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Abstract

The presented work introduces shortly a novel segmentation method
and a modeling approach for multivariate quasi-stationary data. The
combination of both allows the extraction of low-dimensional models
from multi-dimensional data. The segmentation method is applied
both to event-related potentials and fields and early auditory evoked
potentials. Additionally, the early auditory wave Pa is modeled by
a two-dimensional dynamical system. The segmentation method de-
tects ERP- and ERF-components and early auditory waves objec-
tively, which illustrates the independence of the segmentation method
from the number of segments. Additionally, we find a common topol-
ogy of wave Pa, which indicates a common underlying attractor in
the brain.

1 Introduction

In neuroscience, multivariate time series are measured at different spatial and
temporal scales. Experimental paradigms, which focus on temporal aspects
of brain signals, apply frequently, electroencephalography (EEG) or magen-
toencephalography (MEG) for data acquisition. Data analysis techniques
for EEG are based on assumptions about statistical properties of signals or
underlying dynamics. Especially models for multivariate signals lead to im-
proved analysis and a better understanding of underlying processes.
The top-down approach aims at extracting models from measured data.
For instance, it comprises methods attacking ill-posed inverse problems and
modeling of multivariate frequency spectra. Several works have developed
segmentation methods, which detect quasi-stationary spatio-temporal states
in EEG [Brandeis et al., 1995], [Lehmann & Skrandies, 1980]. [Flexer &
Bauer., 1998], [Wackermann, 1999]. These states are supposed to represent
coherent neural activities and are called microstates [Lehmann & Skrandies,
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1980], [Pal et al., 1985]. The work of Lehmann and Skrandies [1980] repre-
sents one of the first methods in this field. Starting from the assumption,
that coherent neural activity is reflected by global maximum power of EEG,
a Global Field Power(GFP) is computed as the root mean square of potential
deviations from the spatial average. This definition retains GFP independant
of the applied reference electrode. Since coherent states are observed quasi-
stationary in time, transitions between states show changing spatial patterns
at short time scales. That is, borders of coherent states are marked by an
increased dissimilarity of consecutive spatial activities. This aspect leads to
the definition of a Global Dissimilarity(GD). It is computed by the GFP of
potential differences of consecutive intensity maps, which are normalized with
respect to their GFP [Lehmann, 1992]. Plotting GFP and GD with respect
to time, peaks of GD coincide with troughs of GFP. The corresponding time
points mark borders of coherent states, i.e. global dissimilarities of intensity
maps show least global intensity of EEG. These segmented time windows are
called microstates and show one prominent peak of GFP. Comparisons of
microstates in ERP-data with well-known cognitive components show good
accordance [Brandeis et al., 1995]. An extension of the method has been de-
veloped by Pascual-Marqui et al. [1995] by introducing a clustering approach.
Here, clusters in multivariate signals are detected by the K-Means algorithm,
while the number of clusters are estimated by cross-validation. The present
work aims to extent these methods by an additional feature. We introduce
and apply a novel clustering approach [Hutt et al., 2001], [Hutt, 2002], which
moves the problem of the right number of clusters to a simple statistical prob-
lem.
As a second step, multivariate signals are modeled by low-dimensional dy-
namical systems. The applied method fits optimal projection modes and
deterministic ordinary differential equations synchronously. The optimal
choice of both modes and dynamical systems have been studied in several
works [Kirby, 1992], [Uhl et al., 1993], [Jirsa, 1995], [Kwasniok, 1996], [Ram-
say, 1997], [Uhl & Friedrich, 1999], [Hutt et al., 1999]. The present work
applies Dynamical Systems Based Modeling(DSBM) [Uhl et al., 2001] based
on an analytical treatment [Hutt et al., 1999].
Applications of clustering and DSBM to event-related potentials(ERP), event-
related fields(ERF) and middle-latent auditory evoked potentials(MAEP) al-
lows the objective extraction of functional components. Modeling of MAEP-
component Pa yields a common topology, which may represent an underlying
attractor of component Pa.
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The paper is organized as follows. In Sec. 2., we introduce the clustering
method and DSBM. The subsequent section contains clustering results ob-
tained from ERP, ERF and MAEP-data. Results are discussed in Sec. 4,
which also contains a short outlook.

2 Basic Concept

In the present work, we aim at clustering a multivariate signal to obtain
temporal segments. Corresponding to previous results [Hutt et al., 2000],
quasi-stationary signal parts result from metastable attractors in data space.
These attractors generate clusters in data space. Hence, detecting attractors
in high-dimensional data space can be done by clustering signal data, where
clusters define attractive regions in data space [Hutt et al., 1999]. We apply
the K-Means-algorithm [Duda & Hart, 1973] for clustering, but any other un-
supervised clustering algorithm is possible (e.g. [Duda & Hart, 1973], [Fränti
et al., 1997], [Kundu, 1999]). In a first step, Euclidean distances of each data
point to cluster centers are computed. Plots of distances with respect to
time illustrate the multi-dimensional structure and temporal behaviour of
data points. Small distances from data points to cluster centers indicate at-
tracted data points, while large distances reflect no attractions. We point
out, that little clusters, which contain only few data points, are regarded less
reliable than large clusters. While clusters of few points might emerge by
chance from numerical artifacts or reflect outliers in the data, large clusters
originate presumably from real data clusters. This notion of reliability is
introduced as each data point is member of one cluster by definition. The
average percental contribution of each data point to the clustered structure,
or in other words, the reliability of clustered data points, is expressed by a
cluster quality measure p(i) [Hutt & Kruggel, 2001]. The average is com-
puted by summation of cluster results obtained from different number of
clusters. Good convergence of results is achieved for averages of 30 cluster
results.
The obtained cluster quality measure p(i)represents a kind of probability,
that a data point i is part of a reliable cluster. The smaller p(i), the higher
the probability that i belongs to outliers or parts between clusters. Drop-
offs and sharp rises with increasing time indicate final and initial borders of
clustered points, respectively. Hence, alternating drop-offs and rises indicate
temporal segments of clustered points i.e. regions of attractors.
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Figure 1: Kanizsa-figures presented in the visualization task experiment. The
square-figure (left) represented the target.

Focussing to data segments of attractors, we aim at modeling dynamics of the
signal by its projecting to few spatial modes and synchronous fit of ordinary
differential equations. The method minimizes a cost function

V = Vs(wi,w
†
j) + ε · Vd(q̇w†

i − fi) , ε ∈ �+
0 ,

which contains one term Vs for optimal spatial modes and one term Vd for
the dynamics fit. Optimal biorthogonal projection modes wi,w

†
j and corre-

sponding dynamical systems fi are obtained for a fixed number of dimen-
sions. Dimensionality effects and a criterion for the optimal weighting ε have
been investigated and derived in [Hutt et al., 1999], [Hutt & Riedel, 2002],
respectively.

3 Applications

3.1 Event-related potentials and fields

This section presents clustering results, which are obtained from ERP- and
ERF-data of two similar visual experiments [Herrmann et al., 1999], [Her-
rmann & Mecklinger, 2000]. In both cases, the stimuli consist of two Kanizsa-
figures and two non-Kanizsa figures (Fig. 1) with equal probability of ap-
pearence p=0.25 . In the ERP-experiment [Herrmann et al., 1999], subjects
had to count silently the occurence of Kanizsa-square figures. In the twin
experiment [Herrmann & Mecklinger, 2000], which acquired event-related
fields, a button had to be pressed at the appearence of the Kanizsa-square
figure. In both studies, 10 subjects were shown 400 stimuli in 4 blocks with
a duration of 700ms and random interstimuls-intervals between 1000ms and
1500ms.
The EEG was recorded with 64 electrodes at a temporal sampling rate of
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Figure 2: Sampled time series of potential maps of ERP-data.

500Hz and filtered with a 0.05Hz high pass and 100Hz low pass-filter. After
artifact rejections, the data was averaged over trials and subjects between
200ms before and 900ms after stimuls onset.
MEG-data was obtained by 148 channels at a temporal sampling rate of
678Hz and high pass-filters at 0.1Hz and low pass-filters at 200Hz. As
the EEG-data, trials and subjects were averaged between 200ms before and
900ms after stimuls onset. Figures 2 and 3 show sampled time series of maps
of the ERP- and ERF-data, respectively.
In Fig. 4, Euclidean distances of ERP-data are plotted for several number

of clusters. For K = 2 (top row, left side), we observe that the signal evolves
near one cluster center (black curve), while it is far from the other cluster
center (red curve). At ∼ 180ms, the signal leaves the vicinty of the first
cluster center and moves to the second cluster. We observe this change of
clusters by the smaller distance from data to the second cluster center. At
∼ 520ms, the signal changes back to the first cluster. Since results strongly
depend on the number of detected clusters, we compute Euclidean distances
for several numbers of clusters K. Increasing K, convergence of time points
of cluster changes is observed. For K = 6 and K = 7, cluster results show
similar cluster borders at t1 ≈ 60ms, t2 ≈ 110ms, t3 ≈ 170ms, t4 ≈ 320ms
and t5 ≈ 470ms. There is one additional change of clusters at 210ms for

Figure 3: Sampled time series of field maps of ERF-data.
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Figure 4: Euclidean distances plotted with respect to time for several number
of clusters K. In each box, the lowest curve represents the Euclidean distance
to the approached cluster.

K = 7. In order to obtain a measure, which is independent from the number
of clusters, p(t) is computed (Fig. 5). We observe sharp rises and drop-offs
of values, which mark initial and final time points of clusters, respectively.
Plateaus of values between borders represent constant cluster reliability of
points i.e. regions of reliable clusters.
In the following, we introduce clustered windows as windows, which exhibit
plateaus of p. Comparing these with known cognitive components, clustered
windows V to II mark cognitive components P1, N1, P2 and P3, respec-
tively. The last clustered window I originates from the turn on-off of the
visual stimulus. Since cognitive components are defined by latency, polarity
and map topology, we compute spatial maps corresponding to clustered win-
dows. These are shown in Fig. 6. Euclidean distances for K = 6 and maps
of cluster centers are shown in the top and middle row, respectively. Maps
of cluster centers are plotted in the sequence of temporal occurence from
left to right. Comparison of cluster centers and well-known components ex-
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Figure 5: Cluster quality measure p plotted with respect to time for the
ERP-data. Roman numbers denote clustered windows.

Figure 6: Top row: Euclidean distances from ERP-data to K = 6 cluster
centers. Mid row: Cluster centers drawn as potential maps in the sequence
of temporal occurence. Bottom row: Potential maps of ERP-components
obtained by conventional methods.
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Figure 7: The substructure of component P3. Top: Cluster quality measures
show three clustered window, while the right most window is least reliable.
Bottom: Potential maps of corresponding clustered windows.

tracted by conventional methods [Picton et al., 1974] show good accordance
of map topology. Hence, clustered windows represent time windows of cog-
nitive components.

Focussing to clustered window II(Fig. 5) and re-applying the clustering
method, we observe a substructure(Fig. 7). Hence, component P3 appears
to show three, presumably overlapping, additional components in different
time windows. We point out, that we are aware of the low reliability of this
interpretation from clustering results, as the observed data represents aver-
aged data over subjects. It is well-known, that single subjects show latency
shifts of cognitive components, which lead to smeared averaged components.
However, we point at the method property of resolving subtle structures in
data. Examinations of single-subject data are in progress.
Now, we apply the clustering approach to ERF-data. In Fig. 8, computed
cluster quality measures p are plotted with respect to time. We observe sharp
rises, plateaus and drop-offs of p. Distinguished clustered windows are de-
tected in time windows [106ms; 134ms], [152ms; 182ms], [191ms; 320ms] and
[430ms; 560ms]. Figure 9 shows Euclidean distances for K = 6 (top row) and
corresponding maps of cluster centers(middle row) in sequence of temporal
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occurence. The comparison of maps with results obtained by conventional
methods (bottom row) show very good accordance and we identify compo-
nents P1m,N2m,P2m and P3m.
The previous examinations present the clustering method as an objective

detection algorithm for quasi-stationary states in ERP- and ERF-data. In
the following section, clustering is applied to early auditory evoked potentials
and low-dimensional dynamical models are obtained.

3.2 Middle latent auditory evoked potentials

The investigated data sets were obtained from a study in which auditory
brain stem responses (ABR) and auditory evoked potentials of middle latency
(MAEP) were investigated simultaneously. Stimuli were diotic clicks of 100
µs duration. The interstimulus interval was chosen to vary randomly and
equally distributed between 62 and 72 ms, yielding an average stimulation
rate of approximately 15 Hz. The EEG was recorded with 32 electrodes
which were placed according to an extended 10-20-system and Cz served as
common reference electrode.
Before digitization, raw data were passed through an analogue anti-aliasing
lowpass filter with a cutoff frequency 2 kHz. Data were sampled at a rate
of 10 kHz, the recording interval comprised 600 samples in the time interval
from -15 to 45 ms relative to stimulus onset. 10000 single trials were recorded
and stored to hard disk for offline analysis. They were filtered by a zero-phase
forward-backward bandpass filter with corner frequencies 20Hz and 300Hz.
The present work analyzes three data sets from different subjects showing
low (subject dj), middle (hr) and higher (rh) noise levels. Figures 10, 11 and
12 show the electric activity measured on the scalp for the three subjects.
Single channel plots illustrate the temporal dynamics, while the temporal
sequences of spatial activities exhibit the spatio-temporal dynamics.

Figure 13 shows the cluster quality measure p plotted with respect to
time. At 5 ms, descents in p are observed in all data sets followed by a
sharp rise. Following plateaus last until 7 ms, when p drops again. As in the
previous chapter, this structure indicates a data cluster in the corresponding
time interval. Clusters also are found around 17 ms and 30 ms for all data
sets. Latencies of the detected clustered windows show good accordance to
known waves V , Na and Pa.
Re-applying the cluster method to cropped time intervals at 30 ms confirms
these findings (Fig. 14). The corresponding maps on the left hand side repre-
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Figure 8: Cluster quality measure p plotted with respect to time for the
ERF-data.

Figure 9: Top row: Euclidean distances from ERF-data to K = 6 cluster
centers. Mid row: Cluster centers drawn as field maps in the sequence
of temporal occurence. Bottom row: Potential fields of ERF-components
obtained by conventional methods.
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Figure 10: Measured electric potentials of subject dj. The top plots show
activities in the single channels, at the bottom a time series of spatial distri-
butions are shown.
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Figure 11: Measured electric potentials of subject hr shown in single channels
and as a time series of spatial maps.
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Figure 12: Measured electric potentials of subject rh shown in single channels
and as a time series of spatial maps.
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Figure 13: Cluster quality measure p plotted with respect to time for MAEP-
data. Clustered windows are recognized at 5ms (wave V ), 18ms (wave Na)
and 30ms (wave Pa). The stimulus sets on at 0ms.

sent signal averages over plateaus. They confirm clustered windows by good
agreement to quasi-stationary states in the data.
In a next step, DSBM is applied to the clustered window at 30 ms for all

datasets. The segment is chosen according to cluster borders in Fig. 14. In
a first step, Principal Component Analysis is applied in order to reduce the
signal dimensionality with errors E < 10−5 for five modes. These projections
serve as a new five-dimensional signal, which is modelled by DSBM.
Two-dimensional projection planes are obtained for each data set from the
first two PCA-modes (E < 10−2). Synchronously determined dynamical
systems are fitted with minimal errors Vd(ε = 0.09) = 4 · 10−4 (data set dj),
Vd(ε = 0.0) = 4 · 10−4 (data set hr) and Vd(ε = 0.15) = 4 · 10−3 (data set
rh) while applying polynoms of third order. Lower polynomial orders lead
to worse fits and bad reconstruction of the signal, whereas higher orders do
not lead to new dynamical properties.
The basic assumption of attractors is verified by the topology of obtained
dynamical systems. Integrations of obtained differential equations with var-
ious initial points leads to sets of trajectories and elucidate the topology of
the temporal dynamics (Fig. 15). All data sets show a saddle node FP3 at
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Figure 14: Cluster results in time windows of wave Pa. Window borders
are obtained from Fig. 13. Vertical dashed lines mark cluster borders. On
the left hand side, averaged spatial distribution in intervals [28.0 ms; 31.0
ms] (dataset dj), [28.0 ms; 31.0 ms] (dataset hr) and [26.6 ms; 30.4 ms] are
shown.

y = 0, a stable focus FP4 and another saddle node FP1. The additional
stable focus FP2 is detected only in datasets dj and hr.

4 Discussion

Let us summarize the results. Figure 5 shows the cluster quality p for ERP-
data plotted with respect to time. Since quasi-stationary signal maps repre-
sent clusters in data space and time windows of constant values of p indicate
clustered data, plateaus I toV represent quasi-stationary maps. These results
are independent from the number of clusters and illustrate the objectiveness
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Figure 15: Sets of trajectories of component Pa for all subjects. The right
hand side show focused plots of attractive areas on the left hand side. Circles
mark initial values of integration, while boxes denote fixed points.16



of the proposed cluster method. Corresponding to Fig. 6, detected clusters
agree to known cognitive components. Similar cluster results are found in
ERF-data. Here, we also find distinguished plateaus of p (Fig. 8), which
show good accordance to known ERF-components (Fig. 9).
Finally, we examine early evoked potentials. Cluster applications yield clus-
ter quality measures, which show sharp rises, drop-offs and plateaus (Fig. 13).
The observed clustered windows show good accordance to quasi-stationary
maps in Figs. 10-12 and early waves V , Na and Pa [Regan, 1989]. Focussing
to a time window at wave Pa and re-applying clustering, we gain drop-offs,
rises and plateaus at the same time points (Fig. 14). Corresponding spatial
maps agree with quasi-stationary patterns in Figs. 10-12.
Applications of DSBM to wave Pa yields optimal projective spatial modes
and corresponding amplitudes, which obey dynamical systems. Their corre-
sponding phaseportraits are shown in Fig. 15. We observe a common topol-
ogy of the dynamics for all subjects.
The proposed two-step analytical framework yields common topologies of
component Pa and we conjecture common dynamical attractors as the basic
mechanism of the underlying processes in the brain. Relations of neuronal
processes and detected fixed points can not be defined yet in the current
stage of analysis. However, we obtain both an outlook to a novel approach
for modeling neuronal dynamics based on measured data and indications
about underlying neuronal attractors. We believe, that examinations of ad-
ditional single subject data will foster the proposed findings.
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