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Abstract

ABSTRACT: We consider the short time heat content asymp-
totics for oblique boundary conditions. The first few coefficients in
the asymptotic expansion are calculated.

Subject Classification: 58J50.

Let M be a compact Riemannian manifold of dimension m with smooth
boundary ∂M and let D be an operator of Laplace type on a vector bundle
V over M . The operator D defines a natural connection ∇ - see equation (3)
below. Let ∇m be covariant differentiation with respect to the inward unit
normal on the boundary. Let BT be a tangential differential operator and let
oblique boundary conditions [8, 11, 14] be defined by the operator:

Bψ := (∇m + BT )ψ|∂M .

Given an initial temperature distribution φ, the subsequent temperature
distribution u := e−tDBφ is defined by the equations:

(∂t +D)u = 0, u|t=0 = φ, and Bu = 0. (1)
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The specific heat ρ is a section to the dual bundle Ṽ and the total heat energy
content of the manifold is given by:

β(φ, ρ,D,B)(t) :=
∫

M
u(t; x)ρ(x)dνM

where we integrate with respect to the Riemannian volume element on M .
As t ↓ 0, there is a complete asymptotic expansion:

β(φ, ρ,D,B)(t) ∼ ∑
n≥0 βn(φ, ρ,D,B)tn/2.

The heat content asymptotics βn are locally computable and have been stud-
ied extensively for Dirichlet, Robin and mixed boundary conditions [3, 4, 5,
12, 13] - see [10] for a recent survey article on the field. In some detail, there
exist local invariants βint

n and βbd
n which are bilinear in the jets of φ, ρ, with

coefficients which are smooth local invariants of the jets of the total symbol
of {D,B} so that

βn(φ, ρ,D,B) =
∫

M
βint

n (φ, ρ,D)dνM +
∫

∂M
βbd

n (φ, ρ,D,B)dν∂M .

The interior terms do not depend on the boundary condition and one may
choose [5]

βint
2n+1(φ, ρ,D) = 0,

βint
4n (φ, ρ,D) = 1

(2n)!
(Dnφ, (D̃)nρ),

βint
4n+2(φ, ρ,D) = − 1

(2n+1)!
(Dn+1φ, (D̃)nρ).

It is the aim of the present letter to find the boundary integrands for the
heat content asymptotics for oblique boundary conditions. The heat trace
asymptotics has already been extensively discussed in [1, 2, 6, 7].

To express the heat content asymptotics βn invariantly, we must introduce
some additional notation. On the boundary, we let Roman indices a and b
index a local orthonormal frame {e1, ..., em−1} for the tangent bundle of the
boundary; let em be the inward unit normal. We use the connection ∇
and the Levi-Civita connection of the boundary to covariantly differentiate
tensors of all types tangentially. We may then express BT = Γa∇a+∇aΓa+S
with auxiliary endomorphisms Γ and S. Let D̃ and B̃ be the dual operators
on the dual bundle Ṽ . If ∇̃ is the dual connection and if Γ̃ and S̃ are the
dual endomorphisms, then B̃ = ∇̃m + B̃T where B̃T = Γ̃a∇̃a + ∇̃aΓ̃a + S̃.
Note that ∇̃ is also the connection defined by the dual operator D̃. Let L be
the second fundamental form; the contraction Laa is the geodesic curvature
of the boundary. The following is the main result of this letter.
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Theorem 1 Adopt the notation established above

1. β0(φ, ρ,D,B) =
∫

M
φρdνM .

2. β1(φ, ρ,D,B) = 0.

3. β2(φ, ρ,D,B) = − ∫
M
Dφ · ρdνM +

∫
∂M

Bφ · ρdν∂M .

4. β3(φ, ρ,D,B) = 4
3
√

π

∫
∂M

Bφ · B̃ρdν∂M .

5. β4(φ, ρ,D,B) = 1
2

∫
M
Dφ · D̃ρdνM +

∫
∂M

{−1
2
Bφ · D̃ρ− 1

2
Dφ · B̃ρ

+(1
2
BT + 1

4
Laa)Bφ · B̃ρ}dν∂M .

Assertion (1) follows by setting t = 0. The remainder of this letter is devoted
to the proof of the remaining assertions.

If we set Γ = 0, then we recover Robin boundary conditions and Theorem
1 follows from results given in [3]. Thus the whole interest lies in the Γ
dependence - we have encoded this dependence in the operators B and BT .
To establish Theorem 1, we will need some functorial properties of these
invariants. As always, one can use dimensional analysis to see the boundary
integrands βbd

n are homogeneous of order n − 1 in the data. The primary
difficulty is that Γ has weight 0 and thus the dependence upon Γ in various
coefficients is not controlled by this homogeneity argument.

We begin by noting that Lemma 2.1 of [3] generalizes to this setting as:

Lemma 2 1. βn(φ, ρ,D,B) = βn(ρ, φ, D̃, B̃).

2. If Bφ = 0, then βn(φ, ρ,D,B) = − 2
n
βn−2(Dφ, ρ,D,B).

There is another useful functorial property. Let the torus Tk = S1×..×S1

have the usual periodic parameters �θ := (θ1, ..., θk) and let r be the usual
parameter on the interval [0, 1]. Give N := [0, 1] the usual metric dr2 and
give the manifold M := [0, 1] × Tk a metric

ds2
M = dr2 + gab(r)dθ

a ◦ dθb

which only depends on the radial parameter r. Let DM be an operator of
Laplace type on the space of smooth sections to the trivial bundle M × C

ν
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over M and let BM define oblique boundary conditions where the coefficients
of DM and BM only depend on the radial parameter. Let

�n = (n1, ..., nk) ∈ Zk, �n · �θ := n1θ1 + ...+ nkθk,

φT(�θ) := e
√−1�n·�θ, DN := φ−1

T
DMφT, and

BN := φ−1
T
BMφT.

Then DN is an operator of Laplace type and BN defines Robin boundary
conditions on [0, 1]×Cν since there is no θ dependence. Let φN = φN(r) and
ρN = ρN(r). Let uN(t; r) := e−tDN,BN φN be the solution to the equations:

(∂t +DN )uN = 0, uN |t=0 = φN , and BNuN = 0.

We set φM := φNφT, ρM := ρNφ
−1
T

, and uM := uNφT. Since

DMuM = DNuN · φT and BMuM = BNuN · φT, (2)

uM solves the equations

(∂t +DM)uM = 0, uM |t=0 = φNφT, and BMuM = 0.

Let g = det(gab)
1/2. Then dνM = gdrdθ. We compute:

β(φM , ρM , DM ,BM)(t) =
∫

M
uM(t; r, θ)ρM(r, θ)g(r)drdθ

=
∫

M
uN(t; r)ρN(r)g(r)drdθ

= vol (Tk)β(φN , gρN , DN ,BN ).

We equate powers of t in the associated asymptotic expansions to prove:

Lemma 3 Adopt the notation established above. Then

βn(φM , ρM , DM ,BM) = vol (Tk) · βn(φN , gρN , DN ,BN).

We remark that it is not necessary to take N = [0, 1]; an analogous
Lemma holds for more general products with a toroidal factor where the
coefficients in DM and BM only depend on the coordinates on N .

We now begin the proof of Theorem 1. We express

β1(φ, ρ,D,B) =
∫

∂M
E1(φ, ρ,D,B)dν∂M

β2(φ, ρ,D,B) = − ∫
M
Dφ · ρdνM +

∫
∂M

{Bφ · ρ+ E2(φ, ρ,D,B)}dν∂M

β3(φ, ρ,D,B) = 4
3
√

π

∫
∂M

{Bφ · B̃ρ+ E3(φ, ρ,D,B)}dν∂M

β4(φ, ρ,D,B) = 1
2

∫
M
Dφ · D̃ρdνM +

∫
∂M

{−1
2
Bφ · D̃ρ− 1

2
Dφ · B̃ρ

+(1
2
S + 1

4
Laa)Bφ · B̃ρ+ E4(φ, ρ,D,B)}dν∂M ,
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where by construction Ei(φ, ρ,D,B) = 0 for Γ = 0 to ensure the above results
agree with the results of Desjardins et al [5] for Robin boundary conditions.
We may use Lemma 2 to see that

Eν(φ, ρ,D,B) = Eν(ρ, φ, D̃, B̃)

Eν(φ, ρ,D,B) = − 2
ν
Eν−2(Dφ, ρ,D,B) if Bφ = 0

Eν(φ, ρ,D,B) = − 2
ν
Eν−2(φ, D̃ρ,D,B) if B̃ρ = 0.

As E−1 = E0 = 0, we have Eν = 0 if Bφ = 0 or B̃ρ = 0 for ν = 1, 2. Thus
Eν is divisible by expressions which are bilinear in Bφ, B̃ρ, and tangential
covariant derivatives of these quantities. This means φ appears only in com-
bination with B as Bφ or tangential covariant derivatives of Bφ. Similarly,
ρ only appears as B̃ρ or tangential covariant derivatives of B̃ρ. Since Eν is
homogeneous of degree ν − 1 and Bφ and B̃ρ are homogeneous of degree 1,
we conclude Eν = 0 for ν = 1, 2 which establishes assertions (2) and (3) of
Theorem 1. We may also conclude now similarly that Eν is divisible by ex-
pressions which are bilinear in Bφ, B̃ρ, and tangential covariant derivatives
of these quantities for ν = 3, 4. Thus

E3(φ, ρ,D,B) =
∫

∂M
α0(Γ)Bφ · B̃ρdν∂M

E4(φ, ρ,D,B) =
∫

∂M
{α1(Γ, S) + α2(Γ, L) + α3(Γ,∇Γ)

+ α4,a(Γ)∇a + ∇aα4,a(Γ)}Bφ · B̃ρdν∂M .

For dimensional reasons, α1(Γ, S) is linear in S, α2(Γ, L) is linear in L, and
α3(Γ,∇Γ) is linear in ∇Γ. Furthermore, the terms αν depend smoothly on Γ.
We complete the proof of Theorem 1 by studying these universal multipliers.

Give M = [0, 1] × Tk the metric

ds2 = dr2 + gab(r)dθ
a ◦ dθb

and let g := det(gab)
1/2 define the volume element on M . Let

DM = −(∂2
r + g−1∂r(g) · ∂r + gab∂θ

a∂
θ
b )

be the associated Laplacian. Let SM and Γ be arbitrary. Let B̌N := ρ−1
T
B̃MρT

and let B̃N be the dual operator determined by BN . These two boundary
operators satisfy the intertwining property:

B̃Ng = gB̌N .
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We compute:

β3(φM , ρM , DM ,BM) = 4
3
√

π

∫
∂M

(1 + α0(Γ))(BMφM · B̃MρM)gdrdθ

= vol (Tk) · 4
3
√

π

∫
∂N

(1 + α0(Γ))(BNφN · B̃NgρN)dr

β3(φN , ρN , DN ,BM) = 4
3
√

π

∫
∂N

(BNφN · B̃NgρN)dr.

By Lemma 3,

β3(φM , ρM , DM ,BM) = vol (Tk) · β3(φN , ρN , DN ,BN).

Consequently α0(Γ) ≡ 0 which proves Theorem 1 (4).
The connections defined by DM and DN differ. In general, if

D = −(gµν∂µ∂ν + Aµ∂µ +B)

is an arbitrary operator of Laplace type, then the associated connection 1
form is given by:

ωδ = 1
2
gνδ(A

ν + gµσΓµσ
ν) (3)

where Γµσ
ν are the Christoffel symbols of the Levi-Civita connection; see [9]

for details. Thus

M∇r = ∂r and N∇r = ∂r + 1
2
g−1∂rg.

Let ε(1) = −1 and ε(0) = +1 so that ε∂r is the inward unit normal on ∂N .
We suppose gab = δab on ∂N . Then Lab = − ε

2
∂rgab and g−1∂rg = −εLaa so

N∇m + 1
2
Laa = ε(∂r + 1

2
g−1∂rg) + 1

2
Laa = ε∂r = M∇m

φ−1
T
BMφT = ε∂r + 2

√−1Γana + SM so

SN = SM + 1
2
Laa + 2

√−1naΓa.

We then have:

∫
∂N

{1
2
SNBNφN · B̃N(gρN)}dν∂N

=
∫

∂N
{{1

2
SM + 1

4
Laa + α1(Γ, SM) + α2(Γ, L)

+ 2
√−1α4,a(Γ)na}BNφN · B̌NρN}gdν∂N .

Since B̃N (gρN) = gB̌N(ρN ), we may conclude:

α1 ≡ 0, α2 ≡ 0, and α4,a = 1
2
Γa.
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We complete the proof of Theorem 1 by evaluating α3. We take the flat
metric on M and set

DM := −(∂2
r + ∂θ

a∂
θ
a + 2ωa∂

θ
a).

We take SM = 0 and φT = ρT = 1. By equation (3), M∇a = ∂θ
a + ωa.

Consequently SN = Γaωa + ωaΓa. We compute:

∫
∂N

{1
2
SNBNφN · B̃NρN}dν∂N

=
∫

∂N
{{1

2
(ωaΓa + Γaωa) + α3(Γ,∇Γ)}BNφN · B̃NρN}dν∂N .

This shows that α3 ≡ 0 and completes the proof of Theorem 1.
Remark: Whereas in the heat trace asymptotics the breakdown of the

classic Lopatinski condition is clearly reflected in the heat kernel coefficients
[2, 6], the heat content coefficients do not show any signs of the loss of strong
ellipticity and they are defined for arbitrary endomorphisms Γ.
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