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1 Introduction and Main Results

Steiner symmetrization, one of the simplest and most powerful symmetrization processes ever
introduced in analysis, is a classical and very well-known device, which has seen a number of
remarkable applications to problems of geometric and functional nature. Its importance stems
from the fact that, besides preserving Lebesgue measure, it acts monotonically on several
geometric and analytic quantities associated with subsets of R

n. Among these, perimeter
certainly holds a prominent position. Actually, the proof of the isoperimetric property of the
ball was the original motivation for Steiner to introduce his symmetrization in [17].
The main property of perimeter in connection with Steiner symmetrization is that if E is
any set of finite perimeter P (E) in R

n, n ≥ 2, and H is any hyperplane, then also its Steiner
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symmetral Es about H is of finite perimeter, and

(1.1) P (Es) ≤ P (E) .

Recall that Es is a set enjoying the property that its intersection with any straight line L
orthogonal to H is a segment, symmetric about H, whose length equals the (1-dimensional)
measure of L∩E. More precisely, let us label the points x = (x1, . . . , xn) ∈ R

n as x = (x′, y),
where x′ = (x1, . . . , xn−1) ∈ R

n−1 and y = xn, assume, without loss of generality, that
H = {(x′, 0) : x′ ∈ R

n−1}, and set

Ex′ = {y ∈ R : (x′, y) ∈ E} for x′ ∈ R
n−1,(1.2)

�(x′) = L1(Ex′) for x′ ∈ R
n−1,(1.3)

and
π(E)+ = {x′ ∈ R

n−1 : �(x′) > 0} ,
where Lm denotes the outer Lebesgue measure in R

m. Then Es can be defined as

(1.4) Es = {(x′, y) ∈ R
n : x′ ∈ π(E)+, |y| ≤ �(x′)/2} .

The objective of the present paper is to investigate on the cases of equality in (1.1). Namely,
we address ourselves to the problem of characterizing those sets of finite perimeter E which
satisfy

(1.5) P (Es) = P (E) .

Partial are the available results about this problem. It is classical, and not difficult to see by
elementary considerations, that if E is convex and fulfills (1.5), then it is equivalent to Es

(up to translations along the y-axis). On the other hand, as far as we know, the best result
in the literature concerning a general set of finite perimeter E ⊂ R

n satisfying (1.5), states
that its section Ex′ is equivalent to a segment for Ln−1-a.e. x′ ∈ π(E)+ (see [18]). Our first
theorem strengthens this result on establishing the symmetry of the generalized inner normal
νE = (νE

1 , . . . , ν
E
n−1, ν

E
y ) to E, which is well defined at each point of the reduced boundary

∂∗E of E.

Theorem 1.1 Let E be any set of finite perimeter in R
n, n ≥ 2, satisfying (1.5). Then

either E is equivalent to R
n, or Ln(E) <∞ and for Ln−1-a.e. x′ ∈ π(E)+

(1.6) Ex′ is equivalent to a segment, say (y1(x′), y2(x′)),

and

(1.7) (νE
1 , . . . , ν

E
n−1, ν

E
y )(x′, y1(x′)) = (ν1

E, . . . , ν
E
n−1,−νE

y )(x′, y2(x′)) .

Conditions (1.6)–(1.7) might seem sufficient to conclude about the symmetry of E. However,
this is not the case. In fact, the equivalence of E and Es cannot be inferred under the sole
assumption (1.5), as shown by the following simple examples.
Consider, for instance, the two-dimensional situation depicted in Figure 1.
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Obviously, P (E) = P (Es), but E is not equivalent to any translate of Es. The point in
this example is that Es (and E) fails to be connected in a proper sense for the present setting
(although both E and Es are connected from a strictly topological point of view).
The same phenomenon can occur also under different circumstances. Indeed, in the example
of Figure 2 both E and Es are connected in any reasonable sense, but again (1.5) holds
without E being equivalent to any translate of Es. What comes into play now is the fact
that ∂∗Es (and ∂∗Es) contains straight segments, parallel to the y-axis, whose projection on
the line {(x′, 0) : x′ ∈ R} is an inner point of π(E)+.
Let us stress, however, that preventing ∂∗Es and ∂∗E from containing segments of this kind
is not yet sufficient to ensure the symmetry of E. With regard to this, take, as an example,

E = {(x′, y) ∈ R
2 : |x′| < 1, −2c(|x′|) ≤ y ≤ c(|x′|)} ,

where c : [0, 1] → [0, 1] is the decreasing Cantor-Vitali function satisfying c(1) = 0 and
c(0) = 1. Since c has bounded variation in (0, 1), then E is a set of finite perimeter and,
since the derivative of c vanishes L1-a.e., then P (E) = 10 (Theorem B, Section 2). It is easily
verified that

Es = {(x′, y) ∈ R
2 : |x′| < 1, |y| ≤ 3c(|x′|)/2} .

Thus, P (Es) = 10 as well, but E is not equivalent to any translate of Es. Loosely speaking, in
the situation at hand both ∂∗Es and ∂∗E contain uncountably many infinitesimal segments
parallel to the y-axis having total positive length.

In view of these results and examples, the problem arises of finding minimal additional
assumptions to (1.5) ensuring the equivalence (up to translations) of E and Es. These are
elucidated in Theorem 1.3 below, which also provides a local symmetry result for E on any
cylinder parallel to the y-axis having the form Ω×R, where Ω is an open subset of R

n−1. Two
are the relevant additional assumptions involved in that theorem, and both of them concern
just Es (compare with subsequent Remark 1.4).
To begin with, as illustrated by the last two examples, non negligible flat parts of ∂∗Es along
the y-axis in Ω × R have to be excluded. This condition can be properly formulated by
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requiring that

(1.8) Hn−1
({x ∈ ∂∗Es : νEs

y (x) = 0} ∩ (Ω × R)
)

= 0 .

Hereafter, Hm stands for the m-dimensional Hausdorff measure. Assumption (1.8), of geo-
metric nature, turns out to be equivalent to the vanishing of the perimeter of Es relative to
cylinders, of zero Lebesgue measure, parallel to the y-axis. It is also equivalent to a third
purely analytical condition, such as the membership in the Sobolev space W 1,1(Ω) of the
function �, which, in general, is just of bounded variation (Lemma 3.1, Section 3). Hence,
one derives from (1.8) information about the set of points x′ ∈ R

n−1 where the Lebesgue
representative �̃ of �, classically given by

lim
r→0

1
Ln−1(Br(x′))

∫
Br(x′)

|�(z) − �̃(x′)| dz = 0 ,

is well defined. Here, Br(x′) denotes the ball centered at x′ and having radius r.

Proposition 1.2 Let E be any set of finite perimeter in R
n, n ≥ 2, such that Es is not

equivalent to R
n. Let Ω be an open subset of R

n−1. Then the following conditions are
equivalent:

(i) Hn−1
({x ∈ ∂∗Es : νEs

y (x) = 0} ∩ (Ω × R)
)

= 0 ,

(ii) P (Es;B × R) = 0 for every Borel set B ⊂ Ω such that Ln−1(B) = 0; here P (Es;B×R)
denotes the perimeter of Es in B × R ;

(iii) � ∈W 1,1(Ω) .

In particular, if any of (i)-(iii) holds, then �̃ is defined and finite Hn−2-a.e. in Ω.

The second hypothesis to be made on Es is concerned with connectedness. An assumption
of this kind is indispensable in view of the example in figure 1. This is a crucial point since,
as already pointed out, standard topological notions are not appropriate. A suitable form of
the assumption in question amounts to demanding that no (too large) subset of Es ∩ (Ω×R)
shrinks along the y-axis till to be contained in Ω×{0}. Precisely, we require that �̃ does not
vanish in Ω, except at most on a Hn−2-negligible set, or, equivalently, that

(1.9) �̃(x′) > 0 for Hn−2-a.e. x′ ∈ Ω .

Notice that condition (1.9) is perfectly meaningful, owing to the last stated property in
Proposition 1.2.

Theorem 1.3 Let E be a set of finite perimeter in R
n, n ≥ 2, satisfying (1.5). Assume that

(1.8)–(1.9) are fulfilled for some open subset Ω of R
n−1. Then E ∩ (Ωα × R) is equivalent to

a translate along the y-axis of Es ∩ (Ωα × R) for each connected component Ωα of Ω.
In particular, if (1.8)–(1.9) are satisfied for some connected open subset Ω of R

n−1 such that
Ln−1(π(E)+ \ Ω) = 0, then E is equivalent to Es (up to translations along the y-axis).
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Remark 1.4 A sufficient condition for (1.8) to hold for some open set Ω ⊂ R
n−1 is that an

analogous condition on E, namely

(1.10) Hn−1
({x ∈ ∂∗E : νE

y (x) = 0} ∩ (Ω × R)
)

= 0 ,

be fulfilled (see Proposition 4.2). Let us notice that, conversely, any set of finite perimeter
E, satisfying both (1.5) and (1.8), also satisfies (1.10) (see Proposition 4.2 again). On the
other hand, if (1.5) is dropped, then (1.8) may hold without (1.10) being fulfilled, as shown
by the simple example represented in Figure 3.

y

x′

E Es

Figure 3.

Remark 1.5 Any convex body E satisfies (1.8)–(1.9) when Ω equals the interior of π(E)+,
an open convex set equivalent to π(E)+. Thus, the aforementioned result for convex bodies
is recovered by Theorem 1.3.

Remark 1.6 Condition (1.9) is automatically fulfilled, with Ω = Es ∩ {(x′, 0) : x′ ∈ R
n−1},

if E is any open set. Thus, any bounded open set E of finite perimeter satisfying (1.5) is
certainly equivalent to a translate of Es, provided that π(E)+ is connected and

Hn−1
({x ∈ ∂∗Es : νEs

y (x) = 0} ∩ (π(E)+ × R)
)

= 0 .

Proofs of Theorems 1.1 and 1.3 are presented in Sections 2 and 3, respectively. Like other
known characterizations of equality cases in geometric and integral inequalities involving
symmetries or symmetrizations (see e.g. [2], [4], [6], [7], [8], [9], [10], [15], [16]), the issues
discussed in these theorems hide quite subtle matters. Their treatment calls for a careful
analysis exploiting delicate tools from geometric measure theory. The material from this
theory coming into play in our proofs is collected in Section 2.
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2 Background

The definitions contained in this section are basic to geometric measure theory, and are
recalled mainly to fix notations. Part of the results are special instances of very general
theorems, appearing in certain cases only in [13], which are probably known only to specialists
in the field; other results are more standard, but are stated here in a form suitable for our
applications.

Let E be any subset of R
n and let x ∈ R

n. The upper and lower density of E at x are
defined by

D(E, x) = lim sup
r→0

Ln(E ∩Br(x))
Ln(Br(x))

and D(E, x) = lim inf
r→0

Ln(E ∩Br(x))
Ln(Br(x))

respectively. If D(E, x) and D(E, x) agree, then their common value is called the density of
E at x and is denoted by D(E, x). Note that D(E, ·) and D(E, ·) are always Borel functions,
even if E is not Lebesgue measurable. Hence, for each α ∈ [0, 1],

Eα = {x ∈ R
n : D(E, x) = α}

is a Borel set. The essential boundary of E, defined as

∂ME = R
n \ (E0 ∪ (Rn \E)0) ,

is also a Borel set. Obviously, if E is Lebesgue measurable, then ∂ME = R
n \ (E0 ∪E1). As

a straightforward consequence of the definition of essential boundary, we have that, if E and
F are subsets of R

n, then

(2.1) ∂M (E ∪ F ) ∪ ∂M (E ∩ F ) ⊂ ∂ME ∪ ∂MF .

Let f be any real-valued function in R
n and let x ∈ R

n. The approximate upper and lower
limit of f at x are defined as

f+(x) = inf{t : D({f > t}, x) = 0} and f−(x) = sup{t : D({f < t}, x) = 0} ,

respectively. The function f is said to be approximately continuous at x if f−(x) and f+(x) are
equal and finite; the common value of f−(x) and f+(x) at a point of approximate continuity x
is called the approximate limit of f at x and is denoted by f(x).
Let U be an open subset of R

n. A function f ∈ L1(U) is called of bounded variation if its
distributional gradient Df is an R

n-valued Radon measure in U and the total variation |Df |
of Df is finite in U . The space of functions of bounded variation in U is called BV (U). The
space BVloc(U) is defined accordingly. Given f ∈ BV (U), the absolutely continuous part and
the singular part of Df with respect to the Lebesgue measure are denoted by Daf and Dsf ,
respectively; moreover, ∇f stands for the density of Daf with respect to Ln. Therefore,
the Sobolev space W 1,1(U) (resp. W 1,1

loc (U)) can be identified with the subspace of those
functions of BV (U) (BVloc(U)) such that Dsf = 0. In particular, since Dsf is concentrated
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in a negligible set with respect to Ln, then f ∈W 1,1(U) if and only if |Df |(A) = 0 for every
Borel subset A of U , with Ln(A) = 0.
The following result deals with the Lebesgue points of Sobolev functions (see [12, Section 4.8]).

Theorem A Let U be an open subset of R
n, and let f ∈W 1,1

loc (U). Then there exists a Borel
set N , with Hn−1(N) = 0, such that f is approximately continuous at every x ∈ U \ N .
Furthermore,

(2.2) f(x) = lim
r→0

1
Ln(Br(x))

∫
Br(x)

f(z) dz for every x ∈ U \N .

Let E be a measurable subset of R
n and let U be an open subset of R

n. Then E is said to
be of finite perimeter in U if DχE is a vector-valued Radon measure in U having finite total
variation; moreover, the perimeter of E in U is given by

(2.3) P (E;U) = |DχE|(U) .

The abridged notation P (E) will be used for P (E; Rn). For any Borel subset A of U , the
perimeter P (E;A) of E in A is defined as P (E;A) = |DχE |(A). Notice that, if E is a set of
finite perimeter in U , then χE ∈ BVloc(U); if, in addition, Ln(E∩U) <∞, then χE ∈ BV (U).
Given a set E of finite perimeter in U , and denoted by DiχE , i = 1, . . . , n, the components
of DχE, we have

(2.4)
∫

E

∂ϕ

∂xi
dx = −

∫
U
ϕdDiχE i = 1, . . . , n ,

for every ϕ ∈ C1
0 (U). Functions of bounded variation and sets of finite perimeter are related by

the following result (see [14, Chap. 4, Sec. 1.5, Theorem 1, and Chap. 4, Sec. 2.4, Theorem 4]).

Theorem B Let Ω be an open bounded subset of R
n−1 and let u ∈ L1(Ω). Then the subgraph

of u, defined as

(2.5) Su = {(x′, y) ∈ Ω × R : y < u(x′)} ,

is a set of finite perimeter in Ω × R if and only if u ∈ BV (Ω). Moreover, in this case,

(2.6) P (Su;B × R) =
∫

B

√
1 + |∇u|2 dx′ + |Dsu|(B)

for every Borel set B ⊂ Ω.

Let E be a set of finite perimeter in an open subset U of R
n. Then we denote by νE

i ,
i = 1, . . . , n, the derivative of the measure DiχE with respect to |DχE|. Thus

(2.7) νE
i (x) = lim

r→0

DiχE(Br(x))
|DχE|(Br(x))

i = 1, . . . , n ,
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at every x ∈ U such that the indicated limit exists. The reduced boundary ∂∗E of E is the set
of all points x ∈ U such that the vector νE(x) = (νE

1 (x), . . . , νE
n (x)) exists and |νE(x)| = 1.

The vector νE(x) is called the generalized inner normal to E at x. The reduced boundary of
any set of finite perimeter E is a (n − 1)-rectifiable set, and

(2.8) DχE = νEHn−1 ∂∗E

(see [1, Theorem 3.59]). Equality (2.8) implies that

(2.9) |DχE| = Hn−1 ∂∗E

and that

(2.10) |DiχE | = |νE
i |Hn−1 ∂∗E, i = 1, . . . , n .

Every point x ∈ ∂∗E is a Lebesgue point for νE with respect to the measure |DχE|
([1, Remark 3.55]). Hence,

(2.11) |νE
i (x)| = lim

r→0

|DiχE|(Br(x))
|DχE|(Br(x))

for every x ∈ ∂∗E .

From the fact that the approximate tangent plane at any point x ∈ ∂∗E is orthogonal
to νE(x) ([1, Theorem 3.59]), and from the locality of the approximate tangent plane
([1, Remark 2.87]), we immediately get the following result.

Theorem C Let E and F be sets of finite perimeter in R
n. Then

νE(x) = ±νF (x) for Hn−1-a.e. x ∈ ∂∗E ∩ ∂∗F .

If E is a measurable set in R
n, the jump set JχE

of the function χE is defined as the set of
those points x ∈ R

n for which a unit vector nE(x) exists such that

lim
r→0

1
Ln(B+

r (x;nE(x)))

∫
B+

r (x;nE(x))
χE(z) dz = 1

and
lim
r→0

1
Ln(B−

r (x;nE(x)))

∫
B−

r (x;nE(x))
χE(z) dz = 0 ,

where B±
r (x;nE(x)) = {z ∈ Br(x) : 〈z − x, nE(x)〉 ≷ 0}.

The inclusion relations among the various notions of boundary of a set of finite perimeter are
clarified by the following result due to Federer (see [1, Theorem 3.61 and Remark 3.68]).

Theorem D Let U be an open subset of R
n and let E be a set of finite perimeter in U . Then

∂∗E ⊂ JχE
⊂ E1/2 ⊂ ∂ME .
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Moreover,
Hn−1((∂ME \ ∂∗E) ∩ U) = 0 .

Equation (2.9) and Theorem D ensure that, if E is a set of finite perimeter in the open set U ,
then Hn−1(∂ME∩U) equals P (E;U), and hence it is finite. A much deeper result by Federer
([13, Theorem 4.5.11]) tells us that the converse is also true.

Theorem E Let U be an open set in R
n and let E be any subset of U . If Hn−1(∂ME ∩ U)

<∞, then E is Lebesgue measurable and of finite perimeter in U .

Theorem F below is a consequence of the coarea formula for rectifiable sets in R
n (see

[1, (2.72)]), and of the orthogonality between the generalized inner normal and the approx-
imate tangent plane at any point x ∈ ∂∗E. In what follows, the n-th component of νE will
be denoted by νE

y .

Theorem F Let E be a subset of finite perimeter in R
n and let g be any Borel function from

R
n into [0,+∞]. Then

(2.12)
∫

∂∗E
g(x)|νE

y (x)| dHn−1(x) =
∫

Rn−1

dx′
∫

(∂∗E)x′
g(x′, y) dH0(y) .

A version of a result by Vol’pert ([19]) on restrictions of characteristic functions of sets of
finite perimeter E is contained in the next theorem. In the statement, χ∗

E will denote the
precise representative of χE, defined as

χ∗
E(x) :=

⎧⎪⎨
⎪⎩

χE(x) if x ∈ E0 ∪ E1

0 if x ∈ ∂ME \ JχE

1
2

if x ∈ JχE
.

Theorem G Let E be a set of finite perimeter in R
n. Then, for Ln−1-a.e. x′ ∈ R

n−1,

(2.13) Ex′ has finite perimeter in R and χ∗
E(x′, ·) = χE(x′, ·) L1-a.e. in Ex′ ;

(2.14) (∂ME)x′ = (∂∗E)x′ = ∂∗(Ex′) = ∂M (Ex′) ;

(2.15) νE
y (x′, t) �= 0 for every t such that (x′, t) ∈ ∂∗E ;

(2.16)

⎧⎨
⎩

lim
y→t+

χ∗
E(x′, y) = 1, lim

y→t−
χ∗

E(x′, y) = 0 if νE
y (x′, t) > 0

lim
y→t+

χ∗
E(x′, y) = 0, lim

y→t−
χ∗

E(x′, y) = 1 if νE
y (x′, t) < 0 .

In particular, a Borel set GE ⊆ π(E)+ exists such that Ln−1(π(E)+ \ GE) = 0 and
(2.13)–(2.16) are fulfilled for every x′ ∈ GE.
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Proof. Assertion (2.13) follows from Theorem 3.108 of [1] applied to the function χE . The
same theorem also tells us that, for Ln−1-a.e. x′ ∈ R

n−1,

(2.17) (JχE
)x′ = JχEx′

,

(2.18) νE
y (x′, t) �= 0 for every t such that (x′, t) ∈ JχE

,

(2.19) equations (2.16) hold for every t such that (x′, t) ∈ JχE
.

Since, by Theorem D, Hn−1(∂ME \JχE
) = Hn−1(JχE

\∂∗E) = 0, then, owing to Lemma 2.95
of [1],

(2.20) (∂ME)x′ = (JχE
)x′ = (∂∗E)x′ for Ln−1-a.e. x′ ∈ R

n−1 .

By (2.18)–(2.19), the last equation implies (2.15)–(2.16). Moreover, since any set of finite
perimeter in R is equivalent to a finite union of disjoint intervals, then ∂M (Ex′) = JχE

x′
=

∂∗(Ex′) for Ln−1-a.e. x′ ∈ R
n−1. Thus (2.14) follows from (2.17) and (2.20).

We conclude this section with two results which are consequences of Theorem 2.10.45 and of
Theorem 2.10.25 of [13], respectively.

Theorem H Let m be a nonnegative integer. Then there exists a positive constant c(m),
depending only on m, such that if X is any subset of R

n−1 with Hm(X) < ∞ and Y is a
Lebesgue measurable subset of R, then

1
c(m)

Hm+1(X × Y ) ≤ Hm(X)L1(Y ) ≤ c(m)Hm+1(X × Y ) .

The next statement involves the projection of a set E ⊂ R
n into the hyperplane {(x′, 0) :

x′ ∈ R
n−1}, defined as

π(E) = {x′ ∈ R
n−1 : there exists y ∈ R such that (x′, y) ∈ E}; .

Theorem I Let m be a nonnegative integer and let E be any subset of R
n. If Hm(π(E)) > 0

and L1(Ex′) > 0 for Hm-a.e. x′ ∈ π(E), then Hm+1(E) > 0.

3 Proof of Theorem 1.1

The first part of this section is devoted to a study of the function �. As a preliminary step,
we prove a relation between D� and DχE (Lemma 3.1), which, in particular, entails that
� ∈ BV (Rn−1). A basic ingredient in our approach to Theorem 1.1 is then established in
Lemma 3.2, where a formula for ∇�, of possible independent interest, is found in terms of
the generalized inner normal to E.
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Lemma 3.1 Let E be any set of finite perimeter in R
n. Then either �(x′) = ∞ for Ln−1-a.e.

x′ ∈ R
n−1, or �(x′) < ∞ for Ln−1-a.e. x′ ∈ R

n−1 and Ln(E) < ∞. Moreover, in the latter
case, � ∈ BV (Rn−1) and

(3.1)
∫

Rn−1

ϕ(x′) dDi�(x′) =
∫

Rn

ϕ(x′) dDiχE(x), i = 1, . . . , n− 1,

for any bounded Borel function ϕ in R
n−1. In particular,

(3.2) |D�|(B) ≤ |DχE|(B × R)

for every Borel set B ⊂ R
n−1.

Proof. If � were infinite in a subset of R
n−1 of positive Lebesgue measure, and finite in

another subset of positive measure, then both E and R
n \ E would have infinite measure.

This is impossible, since E is of finite perimeter (see e.g. [1, Theorem 3.46]). Thus � is either
Ln−1-a.e. infinite in R

n−1, or it is Ln−1-a.e. finite. Let us focus on the latter case. Since
Ln(Rn \ E) = ∞ in this case, then Ln(E) < ∞. Now, let ϕ ∈ C1

0 (Rn−1) and let {ψj}j∈N

be any sequence in C1
0(R), satisfying 0 ≤ ψj(y) ≤ 1 for y ∈ R and j ∈ N, and such that

limj→∞ ψj(y) = 1 for every y ∈ R. Fix any i ∈ {1, . . . , n − 1}. Then, by the dominated
convergence theorem,∫

Rn−1

∂ϕ

∂xi
(x′)�(x′) dx′=

∫
Rn−1

dx′
∫

R

∂ϕ

∂xi
(x′)χE(x′, y) dy(3.3)

= lim
j→∞

∫
Rn

∂ϕ

∂xi
(x′)ψj(y)χE(x′, y) dx′dy

=− lim
j→∞

∫
Rn

ϕ(x′)ψj(y) dDiχE = −
∫

Rn

ϕ(x′)dDiχE .

On taking the supremum in (3.3) as ϕ ranges among all functions in C1
0 (Rn−1) with ‖ϕ‖∞ ≤ 1,

and making use of the fact that χE ∈ BV (Rn), we conclude that � ∈ BV (Rn−1). Equation
(3.1) holds for every ϕ ∈ C1

0 (Rn−1) as a straightforward consequence of (3.3); by density,
it also holds for every bounded Borel function ϕ. Finally, inequality (3.2) easily follows
from (3.1).

Lemma 3.2 Let E be a set of finite perimeter in R
n having finite measure. Then

(3.4)
∂�

∂xi
(x′) =

∫
(∂∗E)x′

νE
i (x′, y)

|νE
y (x′, y)| dH

0(y), i = 1, . . . , n − 1 ,

for Ln−1-a.e. x′ ∈ π(E)+.

Remark 3.3 An application of Lemma 3.2 and of (2.14) to Es yields, in particular,
(3.5)

∂�

∂xi
(x′) = 2

(
νEs

i (x′, ·)
|νEs

y (x′, ·)|
)∣∣∣(∂∗Es)x′

= 2
νEs

i (x′, 1
2�(x

′))
|νEs

y (x′, 1
2�(x

′))| for Ln−1-a.e. x′ ∈ π(E)+ .
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Proof of Lemma 3.2. Let GE be the set given by Theorem G. Obviously, we may assume
that �(x′) <∞ for every x′ ∈ GE . By (2.7), (2.11) and (2.15), we have that

(3.6)
νE

i (x′, y)
|νE

y (x′, y)| = lim
r→0

DiχE(Br(x′, y))
|DyχE |(Br(x′, y))

for every x′ ∈ GE and every y such that (x′, y) ∈ ∂∗E. Hence, by Besicovitch differentiation
theorem (see e.g. [1, Theorem 2.22])

(3.7) DiχE (GE × R) =
νE

i

|νE
y | |DyχE | (GE × R) .

Now, let g be any function in C0(Rn−1), and set ϕ(x′) = g(x′)χGE
(x′). From (3.1) and (3.7)

one gets ∫
GE

g(x′) dDi� =
∫

Rn

g(x′)χGE
(x′) dDiχE =

∫
GE×R

g(x′) dDiχE(3.8)

=
∫

GE×R

νE
i (x′, y)

|νE
y (x′, y)|g(x

′) d|DyχE| .

Moreover, by (2.10) and Theorem F,∫
GE×R

νE
i (x′, y)

|νE
y (x′, y)|g(x

′) d|DyχE| =
∫

∂∗E∩(GE×R)
g(x′)νE

i (x′, y) dHn−1(3.9)

=
∫

GE

g(x′) dx′
∫

(∂∗E)x′

νE
i (x′, y)

|νE
y (x′, y)| dH

0(y) .

Combining (3.8), (3.9) yields

(3.10)
∫

GE

g(x′) dDi� =
∫

GE

g(x′) dx′
∫

(∂∗E)x′

νE
i (x′, y)

|νE
y (x′, y)| dH

0(y) .

Hence, owing to the arbitrariness of g,

Di� GE =

(∫
(∂∗E)x′

νE
i

|νE
y | dH

0(y)

)
Ln−1 GE .

The conclusion follows, since Ln−1(π(E)+ \GE) = 0.

We now turn to a local version of inequality (1.1), which will be needed both in the proof of
Theorem 1.1 and in that of Theorem 1.3. Even not explicitly stated, such a result is contained
in [18]. Here, we give a somewhat different proof relying on formula (3.4).

Lemma 3.4 Let E be a set of finite perimeter in R
n. Then

(3.11) P (Es;B × R) ≤ P (E;B × R)

for every Borel set B ⊂ R
n−1.
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Our proof of Lemma 3.4 requires the following preliminary result.

Lemma 3.5 Let E be any set of finite perimeter in R
n having finite measure. Then

(3.12) P (Es;B × R) ≤ |D�|(B) + |DyχEs |(B × R)

for every Borel set B ⊂ R
n−1.

Proof. The present proof is related to certain arguments used in [18]. Let {�j}j∈N be a
sequence of nonnegative functions from C1

0 (Rn−1) such that �j → � Ln−1-a.e. in R
n−1 and

|D�j| → |D�| weakly* in the sense of measures. Moreover, denote by Es
j the set defined

as in (1.4) with � replaced by �j . Fix any open set Ω ⊂ R
n−1 and let f = (f1, . . . , fn) ∈

C1
0 (Ω × R,Rn). Then standard results on the differentiation of integrals enable us to write

∫
Ω×R

χEs
j
divf dx =

∫
Ω
dx′
∫ �j(x′)/2

−�j(x′)/2
divf dy +

∫
Ω×R

χEs
j

∂fn

∂y
dx

= −1
2

∫
π(suppf)

n−1∑
i=1

[
fi

(
x′,

�j(x′)
2

)
−fi

(
x′,−�j(x

′)
2

)]∂�j
∂xi

dx′ +
∫

Ω×R

χEs
j

∂fn

∂y
dx .

Thus

∫
Ω×R

χEs
j
divf dx ≤

∫
π(suppf)

√√√√n−1∑
i=1

[
1
2

(
fi

(
x′,

�j(x′)
2

)
−fi

(
x′,−�j(x

′)
2

))]2

|∇�j | dx′(3.13)

+
∫

Ω×R

χEs
j

∂fn

∂y
dx .

If ‖f‖∞ ≤ 1, we deduce from (3.13) that

(3.14)
∫

Ω×R

χEs
j
divf dx ≤ |D�j |(π(suppf)) +

∫
Ω×R

χEs
j

∂fn

∂y
dx .

Since χEs
j
→ χEs Ln-a.e. and π(suppf) is a compact subset of Ω, then taking the lim sup in

(3.14) as j goes to ∞ yields∫
Ω×R

χEsdivf dx ≤ |D�|(π(suppf)) +
∫

Ω×R

χEs
∂fn

∂y
dx(3.15)

≤ |D�|(Ω) + |DyχE|(Ω × R) .

Inequality (3.15) implies that (3.12) holds whenever B is an open set, and hence also when
B is any Borel set.

Proof of Lemma 3.4. If � = ∞ Ln−1-a.e. in R
n−1, then Es is equivalent to R

n; hence
P (Es;B × R) = 0 for every Borel set B ⊂ R

n−1 and (3.11) is trivially satisfied. Thus, by
Lemma 3.1, we may assume that � < ∞ Ln−1-a.e. in R

n−1. Let GE and GEs be the sets
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associated with E and Es, respectively, as in Theorem G. Let B a Borel subset of R
n−1. We

shall prove inequality (3.11) when either B ⊂ R
n−1 \GEs or B ⊂ GEs . The general case then

follows on splitting B into B \GEs and B ∩GEs .
Assume first that B ⊂ R

n−1 \GEs . Combining (3.12) and (3.2) gives

(3.16) P (Es;B × R) ≤ P (E;B × R) + |DyχEs|(B × R) .

By (2.10), Theorem F and (2.14),

|DyχEs |(B × R) =
∫

∂∗Es∩(B×R)
|νEs

y | dHn−1 =
∫

B
H0((∂∗Es)x′) dx′ =

∫
B
H0(∂∗(Es)x′) dx′ .

Since Ln−1(π(E)+ ∩ B) = 0, then the last integral equals
∫

(Rn−1\π(E)+)∩B
H0(∂∗(Es)x′)dx′,

and hence vanishes. Thus, (3.11) is a consequence of (3.16).
Suppose now that B ⊂ GEs . We have

P (Es;B × R) =
∫

∂∗Es∩(B×R)
dHn−1 =

∫
B
dx′
∫

(∂∗Es)x′

dH0(y)
|νEs

y (x′, y)|(3.17)

=
∫

GE∩B
dx′
∫

(∂∗Es)x′

dH0(y)
|νEs

y (x′, y)| =
∫

GE∩B
dx′
∫

(∂∗Es)x′

√√√√1+
n−1∑
i=1

(
νEs

i (x′, y)
νEs

y (x′, y)

)2

dH0(y),

where the first equality is due to (2.9), the second to Theorem F (which we may apply since
we are assuming that B ⊂ GEs), the third to the fact that Ln−1(π(E)+ \GE) = 0, and the
fourth to the fact that νEs

is a unit vector. By (3.5) and by property (2.14) for Es

∫
GE∩B

dx′
∫

(∂∗Es)x′

√√√√1+
n−1∑
i=1

(
νEs

i (x′, y)
νEs

y (x′, y)

)2

dH0(y)(3.18)

=
∫

GE∩B
dx′
∫

∂∗(Es)x′
2

√
1+

1
4
|∇�(x′)|2 dH0(y) =

∫
GE∩B

√
4+|∇�(x′)|2 dx′ .

Owing to the isoperimetric inequality in R and to (3.4) and (2.14), the last integral does not
exceed ∫

GE∩B

√√√√(∫
∂∗(Ex′ )

dH0

)2

+
n−1∑
i=1

(∫
∂∗(Ex′)

νE
i (x′, y)

|νE
y (x′, y)| dH

0(y)
)2

dx′ ,

an expression which, by Minkowski integral inequality, is in turn smaller than or equal to

∫
GE∩B

dx′
∫

∂∗(Ex′ )

√√√√1+
n−1∑
i=1

(
νE

i (x′, y)
νE

y (x′, y)

)2

dH0(y) .
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An analogous chain of equalities as in (3.17) yields

∫
GE∩B

dx′
∫

∂∗(Ex′ )

√√√√1+
n−1∑
i=1

(
νE

i (x′, y)
νE

y (x′, y)

)2

dH0(y) = P (E; (GE ∩B) × R) .

Since obviously P (E; (GE ∩B) × R) ≤ P (E;B × R), inequality (3.11) follows.

Proof of Theorem 1.1. If � = ∞ Ln−1-a.e. in R
n−1, then Es is equivalent to R

n and
P (Es) = 0. Therefore, E is equivalent to R

n (and hence to Es), otherwise P (E) > 0,
thus contradicting (1.5). Assume now that � is not infinite Ln−1-a.e. in R

n−1. Then, by
Lemma 3.1, Ln(E) <∞. Equality (1.5) and inequality (3.11) imply that

(3.19) P (Es;B × R) = P (E;B × R)

for every Borel set B ⊂ R
n−1. Let GE and GEs be the sets associated with E and Es,

respectively, as in Theorem G. Then Ln−1(π(E)+ \ (GE ∩GEs)) = 0, and the same steps as
in the proof of Lemma 3.4 yield

P (Es; (GE ∩GEs) × R) =
∫

GE∩GEs

dx′
∫

(∂∗Es)x′

dH0(y)
|νEs

y (x′, y)|(3.20)

=
∫

GE∩GEs

dx′
∫

(∂∗Es)x′

√√√√1+
n−1∑
i=1

(
νEs

i (x′, y)
νEs

y (x′, y)

)2

dH0(y) =
∫

GE∩GEs

√
4+|∇�(x′)|2 dx′

≤
∫

GE∩GEs

√√√√(∫
∂∗(Ex′)

dH0

)2

+
n−1∑
i=1

(∫
∂∗(Ex′ )

νE
i (x′, y)

|νE
y (x′, y)| dH

0(y)
)2

dx′

≤
∫

GE∩GEs

dx′
∫

∂∗(Ex′ )

√√√√1+
n−1∑
i=1

(
νE

i (x′, y)
νE

y (x′, y)

)2

dH0(y)

=
∫

GE∩GEs

dx′
∫

(∂∗E)x′

dH0(y)
|νE

y (x′, y)| = P (E; (GE ∩GEs) × R) .

On applying (3.19) with B = GE ∩ GEs , we infer that both inequalities in (3.20) must
hold as equalities. The former of these equalities entails that H0(∂∗(Ex′)) = 2 for Ln−1-
a.e. x′ ∈ GE ∩GEs , whence Ex′ is equivalent to some segment (y1(x′), y2(x′)) for Ln−1-a.e.

x′ ∈ GE ∩ GEs . The latter implies that
νE

i (x′, y1(x′))
|νE

y (x′, y1(x′))| =
νE

i (x′, y2(x′))
|νE

y (x′, y2(x′))| for Ln−1-a.e.

x′ ∈ GE ∩ GEs ; hence, since νE is a unit vector, then νE
i (x′, y1(x′)) = νE

i (x′, y2(x′)), i =
1, . . . , n− 1, and |νE

y (x′, y1(x′))| = |νE
y (x′, y2(x′))| for the same values of x′ ∈ GE ∩GEs . Let

us now fix any such x′. From (2.13) we get limy→y1(x′)+ χ
∗(x′, y) = 1, limy→y2(x′)− χ

∗(x′, y) =
1 . Thus, by (2.16), one necessarily has νE

y (x′, y1(x′)) > 0 and νE
y (x′, y2(x′)) < 0. Hence

νE
y (x′, y1(x′)) = −νE

y (x′, y2(x′)). The proof is complete.
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4 Proof of Theorem 1.3

The present section is organized as follows. We begin with the proof of Proposition 1.2, con-
cerning conditions equivalent to (1.8), and with a further result, described in Proposition 4.2,
relating assumption (1.8) on Es with its counterpart (1.10) on E. A decisive technical step
towards Theorem 1.3 is accomplished in subsequent Lemma 4.3, whose proof is split in two
parts. The core of the argument is contained in the first part, dealing with sets E which
are bounded, or more generally, bounded in the direction y; via suitable truncations, such
an assumption is removed in the second part, and is replaced by the weaker condition (4.9)
appearing in the statement. With Lemma 4.3 in place, even in the special case enucleated
in the first part of its proof, Theorem 1.3 follows quite easily when E is a bounded set. For
the reader’s convenience, we present the proof of this case separately, just after Lemma 4.3.
The general case is treated in the last part of the section, and requires an extra reflection
argument, which enables us to restrict our attention to those sets that, besides (1.8)–(1.9),
satisfy the additional assumption (4.9) of Lemma 4.3. The relevant reflection process can
be regarded as a special case of the so called polarization about hyperplanes. Polarization
techniques were used in [3] and [11]; a closer study on this subject has been carried out in [5].
The properties of use for our purposes are summarized in Lemma 4.4. Some of them (in a
weaker, but yet sufficient form) could be derived from results of [5]. For completeness, we
present a complete proof of this lemma which rests on the methods of this paper.

Lemma 4.1 Let E be any set of finite perimeter in R
n, n ≥ 2, and let A be any Borel subset

of R
n−1. Then

(4.1) Hn−1({x ∈ ∂∗E : νE
y (x) = 0} ∩ (A× R)) = 0

if and only if

(4.2) P (E;B × R) = 0 for each Borel subset B of A such that Ln−1(B) = 0 .

Proof. Assume that (4.1) is in force. Let B be any Borel subset of A with Ln−1(B) = 0.
Then

P (E;B × R) =
∫

∂∗E∩(B×R)
dHn−1 =

∫
∂∗E

1
|νE

y (x)|χ{νE
y �=0}∩(B×R)(x)|νE

y (x)|dHn−1(x)(4.3)

+
∫

∂∗E
χ{νE

y =0}∩(B×R)(x)dHn−1(x)

=
∫

B
dx′
∫

(∂∗E)x′

χ{νE
y �=0}(x′, t)

|νE
y (x′, t)| dH0(t) + Hn−1({νE

y = 0} ∩ (B × R)) .

Notice that we made use of (2.9) in the first equality and of (2.12) in the third. Now, the last
integral vanishes, since Ln−1(B) = 0; moreover, Hn−1({νE

y = 0} ∩ (B × R)) = 0, by (4.1).
Hence (4.2) follows.
Conversely, suppose that (4.2) is fulfilled. Let GE be the set given by Theorem G. Since
Ln−1(A \GE) = 0, then, by (4.2),

Hn−1({x∈∂∗E :νE
y (x)=0}∩(A×R)) ≤Hn−1(∂∗E∩[(A\GE)×R]) =P (E; (A\GE)×R) = 0 .
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Proof of Proposition 1.2. The equivalence of (i) and (ii) is nothing but a special case of
Lemma 4.1, when E = Es and A = Ω.
Let us show that (ii) implies (iii). By Lemma 3.1, � ∈ BV (Ω). Moreover, by inequality (3.2),
and by (ii), |D�|(B) = 0 for every Borel subset B of Ω such that Ln−1(B) = 0. Hence,
� ∈W 1,1(Ω), and (iii) follows.
Assume now that � ∈W 1,1(Ω). Set

F1 = {(x′, y)∈R
n : x′∈R

n−1, y<−�(x′)/2}, F2 = {(x′, y)∈R
n : x′∈R

n−1, y>�(x′)/2} .

Let B be any Borel subset of Ω. Then

(4.4) P (Es;B×R)=P (Rn\Es;B×R)≤P (F1;B×R)+P (F2;B×R)=2P (F1;B×R) ,

where the inequality is an immediate consequence of the fact that R
n \ Es is equivalent to

F1 ∪ F2. Since � ∈W 1,1(Ω), then by (2.6)

(4.5) P (F1;B × R) =
∫

B

√
1 +

1
4
|∇�|2dx′ .

Combining (4.4)–(4.5) yields P (Es;B ×R) = 0 whenever Ln−1(B) = 0, and hence (ii) holds.

Proposition 4.2 Let E be any set of finite perimeter in R
n and let A be any Borel subset

of R
n−1. If

(4.6) Hn−1({x ∈ ∂∗E : νE
y (x) = 0} ∩ (A× R)) = 0 ,

then

(4.7) Hn−1({x ∈ ∂∗Es : νEs

y (x) = 0} ∩ (A× R)) = 0 .

Conversely, if E satisfies P (Es) = P (E) and (4.7) holds, then (4.6) holds as well.

Proof. Assume that (4.6) is fulfilled. Then, by Lemma 4.1, P (E;B×R) = 0 for every Borel
subset B of A with Ln−1(B) = 0. Thus by inequality (3.11), P (Es;B×R) = 0 as well. Hence
(4.7) follows, owing to Lemma 4.1 applied to Es.
Suppose now that (4.7) is fulfilled and that P (Es) = P (E). Then by Lemma 3.4,

(4.8) P (Es;B × R) = P (E;B × R)

for every Borel set B in R
n−1. The same argument as above, with (3.11) replaced by (4.8),

tell us that (4.7) implies (4.6).
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Lemma 4.3 Let Ω be an open bounded set subset of R
n−1 and let E be a set of finite perimeter

in Ω×R having the property that there exist functions y1, y2 : Ω → R such that, for Ln−1-a.e.
x′ ∈ Ω, y1(x′) ≤ y2(x′) and Ex′ is equivalent to (y1(x′), y2(x′)). Assume that (1.10) and (1.9)
are fulfilled and that

(4.9) y1(x′) ≤ k for Ln−1-a.e. x′ ∈ Ω ,

for some constant k ∈ R. Then y1, y2 ∈W 1,1
loc (Ω) and

(4.10) P (E; Ω × R) =
2∑

i=1

∫
Ω

√
1 + |∇yi|2dx′ .

Proof of Lemma 4.3.
Part I Here we prove the statement with (4.9) replaced by the stronger assumption that

(4.11) −k ≤ y1(x′) ≤ y2(x′) ≤ k for Ln−1-a.e. x′ ∈ Ω ,

for some k > 0.
On replacing, if necessary, E by an equivalent set, we may assume, without loss of generality,
that (4.11) holds for every x′ ∈ Ω and that

E ∩ (Ω × R) = {(x′, y) : x′ ∈ Ω, y1(x′) ≤ y ≤ y2(x′)} .

Let us set
(4.12)

A1 = {(x′, y) : x′ ∈ Ω, y < y1(x′)} and A2 = {(x′, y) : x′ ∈ Ω, y > y2(x′)} .

We shall prove that A1 and A2 are sets of finite perimeter in Ω × R and that

(4.13) P (E; Ω × R) =
2∑

i=1

P (Ai; Ω × R) .

Owing to Theorem E, in order to prove that A2 is of finite perimeter in Ω × R, it suffices to
show that

(4.14) Hn−1((∂MA2 \ ∂ME) ∩ (Ω × R)) = 0 .

Assume, by contradiction, that (4.14) is false; namely,

(4.15) Hn−1((∂MA2 \ ∂ME) ∩ (Ω × R)) > 0 .

Let us set

(4.16) Z = {x ∈ Ω × R : D(Ai, x) > 0, i = 1, 2} .
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Then we claim that

(4.17) (∂MA2 \ ∂ME) ∩ (Ω × R) ⊂ Z = ∂MA1 ∩ ∂MA2 ∩ (Ω × R) .

The equality in (4.17) is an easy consequence of the definition of essential boundary. As
for the inclusion, observe that if x ∈ ∂MA2 \ ∂ME, then x ∈ E0 ∪ E1. But x �∈ E1, since,
otherwise, D(A2, x) = 0, and this is impossible, inasmuch as x ∈ ∂MA2. Thus, necessarily
x ∈ E0. Since x ∈ ∂MA2, then D(A2, x) > 0. We also have D(A1, x) > 0. Actually, if
D(A1, x) = 0 and x ∈ E0, then D((Ω × R) \ A2, x) = 0, and this contradicts the fact that
x ∈ ∂MA2.
Assumption (4.15) and the inclusion in (4.17) imply that

(4.18) Hn−1(Z) > 0 .

Hence, by Theorem H,

(4.19) Hn−2(π(Z)) > 0 .

Now, assumption (1.10) implies (1.8), by Proposition 4.2. Thus, � ∈W 1,1(Ω), owing to Propo-
sition 1.2, whence �−(x′) = �(x′) = �̃(x′) for Hn−2-a.e. x′ ∈ Ω by Theorem A. Consequently,
on setting

X = {x′ ∈ π(Z) : �−(x′) > 0} ,
we deduce from (4.19) and (1.9) that

(4.20) Hn−2(X) > 0 .

A contradiction will be reached if we show that two real-valued functions z1, z2 in X exist
such that z1(x′) < z2(x′) and

(4.21) {x′} × (z1(x′), z2(x′)) ⊂ ∂ME

for every x′ ∈ X. Indeed, since, by Theorem G, H0((∂ME)x′) <∞ for Ln−1-a.e. x′ ∈ Ω, then
(4.21) implies that Ln−1(X) = 0. On the other hand, inequality (4.20) entails, via Theorem I,
that Hn−1

(⋃
x′∈X

{x′}×(z1(x′), z2(x′))
)
>0, whence, by (4.21), P (E;X×R)=Hn−1(∂ME∩(X×

R))>0. This contradicts assumption (1.8), owing to Proposition 1.2.
Our task in now to exhibit a couple of functions z1 and z2 as above. Fixed any x′ ∈ X, let y
be any real number such that (x′, y) ∈ Z, and set x = (x′, y). We shall construct z1(x′) and
z2(x′) in such a way that y ≤ z1(x′). Given any δ > 0, we denote by Cn(x, δ) the (open) cube
in R

n, centered at x, having sides of length δ; consistently, we set Cn−1(x′, δ) = π(Cn(x, δ)).
First, it is not difficult to see that, if x is any point of the form x = (x′, y), with y > y, then

(4.22) D(Rn \ E, x) > 0 .

Actually,
Ln(Cn(x, δ) ∩A2) ≥ Ln(Cn(x, δ) ∩A2) .
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Hence, since D(A2, x) > 0, then lim supδ→0 δ
−nLn(Cn(x, δ) ∩ A2) > 0, and, obviously,

D(A2, x) > 0. The last inequality implies (4.22).
Next, since x ∈ Z, then D(A1, x) > 0. Consequently lim supδ→0 δ

−nLn(Cn(x, δ) ∩ A1) > 0.
Therefore a positive number τ > 0 and a sequence {δi}i∈N exist such δi > 0 for i ∈ N,
limi→+∞ δi = 0 and

(4.23) Ln(Cn(x, δi) ∩A1) > τδn
i for i ∈ N .

Inequality (4.23) and the inclusion

Cn(x, δi) ∩A1 ⊂ {z′ ∈ Cn−1(x′, δi) : y1(z′)>y−δi/2} × (y−δi/2, y+δi/2) for i ∈ N

ensure that

(4.24) Ln−1({z′ ∈ Cn−1(x′, δi) : y1(z′) > y − δi/2}) > τδn−1
i for i ∈ N.

Recall that we are denoting by Ln−1 the outer Lebesgue measure in R
n−1: indeed, at this

stage, the set appearing on the left-hand side of (4.24) is not known to be Lebesgue measurable
yet. Fix any t ∈ (0, �−(x′)). Since D({� ≤ t}, x′) = 0, then

(4.25) Ln−1({z′ ∈ Cn−1(x′, δ) : �(z′) ≤ t}) < τ

2
δn−1 ,

provided that δ > 0 is sufficiently small. On setting

(4.26) Yi = {z′ ∈ Cn−1(x′, δi) : �(z′) > t and y1(z′) > y − t/3} ,
we deduce from (4.25)–(4.26) that

(4.27) Ln−1(Yi) >
τδn−1

i

2

if i is sufficiently large. Let us define yj = y + t(j − 1)/3 and

Yi,j = {z′ ∈ Yi : {z′} × [yj , yj+1] ⊂ E}
for j ∈ N, and let us call jmax the largest j ∈ N not exceeding 3(k−y)/t. Since y2(z′)−y1(z′) =
�(z′) > t for z′ ∈ Yi, then

Yi =
jmax⋃
j=1

Yi,j .

Thus, by (4.27), for any sufficiently large i there exists ji ∈ {1, . . . , jmax} such that

Ln−1(Yi,ji) >
τδn−1

i

2jmax
.

Hence, an infinite subset I of N and an index j0 ∈ {1, . . . , jmax} exist such that

(4.28) Ln−1(Yi,j0) >
τδn−1

i

2jmax
for every i ∈ I .
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If x ∈ {x′} × (yj0, yj0+1) and i is a sufficiently large index from I, then

Cn(x, δi) ∩ E ⊃ Yi,j0 × (y − δi/2, y + δi/2) .

Thus, from inequality (4.28) and Theorem H we infer that there exists a positive constant γ,
depending only on n such that

(4.29)
Ln(Cn(x, δi) ∩E)

δn
i

≥ γ
Ln−1(Yi,j0)

δn−1
i

≥ γτ

2jmax

provided that i belongs to I and is large enough. Inequality (4.29) implies that

(4.30) D(E, x) > 0 for any x ∈ {x′} × (yj0, yj0+1) .

Inequalities (4.22) and (4.30) tell us that

{x′} × (yj0, yj0+1) ⊂ ∂ME .

Hence, (4.21) follows, with z1(x′) = yj0 and z2(x′) = yj0+1. The fact that A2 is of finite
perimeter in Ω × R is fully proved.
Since A1 = (Ω × R) \ (E ∪A2), then, by (2.1),

∂MA1 ∩ (Ω × R) = ∂M (E ∪A2) ∩ (Ω × R) ⊂ (∂ME ∪ ∂MA2) ∩ (Ω × R)
= (∂ME ∩ (Ω × R)) ∪ [(∂MA2 \ ∂ME) ∩ (Ω × R)] .

Thus, by (4.14),

(4.31) Hn−1((∂MA1 \ ∂ME) ∩ (Ω × R)) = 0

and

(4.32) Hn−1(∂MA1 ∩ (Ω × R)) <∞ .

Hence, also A1 is of finite perimeter in Ω × R, thanks to Theorem E.
Now, we have

Hn−1((∂MA1 ∪ ∂MA2) ∩ (Ω × R)) ≤ Hn−1(∂ME ∩ (Ω × R))
= Hn−1(∂M (A1 ∪A2) ∩ (Ω × R)) ≤ Hn−1((∂MA1 ∪ ∂MA2) ∩ (Ω × R)) ,

where the first inequality is due to (4.14) and (4.31) and the last inequality to (2.1). Conse-
quently,

(4.33) Hn−1((∂MA1 ∪ ∂MA2) ∩ (Ω × R)) = Hn−1(∂ME ∩ (Ω × R)) .

On the other hand, the contradiction argument which has led to (4.14) tells us that, in fact,
Hn−1(Z) = 0, whence, by (4.17),

(4.34) Hn−1((∂MA1 ∩ ∂MA2) ∩ (Ω × R)) = 0 .
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From (4.34) one easily deduces that

(4.35) Hn−1((∂MA1 ∪ ∂MA2) ∩ (Ω × R)) =
2∑

i=1

Hn−1(∂MAi ∩ (Ω × R)) .

Combining (4.33) and (4.35) yields

P (E; Ω × R) = Hn−1(∂ME ∩ (Ω × R)) =
2∑

i=1

Hn−1(∂MAi ∩ (Ω × R))(4.36)

=
2∑

i=1

P (Ai; Ω × R) .

Since, A1 and A2 are, in particular, measurable sets, then y1 and y2 are measurable functions
in Ω. Under assumption (4.11), this fact immediately yields that y1, y2 ∈ L1(Ω). Hence, by
Theorem B, the functions y1, y2 ∈ BV (Ω). Furthermore, if B is any Borel subset of Ω with
Ln−1(B) = 0, then

|Dyi|(B) = |Dsyi|(B) = P (Ai;B × R) = Hn−1(∂MAi ∩ (B × R))(4.37)
≤ Hn−1(∂ME ∩ (B × R)) = P (E;B × R) = 0

for i = 1, 2. Notice that the first equality in (4.37) holds since Ln−1(B) = 0, the second
holds by (2.6), the last one is a consequence of assumption (1.10) and of Lemma 4.1, and
the inequality is due either to (4.31) or to (4.14), according to whether i = 1 or i = 2. From
(4.37) we infer that y1, y2 ∈W 1,1(Ω) and hence, by (2.6), that

(4.38) P (Ai; Ω × R) =
∫

Ω

√
1 + |∇yi|2 dx′, i = 1, 2 .

Equation (4.10) follows from (4.36) and (4.38).

Part II Here, we remove the assumption (4.11). This will be accomplished in steps.
Step 1 Suppose that (4.9) is replaced by

(4.39) y2(x′) ≤ k for Ln−1-a.e. x′ ∈ Ω .

Then A1 and A2 are sets of finite perimeter in Ω × R; moreover, (4.14), (4.31) and (4.34)
hold, and

(4.40) P (E; Ω × R) =
2∑

i=1

P (Ai; Ω × R) .

The proof is the same as in Part I. Actually, an inspection of that proof reveals that the
inequality −k ≤ y1(x′), appearing in (4.11), does not play any role in the argument leading
to the conclusions of the present step.
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Step 2 If E is any set as in the statement, then A1 and A2 are sets of finite perimeter.
For any fixed h > k, set Eh = E ∩ {y ≤ h}. Then, by (2.1),

(4.41) ∂MEh ⊂ ∂ME ∪ {y = h} .
Inclusion (4.41) ensures that Eh is of finite perimeter in Ω × R, by Theorem E. The same
inclusion, via an application of Lemma 4.1, tells us that condition (1.10) is fulfilled also with
E replaced by Eh. Furthermore, since

(4.42) Eh ∩ (Ω × R) = {(x′, y) : x′ ∈ Ω, y1(x′) ≤ y ≤ yh
2 (x′)} ,

where yh
2 (x′) = min{h, y2(x′)}, then L1((Eh)x′) ≥ min{h− k, �(x′)}. Thus, assumption (1.9)

is satisfied with E replaced by Eh as well. On setting

Ah
2 = {(x′, y) : x′ ∈ Ω, y > yh

2 (x′)}
and applying Step 1 to Eh, one gets that A1 is of finite perimeter, and that Ah

2 is of finite
perimeter for every h > k. Furthermore, by (4.40)-(4.41),

(4.43) P (Ah
2 ; Ω×R) ≤ P (Eh; Ω×R) ≤ P (E; Ω×R)+Ln−1(Ω) for h > k .

Since χAh
2
→ χA2 in L1

loc(Ω×R) as h→ +∞, then estimate (4.43) and the lower semicontinuity
of perimeter entail that A2 is of finite perimeter in Ω × R.

Step 3 Under the additional assumption (4.39), the conclusions of the lemma hold.
We begin by showing that y1, y2 ∈ BVloc(Ω). Given any positive number h, define Ah

1 =
A1 ∪ {y < −h}. Thus,

Ah
1 ∩ (Ω × R) = {(x′, y) : x′ ∈ Ω, y < yh

1 (x′)} ,
where yh

1 (x′) = max{y1(x′),−h}. Since A1 is of finite perimeter in Ω×R by Step 2, and since

(4.44) ∂MAh
1 ⊂ ∂MA1 ∪ {y = −h}

by (2.1), then Ah
1 is a set of finite perimeter in Ω × R. Moreover, (4.31) and (1.10) ensure,

via Lemma 4.1, that

(4.45) P (A1;B × R) = 0

for every Borel set B ⊂ Ω such that Ln−1(B) = 0. Inclusion (4.44) and equality (4.45) easily
imply that

(4.46) P (Ah
1 ;B × R) = 0

for every Borel set B ⊂ Ω with Ln−1(B) = 0. Hence, the same argument as that at the end
of Part I tells us that yh

1 ∈W 1,1(Ω). Furthermore, by (2.6) and by (4.44),

(4.47)
∫

Ω
|∇yh

1 | dx′ ≤ P (Ah
1 ; Ω × R) ≤ P (A1; Ω × R) + Ln−1(Ω) .

23



Now, let ω be any connected open subset of Ω having a Lipschitz boundary. Obviously, there
exist positive constants h0 ≥ k and a such that

(4.48) Ln−1({−h0 < yh
1 (x′)} ∩ ω) ≥ a for h > h0 .

A form of the Poincaré inequality (see e.g. [20], Chap. 4) ensures that a constant C, depending
only on n, ω, and a exists such that

(4.49)
∫

ω
|u| dx′ ≤ C

∫
ω
|∇u| dx′

for every u ∈ W 1,1(ω) satisfying Ln−1({u = 0}) ≥ a. Applying (4.49) with u(x′) =
min{yh

1 (x′) + h0, 0}, and making use of (4.48) and of the fact that yh
1 ≤ k ≤ h0 yield,

via (4.47),

(4.50)
∫

ω
|yh

1 | dx′ ≤ CP (A1; Ω × R) + (C + 2h0)Ln−1(Ω) .

On passing to the limit as h → +∞ in (4.50) one gets y1 ∈ L1(ω), whence, by Theorem B,
y1 ∈ BV (ω). Equation (4.45) then gives y1 ∈ W 1,1(ω). Clearly also y2 ∈ W 1,1(ω), inasmuch
as y2 = y1 + � and � ∈ W 1,1(Ω). Hence, y1, y2 ∈ W 1,1

loc (Ω). Owing to (4.40) applied with Ω
replaced by any open subset Ω′ satisfying Ω′ ⊂ Ω, we have

(4.51) P (E; Ω′ × R) =
2∑

i=1

P (Ai; Ω′ × R) =
2∑

i=1

∫
Ω′

√
1 + |∇yi|2 dx′ .

On approximating Ω from inside by an increasing sequence of open subsets, equation (4.10)
follows from (4.51).

Step 4 Conclusion.
On applying Step 3 to the set Eh defined in Step 2, one deduces that y1 ∈ W 1,1

loc (Ω). Hence,
y2 = y1 + � ∈ W 1,1

loc (Ω). Thus, only (4.10) remains to be proved. By Step 1 applied to
Eh, Hn−1((∂MA1 \ ∂MEh) ∩ (Ω × R)) = 0, Hn−1((∂MAh

2 \ ∂MEh) ∩ (Ω × R)) = 0 and
Hn−1(∂MA1 ∩ ∂MAh

2 ∩ (Ω × R)) = 0. Thereby, for every Borel set B with B ⊂ Ω, we have

P (Eh;B × R) = Hn−1(∂MA1 ∩ (B × R)) + Hn−1(∂MAh
2 ∩ (B × R))(4.52)

= P (A1;B × R) + P (Ah
2 ;B × R)

=
∫

B

√
1 + |∇y1|2 dx′ +

∫
B

√
1 + |∇yh

2 |2 dx′ .

Clearly, equation (4.52) continues to hold for any Borel set B ⊂ Ω, as an approximation
argument for B by an increasing sequence of Borel sets converging to B from inside shows. On
applying (4.52) with B = {x′ ∈ Ω : y2(x′) < h} and observing that ∂MEh ∩ ({y2 < h}×R) =
∂ME ∩ ({y2 < h} × R) yields

(4.53) P (E; {y2 < h} × R) =
∫
{y2<h}

√
1 + |∇y1|2 dx′ +

∫
{y2<h}

√
1 + |∇y2|2 dx′ .

Notice that here we have made use of the fact that ∇yh
2 = ∇y2χ{y2<h} Ln−1-a.e. in Ω.

Equation (4.10) follows from (4.53), by letting h go to infinity.
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Proof of Theorem 1.3 – Case of bounded sets. Let E be a bounded set of finite
perimeter satisfying (1.5) and satisfying (1.8)–(1.9) for some open subset Ω of R

n−1. By
Theorem 1.1, there exist functions y1, y2 : R

n−1 → R such that, for Ln−1-a.e. x′ ∈ R
n−1,

y1(x′) ≤ y2(x′) and Ex′ is equivalent to (y1(x′), y2(x′)). Observe that, since we are assuming
that E is bounded, then condition (4.11) is certainly fulfilled. Moreover, assumption (1.8)
and Proposition 4.2 ensure that (1.10) is satisfied. Thus, all the hypotheses of Lemma 4.3
are in force (even in the more stringent form appearing in Part I of its proof). Therefore,
y1, y2 ∈ W 1,1(Ω). Furthermore, (4.11) holds with Ω replaced by any of its bounded open
subset, and hence also for Ω. On the other hand, since, by definition,

(Es)x′ =
[−�(x′)/2, �(x′)/2] for Ln−1-a.e. x′ ∈ Ω ,

then, owing to Lemma 4.3 applied to Es, we have

(4.54) P (Es; Ω × R) = 2
∫

Ω

√
1 +

1
4
|∇�|2 dx′ .

Since �(x′) = y2(x′)− y1(x′) for Ln−1-a.e. x′ ∈ Ω, and since the function
√

1 + (·)2 is convex,
then (4.10) and (4.54) yield

P (Es; Ω × R) = 2
∫

Ω

√
1 +

∣∣∣∇(y2 − y1)
2

∣∣∣2 dx′(4.55)

≤
∫

Ω

√
1 + |∇y2|2 dx′ +

∫
Ω

√
1 + |∇y1|2 dx′ = P (E; Ω × R) .

Combining (1.5) and Lemma 3.4 tells us that P (Es; Ω × R) = P (E; Ω × R). Consequently,
equality must hold in the inequality of (4.55). Since the function

√
1 + (·)2 is strictly convex,

this entails that −∇y1 = ∇y2 Ln−1-a.e. in Ω. Thus y1 + y2 ∈ W 1,1
loc (Ω) and ∇(y1 + y2) =

0 Ln−1-a.e. in Ω. Hence, for any connected component Ωα of Ω, there exists cα ∈ R such
that y1 + y2 = cα Ln−1-a.e. in Ωα (see e.g. [20, Corollary 2.1.9]). Clearly, the last equation
implies that E ∩ (Ωα × R) is equivalent to a translate of Es ∩ (Ωα × R) along the y-axis.
Finally, if (1.8)–(1.9) are fulfilled for some connected open subset Ω of R

n−1 such that

(4.56) Ln−1(π(E)+ \ Ω) = 0 ,

then E ∩ (Ω × R) is equivalent to a translate of Es ∩ (Ω × R) along the y-axis. Thus, E is
equivalent to a translate of Es along the y-axis, since E ∩ (Ω × R) and Es ∩ (Ω × R) are
equivalent to E and Es, respectively, thanks to (4.56).

Lemma 4.4 Let Ω be an open subset of R
n−1 and let E be a set of finite perimeter in Ω×R

having the property that there exist two functions y1, y2 : R
n−1 → R such that, for Ln−1-a.e.

x′ ∈ R
n−1, y1(x′) ≤ y2(x′) and Ex′ is equivalent to (y1(x′), y2(x′)). Assume that (1.10) and

(1.9) are fulfilled. Given any t ∈ R, set

(4.57) Ê(t) ={(x′, y) :x′∈π(E)+,max{y1(x′)−t, t−y2(x′)}≤y≤max{t−y1(x′), y2(x′)−t}}.
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Then

(4.58) Ln(Ê(t)) = Ln(E)

and

(4.59) P (Ê(t); Ω × R) = P (E; Ω × R) .

Moreover, conditions (1.10) and (1.9) are satisfied with E replaced by Ê(t).

Proof. We shall assume that t = 0, the other cases being completely analogous, and denote
Ê(0) simply by Ê. As in the proof of Lemma 4.3, we assume also, without loss of generality,
that y1(x′) ≤ y2(x′) and that Ex′ = (y1(x′), y2(x′)) for every x′ ∈ R

n−1. Definition 4.57
immediately tells us that L1(Êx′) = L1(Ex′) = �(x′) for x′ ∈ R

n−1. Hence (4.58) holds, and
(1.9) is trivially satisfied also with E replaced by Ê.
Set Ẽ = {(x′, y) : (x′,−y) ∈ E}, and observe that

(4.60) Ê is equivalent to [(E ∪ Ẽ) ∩ {y ≥ 0}] ∪ [(E ∩ Ẽ) ∩ {y < 0}] .
Thus, Ê is a set of finite perimeter in Ω × R. Moreover, from (4.60) and (2.1) we infer that

∂M Ê ⊂ ∂M (E ∪ Ẽ) ∪ ∂M (E ∩ Ẽ) ∪ {y = 0} ⊂ ∂ME ∪ ∂M Ẽ ∪ {y = 0} ,
whence condition (1.10) for Ê easily follows. Now we prove (4.59). Let GE , GẼ and GÊ be
the sets associated with E, Ẽ and Ê, respectively, as in Theorem G. Clearly, GE = GẼ . Set
G = GE ∩GÊ ∩ Ω. Then

(4.61) (∂∗E)x′ = ∂∗(Ex′), (∂∗Ẽ)x′ = ∂∗(Ẽx′), (∂∗Ê)x′ = ∂∗(Êx′), for x′ ∈ G .

By the very definition of Ê, either Êx′ = Ex′ , or Êx′ = Ẽx′ . Thus, equations (4.61) imply
that

(4.62) either (∂∗Ê)x′ = (∂∗E)x′ , or (∂∗Ê)x′ = (∂∗Ẽ)x′ for x′ ∈ G .

On the other hand, by Theorem C, there exists a set N ⊂ R
n such that Hn−1(N) = 0 and

(4.63)

{
νE(x) = ±νÊ(x) if x ∈ (∂∗E ∩ ∂∗Ê ∩ (Ω × R)) \N
νẼ(x) = ±νÊ(x) if x ∈ (∂∗Ẽ ∩ ∂∗Ê ∩ (Ω × R)) \N .

Set M = π(N). By ([1, Proposition 2.49(iv)]), Ln−1(M) = 0. From (4.62)–(4.63) we have
that

(4.64)

{
νÊ(x′, ·) = ±νE(x′, ·) if x′ ∈ (G \M) ∩ π(∂∗E ∩ ∂∗Ê)
νÊ(x′, ·) = ±νẼ(x′, ·) if x′ ∈ (G \M) ∩ π(∂∗Ẽ ∩ ∂∗Ê) .

Moreover, by symmetry,

(4.65) |νE
y (x′, yi(x′))| = |νẼ

y (x′,−yi(x′))| for x′ ∈ G .
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Hence,

P (Ê; Ω × R) = Hn−1(∂∗Ê ∩ (Ω × R)) = Hn−1(∂∗Ê ∩ [(G \M) × R])(4.66)

=
∫

G\M
dx′
∫

(∂∗Ê)x′

1

|νÊ
y (x)|

dH0 =
∫

G\M
dx′
∫

(∂∗E)x′

1
|νE

y (x)|dH
0 = P (E; Ω × R) ,

where the second equality in (4.66) holds since Ln−1((π(E)+ ∩Ω) \ (G \M)) = 0 and (1.10)
is fulfilled with E replaced by Ê, the third is an application of the coarea formula (2.12), the
fourth is a consequence of (4.62), (4.64) and (4.65), and the last one is due to the first three
equalities applied with Ê replaced by E.

Proof of Theorem 1.3 - General case. There is no loss of generality in assuming that
Ln(E) < ∞, since otherwise E is equivalent to R

n, by Theorem 1.1, and there is nothing to
prove.
One can start as in the proof of the case where E is bounded and observe that, if there
exists k ∈ R such that y1(x′) ≤ k for Ln−1-a.e. x′ ∈ Ω, then the assumptions of Lemma 4.3
are fulfilled, and the proof proceeds exactly as in that case. Obviously, the same argument,
applied to Ẽ, yields the conclusion also under the assumption that y2(x′) ≥ k for Ln−1-a.e.
x′ ∈ Ω and for some k ∈ R.
In the general case, fix any t ∈ R and consider the set Ê(t) defined as in (4.57). By (1.8) and
Proposition 4.2, assumption (1.10) is fulfilled. Thus, by Lemma 4.4, assumptions (1.10) and
(1.9) are fulfilled also with E replaced by Ê(t). Thus Ê(t) satisfies the same hypotheses as E,
and enjoys the additional property that

(Ê(t))x′ = (max{y1(x′) − t,t− y2(x′)},max{t− y1(x′),y2(x′) − t}) for x′ ∈ π(E)+

with
max{t− y1(x′),y2(x′) − t} ≥ 0 .

Hence, Ê(t) satisfies the assumptions of Lemma 4.3. Moreover, by (4.59),

(4.67) P (Ê(t),Ω × R
n) = P (E,Ω × R

n) = P (Es,Ω × R
n) = P ((Ê(t))

s,Ω × R
n) .

Arguing as above, tells us that the conclusions of the theorem are true with E replaced by
Ê(t). Thus Ê(t) ∩ (Ωα × R) is equivalent to a translate of Es ∩ (Ωα × R) along the y-axis, for
every connected component Ωα of Ω; namely there exists cα,t ∈ R such that

(4.68) max{y1(x′)−t, t−y2(x′)}+max{t−y1(x′), y2(x′)−t} = cα,t for Ln−1-a.e. x′∈Ωα.

Equation (4.68) implies that, for Ln−1-a.e. x′ ∈ Ωα,

(4.69) either y1(x′) + y2(x′) − 2t = cα,t, or y1(x′) + y2(x′) − 2t = −cα,t .

Choosing any two different values of t in (4.69) easily entails that y1(x′) + y2(x′) must be
constant Ln−1-a.e. in Ωα, whence E ∩ (Ωα ×R) is equivalent to a translate of Es ∩ (Ωα ×R)
along the y-axis.
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