
≤ σ−6M0c̃4α

3
16w2

≤ 5σ−6 c̃4α
7
8w2 (155)

In exactly the same way we have

L2
({
x ∈ Bc2w (v (a)) :

∣∣Dv (v−1 (x)
)
φ2 − w2

∣∣ > 6000σ−6α
1
16

})
≤ 5σ−6c̃4α

1
8w2. (156)
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Let J := {x ∈ S : d (Dv (x) , SO (2) ∪ SO (2)H) <
√
α} and

Z :=
{
x ∈ Bc2w (v (a)) :

∣∣Dv (v−1 (x)
)
φ2 − w2

∣∣ < 6000σ−6α
1
16 and

∣∣Dv (v−1 (x)
)
φ1 − w1

∣∣ < 6000σ−6α
1
16

}
so by assumption (134) and (155), (156) we have

L2 (Bc2w (v (a)) \ (Z ∪ v (J))) ≤ 20σ−6c̃4α
1
8w2. (157)

Now for any z ∈ Bc2w (v (a)) ∩ (Z ∪ v (J)) since for z ∈ Z we have
∣∣Dv (v−1 (z)

)−RS
∣∣ < √

α for some
R ∈ SO (2) and some S ∈ {Id,H} and as the angle between RSφ1 and RSφ2 changes radically depending
on whether S = Id or S = H whilst w1 and w2 are independent of x, so we either have{

Dv
(
v−1 (z)

)
: z ∈ Bc2w (v (x)) ∩ (Z ∪ v (J))

} ⊂ N√
α (SO (2)) (158){

Dv
(
v−1 (z)

)
: z ∈ Bc2w (v (x)) ∩ (Z ∪ v (J))

} ⊂ N√
α (SO (2)H) . (159)

Now assuming c2 is big enough we have that

S̃ := P (a, φ1, φ2, c8w) ⊂ v−1 (Bc2w (v (a)))

and hence from (157)

L2
({
x ∈ S̃ : d (Dv (x) , SO (2)A) ≥ √

α
})

≤ 20σ−8c̃4α
1
8w2

and hence we have established the lemma.
�
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7.3. Proof of Proposition 1 continued.
Lemma 6 and Lemma 8 have essentially done most of the proof of Proposition 1 for us. The only “work” to
be done in the coming proof is to set up all the conditions to apply Lemmas 6, 8 and simply to count up the
consequences in terms our exponents κ and ε.

Proof. So recall, we have ∫
S

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x ≤ κ
7m0

2 +8ε2 (160)

and for the set
{
C

(p)
k : k ∈ {1, . . . [κ−m0 ]}

}
of pairwise disjoint columns width κm0ε going through S parallel

to φp centered on a(p)
k . We let E(p)

k := N(c7−1)κm0 ε

(
C

(p)
k

)
for k ∈ {1, . . . [κ−m0 ] + 1}. From (160) we can find

a set
{
kp
1 , . . . k

p
Qp

0

}
of distinct numbers satisfying the following inequalities∫

v

„
E

(p)
k

p
j

« J (x) dL2x ≤ κ3m0+7ε2

for each j ∈ {1, . . .Qp
0} and

Qp
0 ≥
(
1 − κ

m0
2

) [
κ−m0

]
for p = 1, 2. (161)

And by assumption (132) we have

Qp
0∑

j=1

∫
v

„
E

(p)
k

p
j

« J (x)
∣∣∣DΘ(p)

kp
j

∣∣∣ dL2x ≤ κm0+1ε2

for p = 1, 2.
We also have

∫
S

∣∣D2v (x)
∣∣ dL2x < εκ. Let

Bp
0 =

⎧⎨⎩kp
j :
∫

v

„
E

(p)
k

p
j

« J (x)
∣∣∣DΘp

kp
j
(x)
∣∣∣ dL2x ≥ κ

m0
2 κm0+1ε2, j ∈ {1, . . .Qp

0}
⎫⎬⎭ .

So Card (Bp
0)κ

m0
2 κm0+1ε2 ≤ κm0+1ε2 implies Card (Bp

0 ) ≤ κ
−m0

2 . Let

Gp
0 :=

{
kp

j : j ∈ {1, . . .Qp
0}
} \Bp

0

thus
Card (Gp

0) ≥
[
κ−m0

(
1 − 2κ

m0
2

)]
. (162)

Let ai,j be the centerpoint of E(1)
i ∩ E

(2)
j . Note that Si,j := P (ai,j , φ1, φ2, c6κ

m0ε) ⊂ E
(1)
i ∩ E

(2)
j . Let

l
(p)
k :=

(
a
(p)
k + 〈φp〉

)
∩ S. Let

Up
k :=

{
t ∈ l

(p)
k :
∫

Θp −1
k (t)∩v

“
E

(p)
k

” J (x) dH1x ≥ κ
m0
4 κm0ε

}
. (163)

Let k ∈ Gp
0, by the coarea formula, for any k ∈ Gp

0∫
t∈Up

k

∫
Θp −1

k (t)∩v
“

E
(p)
k

” J (x) dH1xdL1t ≤
∫

t∈IR

∫
Θp −1

k (t)∩v
“

E
(p)
k

” J (x) dH1xdL1t

=
∫

v
“

E
(p)
k

” J (x)
∣∣∣DΘ(p)

k

∣∣∣ dL2x

≤ κ
m0
2 κm0+1ε2.
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So L1 (Up
k )κ

m0
4 κm0ε ≤ κ

m0
2 κm0+1ε2 which implies L1 (Up

k ) ≤ κ
m0
4 κε. Now let us temporarily fix p = 1. Let

Λ1
k,r := l

(1)
k ∩N κm0 ε

σ6
(Sk,r) for k ∈ {1, 2, . . . [κ−m0 ] + 1}, r ∈ {1, 2, . . . [κ−m0 ] + 1}. For k ∈ G1

0 let

D1
k :=

{
r ∈ {1, 2, . . . [κ−m0

]}
: L1
(
Λ1

k,r ∩ U1
k

)
> κ1+

m0
8 κm0ε

}
. (164)

So since
{
Λ1

k,r : r ∈ {1, 2, . . . [κ−m0 ] + 1}
}

do not overlap by more than
[
σ−6
]
+ 1 we have

σ6

2
Card

(
D1

k

)
κ1+

m0
8 κm0ε ≤ L1

(
U1

k

)
≤ κ

m0
4 κε

and thus
Card

(
D1

k

) ≤ 2σ−6κ
m0
8 κ−m0 .

For p = 2 we can define Λ2
k,r := l

(2)
r ∩N κm0 ε

σ6
(Sk,r) for k, r ∈ {1, . . . [κ−m0 ] + 1}. And for r ∈ G2

0 we let

D2
r :=

{
k ∈ {1, 2, . . . [κ−m0

]}
: L1
(
Λ2

k,r ∩ U2
k

)
> κ1+

m0
8 κm0ε

}
.

We can see in exactly the some way that Card
(
D2

r

) ≤ 2σ−6κ
m0
8 κ−m0 .

Now we define the “bad” skew cubes B̃0 of the set
{
Si,j : i ∈ G1

0, j ∈ G2
0

}
as follows

Si,j ∈ B̃0 iff N κm0 ε

σ6
(Si,j) ∩ l(1)i ∈ {Λ1

i,r : r ∈ D1
i

}
or N κm0 ε

σ6
(Si,j) ∩ l(2)j ∈ {Λ2

k,j : k ∈ D2
j

}
. (165)

So

Card
(
B̃0

)
≤

[κ−m0 ]+1∑
k=1

D1
k +

[κ−m0 ]+1∑
r=1

D2
r

≤ 8σ−6
[
κ−m0

]
κ

m0
8 κ−m0

≤ 8σ−6κ
m0
8

κ2m0
. (166)

Let G̃0 :=
{
Si,j : i ∈ G1

0, j ∈ G2
0

} \B̃0. So from (162) and (166) we have

Card
(
G̃0

)
=

1
κ2m0

− Card
({

1, . . .
[
κ−m0

]
+ 1
} \G1

0

)
κ−m0

−Card
({

1, . . .
[
κ−m0

]
+ 1
} \G2

0

)
κ−m0 − Card

(
B̃0

)
≥ 1

κ2m0

(
1 − 4κ

m0
2 − 8σ−6κ

m0
8

)
≥
(
1 − 16σ−6κ

m0
8

)
κ2m0

. (167)

Obviously we want to apply Lemma 8 to the skewcubes
{
Si,j ∈ G̃0

}
. First we have to make a further

selection. Let w := c7κ
m0ε and let α := κ

m0
8 .

Now let

G0 :=

⎧⎨⎩Si,j ∈ G̃0 :
∫

N κm0 ε
σ2 (Si,j)

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x < c27κ
m0(2+ 1

4 )ε2

⎫⎬⎭
assuming (160) we have that Card

(
G̃0\G0

)
c27κ

m0(2+ 1
2 )ε2 ≤ κ3m0ε2 so

G̃0\G0 = ∅. (168)

Given Si,j ∈ G0 let R1 := F (ai,j , wφ2, εφ1) and R2 := F (ai,j , εφ2, wφ1).
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As α > κ
m0
4 and w > κm0ε we know from definitions (163), (164) and (165) and the fact that Si,j ∈ G0

that

Gp :=

{
t ∈ (ai,j + 〈φp〉) ∩B w

σ6
(ai,j) :

∫
Θa −1

i (t)∩Rp

J (x) dH1x ≤ αw

}
is such that

L1
(
(ai,j + 〈φp〉) ∩B w

σ6
(ai,j) \Gp

)
≤ ακm0ε ≤ αw

for p = 1, 2. So we apply Lemma 8 to Si,j to conclude that for S̃i,j := P (ai,j , φ1, φ2, c8w) there exists rotation
Ri,j ∈ SO (2) and Si,j ∈ {Id,H} such that

L2
({
x ∈ S̃i,j : |Dv (x) −Ri,jSi,j | > κ

m0
16

})
< 20σ−8c̃4c

2
7κ

m0
64 (κm0ε)2

so by (167) and (168) we have established the proof of Proposition 1.
�
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8. The Coarea alternative: Part II

In the first part of the “coarea alternative” we established that for a skewcube S of diameter ε with very small
bulk energy and surface energy bounded by εκ, there must exist very many “controlled” subskewcubes of size
roughly κm0ε; by this we mean that Dv (·) is these subskewcubes remains (mostly) close to one component of
the wells. Recall that the goal of the “coarea alternative” was to show that for a function v and skewcube S
under our hypotheses and with little surface energy over S, given triangle τi ⊂ S, if we let L denote the linear
part of the affine interpolation of v on the corners of L, then L will be very close to these wells. In the coming
Lemma we will establish this for skewcube S under our hypotheses and additionally having the property of
having many “controlled” subskewcubes.
The proof is based on two observations. Firstly we know from a calculation in the proof of Lemma 1 (specifically,
equation (14)) that the tangent vx0 at point x0 of the pull back of an integral curve given by a level set of Θi

is of the form vx0 :=
[
S−1 (Y (t0))S−1 (Y (t0))

]
ni where Dv (·) = R (·)S (·) is the polar decomposition of

Dv (·). So the tangent doesn’t depend of the rotational part of the derivative. Secondly, from our constraint
on surface energy,

∫
S

∣∣D2v (x)
∣∣ dL2x ≤ κε, if we take any choice of direction ψ0 ∈ S1 then considering lines in

direction ψ0 going through S spaced out from one another by κm0ε, all but
[

κ
κm0

]
of these lines must be such

that they only pass through controlled subskewcubes that have derivative close the same component of the wells.
So suppose at least half our controlled subskewcubes are such that Dv (·) is close to SO (2)H, then we must be
able to find many lines parallel to H−2n1 and H−2n2 running through S only touching controlled subskewcubes
with derivative close to SO (2)H.

φ 1

φ 2

H n 1
−2

H n
−2

2

Figure 29

Recall from the introduction, in trying to control our function v on skewcube S our first step was to show
that the integral curves run in straight lines, we did this by using the “pull back idea” (which only required
information about the bulk energy) and the “ODE method” in which we needed somehow to find integral curves
along which Dv (·) stays close the wells. In our situation now, we have that for many pulled back integral
curves through S, Dv (·) along the pulled back curve does indeed stay close to the wells (in fact stays close to
SO (2)H) and as such by using bulk energy as we have done before, its easy to show that these integral curves
form something very much like straight lines.
Observe fig 29. Its not hard to see we can find lines parallel to H−2n1 and H−2n2 which enclose a large subset
of S and have the property that they intersect only controlled skewcubes for which Dv (·) is close to SO (2)H.
Let D denote the region enclosed. Let B1, B2, B3, B4 denote the sides of D, ie. ∂D =

⋃4
i=1 Bi. By using

the “pull back idea” and the “ODE method” carefully its not hard to show that v�Bi
≈ (RiH + ζi)�Bi

for some
Ri ∈ SO (2) and some ζi ∈ IR2. And then by using Lemma 6 and the fact that det (Dv (·)) ≈ 1 for most
points, we can (with some care) show that v�∂D ≈

(
R̃H + ζ

)
�∂D

. From this, by considering the action of v

on rank − 1 lines parallel to φ1 and φ2 running through D, its easy to see that any triangle τi ⊂ D is such
that if L denotes the linear part of the affine interpolation of v on the corners of τi, then L is very close to a
matrix in SO (2)H.
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This does the case where at least half the controlled subskewcubes are such that Dv (·) are close to SO (2)H. In
the case where half the controlled subskewcubes are close to SO (2) we can argue in an entirely analogous way.
In this case we will consider lines going through S in directions n1 and n2, these form pullbacks of integral
curves for which Dv (·) stays close to SO (2). We can then argue the same way to get control of a region
contained by four such lines, specifically we can conclude that any triangle τi contained in this region is such
that the linear part of the affine interpolation of v on τi is close to a matrix in SO (2). This is how the proof
works.

Lemma 9. Let v ∈ AF (Ω) and let S := P (a, φ1, φ2, c9ε) ⊂ Ω where c9 is some large constant we will decide
on later.

Let {
Li,j := P (ai,j , φ1, φ2, κ

m0ε) : i, j ∈ {1, 2, . . . [κ−m0
]
+ 1
}}

be a set of pairwise disjoint skewcubes such that S ⊂ ∪i,j∈{1,...[κ−m0 ]+1}Li,j. Let

Si,j := P (ai,j , φ1, φ2, c8κ
m0ε) .

Suppose we have a set G0 ⊂ {Si,j : i, j ∈ {1, . . . [κ−m0 ] + 1}} such that for any Si,j ∈ G0

•
L2
({
x ∈ Si,j : d (Dv (x) , Ri,jSi,j) > κ

m0
16

})
< 20c27c̃4σ

−8κ
m0
64 (εκm0)2

for some Ri,j ∈ SO (2), Si,j ∈ {Id,H}
•

Card (G0) ≥ 1 − 16σ−2κ
m0
8

κ2m0

And we suppose also that ∫
S

∣∣D2v (x)
∣∣ dL2x ≤ κε (169)

and ∫
S

d (Dv,K) dL2x ≤ κ
m0
2 ε2 (170)

then if τi is the triangle in 	ε that contains a, let Li be the linear part of the affine map we get from the
interpolation of v on the corners of τi, we have the following inequality;

d (Li, SO (2) ∪ SO (2)H) < κ
m0
1024 .

Proof. Let B0 := {Si,j : Si,j ∩ S �= ∅ and Si,j �∈ G0}. So Card (B0) ≤ 16σ−2κ
m0
8

κ2m0 .
We start by having to consider two cases,
Let

G
(1)
0 :=

{
Si,j ∈ G0 : Dv�Si,j

≈ Ri,j for some Ri,j ∈ SO (2)
}

and let
G

(2)
0 :=

{
Si,j ∈ G0 : Dv�Si,j

≈ Ri,jTi,j for some Ri,j ∈ SO (2) and Ti,j ∈ {Id,H}} .
Case 1: Card

(
G

(2)
0

)
≥ Card

(
G

(1)
0

)
.

Case 2: Card
(
G

(1)
0

)
≥ Card

(
G

(2)
0

)
.

We will have to argue the two cases in analogues, but different ways. As Case 1 is a little more intricate
we chose to argue it in detail.

Step 1 Take vector ♦1. Recall definition (54).

We can find a chain of points {x̃k : k = 1, 2, . . .M0} ⊂ P♦⊥
1

(S),M0 =

⎡⎣L1
„

P♦⊥
1

(S)

«
κm0ε

⎤⎦ such that |x̃k−1 − x̃k| =

|x̃k − x̃k+1| = εκm0 for k = 2, 3, . . .M0 − 1. Now for k ∈ {2, 3, . . .M0} let

Z̃k :=
{
Si,j ∈ S : Li,j ∩ P−1

♦⊥
1

(x̃k) �= ∅
}
.
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Note {Si,j ∈ S} ⊂ ⋃M0
k=1 Z̃k. Let

E0 :=

⎧⎨⎩k ∈ {1, 2, . . .M0} : There exists S(1)
i,j ∈ Z̃k ∩G0 with Dv�S(1)

i,j

≈ SO (2) and

S
(2)
i,j ∈ Z̃k ∩G0 with Dv�S(2)

i,j

≈ SO (2)H

⎫⎬⎭
By 5r Covering Theorem ([16] Theorem 2.1) can take some subset E1 ⊂ E0 which has the following

properties

• For any k1, k2 ∈ E1 that are not equal, Z̃k1 ∩ Z̃k2 = ∅.
• ⋃

k∈E0

B2κm0ε (x̃k) ⊂
⋃

k∈E1

B10κm0ε (x̃k) . (171)

Now we clearly have that for each k ∈ E1 we have∫
P−1

♦⊥
i

(B10κm0 ε(x̃k))

∣∣D2v (x)
∣∣ dL2x ≥ κm0ε

2
.

So from (170) Card (E1) κm0

2 ε ≤ κε
2 which implies that

Card (E1) ≤ κ1−m0 (172)

and from (171) we have

Card (E0) 2κm0ε = L1

(
P♦⊥

1

( ⋃
k∈E0

B2κm0ε (x̃k)

))

≤ L1

(
P♦⊥

1

( ⋃
k∈E1

B10κm0ε (x̃k)

))
≤ 10κm0εCard (E1) .

So Card (E1) ≥ Card(E0)
5 and thus from (172) we have

Card (E0) ≤ 5κ1−m0 . (173)

Let Q0 := {1, 2, . . .M0} \E0. So for any k ∈ Q0, Z̃k ∩ G0 consists only of skewcubes Si,j for which Dv�Si,j
≈

SO (2) or consists only of skewcubes Si,j for which Dv�Si,j
≈ SO (2)H . Let

Q1 :=
{
k ∈ Q0 : Card

(
Z̃k ∩B0

)
≤ κ

m0
16 κ−m0

}
Now by a similar application of the 5r covering theorem

Card (Q0\Q1)κ
m0
16 κ−m0 ≤ 20κ

m0
8

κ2m0

so

Card (Q0\Q1) ≤ 20κ
m0
16

κm0
.

Thus
Card (Q1) =

(
1 − 5κ− 20κ

m0
16

)
κ−m0 . (174)

Finally for some constant we let

Q̃2 =
{
k ∈ {1, 2, . . .M0} : L1

(
P−1

♦⊥
1

(x̃k) ∩ S
)
≥ 10κε

}
so its easy to see from the diagram Q1\Q̃2 ≈ 10c1κ−m0+1 for some c1 := c (σ) > 0. Let Q2 := Q1\Q̃2. So
from (174) we have

Card ({1, 2, . . .M0} \Q2) ≤ 20c1κ1−m0 . (175)

Step 2.
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Q3

φ

φ

<>1

1

2

<> 2

Figure 30

Now we will show that either

• For any Si,j ∈ ⋃k∈Q2
Z̃k, Dv�Si,j

≈ Ai,j for Ai,j ∈ SO (2)

• For any Si,j ∈ ⋃k∈Q2
Z̃k, Dv�Si,j

≈ Bi,j for Bi,j ∈ SO (2)H .

Suppose this was not true, so we can find k1, k2 ∈ Q2 such that:

• For all Si,j ∈ Z̃k1

Dv�Si,j
≈ Ai,j with Ai,j ∈ SO (2)

• For all Si,j ∈ Z̃k2 ,
Dv�Si,j

≈ Bi,j with Bi,j ∈ SO (2)H.

Now by considering the change in derivative of Dv in direction ♦1 from the set
⋃

Si,j∈fZ1
Si,j to the set⋃

Si,j∈fZ2
Si,j we see that ∫

S

∣∣D2v (x)
∣∣ dL2x ≥ 10κε

which contradicts assumption (169). So we have established the claim.
Now if we start the argument again from the beginning and instead of taking a chain of points in P♦⊥

1
(S)

we take a chain of points in P♦⊥
2

(S), we can then run through the whole argument again to establish the
following.

Let {z̃k : k = 1, 2 . . .M1} ⊂ P♦⊥
2

(S), (M1 =

⎡⎣L1
„

P♦⊥
2

(S)

«
κm0 ε

⎤⎦) be a chain of points such that

|z̃k − z̃k+1| = εκm0

for k = 1, 2, . . .M1 − 1. Let P1 :=
{
k ∈ {1, . . .M1} : L1

(
P−1

♦⊥
2

(z̃k) ∩ S
)
> 10κε

}
. For k ∈ {1, 2, . . .M1} we let

Ỹk :=
{
Si,j : Li,j ∩ P−1

♦⊥
2

(z̃k) �= ∅
}
. We can find a subset P2 ⊂ P1 with the following properties.

There exists S ∈ {Id,H} such that

• For any Si,j ∈ ⋃k∈P2
Yk we have

Dv�Si,j
(·) ≈ Ai,j (176)

with Ai,j ∈ SO (2)S.
•

Card ({1, 2, . . .M1} \P2) ≤ 20c1κ1−m0 (177)

Step 3. Now we refine the set up. Now for any k1 ∈ Q2 we have situation shown on fig 31.
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φ

1

2

φ

<>1

Figure 31

Since every point in P−1
♦⊥

1
(xk1 )∩S is covered by skewcubes Li,j which are in turn covered by Si,j . We have

Nσ2c2εκm0

(
P−1

♦⊥
1

(xk1 )
)
∩ S ⊂

⋃
Si,j∈Zk

Si,j .

Now by definition of Q2, for some S ∈ {Id,H} we have that for any Si,j ∈ ⋃k∈Q2
Z̃k,

L2
({
x ∈ Si,j : d (Dv (x) , SO (2)S) > κ

m0
16

})
< 20c27c̃4σ

−8κ
m0
64 (εκm0)2 .

So

L2
({
x ∈ Nσ2c2εκm0

(
P−1

♦⊥
1

(xk1)
)
∩ S : d (Dv (x) , SO (2)S) > κ

m0
16

})
≤
∑

Si,j∈fZk

L2
({
x ∈ Si,j : d (Dv (x) , SO (2)S) > κ

m0
16

})
≤ 20c27c̃4σ

−8Card
(
Z̃k

)
κ

m0
64 (εκm0)2 .

Now as {Si,j : i, j ∈ {1, 2, . . . [κ−m0 ] + 1}} do not overlap by more than c8 times, formally

‖
∑

i,j∈{1,...[κ−m0 ]+1}
XSi,j‖∞ ≤ c8.

We have

Card
(
Z̃k

)
≤ c8Card

(
Li,j : Li,j ∩ P−1

♦⊥
1

(x̃k) �= ∅
)

≤ 2c8κ
−m0 .

So
L2
({
x ∈ Nc8σ2εκm0

(
P−1

♦⊥
1

(x̃k1)
)
∩ S : d (Dv (x) , SO (2)S) > κ

m0
16

})
≤ c2ε

2κm0(1+ 1
64 )

and so by Fubini we must be able to find some xk1 ∈ Bκm0(1+ 1
128 )ε (x̃k1 ) so

L1
({
x ∈ P−1

♦⊥
1

(xk1) ∩ S : d (Dv (x) , SO (2)S) > κ
m0
16

})
≤ c2εκ

m0
128 . (178)

So by doing this for every k ∈ Q2, we can find a set {xk : k ∈ Q2} such that
• For every k ∈ Q2

L1
({
x ∈ P−1

♦⊥
1

(xk) ∩ S : d (Dv (x) , SO (2)S) > κ
m0
16

})
≤ c2εκ

m0
128 (179)

• |xk − x̃k| ≤ κm0(1+ 1
128 )ε for each k ∈ Q2.
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Let Zk :=
{
Si,j : Li,j ∩ P−1

♦⊥
1

(xk) �= ∅
}
.

Now in exactly the same way we can find a set {zk : k ∈ P2} such that for some S ∈ {Id,H}
• For every k ∈ P2

L1
({
x ∈ P−1

♦⊥
2

(zk) ∩ S : d (Dv (x) , SO (2)S) > κ
m0
16

})
≤ c6εκ

m0
128

• |zk − z̃k| ≤ κm0(1+ 1
128 )ε for each k ∈ P2.

Let Yk :=
{
Si,j : Li,j ∩ P−1

♦⊥
2

(zk) �= ∅
}
.

Step 4
Observe fig 32.

<> 1

<> 2

φ

φ

1

2

z

x

1

zM1 x1

M0

Figure 32

Let
∆1 :=

{
Si,j ∈ S : Li,j ∩ P−1

♦⊥
1

(xk) �= ∅ for k ∈ Q2

}
and let

∆2 :=
{
Si,j ∈ S : Li,j ∩ P−1

♦⊥
2

(zk) �= ∅ for k ∈ P2

}
.

Now as can be seen from the diagram, assuming we chose c8 big enough, then for some c3 > σ−1 we will decide
on later, I := P (a, φ1, φ2, σc3ε) ⊂ S̄ is such that

I ⊂ P−1
♦⊥

2
([z1, zM1 ]) ∩ P−1

♦⊥
1

([x1, xM0 ]) .

Now let Π := {Si,j : Si,j ∩ I �= ∅}. So if we have that Π ∩ ∆1 ∩ ∆2 �= ∅ then we have that there exists
S ∈ {Id,H} such that for any Si,j ∈ Π ∩ (∆1 ∪ ∆2) we have:

There exists Ri,j ∈ SO (2) such that L2
({
x ∈ Si,j : d (Dv (x) , Ri,jS) > κ

m0
16

})
< 20c27c̃4σ

−8κ
m0
64 (εκm0)2 .

(180)
We will estimate Card (Π\ (∆1 ∪ ∆2)). Since for any k1 ∈ {1, 2, . . .M1}, k2 ∈ {1, 2, . . .M2}

Card (Zk1 ∩ Yk2) ≤ c4

for some constant c4 = c (σ). So for any k1 ∈ {1, 2, . . .M1} we have

Card

⎛⎝Zk1 ∩
⎛⎝ ⋃

k2∈{1,...M1}\P2

Yk2

⎞⎠⎞⎠ = Card

⎛⎝ ⋃
k2∈{1,...M1}\P2

Zk1 ∩ Yk2

⎞⎠
≤ Card ({1, . . .M1} \P2) c4. (181)
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So by (177), (175)

Card

⎛⎝⎛⎝ ⋃
k1∈{1,...M0}\Q2

Zk1

⎞⎠ ∩
⎛⎝ ⋃

k2∈{1,...M1}\P2

Yk2

⎞⎠⎞⎠ ≤
∑

k1∈{1,...M0}\Q2

Card

⎛⎝Zk1 ∩
⎛⎝ ⋃

k2∈{1,...M1}\P2

Yk2

⎞⎠⎞⎠
≤ Card ({1, . . .M0} \Q2)Card ({1, . . .M1} \P2) c4

≤ 100c21
c4κ

2

κ2m0
.

Now

Π\ (∆1 ∪ ∆2) = (Π\∆1) ∩ (Π\∆2)

⊂
⎛⎝ ⋃

k1∈{1,...M0}\Q2

Zk1

⎞⎠ ∩
⎛⎝ ⋃

k2∈{1,...M1}\P2

Yk2

⎞⎠
So

Card (Π\ (∆1 ∪ ∆2)) ≤ 400c21
c4κ

2

κ2m0

and thus Π ∩ ∆2 ∩ ∆2 �= ∅ and so (180) is true.
Now the arguments are completely analogous no matter what S is, however as the details are slightly more

intricate when S = H we will deal with this case.
See fig 33.
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Figure 33

Let γ1 . . . γ4 > 1 be some numbers we will decide on later. Let θ1 := a+γ1φ1, θ2 := a−γ2φ1, θ3 := a+γ3φ2

and θ4 := a− γ4φ2.
We assume γ1 . . . γ4 have been chosen so that θ1 ∈ P−1

♦⊥
1

(xk1 ) for some k1 ∈ Q2 and θ2 ∈ P−1
♦⊥

1
(xk2) for some

k2 ∈ Q2. And θ3 ∈ P−1
♦⊥

2
(zk3) for some k3 ∈ P2 and θ4 ∈ P−1

♦⊥
1

(zk4) for some k4 ∈ P2. We also assume (using
(175),(177) that)

|γi − γj | < 20c1κ for any i, j ∈ {1, . . . 4} . (182)
As shown on fig 33. Let D denote the region enclosed by the lines {θ1 + 〈♦1〉}, {θ2 + 〈♦1〉}, {θ3 + 〈♦2〉}

and {θ4 + 〈♦2〉} as shown.
Now we assume c3 has been chosen such that {γi} can be chosen so that I2 := P (a, φ1, φ2, c11κ

m0ε) ⊂ D
(for some c11 > 0 we will decide on later) and D ⊂ I.

We assume c11 > 0 is sufficiently smaller than γ1 so that we can find k1 ∈ Q2 such that xk1 ∈ P〈♦⊥
1 〉 (D\I2)

with P−1
〈♦⊥

1 〉 (xk1) ∩ {a+ αφ1 : α > 0} �= ∅. In the same way we can find k3 ∈ Q2 such that xk3 ∈ P〈♦⊥
1 〉 (D\I2)

and P−1
♦⊥

1
(xk3) ∩ {a− αφ1 : α > 0}. We also can find k2, k4 with zk2 , zk4 ∈ P〈♦⊥

2 〉 (D\I2) and P−1
♦⊥

2
(zk2) ∩

{a+ αφ2 : α > 0} �= ∅, P−1
♦⊥

2
(zk4) ∩ {a+ αφ1 : α ≤ 0} �= ∅.
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Step 5 We will show for j ∈ {1, 3}
• For any y1, y2 ∈ D ∩ P−1

♦⊥
1

(
xkj

)
where k1 ∈ Q2 and |y1 − y2| > √

κε we have

|v (y1) − v (y2)| ∈
[∣∣∣Pφ⊥

1
(y1 − y2)

∣∣∣ (1 − c5κ
m0
256

)
,
∣∣∣Pφ⊥

1
(y1 − y2)

∣∣∣ (1 + c5κ
m0
256

)]
. (183)

And specifically we have

H1 ([y1, y2]) ≤
(
1 + c5κ

m0
256

) ∣∣∣Pφ⊥
1

(y1 − y2)
∣∣∣ (184)

• For j ∈ {2, 4} and for any y3, y4 ∈ D ∩ P−1
♦⊥

2

(
zkj

)
where k2 ∈ P2 and |y3 − y4| > √

κε we have

|v (y3) − v (y4)| ∈
[∣∣∣Pφ⊥

2
(y3 − y4)

∣∣∣ (1 − c5κ
m0
256

)
,
∣∣∣Pφ⊥

2
(y3 − y4)

∣∣∣ (1 + c5κ
m0
256

)]
. (185)

And specifically we have

H1 ([y3, y4]) ≤
(
1 + c5κ

m0
256

) ∣∣∣Pφ⊥
1

(y3 − y4)
∣∣∣ (186)

We will argue only the case where y1, y2 ∈ D ∩ P−1
♦⊥

1

(
xkj

)
, kj ∈ Q2. The case where y3, y4 ∈ D ∩ P−1

♦⊥
2

(
zkj

)
for kj ∈ P2 follows in exactly the same way.

We start by establishing (184). Let L =
{
x ∈ [y1, y2] : d (Dv (x) , SO (2)H) ≤ κ

m0
16

}
. For each x ∈ [y1, y2]

let W (x) ∈ SO (2)H be such that

d (Dv (x) , SO (2) ∪ SO (2)H) = |Dv (x) −W (x)| .
So by (178) we have L1 ([y1, y2] \L) ≤ c2εκ

m0
128 and so∣∣H1 (v ([y1, y2])) − |y1 − y2| |H♦1|

∣∣ =

∣∣∣∣∣
∫

[y1,y2]

(|Dv (x) ♦1| − |H♦1|) dH1x

∣∣∣∣∣
≤
∫

L

|Dv (x) −W (x)| dL1x+
∫

[y1,y2]\L

|Dv (x)| + |H♦1|dL1x

≤ κ
m0
16 |y1 − y2| + 2c2σ−2εκ

m0
128

≤ 4σ−2c2 |y1 − y2|κ
m0
128− 1

2 .

Now as we know from (48), |y1 − y2| |H♦1| =
∣∣∣Pφ⊥

1
(y1 − y2)

∣∣∣ and thus∣∣∣H1 (v ([y1, y2])) −
∣∣∣Pφ⊥

1
(y1 − y2)

∣∣∣∣∣∣ ≤ 4σ−2c2 |y1 − y2|κ
m0
128− 1

2 . (187)

So this establishes (184).
Now we will show

|v (y1) − v (y2)| ≥
∣∣∣Pφ⊥

1
(y1 − y2)

∣∣∣ (1 − κ
m0
256

)
.

We appeal to Lemma 4 where it was shown that for any two points ι1, ι2 ∈ v (S) such that [ι1, ι2] ⊂ v (S) and∫
[ι1,ι2]

d
(
Dv
(
v−1 (z)

)
,K
)
dL1x < κ

m0
128 |ι1 − ι2|

we have
|ι1 − ι2| ≥

(
1 − 2σ−2κ

m0
256

)
|Ψ1 (ι1) − Ψ1 (ι2)| .

By the area formula we have
∫

v(S)
J (x) dL2x ≤ σ−2κ

m0
2 ε2 so by Fubini we must be able to find interval

[ι1, ι2] parallel to [v (y1) , v (y2)] with∫
[ι1,ι2]

d
(
Dv
(
v−1 (x)

)
,K
)
dL1x ≤ κ

m0
64 ε ≤ κ

m0
128 |l1 − l2| .
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And ι1 ∈ N
κ

m0
128 ε

(v (y1)) and ι2 ∈ N
κ

m0
128 ε

(v (y2)). So by Lemma 4 we have

|ι1 − ι2| ≥
(
1 − 2σ−2κ

m0
128

)
|Ψ1 (ι1) − Ψ1 (ι2)| .

Now by Bilipschitzness we have

|v (y1) − v (y2)| ≥
(
1 − 5σ−2κ

m0
128

)
|Ψ1 (v (y1)) − Ψ1 (v (y2))|

=
(
1 − 5σ−2κ

m0
128

)
L1
(
Pφ⊥

1
([y1, y2])

)
.

So this together with (187) establishes Step 5

Step 6
Take q ∈ {2, 4}. Consider the line (θq + 〈♦2〉) ∩ D. We will show that there exists Rq ∈ SO (2) such that

for any z ∈ (θq + 〈♦2〉) ∩ D with |z − θq| > √
κε we have

v (z) ∈ B
c6κ

m0
1024 ε

(v (θq) +RqH (z − θq)) . (188)

And similarly for q ∈ {1, 3}. For the line (θq + 〈♦1〉)∩D we will show that there exists Rq ∈ SO (2) such that
for any z ∈ (θq + 〈♦1〉) ∩ D with |z − θq| > √

κε we have

v (z) ∈ B
c6κ

m0
1024 ε

(v (θq) +RqH (z − θq)) . (189)

We argue only the case q = 1. All other cases follow in exactly the same way. Observe fig 34 below.

v(o )

v(o )θ 1v(    )

1

2

θ 1

o 1

o 2

l

−<> 1

ψ 1

Figure 34

Firstly by the Pythagoras type arguments coming from Lemma 5 (see in particular fig 7) (183) implies that

v ([o1, o2]) ⊂ N
κ

m0
512 ε

(v (θ1) + l) (190)

for some l ∈ G (1, 2).
Let ψ1 ∈ S1 be such that 〈ψ1〉 = l and ψ1 ·

(
v(o2)−v(o1)
|v(o2)−v(o1)|

)
> 0. Let R1 ∈ SO (2) be the rotation such that

R1

(
o2−o1
|o2−o1|

)
= ψ1. Now for any z ∈ (θ1 + 〈♦1〉) ∩ D with |z − θ1| > √

κε and z · (−♦1) ≥ θ1 · (−♦1). Let R̃

be a rotation such that R̃
(

z−θ1
|z−θ1|

)
= v(z)−v(θ1)

|v(z)−v(θ1)| ≈ ψ1.
So

v (z) = v (θ1) + |v (z) − v (θ1)| R̃
(
z − θ1
|z − θ1|

)
. (191)
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Now (190) we know
∣∣(v (z) − v (θ1)) · ψ⊥

1

∣∣ ≤ κ
m0
512 ε and so

|(v (z) − v (θ1)) · ψ1| ≥ |v (z) − v (θ1)| −
∣∣(v (z) − v (θ1)) · ψ⊥

1

∣∣
≥ |v (z) − v (θ1)| − κ

m0
512 ε. (192)

So as we know by Bilipschitzness that

|v (z) − v (θ1)| ≥ σ−2 |z − θ1|
≥ σ−2

√
κε. (193)

And as o2−o1
|o2−o1| = z−θ1

|z−θ1| = −♦1 we have∣∣∣(R1 − R̃
)
· ♦1

∣∣∣ =
∣∣∣∣ψ1 − v (z) − v (θ1)

|v (z) − v (θ1)|
∣∣∣∣

≤
∣∣∣∣1 − (v (z) − v (θ1)) · ψ1

|v (z) − v (θ1)|
∣∣∣∣+ ∣∣∣∣ (v (z) − v (θ1)) · ψ⊥

1

|v (z) − v (θ1)|
∣∣∣∣

≤ |v (z) − v (θ1)|−1 (||v (z) − v (θ1)| − (v (z) − v (θ1)) · ψ1| +
∣∣(v (z) − v (θ1)) · ψ⊥

1

∣∣)
≤ 2κ

m0
512 ε

σ2
√
κε

≤ c5κ
m0
1024

which implies
∣∣∣R1 − R̃

∣∣∣ ≤ c5κ
m0
1024 .

Now putting this together with (191) we have from (190), (192) and (193)

v (z) ∈ B
c5εκ

m0
1024

(
v (θ1) + |v (z) − v (θ1)|R1

(
z − θ1
|z − θ1|

))
which completes the proof of (189) for the case z · (−♦1) ≥ θ1 · (−♦1).

Now if z · (−♦1) < θ1 · (−♦1) we let R̄ be the rotation such that

R̄

(
z − θ1
|z − θ1|

)
=

v (z) − v (θ1)
|v (z) − v (θ1)| ≈ −ψ1 (194)

but since z−θ1
|z−θ1| = ♦1 we can see as before (since R1 (♦1) = −ψ1) that

∣∣R̄−R1

∣∣ ≤ c5κ
m0
1024 so again by using

this with an unscrambling of (194) we have complete the proof of (189).
Step 7. We will show v (D) is (roughly) mapped onto a parallelogram congruent to H (D).
First we find the corners of the shape D. Let o1 := (θ1 + 〈♦1〉)∩(θ4 + 〈♦2〉), o2 := (θ1 + 〈♦1〉)∩(θ3 + 〈♦2〉),

o3 := (θ2 + 〈♦1〉) ∩ (θ3 + 〈♦2〉), o4 := (θ2 + 〈♦1〉) ∩ (θ4 + 〈♦2〉).
Let X denote the shape contained by the lines

{[v (o1) , v (o2)] , [v (o1) , v (o4)] , [v (o3) , v (o4)] , [v (o3) , v (o2)]} .
Note

∣∣(o1 − o4) · φ⊥1
∣∣ = ∣∣(o2 − o3) · φ⊥1

∣∣ =: α and
∣∣(o1 − o2) · φ⊥2

∣∣ = ∣∣(o3 − o4) · φ⊥2
∣∣ =: β by Step 5 (see fig

33) we have

|v (o4) − v (o1)| ∈
[(

1 − c5κ
m0
256

)
α,
(
1 + c5κ

m0
256

)
α
]

and
|v (o2) − v (o3)| ∈

[(
1 − c5κ

m0
256

)
α,
(
1 + c5κ

m0
256

)
α
]
.

And also by Step 5 we have

|v (o1) − v (o2)| ∈
[(

1 − c5κ
m0
256

)
β,
(
1 + c5κ

m0
256

)
β
]

and
|v (o4) − v (o3)| ∈

[(
1 − c5κ

m0
256

)
β,
(
1 + c5κ

m0
256

)
β
]
.
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So X must be roughly a parallelogram. Formally, there exists a parallelogram X̃ such that

H
(
X, X̃
)
≤ c7κ

m0
256 ε.

Now by Step 6 we have that H (v (D) ,X) ≤ c6κ
m0
1024 ε and so

H
(
X̃, v (D)

)
≤ 4c7κ

m0
1024 ε. (195)

By the fact that
∫

D
J (x) dL2x ≤ σ−2κ

m0
2 L2 (D) we have

L2 (v (D)) ∈
((

1 − κ
m0
4

)
L2 (D) ,

(
1 + κ

m0
4

)
L2 (D)

)
and so

L2
(
X̃
)
∈
((

1 − 4c7κ
m0
1024

)
L2 (D) ,

(
1 + 4c7κ

m0
1024

)
L2 (D)

)
.

Now given that the size lengths of X̃ are prescribed and are (upto error 2c7κ
m0
512 ε) the same side lengths

as H (D), there can only be two possible parallelogram with volume equal to L2 (D). So (see fig 35) v (D) is
mapped (roughly) onto one of two possible parallelograms, as shown.

v(o1)

v(o3) v(o3)

v(o2) v(o1)

v(o3)

v(o2)

Case 1

v(o3)

Case 2

Figure 35

We know of course that H maps D onto a parallelogram and L2 (H (D)) = L2 (D). So H (D) is one of the
parallelograms shown in fig 35, in fact its parallelogram show is Case 2.

We will show that v (D) is mapped onto the parallelogram given by H (D). The fig 36 below shows H (D).
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Hθ

Hθ Hθ

Hθ
1

2

2

3

3

1

4

4

Hφ

Hφ 1

2

Figure 36

Now by Step 5 and (49) we see

|v (θ4) − v (o1)| ≤
(
1 + c5κ

m0
256

)
|H (θ4 − o1)|

and
|v (θ1) − v (o1)| ≤

(
1 + c5κ

m0
256

)
|H (θ1 − o1)| .
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So if we had Case 2 and v (o1) was mapped to one of the sharp corners of the parallelograms, then v (θ1) would
be within

(
1 + c5κ

m0
256

)
|H (θ1 − o1)| of the sharp corner and v (θ4) would also be within

(
1 + c5κ

m0
256

)
|H (θ4 − o1)|

of the sharp corner.
In the same way v (θ3) and v (θ1) would be (respectively) within distance

(
1 + c5κ

m0
256

)
|H (θ1 − o3)|,(

1 + c5κ
m0
256

)
|H (θ3 − o3)| of the opposite sharp corner. Now as can be seen from the (36), in this case

|v (θ1) − v (θ3)| would have to be ≥ (1 + c8) |H (θ1 − θ3)| for some not so small constant c8 = c (σ) > 0. How-
ever as θ1, θ3 ∈ (a+ 〈φ1〉) we have that |v (θ1) − v (θ3)| ≤

(
1 + κ2

) |θ1 − θ3| =
(
1 + κ2

) |H (θ1 − θ3)| and this
gives as a contradiction.

So we must have Case 1, which is to say v (D) is (roughly) mapped onto a parallelogram congruent H (D).
Formally, (195) implies that for some ζ ∈ IR2 we have

H (v (D) , H (D) + ζ) ≤ 42c7κ
m0
1024 ε. (196)

Step 8. We will use this to prove that for some R ∈ SO (2) such that for any x ∈ ∂D\⋃4
i=1B

√
κw (θi) we

have
v (x) ∈ B

42c7κ
m0
1024 ε

(v (θ1) +RH (x− θ1)) . (197)

We start by noting that since v (D) is an almost parallelogram (see (196)) we know that R1 and R3 from
(189) are such that

|R1 −R3| < 42c7κ
m0
1024 (198)

and R2, R4 from (188) are such that
|R2 −R4| < 2c6κ

m0
1024 . (199)

So it suffices to show
|R3 −R4| < 8c7κ

m0
1024 . (200)

Now by (188) and (189) we have for any z ∈ (θ4 + 〈♦2〉) ∩ D\B√
κε (o4) that

v (z) ∈ B
c6κ

m0
1024 ε

(v (o4) +R4H (z − o4)) (201)

and for any z ∈ (θ3 + 〈♦1〉) ∩ D\B√
κε (o4) we have

v (z) ∈ B
c6κ

m0
1024 ε

(v (o4) +R3H (z − o4)) . (202)

Now from (201), (202) we have

(v (o1) − v (o4)) · (v (o3) − v (o4)) ∈ B
2c6κ

m0
1024 ε

(R4H (o1 − o4) · R3H (o3 − o4))

However by Step 7 we know v (D) is mapped onto a rectangle congruent to H (D) and so the arrangement
of corners is as shown on Case 2, fig 36. And so, as can be seen from these diagrams, (196) implies that

(v (o1) − v (o4)) · (v (o3) − v (o4)) ∈ B
4c7κ

m0
1024 ε

(H (o1 − o4) ·H (o3 − o4))

So
R4H (o1 − o4) ·R3H (o3 − o4) ∈ B

4c7κ
m0
1024

(H (o1 − o4) ·H (o3 − o4))

and thus
R−1

3 R4H (o1 − o4) ·H (o3 − o4) ∈ B
8c7κ

m0
1024

(H (o1 − o4) ·H (o3 − o4)) .

So there are two possibilities. Either R−1
3 R4 is close to the identity or R−1

3 R4 flips H (o1 − o4) onto the
other side of H (o3 − o4) as shown on fig 37. We will gain a contradiction from the possibility that R−1

3 R4 is
not close to the identity in the following way. Observe figure 38.

Now we can assume we have chosen {θ1, θ2, θ3, θ4} such that∫
[o4,o1]

d (Dv (x) , SO (2) ∪ SO (2)H) dL1x < κ |o4 − o1|

and ∫
[o4,o3]

d (Dv (x) , SO (2) ∪ SO (2)H) dL1x < κ |o4 − o3|
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Figure 37
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Figure 38

and so (as shown) we must be able to find α1 ∈ [o4, o3] and α2 ∈ [o4, o1] such that α2 − α1 is parallel to φ1,

d (Dv (α1) , SO (2) ∪ SO (2)H) < κ

and ∫
[α1,α2]

d (Dv (z) , SO (2) ∪ SO (2)H) dL1z ≤ κ |α1 − α2| . (203)

Now since v ((α1, α2)) can not pass through v ([o4, o3]) or v ([o4, o1]) by Bilipschitzness. And more impor-
tantly since at point α1 (as the Dv (α1) is orientation preserving) the “triple junction” formed by the lines
[o4, o3] and [α1, α2] must be mapped to a “similar” “triple junction” of v ([o4, o3]) and v ([α1, α2]). See figure
39.

α

α1

1

v(    )

Figure 39
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So v ([α1, α2]) is forced to take a journey around the outside of v ([o3, o4]) ∪ v ([o1, o4]) as shown in fig 38.
But this means

H1 (v ([α1, α2])) > (1 + c10) |α1 − α2| (204)

for some not small constant c10 = c (σ) > 0.
However (203) since φ1 is a rank-1 direction for H we have

H1 (v ([α1, α2])) =
∫

[α1,α2]

|Dv (z)φ1| dL1z ≤ (1 + κ) |α1 − α2|

which contradicts (204). So finally we have a contradiction from the assumption that R−1
3 R4 flips H (o1 − o4)

onto the other side of H (o3 − o4). So we must have the only other possibility which is

R−1
3 R4 ∈ N

8c7κ
m0
1024

(Id) , (205)

and this establishes (200).
Now we will use this prove (197). We will argue for z ∈ [o4, o3] \B√

κε (θ2). See fig 33, by (189) and
(198),(199), (205) we have

v (z) − v (o4) ∈ B
20c7κ

m0
1024 ε

(R1H (z − o4)) (206)

and by (188), (198), (199), (205)

v (o4) − v (o1) ∈ B
20c7κ

m0
1024 ε

(R1H (o4 − o1)) (207)

and finally by (189)
v (o1) − v (θ1) ∈ B

c6κ
m0
1024 ε

(R1H (o1 − θ1)) . (208)

Now by adding together (206), (207) and (208) we have

v (z) ∈ B
42c7κ

m0
1024 ε

(R1H (z − θ1) + v (θ1)) (209)

and this establishes (197).
The cases, z ∈ [o1, o4] \B√

κε (θ4), z ∈ [o2, o4] \B√
κε (θ2), z ∈ [o2, o3] \B√

κε (θ3) and can be argued in the
same way

Step 8
Now we assume γ1, γ2, γ3, γ4 have been chosen big enough so that if τi ∈ 	ε is the element of the triangu-

lation that contains a, then τi ⊂ D. Let {ω1, ω2, ω3} denote the corners of τi. Now by assumption, none of
the edges of τi are close to being parallel to the axis φ1, φ2. So we have that

Card
({ω1, ω2, ω3} ∩

(
N√

κε (a+ 〈φ1〉) ∪N√
κε (a+ 〈φ2〉)

)) ≤ 1.

If {ω1, ω2, ω3}∩
(
N√

κε (a+ 〈φ1〉) ∪N√
κε (a+ 〈φ2〉)

)
= ∅ then the situation is even simpler, so we will argue

the case where the interaction is non-empty.
So without loss of generality assume

{ω1} = {ω1, ω2, ω3} ∩N√
κε (a+ 〈φ1〉) . (210)

Let γ̃1, γ̃2, γ̃3, γ̃4 > 0 be numbers we decide on later and let θ̃1 := a+ γ̃1φ1, θ̃2 := a− γ̃2φ1, θ̃3 := a+ γ̃3φ2 and
θ̃4 := a+ γ̃4φ2. By (175) and (177) we can assume γ̃1, γ̃2, γ̃3, γ̃4 have been chosen so that

• θ̃1 ∈ P−1
♦⊥

1
(xk5) for some k5 ∈ Q2, θ̃2 ∈ P−1

♦⊥
1

(xk6 ) for some k6 ∈ Q2, θ̃3 ∈ P−1
♦⊥

2
(zk7) for some k7 ∈ P2

and θ̃4 ∈ P−1
♦⊥

2
(zk8) for some k8 ∈ P2.

• ω1 ∈ N20c1κ

(
P−1

♦⊥
1

(
P♦⊥

1

(
θ̃1

)))
, ω2 ∈ N20c1κ

(
P−1

♦⊥
2

(
P♦⊥

2

(
θ̃3

)))
and ω3 ∈ N20c1κ

(
P−1

♦⊥
2

(
P♦⊥

2

(
θ̃4

)))
.

Note that this last condition together with (210) implies ω1 ∈ N√
κ

(
θ̃1

)
. Let D̃ denote the region enclosed

by {(
θ̃1 + 〈♦1〉

)
,
(
θ̃2 + 〈♦1〉

)
,
(
θ̃3 + 〈♦2〉

)
,
(
θ̃4 + 〈♦2〉

)}
.
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Either by arguments entirely analogues to those we used to establish (197) or by using (197) directly to
show that v

(
D̃
)

isn’t mapped onto the “wrong parallelogram” (the one that isn’t H
(
D̃
)
) we can establish

the following:
There exits R ∈ SO (2) such that for any

x ∈ ∂D̃\
4⋃

j=1

B√
κε

(
θ̃j

)
that

v (x) ∈ B
42c7κ

m0
1024 ε

(
v
(
θ̃1

)
+ RH

(
x− θ̃1

))
⊂ B

44c7κ
m0
1024 ε

(v (ω1) + RH (x− ω1)) .

This of course implies that

v (ω2) ∈ B
44c7κ

m0
1024 ε

(v (ω1) +RH (ω2 − ω1)) (211)

v (ω3) ∈ B
44c7κ

m0
1024 ε

(v (ω1) +RH (ω3 − ω1)) . (212)

Now let A be the affine map we get by interpolating v on the corners {ω1, ω2, ω3}. So A = L + ζ where
L ∈ M2×2 and ζ ∈ IR2. Thus we have v (ω2) − v (ω1) = L (ω2 − ω1) and v (ω3) − v (ω1) = L (ω3 − ω1). As
from (211) and (212) we have

L (ω2 − ω1) = v (ω2) − v (ω1) ∈ B
44c7κ

m0
1024 ε

(RH (ω2 − ω1))

L (ω3 − ω1) = v (ω3) − v (ω1) ∈ B
44c7κ

m0
1024 ε

(RH (ω3 − ω1)) .

This implies

L

(
ω2 − ω1

|ω2 − ω1|
)

∈
{

z

|ω2 − ω1| : z ∈ B
44c7κ

m0
1024 ε

(RH (ω2 − ω1))
}

⊂ B
c12κ

m0
1024

(
RH

(
ω2 − ω1

|ω2 − ω1|
))

(213)

and

L

(
ω3 − ω1

|ω3 − ω1|
)

∈
{

z

|ω3 − ω1| : z ∈ B
44c7κ

m0
1024 ε

(RH (ω3 − ω1))
}

⊂ B
c12κ

m0
512

(
RH

(
ω3 − ω1

|ω3 − ω1|
))

. (214)

So
∣∣∣(L−RH)

(
ω3−ω1
|ω3−ω1|

)∣∣∣ ≤ c12κ
m0
1024 and

∣∣∣(L−RH)
(

ω2−ω1
|ω2−ω1|

)∣∣∣ ≤ c12κ
m0
1024 .

From this it follows easily that |L− RH | ≤ c13κ
m0
1024 . And so for Case 1, where Card

(
G

(2)
0

)
≥ Card

(
G

(1)
0

)
we have established the lemma.

Case 2 where Card
(
G

(1)
0

)
≥ Card

(
G

(2)
0

)
follows via entirely analogous arguments, in fact its is even easier.

In this case we take a chain of points
{
zkj

} ∈ Pn⊥
1

(S) and
{
xkj

} ∈ Pn⊥
2

(S) so we gain control of v on the lines{
P−1

n⊥
1

(
zkj

) ∩ S} and
{
P−1

n⊥
2

(
xkj

) ∩ S}. Exactly analogous to what we have done in Case 1, we will show a
parallelogram with sides parallel to n1 and n2 is mapped (roughly) to a rotated version of some parallelogram.
From this we harvest the approximate control on the corners of τi and we are done.

�
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9. Counting the Oscillation

This last lemma is one of the most crucial in the whole proof. The basic idea has been explained in section 4.3
of the introduction. As noted in the introduction, the “coarea alternative” we actually need is more subtle than
the one sketched there. The basic idea behind the improved “coarea alternative” is explained in the introduction
to section 7; as described we must argue the “coarea alternative” in the thin columns running up through S in
directions φ1 and φ2.
Given a thin rectangular region C of width w parallel to φi, inside S the basic rule of thumb for the relationship
between the “coarea integral” of v over v (C) and the surface energy of v over C is (assuming the bulk energy
of v over C is small enough). ∫

v(C)
J (x) |DΘi (x)| dL2x

w
≤ c

∫
C

∣∣D2v (x)
∣∣ dL2x

And the proof of this is basically as described in section 4.3 of the introduction. The rest of the proof is just
arithmetic to show that the quantities add up to be what we expect.

Lemma 10. Let v ∈ AF (Ω). Given skew cube S := P (a, φ1, φ2, c9ε) ⊂ Ω. Let m0 ∈ IN be a big integer whose
value we will decide on later.

Suppose for some p ∈ {1, 2} we have;
• Let {Cp

k : k ∈ {1, 2, . . . [κ−m0 ]}} denote the set of columns of width κm0ε going through S, parallel to
φp. Let a(p)

k denote the center point in C
(p)
k . Let Θp

k denote the level set function defined with respect

to line
{
a
(p)
k + 〈φk〉

}
. Let E(p)

k := Nc5κm0

(
C

(p)
k

)
∩ S

Let {k1, k2, . . . kQ0} ⊂ {1, 2, . . . [κ−m0 ]} be a subset of distinct numbers such that∫
v

“
E

(p)
kj

” J (x) dL2x ≤ κ3m0+7ε2 (215)

for each j ∈ {1, 2, . . .Q0} and Q0 ≥
(
1 − κ

m0
2

)
[κ−m0 ]

•
Q0∑
j=1

∫
v

“
E

(p)
kj

” J (x) |DΘp
k (x)| dL2x ≥ κm0+1ε2

then ∫
S

∣∣D2v (x)
∣∣ dL2x ≥ c0κε.

Proof. Firstly we note that we have
Q0∑
j=1

ε−1κ−m0

∫
v

“
E

(p)
kj

” J (x) |DΘp
k (x)| dL2x > κε.

Let

G0 :=

{
j ∈ {1, 2, . . .Q0} : ε−1κ−m0

∫
v

“
E

(p)
kj

” J (x) |DΘp
k (x)| dL2x ≥ κm0+2ε

}
and let B0 := {1, 2, . . .Q0} \G0.

As ∑
j∈G0

ε−1κ−m0

∫
v

“
E

(p)
kj

” J (x) |DΘp
k (x)| dL2x+

∑
j∈B0

κm0+2ε ≥ κε

we have ∑
j∈G0

ε−1κ−m0

∫
v

“
E

(p)
kj

” J (x) |DΘp
k (x)| dL2x ≥ (1 − κ)κε.
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Let
ϑj := ε−1κ−m0

∫
v

“
E

(p)
kj

” J (x) |DΘp
k (x)| dL2x (216)

for j ∈ G0. So ∑
j∈G0

ϑj ≥ (1 − κ)κε (217)

and
θj ≥ κm0+2ε (218)

for each j ∈ G0.

Claim 2. We will show we can find z0 ∈ Pφ⊥
p

(
E

(p)
kj

)
such that∫

v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x) |DΘp
k (x)| dH1x ≥ σ4θj . (219)

And ∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x) dH1x ≤ κm0+4σ−4

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x) |DΘp
k (x)|dH1x

Proof of Claim
Let

G2 :=

⎧⎪⎪⎨⎪⎪⎩
z ∈ Pφ⊥

p

(
E

(p)
kj

)
:

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ |DΨp (x)| dH1x

≥ κ−m0−4
∫

v

„
E

(p)
kj

∩P−1
φ⊥

p
(z)

« J (x) |DΨp (x)| dH1x

⎫⎪⎪⎬⎪⎪⎭
and let

G3 :=

⎧⎨⎩z ∈ Pφ⊥
p

(
E

(p)
kj

)
:
∫

v

„
E

(p)
kj

∩P−1
φ⊥

p
(z)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ |DΨp (x)| dH1x ≥ σ4θj

⎫⎬⎭ .
Suppose the claim is not true and so G2 ∩G3 = ∅. Thus Pφ⊥

p

(
E

(p)
kj

)
⊂ Gc

2 ∪Gc
3. By the Coarea formula∫

v
“

E
(p)
kj

” J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dL2x =

∫
z∈P

φ⊥
p

“
E

(p)
kj

”
∫

v

„
E

(p)
kj

∩P−1
φ⊥

p
(z)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ |DΨp (x)| dH1xdL1z

≤
∫

z∈P
φ⊥

p

“
E

(p)
kj

”
\G2

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ |DΨp (x)| dH1xdL1z

+
∫

z∈P
φ⊥

p

“
E

(p)
kj

”
\G3

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ |DΨp (x)| dH1xdL1z

≤
∫

z∈P
φ⊥

p

“
E

(p)
kj

”
⎛⎝κ−m0−4

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z)

« J (x) |DΨp (x)| dH1x+ σ4θj

⎞⎠ dL1z

≤ κ−m0−4

∫
v

“
E

(p)
kj

” J (x) dL2x+ σ4θjL
1
(
Pφ⊥

p

(
E

(p)
kj

))
. (220)

Recall definition of θj , (216), rearranging (220) we have by (215) and (218) that

εκm0θj − σ4θjc0κ
m0ε ≤ κ−m0−4

∫
v

“
E

(p)
kj

” J (x) dL2x

≤ κ2m0+3ε2

≤ κm0+1θjε
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and as σ4 << c0 we have a contradiction. So we have established the claim. ♦
So we can find z0 ∈ G2 ∩G3 such that∫

v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x ≥ σ4θj

and (by the fact that σ2 ≤ |DΨp (x)| ≤ σ−2)∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x) dH1x ≤ κm0+4σ−4

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x. (221)

Claim 3. We can find subset U0 ⊂ v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)

such that

H1 (U0) ≤ κm0+3ε (222)

and ∫
U0

J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x ≥ σ4

2
θj (223)

Proof of Claim.
Note, most of the points of v

(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)

are much less than average: Formally, let

U0 :=

⎧⎪⎪⎨⎪⎪⎩x ∈ v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)

: J (x) > κσ−4

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x

H1
(
v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
))

⎫⎪⎪⎬⎪⎪⎭
so using (221) for the first inequality

κm0+4σ−4

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x ≥

∫
U0

J (x) dH1x

≥ κσ−4

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x

H1
(
v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)) H1 (U0) .

So we have
κm0+3H1

(
v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
))

≥ H1 (U0) .

Let
D0 := v

(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)
\U0.

So

∫
D0

J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x ≤ κσ−4

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x

H1
(
v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)) ∫

D0

∣∣∣DΘp
kj

(x)
∣∣∣ dH1x.

As by Lemma 1
∫

D0

∣∣∣DΘp
kj

(x)
∣∣∣ dH1x ≤ σ−2ε. So∫

D0

J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x ≤ κσ−6 ε

H1
(
v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)) ∫

v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x

≤ κσ−8

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x
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and so as κ << σ8 we have∫
U0

J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x ≥ 1

2

∫
v

„
E

(p)
kj

∩P−1
φ⊥

p
(z0)

« J (x)
∣∣∣DΘp

kj
(x)
∣∣∣ dH1x ≥ σ4θj

2

and this establishes the claim. ♦
Note in particular ∫

U0

∣∣∣DΘp
kj

(x)
∣∣∣ dH1x ≥ σ6θj

2
(224)

Now for any point x ∈ v (lt), let t(x) be the tangent to the curve v (lt) at x, as Θp
k is increasing up the curve

v (lt), we have that
t (x) ·DΘp

k (x) > 0.

On the other hand if we let vx ∈ t (x)⊥ we claim

vx ·DΘp
kj

(x) = 0 (225)

to prove (225) we argue as follows.
Take function X : [0,∞) → IR2 solving the ODE

X (0) = x
dX

dt
(t0) = DΨp (X (t0))

then by definition of we know Θp
a is constant on {X (t) : t > 0}. So

DΘp
kj

(x) · dX
dt

(0) = 0. (226)

From what we have previously calculated (see (9)), we know

dX

dt
(0) = Dv−T

(
v−1 (x)

)
np.

So
dX

dt
(0) · t (x) = Dv−T

(
v−1 (x)

)
np ·Dv (v−1 (x)

)
φp

= np ·Dv−1
(
v−1 (x)

)
Dv
(
v−1 (x)

)
φp

= np · φp

= 0,

so dX
dt (0) ∈ t (x)⊥. Now as we are in IR2 so vx ∈ t (x)⊥ will be of the form vx = λdX

dt (0) for some λ ∈ IR and
so by (226) we have that for any vx ∈ t (x)⊥, (225) is true.

So in fact v (lt0) is an integral curve for vector field DΘp
kj

. Formally; for any x ∈ v (lt) we have

t (x) ‖DΘp
kj

(x) , t (x) ·DΘp
kj

(x) > 0. (227)

For convenience, at this point we fixed p = 1. Now U0 is an open set in v
(
E

(p)
kj

∩ P−1
φ⊥

p
(z0)
)

so v−1 (U0) is an

open set in lt0 ∩S. So v−1 (U0) is a countable union of intervals in E(p)
kj

∩P−1
φ⊥

p
(z0), i.e. v−1 (U0) =

⋃
n (an, bn)

where an, bn ∈ E
(p)
kj

∩ P−1
φ⊥

p
(z0). We have from (222)∑

n∈IN

|an − bn| ≤ H1
(
v−1 (U0)

)
≤ σ−2H1 (U0)
≤ σ−2κm0+3ε.
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Take n ∈ IN, firstly we solve the ODEs

X(1) (0) = v (an)
dX(1)

dt
(t0) = DΨ1

(
X(1) (t0)

)
X(2) (0) = v (bn)

dX(2)

dt
(t0) = DΨ1

(
X(2) (t0)

)
By Lemma 1 there exists unique numbers t1, t2 ∈ IR such that X(1) (t1) ∈ {ak

p + 〈φ1〉
}

and X(2) (t2) ∈{
ak

p + 〈φ1〉
}

then by definition of Θ1
kj

we have that

Θ1
kj

(v (an)) = X(1) (t1) · φ1

Θ1
kj

(v (bn)) = X(1) (t2) · φ1.

Now let M :=
{
n ∈ IN :

∣∣∣Θ1
kj

(v (an)) − Θ1
kj

(v (bn))
∣∣∣ > 2 |an − bn|

}
. So by (227) letting t (x) denote the tan-

gent to curve v (lt0) at point x, we have∑
IN\M

∫
v((an,bn))

∣∣∣DΘ1
kj

(x)
∣∣∣ dH1x =

∑
IN\M

∫
v((an,bn))

DΘ1
kj

(x) · t (x) dH1x

=
∑

IN\M

Θ1
kj

(v (bn)) − Θ1
kj

(v (an))

≤
∑
n∈IN

2 |an − bn|

≤ 2σ−2κm0+3ε. (228)

So from (224), (228) the fact that U0 =
⋃

n∈IN v ((an, bn)) and the fact that by definition of G0, θj ≥ κm0+2ε
we have ∑

n∈M

∫
v((an,bn))

∣∣∣DΘ1
kj

(x)
∣∣∣ dH1x ≥ σ6θj

2
− 2σ−2κm0+3ε

≥ σ6θj

4
. (229)

Recall we know from Lemma 1, Y (1) (t) := v−1
(
X(1) (t)

)
and Y (2) (t) := v−1

(
X(2) (t)

)
travel in cones. Let

i ∈M , k ∈ {1, 2} and let X(k)
i be the solution of

X
(1)
i (0) = v (ai)

dX
(1)
i

dt
(t0) = DΨ1

(
X

(1)
i (t0)

)
X

(2)
i (0) = v (bi)

dX
(2)
i

dt
(t0) = DΨ1

(
X

(2)
i (t0)

)
Let Y (k)

i (t) = v−1
(
X

(k)
i (t)

)
and let tki ∈ IR be the unique number such that Y (k)

i

(
tki
) ∈ {a+ 〈φ1〉}.

Denoted by Q(k)
i :=

{
Y

(k)
i (t) : t ∈ [0, tki ]} and define function ϑk

i : P〈φ⊥
i 〉
(
Q

(k)
i

)
→ IR by

ϑk
i (x) :=

(
P−1
〈φ⊥

1 〉 (x) ∩Q(k)
i

)
· φ1.

So by Lemma 1, ϑ1
i and ϑ2

i are well defined Lipschitz functions. See figure 40.
At this point the indices have been changed and fixed so often we chose to take a moment to recall where

we are. We are in column E1
kj

, U0 is a subset of a line running parallel to φ1 up through E1
kj

. U0 is the
countable union of intervals {(an, bn) : n ∈ IN}, ϑ1

i is the function from φ⊥i to IR2 whose graph is the pullback
of part of an integral curve that runs from v (ai) to v (a+ 〈φ1〉) and ϑ2

i is the function from φ⊥i to IR2 whose
graph is the pullback of part of an integral curve that runs from v (bi) to v (a+ 〈φ1〉).
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a

a
b
1

1

a

b

2

2

a

b

3

3

φ

φ

1

2

dc 00

U0

Figure 40

From this point on to simplify notation we will take i to be fixed. So let pk := ϑk
i . Now let functions

q1 : P〈φ⊥
1 〉
(
Q

(1)
i

)
→ IR and q2 : P〈φ⊥

1 〉
(
Q

(2)
i

)
→ IR be defined as follows. Let c0, d0 be the end points

of interval P〈φ⊥
1 〉
(
Q

(1)
i

)
(which also, as can be seen from fig 40, are the endpoints of P〈φ⊥

1 〉
(
Q

(2)
i

)
). For

x ∈ [c0, d0] let

qk (x) :=
∫ x

c0

p′k (z)dL1z for k = 1, 2. (230)

So

|q1 (d0) − q2 (d0)| =

∣∣∣∣∣
∫ d0

c0

p′1 (z) − p′2 (z)dL1z

∣∣∣∣∣
≤
∫ d0

c0

|p′1 (z) − p′2 (z)| dL1z. (231)

So from (230) and since by definition of Θ1
kj

, Θ1
kj

(v (ai)) = ϑ1
i (d0) = p1 (d0) and Θ1

kj
(v (bi)) = ϑ2

i (d0) =
p2 (d0) and as p1 (c0) = ai, p2 (c0) = bi we have

|q1 (d0) − q2 (d0)| = |(p1 (d0) − p2 (d0)) − (p1 (c0) − p2 (c0))|
≥
∣∣∣∣∣∣Θ1

kj
(v (ai)) − Θ1

kj
(v (bi))

∣∣∣− |p1 (c0) − p2 (c0)|
∣∣∣

≥
∣∣∣Θ1

kj
(v (ai)) − Θ1

kj
(v (bi))

∣∣∣− |ai − bi|

≥

∣∣∣Θ1
kj

(v (ai)) − Θ1
kj

(v (bi))
∣∣∣

2
.

So by (231) ∣∣∣Θ1
kj

(v (ai)) − Θ1
kj

(v (bi))
∣∣∣

2
≤
∫ d0

c0

|p′1 (z) − p′2 (z)|dL1z. (232)

Let t1 ∈ (0, t0). Now if we let v(k)
t1 denote the tangent to the path

{
Y

(k)
i (t) : t ∈ [c0, d0]

}
at point Y (k)

i (t1)
then as we have already calculated

v
(k)
t1 :=

[
S−1
(
Y

(k)
i (t1)

)
S−1
(
Y

(k)
i (t1)

)]
n1. (233)
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As vector p′k (t1)φ1 + n1 is parallel to and pointing in the same direction as v(k)
t1 we have

p′k (t1)φ1 + n1(
p′k (t1)

2 + 1
) 1

2
= v

(k)
t1 for k = 1, 2.

Claim 4. We will show ∣∣∣v(1)
t1 − v

(2)
t1

∣∣∣ ≥ 2c15 |p′2 (t1) − p′1 (t2)|√
σ−2 + 1

(234)

for some small constant c1 > 0.

Unfortunately we will have to consider three cases.
Firstly the trivial case.
Case 0. If p′1 (t1) and p′2 (t1) has the opposite sign, then∣∣∣∣∣∣ p′1 (t1)√

(p′1 (t1))
2 + 1

− p′2 (t1)√
(p′2 (t1))

2 + 1

∣∣∣∣∣∣ =
|p′1 (t1)|√

(p′1 (t1))
2 + 1

+
|p′2 (t1)|√

(p′2 (t1))
2 + 1

≥ |p′1 (t1) − p′2 (t1)|
2
√

(σ−2 + 1)
(235)

and we are done.
Case 1 If max {|p1 (t1)| , |p2 (t1)|} ≤ c1 where c1 > 0 is a small constant we will decide on later.
Now ∣∣∣v(1)

t1 − v
(2)
t1

∣∣∣ ≥
∣∣∣(v(1)

t1 − v
(2)
t1

)
· φ1

∣∣∣
=

∣∣∣∣∣∣ p′1 (t1)√
(p′1 (t1))

2 + 1
− p′2 (t1)√

(p′2 (t1))
2 + 1

∣∣∣∣∣∣
≥
∣∣∣∣∣∣p

′
1 (t1) − p′2 (t1)√
(p′1 (t1))

2 + 1

∣∣∣∣∣∣−
∣∣∣∣∣∣p′2 (t1)

⎛⎝ 1√
(p′1 (t1))

2 + 1
− 1√

(p′1 (t2))
2 + 1

⎞⎠∣∣∣∣∣∣ (236)

So as ∣∣∣∣∣∣ 1√
(p′1 (t1))

2 + 1
− 1√

(p′1 (t2))
2 + 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
√

(p′1 (t2))
2 + 1 −

√
(p′1 (t1))

2 + 1√
(p′1 (t1))

2 + 1
√

(p′1 (t2))
2 + 1

∣∣∣∣∣∣
≤ 2

(
σ−4 + 1

)−1
∣∣∣∣√(p′1 (t2))

2 + 1 −
√

(p′1 (t1))
2 + 1

∣∣∣∣ (237)

Now observe fig 41.

θ

|p’(t )|

|p’(t )|

11

1 2

θ

Figure 41
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Now as can be seen from fig 41, assuming constant c1 has been chosen small enough we have that∣∣∣∣√1 + (p′1 (t1))
2 −
√

1 + (p′1 (t2))
2

∣∣∣∣ ≤ 2 ||p′1 (t1)| − |p′1 (t2)|| sin θ1.

And for some enough c1 we also know θ1 ≤ 2 |p′1 (t1)|. This gives∣∣∣∣√1 + (p′1 (t1))
2 −
√

1 + (p′1 (t2))
2

∣∣∣∣ ≤ 4 ||p′1 (t1)| − |p′1 (t2)|| |p′1 (t2)| .

Putting this together with (237) and recalling the assumption the assumption that max{|p1 (t1)| , ||p2 (t1)|} ≤
c1 for some small constant c1 we have∣∣∣∣(1 + (p′1 (t1))

2
)− 1

2 −
(
1 + (p′1 (t2))

2
)− 1

2

∣∣∣∣ ≤ 8c1
(
σ−4 + 1

) ||p′1 (t1)| − |p′1 (t2)|| ,

Applying this to (236) gives∣∣∣v(1)
t1 − v

(2)
t1

∣∣∣ ≥ |p′1 (t1) − p′2 (t1)|
(σ−2 + 1)2

− 8c21
(
σ−4 + 1

)−1 ||p′1 (t1)| − |p′1 (t2)||

≥ |p′1 (t1) − p′2 (t1)|
2 (σ−2 + 1)2

which is what we want.
Case 2 max {|p′1 (t1)| , |p′2 (t1)|} ≥ c1.∣∣∣v(1)

t1 − v
(2)
t1

∣∣∣ ≥
∣∣∣(v(1)

t1 − v
(2)
t1

)
· n1

∣∣∣
≥

∣∣∣∣(p′2 (t1)
2 + 1

) 1
2 −
(
p′1 (t1)

2 + 1
) 1

2

∣∣∣∣(
p′1 (t1)

2 + 1
) 1

2
(
p′2 (t1)

2 + 1
) 1

2

≥

∣∣∣∣(p′2 (t1)
2 + 1

) 1
2 −
(
p′1 (t1)

2 + 1
) 1

2

∣∣∣∣
(σ−2 + 1)

.

Now we need to use the following identity√
(a2 + 1) −

√
(b2 + 1) =

(a− b) (a+ b)√
(a2 + 1) +

√
(b2 + 1)

.

So we have ∣∣∣∣∣
√(

p′2 (t1)
2 + 1

)
−
√(

p′1 (t1)
2 + 1

)∣∣∣∣∣
≥ |p′2 (t1) − p′1 (t1)| |p′2 (t1) + p′1 (t1)|

2
√

(σ−2 + 1)

≥ 2c1 |p′1 (t1) − p′2 (t1)|
2
√
σ−2 + 1

.

Thus we have established the claim. ♦
More notation, for a point z ∈ Q

(k)
i let tk (z) ∈ S1 denote the tangent to graph Q

(k)
i for k ∈ {1, 2}, then

inequality (234) in our notation becomes; for any z0 ∈ P〈φ⊥
1 〉
(
Q

(k)
i

)
|t1 (p1 (z0)) − t2 (p2 (z0))| ≥ 2c1

(σ−2 + 1)
1
2
|p′2 (z0) − p′1 (z0)| .
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So inequality (232) becomes∣∣∣Θ1
kj

(v (ai)) − Θ1
kj

(v (bi))
∣∣∣

2
≤
(
σ−2 + 1

) 1
2

2c1

∫ d0

c0

|t1 (p1 (z)) − t2 (p2 (z))|dL1z. (238)

Now as we have already calculated ti (p1 (z)) =
[
S−1 (p1 (z))S−1 (p1 (z))

]
ni, (recall the notation, Dv (·) =:

R (·)S (·) where R (·) ∈ SO (2) and S (·) is a positive symmetric matrix). Since the map Dv (·) → S (·) is a
projection and |S (·)| > σ we have

|Dv (p1 (z)) −Dv (p2 (z))| > |S (p1 (z)) − S (p2 (z))|
≥ 1

2
‖S (p1 (z)) − S (p2 (z)) ‖

≥ σ2

2
‖ (S (p1 (z)) − S (p2 (z))) (S (p1 (z))S (p2 (z)))−1 ‖

=
σ2

2
‖S (p1 (z))−1 − S (p2 (z))−1 ‖

Now

|Dv (p1 (z)) −Dv (p2 (z))|
σ

≥ σ2

2
‖S (p2 (z))−1 ‖‖S (p1 (z))−1 − S (p2 (z))−1 ‖

≥ σ2

2
‖S (p2 (z))−2 − S (p1 (z))−1

S (p2 (z))−1 ‖

and similarly
|Dv (p1 (z)) −Dv (p2 (z))|

σ
≥ σ2

2
‖S (p1 (z))−2 − S (p1 (z))−1 S (p2 (z))−1 ‖.

Putting these things together we have

|Dv (p2 (z)) −Dv (p1 (z))|
σ

≥ σ2

2
‖S (p2 (z))−2 − S (p1 (z))−2 ‖

≥ σ2

2

∣∣∣(S (p2 (z))−2 − S (p1 (z))−2
)
n1

∣∣∣
≥ σ2

2
|t2 (p2 (z)) − t1 (p1 (z))| .

Inserting this into equation (238) gives us∣∣∣Θ1
kj

(v (ai)) − Θ1
kj

(v (bi))
∣∣∣

2
≤ 4

(
σ−2 + 1

) 1
2

c1σ3

∫ d0

c0

|Dv (p1 (z)) −Dv (p2 (z))| dL1z

=
4
(
σ−2 + 1

) 1
2

c1σ3

∫ d0

c0

∣∣∣∣∣
∫ p1(z)

p2(z)

∂

∂φ1
Dv (x) dL1x

∣∣∣∣∣ dL1z

≤ 4
(
σ−2 + 1

) 1
2

c1σ3

∫ d0

c0

∫ p1(z)

p2(z)

∣∣D2v (x)
∣∣ dL1xdL1z. (239)

Now let Vi denote the region enclosed by the two graphs Q(1)
i , Q(2)

i and the lines lt0 , lP〈φ⊥
1 〉(a). Formally

Vi :=
⋃

z∈[c0,d0]
[p1 (z) , p2 (z)]. The set {Ei : i ∈M} is pairwise disjoint and the equation (239) in this notation

is by Fubini ∣∣∣Θ1
kj

(v (ai)) − Θ1
kj

(v (bi))
∣∣∣

2
≤ 4
(
σ−2 + 1

) 1
2

c1σ3

∫
Vi

∣∣D2v (x)
∣∣ dL2x.



LOWER BOUNDS FOR THE TWO WELL PROBLEM 83

So from (229) and from the fact that v (lt1) is an integral curve for Θ1
kj

we have by summing over M

σ6ε

4
≤
∑
i∈M

∫
v((ai,bi))

DΘ1
kj

(x) txdH1x

=
∑
i∈M

∣∣∣Θ1
kj

(v (ai)) − Θ1
kj

(v (bi))
∣∣∣

≤ 4
(
σ−2 + 1

) 1
2

c1σ3

(∑
i∈M

∫
Vi

∣∣D2v (x)
∣∣ dL2x

)
.

Now
⋃

i∈M Vi ⊂ E
(p)
kj

so finally we have∫
E

(p)
kj

∣∣D2v (x)
∣∣ dL2x >

c1σ
9θj

16
.

So for each j ∈ G0 we have that ∫
E

(p)
kj

∣∣D2v (x)
∣∣ dL2x ≥ c1σ

9

16
θj .

Thus recall (217) ∑
j∈G0

∫
E

(p)
kj

∣∣D2v (x)
∣∣ dL2x ≥ c1σ

9

16

⎛⎝∑
j∈G0

ϑj

⎞⎠ ≥ c1σ
9

16
(1 − κ)κε.

However
{
E

(p)
kj

: j ∈ G0

}
are overlapping, recall E(p)

k := Nc5κm0ε

(
C

(p)
k

)
∩ S, where

{
C

(p)
kj

: j ∈ G0

}
are

disjoint columns of width κm0ε going through S. So
{
E

(p)
kj

: j ∈ G0

}
can not overlap by more than 2 [c5] times.

Thus must be able to find a subset G1 ⊂ G0 such that
• ∑j∈G0

∫
E

(p)
kj

∣∣D2v (x)
∣∣ dL2x ≥ c2σ9κε

64 .

•
{
E

(p)
kj

: j ∈ G1

}
are disjoint.

•
{
E

(p)
kj

: j ∈ G1

}
⊂ S.

So this implies ∫
S

∣∣D2v (x)
∣∣ dL2x ≥ c2σ

9κε

64
.

�
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10. Proof of Theorem 2

The proof of Theorem 2 is just a matter of collecting everything together.

Proof. Recall, we have triangulation 	ε of Ω, with triangulation size ε. Let v ∈ AF (Ω) and we have skewcube
S := P (a, φ1, φ2, cε) such that N ε

σ2
(S) ⊂ Ω. In addition we have following inequalities∫

S

d (Dv (x) ,K) dL2x ≤ κ
7m0

2 +8ε2 (240)

and ∫
S

∣∣D2v (x)
∣∣ dL2x ≤ c0κε. (241)

Let
{
C

(p)
k : k ∈ {1, . . . [κ−m0 ] + 1}

}
denote the set of columns width κm0ε going through S, parallel to φp

for p = 1, 2. Let E(p)
k := Nc5κm0 ε

(
C

(p)
k

)
∩ S for k = 1, 2, . . . [κ−m0 ] + 1. Let

Lp :=

{
k ∈ {1, . . . [κ−m0

]
+ 1
}

:
∫

v
“

E
(p)
k

” J (x) dL2x ≥ κ3m0+7ε2

}
.

So as the set
{
E

(p)
k : k ∈ {1, . . . [κ−m0 ] + 1}

}
does not overlap more than 2c5κ

−m0 times

1
2c5

κm0κ3m0+7ε2Card (Lp) ≤ (
2c5κ

−m0
)−1

⎛⎝∑
k∈Lp

∫
v

“
E

(p)
k

” J (x) dL2x

⎞⎠
≤
∫

v(S)

J (x) dL2x

≥ σ−2κ
7m0

2 +8ε2

Which implies
Card (Lp) ≤ 2c5κ

−m0κ
m0
2 +1.

So we must be able to find distinct numbers
{
k1, k2, . . . kQp

0

}
⊂ {1, 2, . . . [κ−m0 ] + 1} such that Qp

0 ≥(
1 − κ

m0
2

)
κ−m0 and ∫

v
“

E
(p)
k

” J (x) dL2x ≤ κ3m0+7ε2

for j ∈ {1, 2, . . .Qp
0}. Now if we have that for p ∈ {1, 2}

Qp
0∑

j=1

∫
v

“
E

(p)
k

” J (x)
∣∣∣DΘ(p)

k (x)
∣∣∣ dL2x ≥ κm0+1ε2

we can apply Lemma 10 to conclude ∫
S

∣∣D2v (x)
∣∣ dL2x ≥ c0κε

and this contradicts (241).
So we must have

Qp
0∑

j=1

∫
v

“
E

(p)
k

” J (x)
∣∣∣DΘ(p)

k (x)
∣∣∣ dL2x ≤ κm0+1ε2. (242)

So now, by (240), (241) and (242) can invoke Proposition 1 which gives the following conclusion;
Let {

Li,j := P (ai,j , φ1, φ2, κ
m0ε) : i, j ∈ {1, 2, . . . [κ−m0

]
+ 1
}}
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be a set of pairwise disjoint skewcubes such that S ⊂ ∪i,i∈{1,...[κ−m0 ]+1}Li,j . Let

Si,j := P (ai,j , φ1, φ2, c2κ
m0ε)

for some constant c2 > 1 we will decide on later.
There exists a set G0 ⊂ {Si,j : i, j ∈ {1, . . . [κ−m0 ] + 1}} such that

•
L2
({
x ∈ Si,j : d (Dv (x) , Ri,jTi,j) > κ

m0
16

})
< 20c27c̃4σ

−8κ
m0
64 (εκm0)2

for some Ri,j ∈ SO (2), Ti,j ∈ {Id,H}
•

Card (G0) ≥ 1 − 16σ−2κ
m0
8

κ2m0

Now this, together with (240) and (241) gives us all we need to invoke Lemma 9. So if τi is a triangle in
	ε that contains a and L is the linear part of the affine map we get from interpolating v on the corners of τi,
we have the following inequality

d (L, SO (2) ∪ SO (2)H) < κ
m0
1024

and this complete the proof of Theorem 2. �
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11. The Proof of Theorem 1

First note that we have the following trivial lower bound for for the finite element approximation of I.
Now consider a triangulation of Ω with triangles size of α. Let

Aα :=
{
v : Ω → IR2 : v satisfies the affine boundary condition and piecewise affine on

{τi : i = 1, . . .M1}
}

Note that its trivial that for any u ∈ Aα we must have as least α−1

100 triangles τi,j with

d (Dτi,j , SO (2) ∪ SO (2)H) > σ4.

So

inf
u∈Aα

I (u) ≥ σ4

100
α.

We can use Theorem 2 in the following way:
Suppose ∫

Ω

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x ≤ εζ

and ∫
Ω

∣∣D2v (x)
∣∣ dL2x ≤ ε−β.

Let
{
τi : 1 = 1, . . .

[
ε−2
]
+ 2
}

be a triangulation of with triangle size ε. Let κ := ε1−β . Let κ̃ := κ
1024
m0 .

Let B1 :=
{
τi :
∫

τi
T (x) dL2x ≥ ε2+γ

}
. So Card (B1) ε2+γ ≤ εζ which implies Card (B1) ≤ εζ−γ−2.

Let

B2 :=
{
τi : The linear part of the affine interpolation of S on τi is distance > κ from

SO (2) ∪ SO (2)H

}
So by Theorem 1 we have

Card (B2) κ̃ε = Card (B2) ε
1+ 1024(1−β)

m0

≤ ε−β

which implies
Card (B2) ≤ ε

−1− 1024
m0

−β
.

Now let ṽε be the triangulation of v on
{
τi : i = 1, . . . ε−2

}
. We have the following estimate

I (ṽε) =
∫

Ω

d (Dṽε (x) ,K)dL2x

=
∑

τi∈B1

∫
τi

d (Dṽε (x) ,K)dL2x+
∑

τi∈B2

∫
τi

d (Dṽε (x) ,K) dL2x+
∑

τi ∈(B1∪B2)

∫
τi

d (Dṽε (x) ,K)dL2x

≤ σ−2ε2 (Card (B1) + Card (B2)) +
∑

τi ∈(B1∪B2)

∫
τi

d (Dṽε (x) ,K) dL2x

≤ σ−2ε2
(
εζ−γ−2 + ε

−1− 1024
m0

−β
)

+ ε1−βL2 (Ω)

So by letting ζ := 7m0
2 + 8, γ := m0

2 , β := 1024
m0

we have

I (ṽε) ≤ cε
1− 2048

m0 .

Now letting m1 = 4m0 completes the proof of Theorem 1.
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12. Proof of Corollary 1

So if we have a function v such that Iε(v)
ε ≤ ε

− 2048
m2

1 . Recall h := ε
m2

1−2048

m3
1∫

Ω

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x ≤ ε
m2

1−2048

m2
1

= hm1 .

And ∫
Ω

∣∣D2v (x)
∣∣ dL2x ≤ Iε (v)

ε

≤ h
−

„
m3

1
m2

1−2048

«
2048
m2

1

= h
−2048m1
m2

1−2048

As we know m1 ≥ 2048 so we have m2
1 − 2048 = m1

(
m1 − 2048

m1

)
≥ m2

1
2 so 2048m1

m2
1−2048

≤ 4096
m1

and so∫
Ω

∣∣D2v (x)
∣∣ dL2x ≤ h

−2048m1
m2

1−2048

≤ h−
4096
m1 . (243)

So by Theorem 1 if ṽh denotes the F.E. approximation on the triangulation 	h we have

I (ṽh) ≤ ch1− 8192
m1 .
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13. Appendix

13.1. H−1H−1ni = ♦i for i = 1, 2. We begin by calculating ♦1 and ♦2. Firstly we know ♦i ∈ Ξi for i = 1, 2.
Recall from section 4.1 in the introduction (in particular see fig 2), that ♦1 is the optimal direction for the
path W that joins two lines l1, l2 (that are parallel to φ1), but that minimizes the integral

∫
W

|Ht (x)| dH1x

(where t (x) is the tangent to the path W at point x). Now let ψ0 ∈ S1 be the vector “in between” −φ1 and
−φ2 (formally ψ0 := −φ1−φ2

|φ1+φ2| ), ψ0 is the vector that is most shrunk under the action of H (see for example fig
14). However as we will see, ψ0 is not the optimal angle for W because it is at too flat an angle to −φ1 (see
fig 2) so any path joining l1 and l2 that is parallel to ψ0 will have to be so long it cancels the shrinking effects
of ψ0. For the same reason it is clear that the optimal vector ♦1 must be in the “half” of the shrink directions
that lie between −φ2 and ψ0, i.e. paths that are parallel to vectors in the other “half” will be too long.

Hence ♦1 (as is shown on fig 42) points above the x-axis. By absolutely identical considerations we see that
♦2 also points above the x-axis.

Ξ

n n

φ

φ 2

1

12

1nH nH 2
−1 −1H−1

21Ξ
<> 21<>

Figure 42

Using this initial (crude) information about ♦1, ♦2 we will now calculate the coordinate of ♦2.
Firstly recall from (54) that for the unique ã ∈ [0, π) such that tan 2ã = 2σ̃3

(1−σ̃6) we have ♦2 :=
(

cos ã
sin ã

)
.

Note that

√(
(2σ̃3)2 + (1 − σ̃6)2

)
=
√

(4σ̃6 + 1 − 2σ̃6 + σ̃12)

=
√

(1 + 2σ̃6 + σ̃12)
=
(
1 + σ̃6

)
So

sin 2ã =
2σ̃3

(1 + σ̃6)
and cos 2ã =

(
1 − σ̃6

)
(1 + σ̃6)

.
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Hence

(sin ã)2 =
1
2
−
(
1 − σ̃6

)
2 (1 + σ̃6)

=
1
2

((
1 + σ̃6

)
(1 + σ̃6)

−
(
1 − σ̃6

)
(1 + σ̃6)

)

=
1
2

(
2σ̃6

(1 + σ̃6)

)
=

σ̃6

(1 + σ̃6)
.

And thus

sin ã = ± σ̃3√
(1 + σ̃6)

. (244)

(cos ã)2 =
1
2

+

(
1 − σ̃6

)
2 (1 + σ̃6)

=
1

(1 + σ̃6)

Hence
cos ã = ± 1√

(1 + σ̃6)
(245)

Now from (244) and (245) and what we have established about ♦2 pointing above the x-axis and the fact
that it belongs to Ξ2, we must have that

sin ã =
σ̃3√

(1 + σ̃6)
, cos ã =

1√
(1 + σ̃6)

.

Now we need to calculate ♦1. We have to start from scratch. So for ψ :=
(

cos a
sin a

)
, let

g (a) := |Hψ|2 − (ψ · n1)
2

= σ̃2 cos2 a+
sin2 a

σ̃2
−
(
− σ̃ cos a√

(1 + σ̃2)
+

sin a√
(1 + σ̃2)

)2

= σ̃2 cos2 a+
sin2 a

σ̃2
− σ̃2 cos2 a

(1 + σ̃2)
− sin2 a

(1 + σ̃2)
+

2σ̃ sin ã cos ã
(1 + σ̃2)

.

So
σ̃2
(
σ̃2 + 1

)
g (a) := σ̃6 cos2 a+ sin2 a+ 2σ̃ cos a sin a.

And as in the calculation of ã, by standard trigonometric identities this reduces to

σ̃2
(
σ̃2 + 1

)
g (a) = σ̃6

(
1 + cos 2a

2

)
+

1 − cos 2a
2

+ σ̃2 sin 2a.

so
2σ̃2
(
σ̃2 + 1

)
g (a) =

(
σ̃6 − 1

)
cos 2a+ 2σ̃3 sin 2a+ σ̃6 + 1.

Thus
2σ̃2
(
σ̃2 + 1

)
g′ (a) = −2

(
σ̃6 − 1

)
sin 2a+ 4σ̃3 cos 2a.

So

g′
(
b̃
)

= 0 ⇔ 2
(
σ6 − 1

)
sin 2b̃ = 4σ̃3 cos 2b̃

⇔ tan 2b̃ =
−2σ̃3

(1 − σ̃6)
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Hence
tan 2b̃ = − tan 2ã. (246)

Now as we know ♦2 =
(

cos ã
sin ã

)
points upwards and to the right (as shown in fig 42) so ã ∈ (0, π

2

)
.

So (246) implies either b̃ = −ã or b̃ = π − ã. Now as the former possibility implies that ♦1 =
(

cos b̃
sin b̃

)
is not

in Ξ1 so we must have that b̃ = π − ã.
Thus

♦1 =
(

cos π−ã
sin π−ã

)
=
(− cos ã

sin ã

)
= ♦2. (247)

We claim
H−1H−1n2 = ♦2. (248)

From fig 42 it should seem reasonable that H−1H−1n2 is sent into the shrink directions, specifically into

Ξ1. And from what we have calculated ♦2 :=

⎛⎜⎜⎝
√(

1−σ̃2

λ2−σ̃2

)
√(

λ2−1
λ2−σ̃2

)
⎞⎟⎟⎠. Now from (35) we have n2 :=

⎛⎝√ 1−σ̃2

λ2−σ̃2√
λ2−1

λ2−σ̃2

⎞⎠ for

λ = σ̃−1. So by writing this out more carefully we have n2 :=

⎛⎝ σ̃√
(1+σ̃2)

1√
(1+σ̃2)

⎞⎠. Now

H−1H−1n2 =
(
σ̃−2 0
0 σ̃2

)⎛⎝ σ̃√
(1+σ̃2)

1√
(1+σ̃2)

⎞⎠
=
(

1

σ̃
√

(1+σ̃2)

σ̃2√
(1+σ̃2)

)
=

(
1

σ̃
√

1+σ̃2

σ̃2√
1+σ̃2

)
. (249)

Now we normalize the vector; so√(
1

σ̃2 (1 + σ̃2)
+

σ̃4

(1 + σ̃2)

)
=

√
σ̃6 + 1

σ̃2 (1 + σ̃2)

=

√
(σ̃6 + 1)

σ̃
√

(1 + σ̃2)

And hence
H−1H−1n2

|H−1H−1n2| =
σ̃
√

(1 + σ̃2)√
(σ̃6 + 1)

H−1H−1n2

=

⎛⎝ σ̃
√

1+σ̃2√
(σ̃6+1)

1
σ̃
√

1+σ̃2

σ̃
√

1+σ̃2√
(σ̃6+1)

σ̃2

σ̃
√

1+σ̃2

⎞⎠
=

⎛⎝ 1√
(σ̃6+1)

σ̃3√
(σ̃6+1)

⎞⎠
= ♦2

which establishes the claim.
From the fact that ♦2 = ♦1 and n1 = n2, using (248) we get

H−1H−1n1 = H−1H−1n1 = H−1H−1n2 = ♦2 = ♦1

and this completes the calculation.
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