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Abstract

ABSTRACT: We consider the short time heat content asymp-
totics for oblique boundary conditions. The first few coefficients in
the asymptotic expansion are calculated.

Subject Classification: 58J50.

Let M be a compact Riemannian manifold of dimension m with smooth
boundary M and let D be an operator of Laplace type on a vector bundle
V over M. The operator D defines a natural connection V - see equation (3)
below. Let V,, be covariant differentiation with respect to the inward unit
normal on the boundary. Let Br be a tangential differential operator and let
oblique boundary conditions [8, 11, 14] be defined by the operator:

By := (Vo + Br)dlom.

Given an initial temperature distribution ¢, the subsequent temperature
distribution u := e~*P5¢ is defined by the equations:

(Oy + D)u =0, ul—g = ¢, and Bu = 0. (1)
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The specific heat p is a section to the dual bundle V and the total heat energy
content of the manifold is given by:

B(o,p, D, B)(t) := [, ul x)dvyy

where we integrate with respect to the Riemannian volume element on M.
As t | 0, there is a complete asymptotic expansion:

6(¢7 p7D7B><t) ~ ZHZO ﬁn((ba paDaB>tn/2

The heat content asymptotics [3, are locally computable and have been stud-
ied extensively for Dirichlet, Robin and mixed boundary conditions [3, 4, 5,
12, 13] - see [10] for a recent survey article on the field. In some detail, there
exist local invariants 3 and (%! which are bilinear in the jets of ¢, p, with
coefficients which are smooth local invariants of the jets of the total symbol

of {D, B} so that
ﬁn((ba P Da B) = fM ﬁ%nt((ba Py D)dVM + faM 52‘1((?, Py Da B)dVQM-

The interior terms do not depend on the boundary condition and one may
choose [5]

(6,0, D) = o (D6, (D)"p),

ﬁZZLTTLLZrQ((b?pa ) = (2n+1 (Dn+1¢( ) )

It is the aim of the present letter to find the boundary integrands for the
heat content asymptotics for oblique boundary conditions. The heat trace
asymptotics has already been extensively discussed in [1, 2, 6, 7].

To express the heat content asymptotics 3, invariantly, we must introduce
some additional notation. On the boundary, we let Roman indices a and b
index a local orthonormal frame {ey, ..., e,,_1} for the tangent bundle of the
boundary; let e, be the inward unit normal. We use the connection V
and the Levi-Civita connection of the boundary to covariantly differentiate
tensors of all types tangentially. We may then express Br = I',V,+V,. [, +S5
with auxiliary endomorphisms I' and S. Let D and B be the dual operators
on the dual bundle V. If V is the dual connection and if I and S are the
dual endomorphlsms then B = V + By where By = F V + V F + S.
Note that V is also the connection defined by the dual operator D. Let L be
the second fundamental form; the contraction L,, is the geodesic curvature
of the boundary. The following is the main result of this letter.
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Theorem 1 Adopt the notation established above

~

. 50(457 ,O,D,B) = fM (bpdVM
2. Bl(gb, p,D,B) = O
3. Bao(p,p, D, B) = — [}, Do - pdl/M—I—faMng pdUgns -

ﬁ (¢>P>D B 3\f f@M ng deVaM

k

1S3

B(Qb,p,DB _QfMD¢ DpdVM+faM{ 1B¢ p__D¢ Bp
+(3Br + +Loa)Bo - Bp}dva.

Assertion (1) follows by setting ¢ = 0. The remainder of this letter is devoted
to the proof of the remaining assertions.

If we set I' = 0, then we recover Robin boundary conditions and Theorem
1 follows from results given in [3]. Thus the whole interest lies in the T
dependence - we have encoded this dependence in the operators B and Br.
To establish Theorem 1, we will need some functorial properties of these
invariants. As always, one can use dimensional analysis to see the boundary
integrands 3% are homogeneous of order n — 1 in the data. The primary
difficulty is that I' has weight 0 and thus the dependence upon I' in various
coefficients is not controlled by this homogeneity argument.

We begin by noting that Lemma 2.1 of [3] generalizes to this setting as:

Lemma 2 1. Bn(¢7 paDaB> = ﬁn(pa ¢7D75))

2. [fB¢ = 07 then Bn(gb) p>D7B) = _%Bn—Q(ngapaDaB)'

There is another useful functorial property. Let the torus T# = S x..x S*
have the usual periodic parameters g = (01, ...,0;) and let 7 be the usual
parameter on the interval [0,1]. Give N := [0, 1] the usual metric dr? and
give the manifold M := [0,1] x T* a metric

dst; = dr* + gap(r)do® o do°

which only depends on the radial parameter r. Let Dj; be an operator of
Laplace type on the space of smooth sections to the trivial bundle M x C”



over M and let By, define oblique boundary conditions where the coefficients
of Dy and By, only depend on the radial parameter. Let

i = (ny,...,ny) € ZF, 0= n61 + ... + niby,
o (0) = eV~ Dy := ¢7' Dyér, and
By = ¢EIBM¢T-

Then Dy is an operator of Laplace type and By defines Robin boundary
conditions on [0, 1] x C” since there is no 6 dependence. Let ¢ = ¢n(r) and
pn = pn(r). Let un(t;r) := e *P¥En ¢y be the solution to the equations:

(0 + Dy)uny =0, upy|i=o = ¢n, and Byuy = 0.
We set s := dnoT, pur i= pndyp', and uys = uy¢r. Since
Dyupyr = Dyuy - o7 and Byjupy = Byuy - ¢, (2)
uys solves the equations
(Or + Dpp)ups = 0, uprli—o = dnoér, and Byprup = 0.
Let g = det(gq)?. Then dvy, = gdrdf. We compute:
B(oar, par, Dars Bur)(t) = [y, une(t;7,0)pas (v, 0)g(r)drd
= Jyun(t;r)pn(r)g(r)drdo
= vol(T*)3(¢n, 9o, D, Bw).
We equate powers of ¢ in the associated asymptotic expansions to prove:

Lemma 3 Adopt the notation established above. Then
ﬁn((bMapMa DM) BM) = vol (Tk) : Bn(¢N7gpN7 DN7 BN)

We remark that it is not necessary to take N = [0, 1]; an analogous
Lemma holds for more general products with a toroidal factor where the
coefficients in Dj; and By, only depend on the coordinates on V.

We now begin the proof of Theorem 1. We express

Bi(¢, p, D, B) = faM E1(d, p, D, B)dvgns

Ba(¢,p, D, B) = — [, D& - pdvas + [5,,ABo - p+ E2(0, p, D, B) }dvgn

Bs(¢,p, D, B) = 55= [y, 1B - Bp + Es(6, p, D, B)}dvowm

Bu(¢,p, D, B) =% [, Db Dpduas + [,y {—3B¢- Dp— D¢ - Bp
+(3S +1L,,)Bo - Bp+ Ei(o, p, D, B) Yo,
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where by construction &;(¢, p, D, B) = 0 for I' = 0 to ensure the above results
agree with the results of Desjardins et al [5] for Robin boundary conditions.
We may use Lemma 2 to see that

E¢.p, D, B) = E,(p. 6, D, B)
51/((;57 paDaB> = _%8V72(D¢7p7 D,B) if B(b =0
gl/(¢> P>D>B) = _%EV—2(¢a DP>D>B) if Bp = 0.

As &1 =& =0, we have & = 0 if By = 0 or Bp = 0 for v = 1,2. Thus
&, is divisible by expressions which are bilinear in B¢, Bp, and tangential
covariant derivatives of these quantities. This means ¢ appears only in com-
bination with B as B¢ or tangential covariant derivatives of B¢. Similarly,
p only appears as Bp or tangential covariant derivatives of lg'p. Since &, is
homogeneous of degree v — 1 and B¢ and Bp are homogeneous of degree 1,
we conclude &, = 0 for v = 1,2 which establishes assertions (2) and (3) of
Theorem 1. We may also conclude now similarly that &, is divisible by ex-
pressions which are bilinear in B¢, Bp, and tangential covariant derivatives
of these quantities for v = 3,4. Thus

E(6,0,D,B) = [, a0o(T)Bs - Bpdvaas
Eip.p,D,B) = [, {aa(T,S) + aa(T, L) + as(T, VD)
+ a4,a(F)Va -+ VaOé47a(F)}B¢ . deVaM.

For dimensional reasons, a (I, .5) is linear in S, ao(I", L) is linear in L, and

az(I, VI') is linear in VI'. Furthermore, the terms o, depend smoothly on I'.

We complete the proof of Theorem 1 by studying these universal multipliers.
Give M = [0,1] x T* the metric

ds® = dr® + gap(r)d6® o d6”
and let g := det(gq)'/? define the volume element on M. Let
Dy = —(3; + g '0:(9) - 0, + g9} )

be the as§ociated Laplacian. Let Sy; and I" be arbitrary. Let By = pr 'B MPT
and let By be the dual operator determined by By. These two boundary
operators satisfy the intertwining property:

[;)Ng = QBN-
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We compute:

B3(Par, par, Dar, Bur) = ﬁ Jonr (L4 ao(T) (Bryoas - Barpar)gdrdd
= vol(T*) - 5= [yn (1 + ao())(Bnow - Bygpn)dr
Bs(on, pN, DN, By) = ﬁ faN(BN¢N . BngN)dr.

By Lemma 3,

B3(éars par, Dar, Bar) = vol (TF) - B5(¢éw, piv, D, B).

Consequently ag(I') = 0 which proves Theorem 1 (4).
The connections defined by D), and Dy differ. In general, if

D = —(g"d,0, + A9, + B)

is an arbitrary operator of Laplace type, then the associated connection 1
form is given by:
ws = 59us(A” + ¢"T5") (3)
where I',,,” are the Christoffel symbols of the Levi-Civita connection; see [9]
for details. Thus
MY, =0, and "V, =0, + 19719,4.

Let €(1) = —1 and £(0) = +1 so that €0r is the inward unit normal on ON.
We suppose gap = dap on IN. Then Ly, = —50,gap and g 10,9 = —€L4q 50

Nvm + %Laa = g(ar + %g_larg) + %Laa = Ear = Mvm
¢r Budr = €0, + 28/ —1Tn, + Sy so
Sy =Sy + %Laa + 2v/—1n,0I,.
We then have:
Jon{3SnBron - By (gpn)}dvan
= Jon H5Su + 1Laa + (T, Sir) + ao(T, L)
+ 2vV—laya(D)ngBrnoy - BNPN}ng8N~

Since By (gpn) = gBn(pn), we may conclude:

a1 =0, ap =0, and ay, = 11,

6



We complete the proof of Theorem 1 by evaluating az. We take the flat
metric on M and set

Dy = — (02 + 070 + 2w, 7).

We take Sy = 0 and ¢r = pr = 1. By equation (3), ¥V, = &/ + w,.
Consequently Sy = I'yw, + w,I'y. We compute:

Jon{zSnBron - By pn }dvay
= faN {{%(wara + Cowa) + as(T, V) } By oy - BN/ON}dVaN.

This shows that a3 = 0 and completes the proof of Theorem 1.

Remark: Whereas in the heat trace asymptotics the breakdown of the
classic Lopatinski condition is clearly reflected in the heat kernel coefficients
2, 6], the heat content coefficients do not show any signs of the loss of strong
ellipticity and they are defined for arbitrary endomorphisms T'.
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