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Abstract. The energy functional of nonlinear plate theory is a curvature functional for surfaces first proposed on
physical grounds by G. Kirchhoff in 1850. We show that it arises as a Γ-limit of three-dimensional nonlinear elasticity
theory as the thickness of a plate goes to zero. A key ingredient in the proof is a sharp rigidity estimate for maps
v ∈ W 1,2(U, IRn), U ⊂ IRn . We show that the L2 distance of ∇v from a single rotation matrix is bounded by a
multiple of the L2 distance from the group SO(n) of all rotations.

1 Introduction

A classical theorem due to Liouville says that if a smooth mapping v : Ω → IRn, Ω ∈ IRn,
satisfies ∇v ∈ SO(n), then it is affine, v(x) = Rx + c. There are numerous generalizations of this
fundamental result, the most general being due to Reshetnyak [37]: if a sequence v(k) converging
weakly in W 1,2(Ω, IRn) satisfies ∇v(k) → SO(n) in measure, then ∇v(k) converges strongly in L2(Ω)
to a single matrix on SO(n).1 These theorems play a pivotal role in solid mechanics and differential
geometry.

However, the latter fall just short of being useful when specific information about the rate of
convergence of the sequence is important. This is exactly the case when one tries to rigorously

1For a short modern proof using Young measures, see [20]. By an approximation result for Young measures [41],
the result also holds with the spaces W 1,2 and L2 above replaced by W 1,1 and L1.
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derive two-dimensional plate or shell theories (in the case that bending is considered) from three
dimensional nonlinear elasticity, the small parameter being the thickness h of the plate. Such a
derivation begins with an underlying smooth stored energy function W defined on 3 × 3 matrices
which is minimized exactly on SO(3). A three-dimensional deformation v(h) defined, say, on a thin
domain Ωh = S × (−h

2
, h

2
), S ⊂ IR2, has elastic energy∫

Ωh

W (∇v(h)(x)) dx,

and one seeks to understand the behaviour as h → 0 of minimizers subject to appropriate boundary
conditions. For compressive boundary conditions such as, for instance,

Ωh = (−1, 1)2 × (−h

2
,
h

2
), v(h)(x)|x1=±1 = x ∓ (a, 0, 0), (1)

where a ∈ (0, 1) is fixed, the minimum energy scales like h3. (The well known heuristic argument
is made rigorous in Section 6 below. It is based on the intuition that the plate will accommodate
the boundary conditions by bending, while keeping its mid-surface unstretched.) By contrast the
volume of the domain scales like h, i.e. tends to zero much slower. This means that ∇v(h) tends in
a certain sense to SO(3). But the Reshetnyak theorem is insufficient to nail down the convergence
properties sufficiently to calculate, for example, the limiting energy

1

h3

∫
Ωh

W (∇v(h)(x)) dx. (2)

Because of the presence of the scales 1/h3 in front of the integral, and h in the domain of integration,
a quantitative understanding is needed. Because such an understanding has hitherto been lacking,
rigorous passage to the thin plate limit has remained an open problem (see Ciarlet [10] for a recent
survey of mathematical research in this area).

The main results of this paper are 1) a quantitative rigidity theorem which generalizes the results
of Liouville, Reshetnyak [37] and F. John [22, 23] and would appear to be widely applicable and,
2) a rigorous derivation of the thin-plate limit of 3-D nonlinear elasticity theory, under not just
the special boundary condition (1) but indeed any boundary condition compatible with keeping the
mid-surface unstretched.

The rigidity theorem is discussed following its precise statement in Section 3. The remainder of
this Introduction is devoted to passage to the thin plate limit.

The derivation of plate/shell theories is a problem having a long history with major contributions
from Euler, D. Bernoulli, Cauchy, Kirchhoff, Love, E. and F. Cosserat, von Karman, and a great
many modern authors. The classical lines of research are reviewed by Love [33]. Nearly all are based
on ansatzes for (exact or approximate) minimizers of (2), leading to a great variety of plate/shell
theories in the literature which are not consistent with each other. In terms of the question of
which plate theory, if any, is actually predicted by nonlinear elasticity for a thin plate, the field has
hitherto been in a state of confusion. One particular line of research going back to the Cosserats is
the ansatz that the energy density of the shell can be expressed as a function of the deformation
gradient of the middle surface together with a number of vectors, and possibly their gradients up
to some order, that model shear and compression of the plate relative to the middle surface. These
models are called Cosserat models (for further discussion and references see Antman [3]).
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Recently rigorous results have begun to appear which compare the 3D minimizers to their 2D
counterparts ([4], [6], [8], [10], [18] [27], [28], [29], [36]). The natural mathematical setting in which
these results are usually formulated is that of variational or Γ−convergence which was introduced
by De Giorgi ([13], [12]). Here we discuss only such derivations that begin with nonlinear elasticity;
there is a large body of related research based on linearized elasticity in which SO(3) is replaced by
the linear space of skew matrices, but, in view of the fact that thin plates can easily undergo large
rotations that invalidate the assumption upon which linear elasticity is based, these have limited
applicability (however, this research does shed light on the subject of “moderately thin plates” [10]).
It is remarkable and quite unexpected that the rigorous study of the 3D minimizers in the limit
h → 0 often leads to Cosserat models. The Γ−limit of the energy,

1

h

∫
Ωh

W (∇v(x)) dx, (3)

is now reasonably well understood: this yields the so-called membrane theory ( [8], [27], [28], [29]).
It captures the energy that is proportional to the thickness h which includes stretching and shearing
of the plate relative to the middle surface, as induced for example by tensile boundary conditions
(1) with a < 0. It assigns zero energy to typical bent states of the plate, whose energy scales like h3.
Here we determine the Γ−limit of the energy (2). This is more difficult since the limit functional
contains higher derivatives and one is thus dealing with a singular perturbation problem.

We now describe the limiting plate theory we obtain. For simplicity we restrict ourselves in
this Introduction to the case when the stored-energy function is isotropic (that is to say, W (F ) =
W (QFR) for all F ∈ M3×3 and all Q, R ∈ SO(3)). In this case, the second derivative of W at the
identity is

∂2W

∂F 2
(I)(A, A) = 2µ |e|2 + λ(trace e)2, e =

A+AT

2
,

for some constants λ, µ ∈ IR. The limiting 2D energy functional to which (2) Γ−converges is then

I0(v) =

{
1
24

∫
S

(
2µ|II|2 + λµ

µ+λ/2
(trace II)2

)
on isometries v : S → IR3,

+∞ otherwise.
(4)

Here II denotes the second fundamental form of the surface, i.e. II = (∇v)T∇b where b = ∂v
∂x1

∧ ∂v
∂x2

is the surface normal. The limiting energy is thus a quadratic form in the (extrinsic) curvature
tensor. See Section 6 for a detailed discussion, including the interesting issue of the limiting bound-
ary conditions and a natural variational explanation for the emergence of the renormalized Lamé
constant λµ

µ+λ/2
in place of the naively expected stiffer constant λ.

The limit energy (4) agrees with the expression proposed in the original work of Kirchhoff ([24],
equation (9.)), but not with the expression obtained by suppressing the geometric nonlinearity (i.e.
by approximating the constraint that v must be isometric by v1 = v2 = 0 and replacing II by −∇2v3)
which much of the subsequent literature has associated with Kirchhoff’s name. Likewise, expression
(4) does not agree with the expression obtained via a standard nonlinear Cosserat ansatz (sometimes
called nonlinear Kirchhoff-Love ansatz in the literature even though not due to Kirchhoff) for the
3D deformation which assumes that the fibers orthogonal to the mid-surface deform linearly,

v(h)(x1, x2, x3) = y(x1, x2) + x3b(x1, x2). (5)
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This leads to an energy of correct functional form but containing the incorrect constant λ in place
of λµ

µ+λ/2
. A simple physical explanation for why the amount of stretch of the fibers is in fact

nonconstant along the fibers is given in Section 7. This variation along the fibers, missed by (5) and
quantified exactly in Section 7, turns out to contribute to the energy at same order as the variation
of the fiber direction, captured by (5).

Finally, the following special case of our result may be of some geometric interest: the functional
1
h3

∫
Ωh

dist(∇y(x), SO(3))2dx Γ-converges to the Willmore functional arising in differential geometry
[40] restricted to isometric surfaces, I0(y) = 1

12

∫
S |II|2 dx when y is an isometry and +∞ otherwise.

As an immediate corollary of this Γ-convergence we obtain existence of surfaces in IR3 which min-
imize the Willmore functional in the class of isometries for appropriate boundary conditions (see
Section 6).

Modern interest in plate theories has blossomed with the ubiquitous presence of thin films in
science and technology. Interesting mechanical problems have arisen out of studies of the delamina-
tion of films from substrates (e.g., Gioia and Ortiz [19], [35]) and the behavior of so-called “active
thin films”. The latter have been modeled by energy densities W with multiple energy wells (Bhat-
tacharya and James [8]) of the form SO(3)A ∪ SO(3)B ∪ ..., where A, B, ... are constant 3 × 3
matrices.

We believe our methods will be generally useful, but a great many interesting open problems
remain:

i) Shell theory (reference state not flat). Shells can be more rigid than plates, depending on their
reference state. For example, bending a corrugated shell (as in a corrugated roof) around an
axis perpendicular to the direction of the corrugations immediately activates the membrane
energy, and is therefore expected to lead to a different energy scaling than h3 (see also the
next item). On the other hand, the extension to thin rods is relatively straightforward.

ii) The case when the membrane theory is not trivial, so membrane and bending energies are
both present, i.e., the boundary conditions are such as to forbid a simple overall scaling.
Recent work of Ben Belgacem, Conti, DeSimone and Müller [6] and Jin and Sternberg [21]
reveals the subtlety of this issue. They show that for boundary conditions that exert a small
uniform compression, the energy scales like h2, between membrane (h) and bending (h3). In
fact, the practical case in the delamination of thin films under compression studied by Gioia
and Ortiz appears to be of this type.

iii) The case of multiple energy wells. Our results are decidedly ‘one-well’, and quite different
and unexpected shell theories may arise in the case appropriate to active films.

iv) The multilayer case. This is important in films and is modelled by an explicit x3 dependence
of W . This case relates to the most important measurement of stress in films (the wafer-
curvature measurement) as well as the behavior of the classic bimetallic strip.

v) Predictions of the theory, in particular, the connection with recent studies of singularities
of “paper-folding” (see, e.g., Ben Amar and Pomeau [2], Cerda, Chaieb, Melo, Mahadevan
[11], DiDonna, Venkataramani, Witten, Kramer [14] and Lobkovsky [32]). These authors
argue that certain canonical singularities that arise during the crumpling of paper necessarily
involve both membrane and bending energies and they construct an associated deformation
that exhibits a scaling of h8/3.
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2 Notation, bending energy and Euler–Bernoulli theory

We will be concerned with variational integrals of the type∫
Ω

W (∇v(z))dz (6)

that arise in the theory of nonlinear elasticity. Mathematically, Ω is a bounded open subset of
IR3, v : Ω → IR3 is a sufficiently smooth mapping and W is defined on 3 × 3 matrices, denoted
M3×3. (Physically, Ω is the region occupied by an elastic body in a reference configuration, v is the
deformation and (6) its elastic energy.) A superimposed T indicates the transpose and I the identity
matrix. The set of n×n rotation matrices (or simply rotations), {R ∈ Mn×n : RT R = I, detR = 1},
is denoted SO(n). For A ∈ Mn×n let cofA denote the matrix of cofactors of A, i.e.,

(cof A)ij = (−1)i+j det Âij , (7)

where Âij is the (n−1)×(n−1) matrix obtained from A by deleting the ith row and the jth column.
It is well-known that for v ∈ W 1,2(Ω), div cof ∇v = 0. In this paper C is a generic absolute constant
(Its value can vary from line to line, but each line is valid with C being a pure positive number,
independent of all other quantities).

For A ∈ M3×3 we denote the Euclidean norm by |A| =
√

trAAT . The distance from A to
SO(n) is denoted dist(A, SO(n)). If det A > 0 and A = RU is its polar decomposition (R ∈ SO(n),
and U =

√
AT A), a short calculation shows that dist(A, SO(n)) = |U − I|. More generally, if the

condition det A > 0 is dropped, we still have the inequality dist(A, SO(n)) ≥ |(AT A)1/2 − I|.
The key assumption of this paper is the usual assumption of geometrically-nonlinear elasticity

theory that the stored energy function W : M3×3 → IR has a single energy well at SO(3). Altogether,
we assume,

i) W ∈ C0(M3×3), W ∈ C2 in a neighbourhood of SO(3)

ii) W is frame-indifferent: W (F ) = W (RF ) for all F ∈ M3×3 and all R ∈ SO(3),

iii) W (F ) ≥ C dist2(F, SO(3)), W (F ) = 0 if F ∈ SO(3).

We do not impose any growth condition from above; in fact, the condition W ∈ C0(M3×3) in (i)
can be weakened to include W ’s which take the value +∞ outside an open neighbourhood of SO(3),
such as the following model functional for isotropic materials which goes back to St Venant and
Kirchhoff

W (F ) =

⎧⎨⎩ µ
(√

F T F − I
)2

+ λ
2

(
trace

(√
F T F − I

))2
, det F > 0

+∞, otherwise;

see Section 6.
In the application to nonlinear plate theory we shall be concerned with regions of the form

Ωh = S × (−h
2
, h

2
), where S ⊂ IR2 is strongly Lipschitz and h > 0 is the small parameter. Consider

an orthonormal basis {e1, e2, e3} with e3 pointing in the direction normal to S, and an associated
rectangular Cartesian co-ordinate system (z1, z2, z3). In order to deal with sequences of deformations
defined on a fixed domain we change variables,

x1 = z1, x2 = z2, x3 =
1

h
z3, (8)
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and rescale deformations according to the rule y(x) = v(z(x)) so that y : Ω1 → IR3. We use the
notation ∇′y = y,1 ⊗ e1 + y,2 ⊗ e2 for the gradient in the plane, so that,

∇v = (∇′y,
1

h
y,3). (9)

The total free energy of a plate of thickness h and cross-section S is,∫
Ωh

W (∇v(z)) dz = h
∫
Ω1

W (∇′y,
1

h
y,3) dx =: E(h)(y) (10)

which is well-defined for y ∈ W 1,2(Ω1, IR
3) as an element of [0,∞) ∪ {∞}.

The Γ–limit of 1
h
E(h) has been discussed by many authors, as summarized in the introduction.

This first Γ–limit is the so-called membrane theory; it governs stretching, as well as shear and com-
pression parallel to e3, of the plate. We shall be concerned with the case, arising from compressive
boundary conditions such as (1), when the membrane theory is trivial and the total energy scales
as h3; the latter is also the case of Euler–Bernoulli theory, as explained below. We shall say that a
sequence y(h) ∈ W 1,2(Ω, IR3) has finite bending energy if

lim sup
h→0

1

h3
E(h)(y(h)) < ∞. (11)

Euler–Bernoulli theory concerns, say, a strip S = (0, L) × (0, w) bent in the x1 − x3 plane. The
kinematics of Euler–Bernoulli theory is described by an isometric deformation y : (0, L)× (0, w) →
IR3 of this strip,

y(x1, x2) = x2e2 +
(∫ x1

0
cos θ(s) ds

)
e1 +

(∫ x1

0
sin θ(s) ds

)
e3, (12)

where θ ∈ W 1,2(0, L). The Euler–Bernoulli energy of the deformed strip is,∫ L

0

1

2
EIθ′(s)2ds. (13)

Here E is a phenomenological elastic modulus (which Euler, in his fundamental 1744 paper [16],
did not attempt to derive from the three-dimensional elastic moduli), and the moment of inertia is
I = wh3/12, where h is the thickness of the strip2. Below in Theorem 4.1 we show that if a sequence

y(h) has finite bending energy then (∇′y(h), 1
h
y,

(h)
3 ) converges strongly to a particular (∇′y, b) with

values on SO(3) and with (∇′y, b) independent of x3. It follows that y is an isometric mapping
of S ⊂ IR2, which in the case of deformations in the x1 − x3 plane, agrees with Euler–Bernoulli
kinematics. The detailed form of the Euler–Bernoulli energy will be shown in Section 6 to agree
with the rigorous thin-plate limit of 3D nonlinear elasticity, with a particular evaluation of the
modulus E.

2In Euler–Bernoulli theory the only appearance of the thickness h of the strip is in the formula for the moment
of inertia.
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3 Geometric rigidity

The basic rigidity result relevant to passage to the thin plate limit is the following.

Theorem 3.1 Let U be a bounded Lipschitz domain in IRn, n ≥ 2. There exists a constant C(U)
with the following property. For each v ∈ W 1,2(U, IRn) there is an associated rotation R ∈ SO(n)
such that,

‖∇v − R‖L2(U) ≤ C(U) ‖dist(∇v, SO(n))‖L2(U). (14)

The result also holds in Lp for 1 < p < ∞, as will be shown elsewhere. It is sharp in the sense that
neither the norm on the right hand side nor the power with which it appears can be improved.

An estimate in terms of ε +
√

ε, where ε = ||dist(∇v, SO(n))||L2(U), is much easier to prove, but
is insufficient for the application to plate theory, where one needs to sum the estimate over many
small cubes of size h.

Corollary 3.1 (F. John [22, 23]) If Q is an n-dimensional cube, and if v ∈ C1 with

||dist(∇v, SO(n))||L∞(Q) ≤ δ (15)

for δ sufficiently small, then (14) holds for U = Q. In particular, for all such v

[∇v]BMO(Q) := sup
Q′⊂Q

1
|Q′|

∫
Q′

∣∣∣∇v − 1
|Q′|

∫
Q′ ∇v

∣∣∣ ≤ C(n)δ (16)

where the supremum is taken over all cubes Q′ ⊆ Q.

(Theorem 3.1 shows that (16) in fact holds for arbitrary δ > 0 and arbitrary maps v ∈ W 1,1(Q, IRn)
with ||dist(∇v, SO(n))||L∞(Q) ≤ δ. This is immediate from equivalence of the BMO-seminorm and
the BMO2-seminorm (see e.g. [7], Corollary 7.8) and (14).) For the application to plate theory it is
crucial to remove F. John’s restrictions on v, since they do not follow from smallness of the elastic
energy.

Kohn [25] established optimal Lp estimates for v − Rx + const, but not ∇v − R, without these
restrictions.

Corollary 3.2 (Yu. G. Reshetnyak [37]) If vj ⇀ v in W 1,2(U ; IRn) and dist(∇vj, SO(n)) → 0 in
measure then ∇vj → R in L2(U) where R is a constant rotation.

Reshetnyak established related results for the more general case of nearly conformal maps. An
interesting open question raised by our work is whether these results can also be made quantitative.

Before giving the proof of Theorem 3.1 we motivate some of its steps, by considering the special
case when the right hand side in (14) is zero. Theorem 3.1 then reduces to the Liouville theorem
that a W 1,2(U ; IRn) map v which satisfies the partial differential relation

Dv(x) ∈ SO(n) a.e. (17)

is a rigid motion, i.e. Dv(x) ≡ const. (In the setting of Sobolev maps this was first proved by
Reshetnyak [37].) A short modern proof consists of two observations. First, (17) implies that v is
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harmonic, and in particular smooth. (Proof: Dv(x) = cof Dv(x) a.e.; take the divergence and use
that div cof Dv(x) = 0 for all v ∈ W 1,2.) Second, the second gradient squared of any harmonic map
can be expressed pointwise via derivatives of the inner products v,i · v,j ,

1

2
∆
(
|∇v|2 − n

)
= ∇v · ∆∇v + |∇2v|2 = |∇2v|2; (18)

but |∇v|2 − n = 0 when v satisfies (17).
Theorem 3.1 deals with approximate rather than exact solutions of the partial differential re-

lation, but both observations above will continue to play a certain role. We will show that every
approximate solution can be decomposed into a harmonic part and a small part (see Step 1), and
generalize (18) into a smallness estimate for ∇2v in terms of the L2 distance of v from SO(n) (see
Step 2).

It will be useful in the proof to work with functions whose gradients have a bounded L∞ norm.
For this purpose we need an approximation lemma similar to one that appears in the literature
([31], [42], [17]); this is proved in Appendix A (Proposition A.1).

We begin the proof of Theorem 3.1 by establishing a corresponding interior estimate when U is
a cube.

Proposition 3.1 Let Q be an n-dimensional cube, and let Q′ be a concentric cube having half the
side length of Q. For each v ∈ W 1,2(Q, IRn) there exists an associated rotation R ∈ SO(n) such that

‖∇v − R‖L2(Q′) ≤ C(n) ‖dist(∇v, SO(n))‖L2(Q). (19)

Proof of Proposition 3.1 We first observe that it suffices to prove Proposition 3.1 for maps v
with ‖∇v‖L∞(Q) ≤ M , for some constant M depending only on the dimension n. Indeed, note that
|A| ≤ 2 dist(A, SO(n)) if |A| ≥ 2

√
n. Hence an application of Proposition A.1 with λ = 4

√
n yields

a map V ∈ W 1,∞(Q, IRn) satisfying

‖∇V ‖L∞(Q) ≤ 4
√

n C := M,

‖∇V −∇v‖2
L2(Q) ≤ C

∫
{x∈Q : |∇v(x)|>2

√
n}
|∇v|2dx,

≤ 4 C
∫
Q

dist2(∇v, SO(n)) dx. (20)

Hence, if we prove (19) (or (14)) for V the assertion for v follows by two applications of the triangle
inequality, viz.,

‖∇v − R‖L2(Q′) ≤ ‖∇V − R‖L2(Q) + ‖∇v −∇V ‖L2(Q)

≤ C ‖dist(∇V, SO(n))‖L2(Q) + 2
√

C ‖dist(∇v, SO(n))‖L2(Q)

≤ C ‖dist(∇v, SO(n))‖L2(Q). (21)

Hence we can assume from now on that ‖∇v‖L∞(Q) ≤ M for some constant M depending only on
the dimension n.

Step 1. Let
ε = ‖dist(∇v, SO(n))‖L2(Q). (22)
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We may suppose ε ≤ 1. Since div cof ∇v = 0, we have

−�v = div(cof ∇v −∇v). (23)

The quantity |A − cofA|2 is smooth and nonnegative, and vanishes on SO(n). Hence, there is an
absolute constant C such that

|A − cofA|2 ≤ C dist2(A, SO(n)) for |A| ≤ M. (24)

Now (23), (24) motivate the decomposition v = w + z, where z ∈ W 1,2(Q) is the unique solution to

−�z = div(cof ∇v −∇v) in Q, z = 0 on ∂Q (25)

and w := v − z satisfies �w = 0 in Q. Testing (25) with z and using (24) we get,∫
Q
|∇z|2dx ≤

∫
Q
|cof ∇v −∇v|2dx ≤ C ε2. (26)

Hence it suffices to show ∫
Q

dist(∇w, R̂)2 dx ≤ Cε2 (27)

for some R̂ ∈ SO(n). In other words we need to show that the harmonic part, which carries
information about the boundary values of v, is approximately linear with gradient on SO(n). To
estimate the oscillation of its gradient on the subset Q′, we proceed in two steps. First we derive a
bound in terms of ε1/2. This by itself is not good enough. It allows us, however, to linearize about
SO(n) and to derive a bound of order ε for the oscillation of the symmetric part of the gradient.
Then Korn’s inequality can be used to control the skew part as well.

Step 2. The harmonic part w satisfies the identity (18). Let 1
2
Q = Q′ ⊂ Q′′ ⊂ Q be strictly

increasing concentric cubes. Choose a cutoff function η ∈ C∞
0 (Q) with η ≥ 0 and η = 1 on Q′′.

Then ∫
Q
|∇2w|2η dx ≤ sup

Q
(�η)

∫
Q

∣∣∣|∇w|2 − n
∣∣∣ dx,

≤ C
(∫

Q

∣∣∣|∇v|2 − n
∣∣∣ dx + 2

∫
Q
|∇v||∇z| dx +

∫
Q
|∇z|2 dx

)
,

≤ C

⎛⎝∫
Q
|dist(∇v, SO(n)| dx +

(∫
Q
|∇z|2 dx

)1
2

+
∫

Q
|∇z|2 dx

⎞⎠ . (28)

Hence, ∫
Q′′

|∇2w|2 dx ≤ Cε. (29)

Since w (and hence ∇2w) is harmonic on Q, the mean value property with r =dist(Q′′, ∂Q′) gives

sup
x∈Q′

|∇2w(x)|2 = sup
x∈Q′

∣∣∣ 1

|B(x, r)|
∫

B(x,r)
∇2w(y) dy

∣∣∣2 ≤ Cε. (30)

Hence, there is an R ∈ Mn×n such that

sup
Q′

|∇w − R| ≤ Cε1/2, (31)
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and, in fact, we can choose R in SO(n), because∫
Q

dist2(∇w, SO(n)) dx ≤ 2
∫
Q

(
dist2(∇v, SO(n)) + |∇z|2

)
dx ≤ Cε2, (32)

according to (26) and (22). For the rest of the proof we may assume without loss of generality that
R = I, for otherwise we could apply the following arguments to RT v and RT w in place of v and w.

Step 3. Linearizing dist( · , SO(n)) near the identity we get

dist(G, SO(n)) = |1
2
(G + GT ) − I| + O(|G − I|2). (33)

Let e = 1
2
(∇w + (∇w)T ) − I. We have on Q′,

|e| ≤ dist(∇w, SO(n)) + Cε, (34)

so that, using (32), ∫
Q′
|e|2 dx ≤ Cε2. (35)

By Korn’s inequality for the displacement u(x) := w(x) − x we have (letting R̂ := 1
|Q′|

∫
Q′ ∇w dx)∫

Q′
|∇w − R̂|2 dx =

∫
Q′

∣∣∣∇u − 1
|Q′|

∫
Q′∇u

∣∣∣2 dx ≤ C
∫
Q′
|e|2 dx ≤ Cε2.

But dist(R̂, SO(n)) ≤ Cε by (32), so R̂ can be replaced by a matrix on SO(n), completing the proof
of Proposition 3.1.

Proof of Theorem 3.1. As in the proof of Proposition 3.1 we may assume

‖∇v‖L∞(U) ≤ M, (36)

M being a constant only depending on the domain U . We again write v = w + z as in the proof
of Proposition 3.1 (cf., (24)ff). The bound (26), whose proof applies equally to general bounded
Lipschitz domains, already holds on all of U so it remains to estimate the harmonic part w. To this
end let Q(a, r) = a + r (−1

2
, 1

2
)n be the cube of side length r > 0 centered at a ∈ IRn. We exhaust

U by cubes Q(ai, ri) with
2ri ≤ dist(ai, ∂Q) ≤ Cri (37)

and such that each x ∈ U is contained in at most N cubes Q(ai, 4ri). By Proposition 3.1 applied
to w, there are rotations Ri such that∫

Q(ai,2ri)
|∇w − Ri|2 dx ≤ C

∫
Q(ai,4ri)

dist2(∇w, SO(n)) dx. (38)

Since w is harmonic we deduce that

r2
i

∫
Q(ai,ri)

|∇2w|2 dx ≤ C
∫
Q(ai,2ri)

|∇w − Ri|2 dx. (39)

Using the fact that for x ∈ Q(ai, ri) the distance between x and ∂U is comparable to ri, we obtain∫
Q(ai,ri)

dist2(x, ∂U)|∇2w|2 dx ≤ C
∫
Q(ai,4ri)

dist2(∇w, SO(n)) dx. (40)

10



Sum this over i, using the the inequality
∑

i χQ(ai,4ri) ≤ N to get the following global result:∫
U

dist2(x, ∂U)|∇2w|2 dx ≤ C
∫

U
dist2(∇w, SO(n)) dx. (41)

Now we use a weighted Poincaré inequality of the form,

min
G∈Mn×n

∫
U
|f − G|2 dx ≤ C

∫
U

dist2(x, ∂U)|∇f |2 dx, (42)

for f ∈ W 1,2(U, Mn×n). This is an immediate consequence of Theorem 1.5 of [34] or Theorem 8.8
of [26]: ∫

U
|g|2 dx ≤ C1

U

∫
U
(|g|2 + |∇g|2)dist2(x, ∂U) dx (43)

for g ∈ W 1,2
loc (U) ∩ L2(U). To pass from (43) to (42), fix δ > 0 such that C1

U δ2 ≤ 1
2

and let
q = {x ∈ U : dist(x, ∂U) > δ}. By the ordinary Poincaré inequality for q there exists a ∈ IR such
that, ∫

q
|f − a|2 dx ≤ Cq

∫
q
|∇f |2 dx ≤ Cq

δ2

∫
q
|∇f |2 dist2(x, ∂U) dx. (44)

Application of (43) with g = f − a and the use of dist2(x, ∂U)C1
U ≤ 1

2
for x ∈ U \ q yields,∫

U
|f − a|2 dx ≤ 1

2

∫
U\q

|f − a|2 dx + (
Cq

δ2
+ 1) C1

U

∫
U
|∇f |2 dist2(x, ∂U) dx, (45)

and this implies (42).
Apply the inequality (42) to (41) to yield the existence of R (which, as above, can be chosen on

SO(n) using (32)) such that,

‖∇w − R‖L2(U) ≤ C ‖dist(∇w, SO(n))‖L2(U). (46)

Combining this with the estimate (26) with the domain Q replaced by U yields the assertion of the
theorem. �

Remark. Theorem 3.1 is invariant under uniform scaling and translation of the domain, e.g., the
same value of C serves for λU + c, and the rescaled function λv((x− c)/λ) may be associated with
the same choice of R ∈ SO(n). Finally, we note that, trivially, sequences of linear deformations
with gradients approaching SO(n) serve to show that the exponent on the right hand side of (14)
cannot be improved.

4 Compactness of sequences having finite bending energy

The quantitative rigidity estimate applies to a fixed domain, whereas the sets of interest in plate
theory are of fixed cross-section and very thin, with lateral diameter h. The plate can then be
viewed, except for a boundary layer near its edges, as a union of cubes of side length h. On each of
these a deformation with finite bending energy is nearly rigid, according to the quantitative rigidity
estimate. In this way of thinking, the goal of a compactness argument is to estimate how much this
rigid deformation can vary from cube to cube in the lateral direction.

11



Theorem 4.1 Suppose a sequence y(h) ⊂ W 1,2(Ω; IR3) has finite bending energy, that is to say

lim sup
h→0

1

h2

∫
Ω

dist2((∇′y(h),
1

h
y,

(h)
3 ), SO(3)) dx < ∞. (47)

Then ∇hy
(h) = (∇′y(h), 1

h
y,

(h)
3 ) is precompact in L2(Ω) as h → 0: there exists a subsequence (not

relabelled) such that
∇hy

(h) → (∇′y, b) in L2(Ω) (48)

with (∇′y, b) ∈ SO(3) a.e. Furthermore, (∇′y, b) is independent of x3 and (∇′y, b) ∈ H1(Ω).

Remarks.

i) One interesting aspect of this result is that (∇′y, b) is much more regular than naively expected.

ii) If the factor 1/h2 in hypothesis (47) is replaced by any factor η(h) tending slower to infinity
with h → 0, then precompactness fails. See Section 5.

Proof. The main technical object to be studied is a piecewise constant approximation of the rescaled
deformation gradient, obtained via Theorem 3.1.

Consider a lattice of squares

Sa,h = a + (−h

2
,
h

2
)2, a ∈ hZZ2, (49)

and let
S ′

h =
⋃

Sa,3h⊂S

Sa,h . (50)

Undo the rescaling and apply Theorem 3.1 to v(h)(z) = y(h)(z′, 1
h
z3) restricted to the cubes a +

(−h
2
, h

2
)3; this yields a piecewise constant map R(h) : S ′

h → SO(3) such that,

∫
S′

h
×(− 1

2
, 1
2
)
|(∇′y(h),

1

h
y,

(h)
3 ) − R(h)|2 dx ≤ Ch2. (51)

To simplify the notation, let ∇hy
(h)(x) = (∇′y(h)(x), 1

h
y,

(h)
3 (x)), x ∈ S × (−1

2
, 1

2
). To estimate the

variation of R(h) from a cube to a neighboring cube, we begin with the following simple estimate.
Let b = a + x1e1 + x2e2, x1, x2 ∈ {−h, 0, h}. Then Sb,h ⊂ Sa,3h so

|Sb,h||R(h)(b) − R(3h)(a)|2 ≤ 2
∫

Sb,h×(− 1
2
, 1
2
)
|R(h)(b) −∇hy

(h)(x)|2 dx

+ 2
∫

Sb,h×(− 1
2
, 1
2
)
|R(3h)(a) −∇hy

(h)(x)|2 dx. (52)

Enlarge the second integral to the domain Sa,3h × (−1
2
, 1

2
) and apply Theorem 3.1 to the flattened

cube Sa,3h × (−h
2
, h

2
). Therefore, we have, using (51) and its analog for the flattened cube,

|Sb,h||R(h)(b) − R(3h)(a)|2 ≤ C
∫

Sa,3h×(− 1
2
, 1
2
)
dist2(∇hu

(h), SO(3)) dx. (53)

12



Since |R(h)(a) − R(h)(b)|2 ≤ 2(|R(h)(a) − R(3h)(a)|2 + |R(h)(b) − R(3h)(a)|2), by (53) and its special
case a = b

|Sb,h||Rh(a) − Rh(b)|2 ≤ C
∫

Sa,3h×(− 1
2
, 1
2
)
dist2(∇hu

(h), SO(3)) dx, (54)

which also can be written, using the piecewise constancy of R(h),∫
Sa,h

|Rh(x
′ + x1e1 + x2e2) − Rh(x

′)|2 dx′ ≤ C
∫

S(a,3h)×(− 1
2
, 1
2
)
dist2(∇hu

(h), SO(3)) dx. (55)

Hence for ζ ∈ IR2 satisfying |ζ |∞ := max{|ζ · e1|, |ζ · e2|} ≤ h,∫
Sa,h

|R(h)(x′ + ζ) − R(h)(x′)|2 dx′ ≤ C
∫

Sa,3h×(− 1
2
, 1
2
)
dist2(∇hy

(h), SO(3)) dx. (56)

Now let S ′ be a compact subset of S, and consider a difference quotient with more general translation
vector ζ ∈ IR2, |ζ |∞ ≤ c dist(S ′, ∂S). Let N := max{[ ζ

h
· e1], [ ζ

h
· e2]}, where [ ] denotes the integer

part, and pick ζ0, . . . , ζN+1 such that ζ0 = 0, ζN+1 = ζ , |ζk+1 − ζk|∞ ≤ h. Then |R(h)(x′ + ζ) −
R(h)(x′)|2 ≤ (N + 1)

∑N
k=0 |R(h)(x′ + ζk+1) − R(h)(x′ + ζk)|2 and hence

∫
Sa,h

|R(h)(x′ + ζ) − R(h)(x′)|2dx′ ≤ C(N + 1)
N∑

k=0

∫
Sa+ζk,3h×(− 1

2
, 1
2
)
dist2(∇hy

(h), SO(3)) dx.

Summing over all Sa,h∩S ′ �= ∅ and using that each x ∈ S×(−1
2
, 1

2
) is contained in at most (N +1)C

of the sets Sa+ζk,3h × (−1
2
, 1

2
),∫

S′
|R(h)(x′ + ζ)−R(h)(x′)|2 dx′ ≤ C

(∣∣∣ ζ
h

∣∣∣+1
)2
∫

S×(− 1
2
, 1
2
)
dist2(∇hy

(h), SO(3)) dx ≤ C(|ζ |+h)2. (57)

This key estimate readily implies compactness of R(hj) in L2(S ′), for any sequence hj → 0, as we
shall now detail. Compactness is equivalent to validity of the Frechet-Kolmogorov criterion (see e.g.
[1])

lim sup
|ζ|→0

sup
hj

||R(hj)(· + ζ) − R(hj)||L2(S′) = 0. (58)

Fix ε > 0. Clearly the supremum over the finite set {hj | hj ≥ ε} tends to zero as |ζ | → 0, since
||f(· + ζ) − f ||L2(S′) tends to zero for any fixed f ∈ L2(S). On the other hand the supremum over
the remaining set {hj | hj < ε} satisfies lim sup|ζ|→0 suphj<ε ||R(hj)(· + ζ) − R(hj)||2L2(S′) ≤ Cε2, by

(57). Since ε was arbitrary, this establishes (58). Hence a subsequence of R(hj) converges strongly
in L2(S ′) to some R̄ ∈ L2(S ′) with R̄(x′) ∈ SO(3) for a.e. x′ ∈ S ′.

We proceed to show strong convergence of the unapproximated sequence ∇hj
y(hj), on the whole

domain Ω = S × (−1
2
, 1

2
). Since the sequence has bounded bending energy, one immediately has

subsequential weak convergence ∇hj
y(hj) ⇀ (∇′y, b) in L2(Ω). By (51), R(hj)−∇hj

y(hj) → 0 strongly
in L2(S ′ × (−1

2
, 1

2
)). Consequently (∇′y, b) = R̄ for a.e. x ∈ S ′ × (−1

2
, 1

2
). In particular (∇′y, b) is

independent of x3, and lies in SO(3) for a.e. x ∈ S ′ × (−1
2
, 1

2
). Since S ′ was an arbitrary compact

subset of S, the above properties hold in all of Ω. Since dist(∇hy
hj , SO(3)) → 0 in L2(Ω) we have

|∇hj
y(hj)|2 → 3 = |R̄|2 in L1(Ω), so that ||∇hj

y(hj)||L2(Ω) → ||(∇′y, b)||L2(Ω), which together with
weak convergence in L2(Ω) implies strong convergence in L2(Ω).
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Finally, letting h → 0 in (57) yields

∫
S′

∣∣∣∣∣(∇′y, b)(x′ + ζ) − (∇′y, b)(x′)
|ζ |

∣∣∣∣∣
2

dx′ ≤ C,

which implies (∇′y, b) ∈ H1(S ′). Because C is independent of S ′, in fact we have (∇′y, b) ∈ H1(S).
�

5 Noncompactness by wrinkling

Bending energy occurs at order h3 while membrane energy occurs at order h (Recall that one power
of h was absorbed by the change of variables leading to (10)). It is therefore interesting to ask
whether a sequence y(h) is compact if we assume the energy is bounded by a power of h between
h and h3 (resp., between 1 and h2 in rescaled variables). The answer is no: the simple examples
below, which only involve bending in the x1 − x3 plane as captured by Euler-Bernoulli kinematics
generalized to finite thickness, show that (in rescaled variables) there are sequences y(h) that satisfy

lim sup
h→0

1

hα

∫
Ω

dist2((∇′y(h),
1

h
y,

(h)
3 ), SO(3)) dx < ∞ (59)

for α < 2 but arbitrarily close to 2, such that (∇′y(h), 1
h
y,

(h)
3 ) converges weakly but not strongly to

SO(3). In particular, infinite bending energy is compatible with zero membrane energy.
Let θ(h) ∈ W 1,2(IR), S = (0, L)× (−b/2, b/2) and consider a sequence of deformations of Euler–

Bernoulli type (12), modified to account for finite thickness in a way that preserves zero membrane
energy:

y(h)(x′, x3) = x2e2 +
(∫ x1

0
cos θ(h)(s) ds

)
e1 +

(∫ x1

0
sin θ(h)(s) ds

)
e3 + h x3b

(h)(x1), (60)

where,
b(h)(x1) = − sin θ(h)(x1) e1 + cos θ(h)(x1) e3. (61)

We have,

(∇′y(h),
1

h
y,

(h)
3 ) = (cos θ(h) e1 + sin θ(h) e3 + h x3

db(h)

dx1
, e2 , − sin θ(h) e1 + cos θ(h) e3),

= R(h)(I − h x3
dθ(h)

dx1
e1 ⊗ e1), (62)

where R(h) = cos θ(h)e1 ⊗ e1 + sin θ(h)e3 ⊗ e1 − sin θ(h)e1 ⊗ e3 + cos θ(h)e3 ⊗ e3 + e2 ⊗ e2 ∈ SO(3).
For |1

2
h (dθ(h)/dx1)| < 1 (62) is the polar decomposition, so in that case

dist2((∇′y(h),
1

h
y,

(h)
3 ), SO(3)) = |h x3

dθ(h)

dx1
e1 ⊗ e1)|2 = h2 x2

3

(dθ(h)

dx1

)2
(63)

Then (59) becomes

lim sup
h→0

h(2−α)
∫ L

0

1

12
(
dθ(h)

dx1

)2 dx1 < ∞. (64)
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As a particular example we may choose θ(h) to be smooth and periodic with period hβ satisfying

θ(h)(x1) =

⎧⎪⎨⎪⎩
θ1 on (0, (1/4)hβ − 1

2
hγ ],

θ2 on ((1/4)hβ + 1
2
hγ , (3/4)hβ − 1

2
hγ ],

θ1 on ((3/4)hβ + 1
2
hγ , hβ],

(65)

with θ2 > θ1, 1 > γ > β > 0, and |dθ(h)/dx1| < 2(θ2 − θ1)h
−γ . The condition γ < 1 ensures that

|1
2
h (dθ(h)/dx1)| < 1 for h sufficiently small, validating (63). Thus,

h(2−α)
∫ L

0

1

12
(
dθ(h)

dx1

)2 dx1 ≤ L(θ2 − θ1)
2h(2−α−β−γ) (66)

So, if β + γ is chosen sufficiently small then (64) holds, but clearly the sequence (∇′y(h), 1
h
y,

(h)
3 ) is

not compact in L2.

6 The limiting plate theory for minimizing deformations

having finite bending energy

Theorem 4.1 says that a sequence (∇′y(h), 1
h
y,

(h)
3 ) with finite bending energy is compact and its limit

(∇′y, b)) lies on SO(3); in particular b = y,1 ∧ y,2. We now show that if this sequence is (exactly or
approximately) minimizing subject to appropriate boundary conditions, then its limiting bending
energy can be expressed solely in terms of y, and there is a variational principle for the limit.

In the spirit of Γ-convergence we first study arbitrary sequences with finite bending energy, not
required to satisfy boundary conditions.

Theorem 6.1 For h → 0, the functional 1
h3 E

(h) (as defined in (10)) converges to the limit func-
tional I0 given below, in the following sense (amounting to Γ-convergence on W 1,2(Ω; IR3) in the
language of [13, 12, 9]):

(i) (Ansatz-free lower bound) If a sequence y(h) ⊂ W 1,2(Ω; IR3) converges to y in W 1,2 then
lim infh→0

1
h3 E

(h)(y(h)) ≥ I0(y),

(ii) (Attainment of lower bound) For all y ∈ W 1,2(Ω; IR3) there exists a sequence y(h) ⊂ W 1,2

converging to y in W 1,2 such that limh→0
1
h3 E

(h)(y(h)) = I0(y).

The limit functional I0 is given by

I0(y) :=

{
1
24

∫
S Q2(II)dx′ if y(x) is independent of x3 and y ∈ A,

+∞ otherwise.

Here the class A of admissible maps consists of isometries from S into IR3,

A = {y ∈ W 2,2(S; IR3) : |y,1| = |y,2| = 1, y,1 · y,2 = 0}
and II is the second fundamental form (or extrinsic curvature tensor) IIij = ((∇′y)T∇′b)ij = y,i ·
b,j , b = y,1 ∧ y,2. The quadratic form Q2 on M2×2 is defined by

Q2(G) := min
c∈IR3

Q3(Ĝ + c ⊗ e3) (67)

15



where Ĝ is the 3×3 matrix
∑2

i,j=1 Gijei⊗ej, and Q3 is the quadratic form of linear elasticity theory
on M3×3,

Q3(F ) :=
∂2W

∂F 2
(I)(F, F ) =

3∑
i,j,k,l=1

∂2W

∂Fij∂Fkl
(I)FijFkl. (68)

Remarks.

i) In particular, as proved earlier (Theorem 4.1), if the sequence has bounded bending energy
then the limit y has the higher regularity y ∈ W 2,2(S; IR3).

ii) The result remains valid if strong W 1,2 convergence in (i) is replaced by weak convergence, as
proved below.

iii) An interesting technical aspect of our result is that no growth condition from above was
imposed on W . This means that in order to establish (ii), we will have to construct approxi-
mating sequences whose gradient stays bounded in L∞, even when the gradient of the normal
of the limit map is not in L∞. This will be achieved with the help of fine truncation arguments
for Sobolev maps, discussed in Appendix A. In fact, for any given ε > 0 the approximating
sequences constructed can be chosen to satisfy dist(∇hy

(h), SO(3)) ≤ ε for all sufficiently small
h. (This follows from (90), noting that the constant C in that estimate is independent of c and
that c, introduced below (89), can be chosen as small as we wish.) Consequently, the proof
below shows that Theorem 6.1 remains valid when hypothesis (i) on W is replaced by (i’)
W ∈ C0(U) for some open set U ⊃ SO(3), W = +∞ outside U , W ∈ C2 in a neighbourhood
of SO(3). This allows one in particular to prove the full Gamma convergence result in the
setting considered by Pantz [36] (adapted here to the case without boundary conditions). He
works with modified energies Ẽ(h)(y) which are +∞ unless y ∈ C1 and |(∇y)T∇y − I| ≤ δ.

iv) Consider the case when W is isotropic, i.e W (RFQ) = W (F ) for all F ∈ M3×3 and all R,
Q ∈ SO(3), so that

Q3(F ) = 2µ |e|2 + λ(trace e)2, e =
F +F T

2
, (69)

for some λ, µ ∈ IR. Then an elementary calculation shows that the quadratic form on M2×2

defined by (67) is

Q2(G) = 2µ

∣∣∣∣∣G + GT

2

∣∣∣∣∣
2

+
λµ

µ + λ
2

(traceG)2.

Since II(x′) is automatically symmetric for every x′, it follows that

I0(y) =

{
1
24

∫
S

(
2µ|II|2 + λµ

µ+λ/2
(trace II)2

)
dx′ if y is independent of x3 and y ∈ A,

+∞ otherwise.
(70)

This agrees with the expression proposed on the basis of insightful ad hoc assumptions by
Kirchhoff in 1850 [24], but not with a well known simplified expression which replaces the
isometry constraint y ∈ A by the condition y1 = y2 = 0 and II by −∇2y3, which much of the
subsequent literature has associated with Kirchhoff’s name, as noted in the Introduction.

A large literature exists devoted to deriving the bending energy of an isotropic plate under
unproven assumptions on the 3D deformations weaker than those of [24]. The furthest results
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are those of [36] who showed that Kirchhoff’s functional (70) is a lower bound for the Γ-limit
of a certain constrained elasticity functional, which is set equal to +∞ except when the 3D
deformation v : Ωh → IR3 is a C1 diffeomorphism with dist(∇v(x), SO(3)) < δ for all x ∈ Ωh

and some sufficiently small δ. As emphasized in Section 3 in our discussion of F. John’s
classical rigidity results (on which the results in [36] are based), such restrictions on v do
not follow from smallness of the elastic energy. For our ansatz-free derivation of I0 the sharp
results of Section 3 are essential.

v) Specializing further, if W (F ) = dist(F, SO(3))2 then I0(y) = 1
12

∫
S |II|2dx′ on A, which, up to

the numerical prefactor, agrees on isometries with the Willmore functional arising in differen-
tial geometry.

vi) For W isotropic as in (iv), S = (0, L) × (0, w), and deformations y ∈ A of Euler-Bernoulli
form (12), we have II11(x

′) = −θ′(x1) and the remaining components of II vanish, whence

I0(y) =
1

2
EI

∫ L

0
θ′(x1)

2dx1, E = 2µ +
µλ

µ + λ/2
. (71)

Thus the functional form of I0 agrees with that proposed in Euler’s celebrated 1744 paper [16];
in addition, our result yields the plate modulus. To our knowledge, ours is the first rigorous
derivation of the functionals (71) and (70) from 3D elasticity.

vii) Pantz ([36], Remark 1) raised the question whether in the description of the admissible set A
it suffices to assume regularity of the normal, i.e., whether in fact

A = {y ∈ W 1,∞(S, IR3) : |y,1 | = |y,2 | = 1, y,1 · y,2 = 0, y,1 ∧ y,2 ∈ W 1,2(S, IR3)}. (72)

This is indeed the case. First, by a density argument any two maps y and z in W 1,2(S, IR3)
satisfy (y,2 ∧ z),1 − (y,1 ∧ z),2 = y,2 ∧ z,1 − y,1 ∧ z,2 in the sense of distributions. Second, if y
is an isometry and z = y,1 ∧ y,2 then y,2 ∧ z = y,1 and −y,1 ∧ z = y,2. Thus �y ∈ L2 in the
sense of distributions. Hence y ∈ W 2,2

loc and we can apply the chain rule to differentiate the
isometry conditions and obtain y,ij = (y,ij ·z)z = −(y,i ·z,j )z. This yields y ∈ W 2,2(S, IR3) as
claimed.

Proof of Theorem 6.1 (i) Consider an arbitrary sequence y(h) converging weakly in W 1,2(Ω; IR3),

and let y denote its weak limit. To measure the deviation of ∇hy
(h) = (∇′y(h), 1

h
y

(h)
,3 ) from SO(3)

we recall the lattice of squares S ′
h and the piecewise constant approximation R(h) : S ′

h → SO(3)
introduced in (49), (50), (51), and consider the quantity G(h) : S ′

h → M3×3 defined by

G(h)(x′, x3) =
R(h)(x′)T∇hy

(h)(x′, x3) − I

h
. (73)

By the basic estimate (51) which followed from Theorem 3.1, ||G(h)||L2(S′
h
×(−1/2,1/2)) ≤ C. Hence,

extending G(h) by zero to all of S × (−1/2, 1/2) = Ω, there exists a subsequence (not relabelled)
and a G ∈ L2(Ω) such that

G(h) ⇀ G in L2(Ω). (74)

The first task is to estimate the bending energy from below in terms of G; the second, to identify
G in terms of the limiting deformation y.
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We expand W around the identity: W (I + A) = 1
2
Q3(A) + η(A), where Q3 is the quadratic

form of linear elasticity theory introduced above, and η(A)/|A|2 → 0 as |A| → 0. Letting ω(t) :=
sup|A|≤t |η(A)| we have

W (I + hA) ≥ 1
2
Q3(hA) − ω(|hA|) (75)

where ω(t)/t2 → 0 as t → 0. Define

χh(x) :=

{
1 x ∈ S ′

h ∩ {|G(h)(x)| ≤ h−1/2}
0 otherwise.

(76)

By the boundedness of G(h) in L2(S × (−1
2
, 1

2
)) and the fact that S ′

h ⊃ {x ∈ S : dist(x, ∂S) ≥ Ch},
χh → 1 boundedly in measure. Hence

χhG
(h) ⇀ G in L2(Ω). (77)

Now using the frame-indifference of W and (75),

1

h2

∫
Ω

W (∇hy
(h)) dx ≥ 1

h2

∫
Ω

χhW (∇hy
(h)) dx

=
1

h2

∫
Ω

χhW ((R(h))T∇hy
(h)) dx

≥
∫

Ω

1
2
χhQ3(G

(h)) − 1

h2
χhω(h|G(h)|) dx. (78)

As regards the first term, since Q3 is quadratic the function χh can be pulled inside Q3, and since
Q3 is nonnegative definite (by the hypotheses on W ), it is lower semicontinuous with respect to
the convergence (77). The second term on the right converges to zero, because |G(h)| is bounded in

L2(Ω) and h|G(h)| ≤ h
1
2 wherever χh �= 0, whence |G(h)|2 · χhω(h|G(h)|)/(h|G(h)|)2 is the product of

a bounded sequence in L1 and a sequence tending to zero in L∞. Putting these two facts together
we obtain

lim inf
h→0

1

h2

∫
Ω

W (∇hy
(h)) dx ≥ 1

2

∫
Ω

Q3(G) dx. (79)

Finally we use the trivial bound
Q3(A) ≥ Q2(A

′) (80)

where here and below we use the convention that A′ denotes the 3 × 3 matrix obtained from A by
putting zeros in its third row and third column (cf. (67)). Consequently

lim inf
h→0

1

h2

∫
Ω

W (∇hy
(h)) dx ≥ 1

2

∫
S×(− 1

2
, 1
2
)
Q2(G

′) dx. (81)

To identify the weak limit G′ in terms of y, we denote the matrix consisting of the first two columns
of G(h) (respectively G) by G̃(h) (resp. G̃) and consider the finite difference quotient in x3-direction

H(h)(x′, x3) :=
G̃(h)(x′, x3 + z) − G̃(h)(x′, x3)

z
= (R(h)(x′))T

1
h
∇′y(h)(x′, x3 + z) − 1

h
∇′y(h)(x′, x3)

z
.

Let Ω′ be any compact subset of Ω and let |z| < dist(Ω′, ∂Ω). By (74)

H(h) ⇀ H :=
G̃(x′, x3 + z) − G̃(x′, x3)

z
in L2(Ω′).
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By Theorem 4.1, R(h) converges boundedly in measure to (∇′y, b) ∈ H1(Ω) and b = y,1 ∧ y,2. It
follows that

1
h
∇′y(h)(x′, x3 + z) − 1

h
∇′y(h)(x′, x3)

z
= R(h)H(h) ⇀ (∇′y|b)H in L2(Ω′). (82)

To identify H note that the left hand side equals ∇′(1
z

∫ x3+z
x3

1
h
y

(h)
,3 (x′, s)ds). Since 1

h
y

(h)
,3 → b strongly

in L2(Ω; IR3), the transverse average 1
z

∫ x3+z
x3

1
h
y

(h)
,3 ds converges strongly to 1

z

∫ x3+z
x3

b ds, which more-
over equals b, by the x3-independence of b. Hence

1
h
∇′y(h)(x′, x3 + z) − 1

h
∇′y(h)(x′, x3)

z
⇀ ∇′b in W−1,2(Ω′). (83)

Combining (82) and (83), we have b ∈ W 1,2(Ω′) and H = (∇′y, b)T∇′b. In particular H is indepen-
dent of x3 and hence

G̃(x′, x3) = G̃(x′, 0) + x3H(x′).

Hence by omitting the third row

G′(x′, x3) = G′(x′, 0) + x3II(x
′), II = (∇′y)T∇′b. (84)

Since Ω′ was arbitrary, the above identity holds in all of Ω. Consequently the right hand side of
(81) becomes

1
2

∫
Ω

Q2(G
′) dx = 1

2

∫
Ω

Q2(G
′(x′, 0)) dx + 1

2

∫
Ω

x2
3 Q2(II) dx, (85)

the absence of a coupling term being due to the fact that
∫ 1/2
−1/2 x3 dx = 0. Dropping the (nonnegative)

first term and carrying out the x3-integration yields (i). �

Proof of Theorem 6.1 (ii) If y �∈ A the assertion is trivial, so assume y ∈ A; in particular
y ∈ W 2,2(S; IR3), y,1 ∧ y,2 =: b ∈ W 1,2(S; IR3). Since S is strongly Lipschitz, we can extend y
and b to maps in W 2,2(IR2; IR3) respectively W 1,2(IR2; IR3). Next we invoke a truncation result
for Sobolev maps defined on IRn ([31], [42], [17]), which yields, for any λ > 0, the existence of
yλ ∈ W 2,∞(IR2; IR3) and bλ ∈ W 1,∞(IR2; IR3) such that

||∇2yλ||L∞, ||∇bλ||L∞ ≤ λ, |Sλ| ≤ C
ω(λ)

λ2
, (86)

where

Sλ = {x ∈ IR2 | y(x) �= yλ(x) or b(x) �= bλ(x)},
ω(λ) =

∫
|∇2y|≥λ/2

(|y|2 + |∇y|2 + |∇2y|2) dx +
∫
|∇b|≥λ/2

(|b|2 + |∇b|2) dx → 0 (λ → ∞).

In fact we may assume bλ ∈ C1, see e.g., [17], Thm. 1, p. 251.
An interesting consequence, which is related to the fact that in two dimensions W 1,2 embeds

almost into L∞, is that for all sufficiently large λ

fλ(x) := dist((∇′yλ(x), bλ(x)), SO(3)) ≤ Cw(λ)1/2, ∀x ∈ S. (87)
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To prove this, note first that fλ = 0 on S\Sλ, and that fλ is Lipschitz with Lipschitz constant

Lip fλ = supx 
=y
|fλ(x)−fλ(y)|

|x−y| ≤ Cλ. Next we claim that for a suitable constant δ (depending only on

S), for R := δ
λ
ω(λ)1/2, and all x0 ∈ S

B(x0, R) ∩ (S\Sλ) �= ∅. (88)

Otherwise, |B(x0, R)∩ S| = |B(x0, R) ∩ Sλ| ≤ |Sλ| ≤ C ω(λ)
λ2 , which contradicts the fact that due to

the Lipschitz property of S

|B(x0, R) ∩ S| ≥ AR2 =
Aδ2ω(λ)

λ2
,

as soon as δ < (C/A)1/2. This establishes (88). It follows that

f(x) ≤ (Lip f) R ≤ Cδ(ω(λ))1/2 ∀x ∈ S,

establishing (87).
Now consider the trial function

y(h)(x′, x3) = yλh(x′) + hx3b
λh(x′) + h2 x2

3

2
d(x′), (89)

with truncation scale λh = c/h and with d ∈ C1
0 (S, IR3). Let R(x′) := (∇′y(x′), b(x′)) ∈ SO(3), and

denote

RT (∇′y(h),
1

h
y

(h)
,3 ) = RT

(
(∇′yλh, bλh) + hx3(∇′bλh , d) + h2 x2

3

2
(∇′d, 0)

)
=: I + A(h).

On the good set S\Sλh, we have RT (∇′yλh, bλh) = I and

|A(h)| ≤ C(hλh + h + h2) ≤ C(c + h0 + h2
0) for all h ≤ h0. (90)

Denoting by χh the characteristic function of S\Sλh, choosing c > 0 and h0 sufficiently small and
using that W is C2 in a neighbourhood of the identity we obtain, for all h ≤ h0,

1

h2
χhW (I + A(h))

{ ≤ C
h2 |A(h)|2 ≤ 2C(|(∇′b, d)|2 + h2

0|∇′d|2) ∈ L1(Ω),
→ 1

2
Q3(x3R

T (∇′b, d)) a.e.

Thus by dominated convergence

1

h2

∫
Ω

χhW (∇′y(h),
1

h
y

(h)
,3 ) dx =

1

h2

∫
Ω

χhW (I + A(h)) dx → 1

2

∫
Ω

x2
3Q3(R

T (∇′b, d)) dx. (91)

On the bad set Sλ, we have dist(I + A(h), SO(3)) ≤ C, giving, due to the local boundedness of
W , the estimate W (I + A(h)) ≤ C. Consequently

1

h2

∫
Ω
(1 − χh)W (I + A(h)) ≤ C

|Sλh|
h2

=
C

c2
λ2

h|Sλh| → 0 (h → 0). (92)

Combining (91) and (92) and carrying out the integration over x3,

1

h2

∫
Ω

W (∇′y(h),
1

h
y

(h)
,3 ) → 1

24

∫
S

Q3(R
T (∇′b, d)) dx′ (h → 0). (93)
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It remains to construct a sequence whose energy converges to the above right hand side with
d ∈ W 1,∞

0 replaced by dmin(x′) := argmin Q3(R
T (x′)(∇′b(x′), d)) ∈ L2, in which case the right hand

side equals I0(y). We use the density of C1
0 in L2 and the continuity of the above right hand side

in L2 to pick a sequence dj ⊂ C1
0 such that

1

24

∫
S

Q2(R
T (∇′b, dj)) ≤ I0(y) +

1

j
.

Hence, if hj is chosen sufficiently small, due to (93) the sequence (89) with h = hj and d = dj

satisfies 1
h3

j
Ehj (y(hj)) ≤ I0(y) + 2

j
and y(hj) → y in W 1,2, as required. �

As explained in the introduction, sequences that satisfy rather innocent looking boundary conditions
– even those for which the minimizing membrane energy is identically zero – may necessarily have
infinite bending energy in the limit. The complete and explicit characterization of all boundary
conditions consistent with finite bending energy appears difficult. The theorem below gives a general
result for clamped boundary conditions on part of ∂S. In particular it applies to the classical
boundary value problem of uniaxial compression:

Example Let S be the rectangular domain (0, L)× (0, w), so that Ωh is the standard plate (0, L)×
(0, w) × (−h

2
, h

2
), and consider the following longitudinal compression boundary condition on the

unrescaled deformation v : Ωh → IR3, applied at the right and left end of the plate

v(z)|z1=0, L = z ∓ (a, 0, 0),

where a ∈ (0, L/2) is fixed (and the remaining part of the boundary is left free). Equivalently,
the rescaled deformation y(h) : Ω = (0, L) × (0, w) × (−1

2
, 1

2
) defined by y(h)(x) = v(z(x)), z =

(x1, x2, hx3) (see Section 2) satisfies

y(h)(x1, x2, x3)|x1=0, L = (x1 ∓ a, x2, hx3). (94)

Since we have assumed no particular convexity properties of W (such as those in [5]) away from
SO(3), the infimum of the total energy at nonzero h may not be attained. We shall therefore
consider deformations of the plate of sufficiently low energy. Specifically, we say that a sequence
y(h) ⊂ W 1,2(Ω; IR3) with finite elastic energy is a low energy sequence if its scaled elastic energy
differs from that of the infimum by a tolerance of ω(h), where the function ω(h) → 0 as h → 0.

As above, our results could be stated in the formal language of Γ-convergence, but for simplicity
we follow the direct approach.

Theorem 6.2 Let S be a bounded Lipschitz domain and let Γ ⊂ ∂S be a finite union of (nontrivial)
closed intervals (i.e. maximally connected sets in ∂S). Consider

ŷ ∈ W 2,2(S; IR3) ∩ C1(S̄; IR3), b̂ ∈ W 1,∞(S; IR3). (95)

Suppose that y(h) ⊂ W 1,2(Ω; IR3) is a low energy sequence, in the sense that

1

h2

∫
Ω

W (∇′y(h),
1

h
y

(h)
,3 ) dx ≤ inf

y ∈ W 1,2(Ω; IR3)
y satisfies BC

1

h2

∫
Ω

W (∇′y,
1

h
y,3) dx + ω(h) (96)
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and suppose that the infimum on the right hand side of (96) remains bounded as h → ∞. Here BC
refers to the boundary conditions

BC: y(h)(x′, x3) = ŷ(x′) + x3b̂(x
′), x′ ∈ Γ, x3 ∈ (−1

2
, 1

2
). (97)

Then there exists a subsequence, not relabelled, such that (∇′y(h), 1
h
y

(h)
,3 ) → (∇′y, b) in L2(Ω), the

limit map y is an isometry belonging to the class A introduced in Theorem 6.1 and is independent
of x3, and b = y,1 ∧ y,2. The limiting bending energy of this sequence is

lim
h→0

1

h2

∫
Ω

W (∇′y(h),
1

h
y

(h)
,3 )dx =

1

24

∫
S

Q2(∇′yT∇′b) dx′ = I0(y) (98)

and y satisfies the clamped boundary conditions

y = ŷ and b = b̂ on Γ. (99)

Moreover y minimizes I0 among all functions in A which satisfy (99).

Remarks.

i) The boundary condition BC comprises (94) as a special case, as follows. Let Γ = {0, L}×[0, w],
let b̂(x′) = e3 and choose ŷ to be a smooth extension of the map ŷ(x′) = x′ + (a, 0) for x1 = 0
and x2 ∈ (0, w), ŷ(x′) = x′ − (a, 0) for x1 = 0 and x2 ∈ (0, w).

ii) Note that we do not require that ŷ is an isometry. It may happen that there is no map y ∈ A
which satisfies (99). The proof given below shows in particular that this happens if and only
if the right hand side of (96) blows up as h → 0.

iii) In the literature sometimes y(h) is prescribed on an open set rather than on the boundary.
Our approach can easily be adapted to this setting. In fact the verification of (99) is easier
since we do not need to study traces and their convergence. For the construction of a low
energy sequence one can use Proposition A.3 which is a minor variant of Proposition A.2. In
particular Remark (iv) below applies to both settings.

iv) The sequence y(h) which we construct satisfies also dist((∇′y(h), 1
h
y

(h)
,3 ), SO(3)) → 0 uniformly.

If we assume in addition that b̂ ∈ C1(S̄; IR3) then we can choose y(h) ∈ C1(Ω; IR3). This
allows one to establish the upper bound in Pantz’ approach [36] for general limit maps in A
rather than just C2 isometries.

v) If W satisfies a growth condition from above of the form W (A) ≤ c+|A− I|2, the assumptions
on the boundary data can be weakened to ŷ, b̂ ∈ W 1,2(U ; IR3). Moreover in that case the proof
is simplified. If y ∈ A and b = y,1 ∧ y,2 satisfy (99) we can simply chose the trial function
ỹ(h)(x) = y(x′) + h x3 b(x′) + h2 (x2

3/2) d(x′) with d ∈ W 1,∞
0 (S; IR3). Then one passes to the

limit h → 0 using dominated convergence and minimizes out d at the last stage.

The above theorem entails an existence result for the limit problem.
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Corollary 6.1 Let S, Γ, ŷ and b̂ be as in Theorem 6.2.

a) Let Q2 be any quadratic form on M2×2 which arises via (67), (68) from some W : M3×3 → IR
satisfying hypotheses i), ii), iii) in Section 2. Let ABC the set of maps in A which satisfy (99).
Then I0 attains its minimum in ABC provided that this set is not empty.

b) There exists a minimizer of the Willmore functional 1
12

∫
S |II|2 dx′ among isometries y ∈ ABC

provided this set is not empty.

Existence results for minimizers of the Willmore functional among closed surfaces not required to be
isometric to any reference surface, but of prescribed genus, were obtained by L. Simon [38], through
a direct study of minimizing sequences and a careful study of ‘bubbling’ phenomena.

Proof of Corollary 6.1. a) is immediate from Theorem 6.2, and b) follows from a) by taking
W (F ) =dist2(F, SO(3)).

Proof of Theorem 6.2. We first show that for every y ∈ A satisfying the 2D boundary conditions
(99) there exists a sequence y̌(h) : S × (−1

2
, 1

2
) → IR3 which satisfies the 3D boundary conditions

(97), y̌(h) → y in W 1,2(Ω; IR3) and

lim
h→0

1

h2

∫
Ω

W (∇′y(h),
1

h
y

(h)
,3 )dx = I0(y). (100)

Thus in particular the right hand side of (96) is bounded if there exists a y ∈ A satisfying (99).
Secondly we consider an arbitrary sequence y(h) which satisfies (97) and

lim sup
h→0

1

h2

∫
Ω

W (∇′y(h),
1

h
y

(h)
,3 )dx < ∞. (101)

Then by the compactness result (Theorem 4.1) a subsequence of ∇hy
(h) converges strongly in L2 to

(∇′y, b) ∈ W 1,2. Moreover by Theorem 6.1

lim inf
h→0

1

h2

∫
Ω

W (∇′y(h),
1

h
y

(h)
,3 )dx ≥ I0(y). (102)

We will show that in addition the limit satisfies (99). Combining this with the construction of the
y̌(h) one immediately deduces that the limit of a low energy sequence minimizes I0 subject to (99).

Suppose now that y ∈ A satisfies (99) and recall that b = y,1 ∧ y,2. To construct y̌(h) we use
results from Appendix A on the truncation of W 1,2 and W 2,2 functions with prescribed boundary
conditions. The notation will be as in the appendix: a superscript λ will denote the truncated
function. For any truncation parameter λ > 0, define the following maps from S to IR3

vλ = (y − ŷ)λ + ŷ,

qλ = (b − b̂)λ + b̂. (103)

By Proposition A.2,

||∇2(y − ŷ)λ||L∞(S) ≤ Cλ, ||∇qλ||L∞(S) ≤ C(λ + ||∇b̂||L∞(S)), (104)

|Sλ| ≤ Cω(λ)

λ2
, (105)
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where

Sλ = {x′ ∈ S | vλ(x
′) �= y(x′) or qλ(x′) �= b(x′)}, (106)

ω(λ) =
∫
{x′∈S : |b|+|∇b|≥λ/2}

(|b|2 + |∇b|2) dx′

+
∫
{x′∈S : |y|+|∇y|+|∇2y|≥λ/2}

(|y|2 + |∇y|2 + |∇2y|2) dx′ (107)

+
∫
{x′∈S : |ŷ|+|∇ŷ|+|∇2ŷ|≥λ/2}

(|ŷ|2 + |∇ŷ|2 + |∇2ŷ|2) dx′ → 0 (as λ → ∞). (108)

Arguing as in the proof of (87) we see that dist((∇′vλ, qλ), SO(3)) ≤ C(ω(λ))1/2 + ω̄(C/λ), where ω̄
is a modulus of continuity of ∇′ŷ.

Let d ∈ C1
0(S; IR3) and consider the trial function,

y̌(h)(x) = vλh
(x′) + h x3 qλh

(x′) + h2 x2
3

2
d(x′), (109)

with λh chosen as c/h; note that y̌(h) satisfies BC. By the same arguments as were applied to (89) in
the proof of Theorem 6.1, we infer 1

h3 E
(h)(y̌(h)) → 1

24

∫
S Q3(R

T (∇′b, d)) dx′, and, by suitable choice
of d = d(h) depending on h, 1

h3 E
(h)(y(h)) → I0(y). This establishes (100) and finishes the first part

of the proof.
We now show that the limit of an arbitrary sequence y(h) which has bounded scaled energy and

satisfies (97) will satisfy (99). To this end we show that the difference quotient estimates obtained
in Section 4 hold up to the boundary. This will allow us, after mollification, to obtain W 1,2 bounds
(up to the boundary) for a very good approximation of ∇hy

(h) and to pass to the limit in traces.
Let us first assume that an interval in Γ is contained in a flat part of the boundary with normal

(0, 1). We will show that the limiting boundary conditions hold on that interval. To avoid additional
notation we assume that Γ consists only of this interval and

S ⊃ U := (−1, 1) × (−t, 0), t > 0

∂S ∩ Ū = (−1, 1) × {0}
Γ = [a, b] × {0}, [a, b] ⊂ (−1, 1).

We consider the lattice of squares

Sa,h = a + (−h

2
,
h

2
) × (−h, 0], a ∈ (hZZ)2. (110)

Let
Uδ = (−1 + δ, 1 − δ) × (−t + δ, 0), (111)

where δ > 0 is so small that [a, b] ⊂ (−1 + δ, 1 − δ) and δ < t/2. Using Theorem 3.1 we obtain a
map R(h) : Uδ/2 → SO(3) which is constant on each Sa,h ⊂ Uδ/2 and satisfies∫

Sa,h×(−1
2

,
1
2
)
|∇hy

(h) − R(h)|2 dx ≤ C
∫

Sa,h×(−1
2

,
1
2
)
W (∇hy

(h)) dx. (112)

We have already shown in Section 4 that for a subsequence

∇hy
(h) → (∇′y, b) inL2(U ; IR3×3), y ∈ W 2,2(S; IR3), b = y,1 ∧ y,2,

R(h) → (∇′y, b) inL2(U ; IR3×3).
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To obtain further information on the trace of ∇hy
(h) and R(h) on x2 = 0 we first repeat the arguments

in (52)– (57) to obtain difference quotient estimates for tangential or downward translations. This
yields ∫

Uδ

|R(h)(x′ + ζ) − R(h)(x′)|2 dx′ ≤ C
∫

U×(−1
2

,
1
2
)
W (∇hy

(h)) dx ≤ Ch2, (113)

whenever |ζ1| ≤ h, −h ≤ ζ2 ≤ 0. Consider a kernel

η(x′) = η1(x1)η2(x2), ηi ∈ C∞
0 ((0, 1)), ηi ≥ 0,

∫
IR

ηi = 1 (114)

and define the mollified function

G(h)(x′) =
∫

IR2
h−2η(

z′

h
)R(h)(x′ − z′)dz′. (115)

Now (113) implies that

||∇′G(h)||L2(Uδ) ≤ C, ||G(h) − R(h)||L2(Uδ) ≤ Ch. (116)

Thus
G(h) ⇀ (∇′y, b) in W 1,2(Uδ; IR

3×3). (117)

In particular the traces converge strongly in L2

G(h)(·, 0) → (∇′y, b)(·, 0) in L2((−1 + δ, 1 − δ); IR3×3). (118)

Since R(h)(x1, x2) = R(h)(x1, 0) for x2 ∈ (−h, 0] we have

G(h)(x1, 0) =
∫

IR
h−1η1(

z1

h
)R(h)(x1 − z1, 0)dz1 (119)

and, using (113), ∫ 1−δ

−1+δ
|R(h)(x1 + ζ1, 0) − R(h)(x1, 0)|2 dx1 ≤ Ch (120)

for |ζ1| ≤ h. This implies that G(h)(·, 0) − R(h)(·, 0) → 0 in L2 and thus

R(h)(·, 0) → (∇′y, b) in L2((−1 + δ, 1 − δ); IR3×3). (121)

Finally we will use (112) for squares which touch the boundary (i.e. a2 = 0) to relate R(h)e3

and b̂. For any f ∈ W 1,2((0, 1)3) we have∫
∂(0,1)3

|f − c|2 dH2 ≤ C
∫
(0,1)3

|∇f |2 dx, (122)

where c =
∫

f . With the change of variables

f(z) =
1

h
g(a1 + h(z1 − 1

2
), h(z2 − 1), z3 − 1

2
) (123)

(122) implies that for a = (a1, 0)

1

h

∫
(Sa,h∩∂S)×(−1

2
,
1
2
)
|1
h
g − c|2 dH2 ≤ 1

h2

∫
Sa,h×(−1

2
,
1
2
)
|(∇′g,

1

h
g,3)|2 dx. (124)
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Apply this with

g(x) = y(h)(x) − R(h)(a)

(
x′

hx3

)
. (125)

For x′ ∈ Γ we have
y(h)(x) = ŷ(x′) + hx3b̂(x

′) (126)

and thus ∫ 1
2

−1
2

|1
h
g(x′, x3) − c|2 dx3 ≥ 1

12
|b̂(x′) − R(h)(a)e3|2. (127)

Combining this with (124) and (112) we obtain

1

h

∫
Sa,h∩Γ

|b̂ − R(h)e3|2 dH1 ≤ C

h2

∫
Sa,h

W (∇hy
(h)) dx′. (128)

Summing over those squares Sa,h which intersect the boundary x2 = 0 we get

1

h

∫ b

a
|b̂(x1, 0) − R(h)(x1, 0)e3|2 dx1 ≤ C (129)

and together with (121) we finally deduce

b̂ = b on Γ. (130)

If (a subinterval of) Γ is not contained in a flat part of the boundary we can first flatten the
boundary using the Lipschitz map (locally defined in a suitable orthonormal coordinate system)
Φ(x1, x2) = (x1, x2−f(x1)). We can then consider the partition Sa,h in the local image Φ(S∩Φ−1(U))
(possibly using a smaller rectangle U than in the argument above). Since Theorem 3.1 holds in
an arbitrary Lipschitz domain we can apply it in the domains Φ−1(Sa,h) and we obtain as before
difference quotient estimates for the functions R(h) ◦ Φ−1 which are constant in Sa,h. Then we can
conclude as above. �

7 Strong convergence of the rescaled nonlinear strain for

low energy sequences

For sequences with finite bending energy the nonlinear strain (∇hy
(h)T∇hy

(h))1/2 converges strongly
to the identity by Theorem 4.1. For low energy sequences, we find below, using the positive
definiteness of the limiting energy, that the asymptotic correction is of the form he(x) and we find
an explicit form for the linearized strain e.

According to Theorem 6.2, a low energy sequence satisfying certain boundary conditions has
a limiting energy given by I0 of (98). Here we avoid the discussion of boundary conditions by
considering the more general situation of any sequence that has the limiting bending energy I0.

Theorem 7.1 Assume ∇hy
(h) = (∇′y(h), 1

h
y

(h)
,3 ) converges in L2(Ω) to (∇′y, b) and has limiting

bending energy

lim
h→0

1

h2

∫
Ω

W (∇hy
(h)) dx = I0(y) < ∞. (131)
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Then y ∈ A and

[∇hy
(h)T∇hy

(h)]
1
2 − I

h
→ x3

( ̂II(x′) +
cmin(x′) ⊗ e3 + e3 ⊗ cmin(x′)

2

)
in L2(Ω), (132)

where II = (∇′y)T∇′(y,1 ∧ y,2) is the second fundamental form of y, Ĝ denotes the 3×3 matrix

obtained from G ∈ M2×2 by the formula Ĝ =
∑2

i,j=1 Gijei ⊗ ej, and cmin ∈ L2(S; IR3) is the unique

pointwise minimizer of the problem minc Q3(ÎI + c ⊗ e3).

To interpret this result physically, we confine ourselves for simplicity to the case when W is isotropic,
whence Q3 is given by (69). In this case, the elementary calculus problem defining cmin has the
unique solution cmin(x′) = − λ

2µ+λ
H(x′)e3, where H(x′) = trace II(x′) is the mean curvature of the

plate at x′. Hence, considering for simplicity the case when y is smooth, the strain of any sequence
y(h) converging to y and achieving the minimum asymptotic bending energy I0(y) must agree to
o(h) with that of the prototypical such sequence

y(h)(x′, x3) = y(x′) + (hx3 − λ

2µ + λ
H(x′)

h2x2
3

2

)
b(x′), b = y,1 ∧ y,2,

which corresponds to the unrescaled sequence (see Section 2)

v(h)(z′, z3) = y(z′) +
(
z3 − λ

2µ + λ
H(z′)

z2
3

2

)
b(z′).

As compared to the simple Cosserat ansatz (5), the fibers orthogonal to the mid surface are thus
inhomogeneously stretched, depending on the mean curvature of the plate. More precisely, if, say,
H > 0 (corresponding to a concavely bent plate such as (12) with θ′(x1) < 0), the fibers contract
above the mid surface and elongate below it. This is intuitive from the lateral stretching of the
material above the mid surface and its lateral compression below.

Proof. Note first that by finiteness of the limiting bending energy and Proposition 4.1, y ∈ A and
b = y,1∧y,2. Recall from Section 4 the lattice of squares S ′

h and the piecewise constant approximation
R(h) : S ′

h → SO(3) of ∇hy
(h), and let G(h), χh be as in (73), (76). By (74), G(h) ⇀ G in L2(Ω);

moreover by (84), the matrix G′ obtained from G by omitting the third row and the third column
is given by G′(x′, x3) = G′(x′, 0) + x3II(x

′). By combining (131), (78), (79) and (85),

I0(y) = lim sup
h→0

1

h2

∫
Ω

W (∇hy
(h)) dx ≥ lim sup

h→0

∫
Ω

χhW (∇hy
(h)) dx

≥ lim sup
h→0

1

2

∫
Ω

Q3(χhG
(h)) dx ≥ 1

2

∫
Ω

Q3(G) dx

=
1

2

∫
Ω

Q2(G
′(x′, 0)) dx′ +

1

2

∫
Ω

Q2(x3II(x
′)) dx. (133)

Since Q2 is nonnegative and positive definite on symmetric matrices, it follows first of all that all
inequalities are equalities, Q2(G

′(x′, 0)) = 0, and 1
2
(G′ + G′T ) = x3II(x

′). Next, from (67) and the
fact that Q3(A) = Q3(

1
2
(A + AT )) for all A ∈ M3×3 (which follows from the frame-indifference

of W ), Q2(x3II(x
′)) = minc Q3(x3ÎI + 1

2
(c ⊗ e3 + e3 ⊗ c)), which has a unique minimizer ĉmin
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because Q3 is positive definite on symmetric matrices. Consequently, from the pointwise inequality
Q3(

1
2
(G + GT )) ≥ Q2(x3II(x

′)) and (133),

G + GT

2
= x3ÎI(x

′) +
ĉmin(x) ⊗ e3 + e3 ⊗ ĉmin(x)

2
= x3

(
ÎI(x′) +

cmin(x′) ⊗ e3 + e3 ⊗ cmin(x′)
2

)
.

(134)
For the latter, we have used that ĉmin(x) = x3cmin(x′), where cmin is given in the statement of the
theorem. Next, since Q3 is positive-definite on symmetric matrices (and therefore strictly weakly
lower semicontinuous), we have from the fact that equality holds in the third inequality of (133)

χh
G(h) + (G(h))T

2
→ G + GT

2
in L2(Ω). (135)

On the set {x ∈ Ω |χh(x) = 1} we have

G(h) =
R(h)T∇hy

(h) − I

h
, R(h)(x) ∈ SO(3), |hG(h)(x)| ≤ h1/2,

whence

∇hy
(h)T∇hy

(h) = (R(h)T∇hy
(h))T (R(h)T∇hy

(h))

= I + h (G(h)T + G(h)) + h2 G(h)T G(h), (136)

so that on the same set,

|(∇hy
(h)T∇hy

(h))
1
2 − (I + 1

2
h (G(h) + G(h)T ))| ≤ C|hG(h)|2 (137)

for sufficiently small h > 0. Since, by (77), χhG
(h) ⇀ G in L2(Ω), we multiply (137) by 1

h
χh and

get,

χh
[∇hy

(h)T∇hy
(h)]

1
2 − I

h
→ G + GT

2
in L2(Ω). (138)

It remains to remove the χh. We have for A ∈ M3×3,

|(AT A)1/2 − I| ≤ dist(A, SO(3)) ≤ C W (A)1/2. (139)

We have, using that all inequalities in (133) are equalities,

lim sup
h→0

∫
Ω
(1 − χh)

∣∣∣∣∣∣ [∇hu
(h)T∇hu

(h)]
1
2 − I

h

∣∣∣∣∣∣
2

dx ≤ lim sup
h→0

C

h2

∫
Ω
(1 − χh)W (∇hu

(h)) dx = 0. (140)

Thus by (138) we have,

[∇hu
(h)T∇hu

(h)]
1
2 − I

h
→ 1

2
(G + GT ) in L2(Ω). (141)

Combining this result with the form of 1
2
(G + GT ) given in (134) we get (132). �
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A Appendix: Two truncation theorems

In the proof of the geometric rigidity result in Section 3 we needed to approximate functions in
W 1,2(U, IRm) by those in W 1,∞(U, IRm).

Proposition A.1 Let n, m ≥ 1, and let 1 ≤ p < ∞. Suppose U ⊂ IRn is a bounded Lipschitz
domain. Then there exists a constant C(U, n, m, p) with the following property. For each u ∈
W 1,p(U, IRm) and each λ > 0, there exists v : U → IRm such that

(i) ‖∇v‖L∞(U) ≤ Cλ,

(ii) |{x ∈ U | u(x) �= v(x)}| ≤ C

λp

∫
{x∈U : |∇u(x)|>λ}

|∇u|p dx,

(iii) ‖∇u −∇v‖p
Lp(U) ≤ C

∫
{x∈U : |∇u(x)|>λ}

|∇u|pdx. (142)

Proof. Note first that (iii) is an immediate consequence of (i) and (ii). Indeed∫
U
|∇u −∇v|p dx =

∫
u 
=v

|∇u −∇v|p dx ≤ 2p
∫

u 
=v

(
|∇u|p + |∇v|p

)
dx

≤ 2p
∫

u 
=v

(
λp + |∇v|p

)
dx + 2p

∫
|∇u|>λ

|∇u|p dx ≤ C
∫
|∇u|>λ

|∇u|p dx.

It remains to establish assertions (i) and (ii). This will be done in three steps, passing from simple
domains to general domains.

Step 1. The proposition holds for U = (0, 1)n−1 × (0, H). (Only this case was needed in the
application to plate theory; see the proof of Theorem 4.1 in Section 4.) The proof is very similar to
that of the corresponding result in IRn. Since the result (although not the constant C) is invariant
under anisotropic dilations we may assume U is the unit cube Q = (−1, 1)n. We follow the proof
in Evans and Gariepy [17], Sections 6.6.3 and 6.6.2, except we define,

Rλ =

{
x ∈ Ω :

1

Q ∩ B(x, r)

∫
Q∩B(x,r)

|∇u(z)|dz < λ ∀ r ≤ 2
√

n

}
. (143)

(Note that Evans and Gariepy use the integrand |u| + |∇u| instead). The main point is that the
Poincaré inequality still applies on Q ∩ B(x, r) for r ≤ 2

√
n (cf. Evans and Gariepy [17], p. 253,

proof of Claim #2 in the proof of Theorem 2, Section 6.6.2).

Step 2. The proposition holds for a standard Lipschitz domain, i.e. a domain of the form U =
{x′, xn) : x′ ∈ (0, 1)n−1, f(x′) < x′ < f(x′) + H}, with a constant C depending only on H and the
Lipschitz constant L of f .

To see this consider the obvious bilipschitz homeomorphism φ from (0, 1)n−1× (0, H) to U given
by φ(y) = (y′, f(y′) + yn), and for given u : U → IRm consider the pullback

ũ(y) := u(φ(y)), y ∈ (0, 1)n−1 × (0.H).

Then
|∇ũ| = |(∇u)(φ(·))∇φ| ≤ L|(∇u)(φ(·))|.
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Applying Step 1 with u and λ replaced by ũ and λ̃ := Lλ gives a map ṽ satisfying

|{y ∈ (0, 1)n−1 × (0, H) : ũ(y) �= ṽ(y)}| ≤ C(H)

λ̃p

∫
{y∈(0,1)n−1×(0,H) : |∇ũ|>λ̃}

|∇ũ|pdy

≤ C(H, L)

λp

∫
{x∈U : |∇u|>λ}

|∇u|pdx.

Finally let v(x) := ṽ(φ−1(x)), then the asserted estimates are immediate.

Step 3. The proposition holds for a general bounded Lipschitz domain.
By assumption U can be covered by open sets Ui, i = 1, . . . , I, such that either Vi := Ui ∩Ω is a

standard Lipschitz domain (up to a rigid rotation and translation) or Vi is a cube contained in U .
It follows from Steps 1 and 2 and the invariance of the assertion of the Theorem under translation,
rotation and dilation that there exist Lipschitz functions vi : Vi → IRm such that

Lip vi ≤ Cλ, |{x ∈ Vi : vi(x) �= u(x)}| ≤ C

λp

∫
{x∈Vi : |∇u|>λ}

|∇u|p dx. (144)

Now consider a partition of unity {φi} subordinate to the cover {Ui}, i.e., φi ∈ C∞
0 (Ui),

∑
i φi = 1

in U , 0 ≤ φ ≤ 1. By trivial arguments each vi can be extended to a Lipschitz function on IRn

with Lipschitz constant bounded above by Lip vi times a constant depending only on the target
dimension m. For ease of notation we appeal to Kirzbraun’s Theorem which says that this constant
can in fact be chosen equal to 1. Let

v =
∑

i

φivi.

Since v − u =
∑

i(vi − u) we have

|{x ∈ U : v(x) �= u(x)}| ≤∑
i

|{x ∈ U : φi(vi − u) �= 0}|

≤∑
i

|{x ∈ Vi : vi �= u}| ≤ C

λp

∫
{x∈U : |∇u|>λ}

|∇u|pdx.

Moreover
|∇v| ≤∑

i

φi|∇vi| +
∣∣∣∑

i

vi ⊗∇φi

∣∣∣ ≤ Cλ +
∣∣∣∑

i

vi ⊗∇φi

∣∣∣. (145)

Now
∑

i ∇φi = ∇∑
i φi = 0. Hence for x ∈ Uj∣∣∣φj

∑
i

vi ⊗∇φi

∣∣∣ = ∣∣∣φj

∑
i

(vi − vj) ⊗∇φi

∣∣∣ ≤ C
∑

{i : Vi∩Vj 
=∅}
|vi − vj |. (146)

Let α := min{|Vi ∩ Vj| : Vi ∩ Vj �= ∅} > 0. Assume first that the following inequality holds (with
C as in (144))

C

λp

∫
{x∈U : |u|>λ}

|∇u|p dx <
α

4
. (147)

Then there exists x ∈ Vi ∩ Vj such that vi(x) = vj(x) = u(x). Hence

sup
Vi∩Vj

|vi − vj | ≤ (Lip vi + Lip vj) diam U ≤ Cλ
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whenever Vi ∩ Vj �= 0. Combining this estimate with (145) and (146), we infer |∇v| ≤ Cλ. On the
other hand, if (147) fails then

1

λp

∫
{x∈U : |∇u|>λ}

|∇u|p dx ≥ α

4C
.

Therefore the assertion of the Theorem holds with v = 0 since

|{x ∈ U : u �= v}| ≤ |U | ≤ 4|U |C
α

1

λp

∫
{x∈U : |∇u|>λ}

|∇u|p dx.

The proof of the proposition is complete. �

In the Γ−convergence arguments in Theorems 6.1 and 6.2 we needed to truncate W 2,p
0 functions,

in order to cover the general case of stored-energy functions W not required to satisfy any growth
condition from above; readers only interested in the case of W ′s with quadratic growth may skip
the result below, which was then not needed.

Proposition A.2 Let 1 ≤ p ≤ ∞, λ > 0. Let S be a bounded Lipschitz domain in IRn and let Γ
be a closed subset of ∂S which satisfies

Hn−1(B(x̄, r) ∩ Γ) ≥ crn−1, ∀x̄ ∈ Γ, 0 < r < r0, (148)

where c > 0.
(i) Suppose u ∈ W 1,p(S) with

u = 0 on Γ (149)

in the sense of traces. Then there exists uλ ∈ W 1,∞(S) such that

uλ = 0 on Γ

and

‖uλ‖W 1,∞ ≤ C(p, S) λ,

|{x ∈ S : uλ(x) �= u(x)}| ≤ C(p)

λp

∫
{|u|+|∇u|≥λ/2}

(|u| + |∇u|)p dx. (150)

In particular,
lim
λ→0

(
λp meas{x ∈ S : uλ(x) �= u(x)}

)
= 0. (151)

Moreover we can achieve uλ ∈ C1(S̄).
(ii) Suppose u ∈ W 2,p(S) with

u = ∇u = 0 on Γ.

Then there exists uλ ∈ W 2,∞(S) such that

uλ = ∇uλ = 0 on Γ
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and

‖uλ‖W 2,∞ ≤ C(p, S) λ,

|{x ∈ S : uλ(x) �= u(x)}| ≤ C(p)

λp

∫
{|u|+|∇u|+|∇2u|≥λ/2}

(|u| + |∇u| + |∇2u|)p dx. (152)

In particular,
lim
λ→0

(
λp meas{x ∈ S : uλ(x) �= u(x)}

)
= 0. (153)

Remarks.

i) For S = IRn this result was obtained by Liu [31] and Ziemer [42], building on earlier work of
Calderon and Zygmund. The main point here is to preserve the boundary condition.

ii) A corresponding result holds for W k,p(S). We have limited ourselves to k = 1 and k = 2 to
avoid more heavy notation. For k = 1 and Γ = ∂S the argument is simpler since one can use
Kirszbraun’s theorem on the extension of Lipschitz functions (see, [15]).

iii) Condition (148) states that the Hn−1 measure of the rescaled sets 1
r
(−x̄ + Γ ∩ B(x̄, r)) is

uniformly bounded from below. In fact for 1 < p ≤ n it suffices to assume that the Riesz
capacity R1,p is uniformly bounded from below since in this case one still has a (local) Poincaré
inequality; for p < n see e.g. [42], Corollary 4.5.3. Lewis [30] calls such sets Γ locally uniformly
fat and establishes a number of interesting properties including a Hardy inequality (which is
stronger the the local Poincaré inequality) for 1 < p ≤ n. For p > n no condition on Γ
(beyond compactness) is needed since in this case u (and, for k = 2, also ∇u) are Cα and a
Poincaré inequality holds in B(0, 1) as long as we fix the value at one point.

Proof. The proof follows closely the presentation in Ziemer [42]. We only consider assertion (ii)
since the proof of (i) is simpler. We first extend u to a function in W 2,2(IRn) with compact support
(see e.g. [39]). Let

a = |u| + |∇u| + |∇2u|, (154)

and let Ma be the maximal function of a:

Ma(x) = sup
r>0

−
∫

B(x,r)
a(y) dy. (155)

Consider the good set

Aλ = {x ∈ IRn : Ma(x) < λ and x is a Lebesgue point of u,∇u and ∇2u}. (156)

We have that meas (IRn \ Aλ) ≤ λ−p‖Ma‖p
Lp ≤ λ−p‖a‖p

Lp for p ≥ 1. In fact, a covering argument
(see Evans and Gariepy [17]) gives the stronger estimate,

λp meas (IRn \ Aλ) ≤ C
∫
{a>λ/2}

|a|p dx → 0 as λ → 0. (157)
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By the Poincaré inequality we have for a.e. x ∈ Aλ (see, e.g. Ziemer [42], Theorem 3.4.1)(
−
∫

B(x,r)
|u(y)− u(x) −∇u(x)(y − x)|p dy

) 1
p

≤ C r2 Ma(x) ≤ C r2 λ. (158)

Removing if necessary a set of measure zero from Aλ, we assume from now on that (158) holds for
every x ∈ Aλ. We claim that for x, z ∈ Aλ,

|u(z) − u(x) −∇u(x)(z − x)| ≤ C λ |z − x|2,
|∇u(z) −∇u(x)| ≤ C λ |z − x|. (159)

This follows from Ziemer [42], Theorem 3.5.7. We recall the argument since we will use similar
reasoning below. Replacing u by ũ(ξ) = u(x+z

2
+ δ ξ) where δ = |x − z| we may assume that

|z − x| = 1, z = −x. Let
Px(y) = u(x) + ∇u(x)(y − x) (160)

and apply (158) for x and z with r = 1. Since the intersection B(x, 1) ∩ B(z, 1) contains the ball
B(0, 1

2
) we conclude from the triangle inequality that,(∫

B(0, 1
2
)
|Pz(y) − Px(y)|p dy

) 1
p

≤ Cλ. (161)

This implies that the coefficients of Px − Pz are bounded by Cλ, i.e.,

|∇u(z) −∇u(x)| ≤ Cλ,

|u(z) −∇u(z)z − u(x) −∇u(x)x| ≤ Cλ, (162)

and this proves (159). We next claim that for x ∈ Aλ

|u(x)| ≤ C λ d(x)2, |∇u(x)| ≤ C λ d(x), (163)

where d(x) = dist(x, Γ).
To see this let x̄ ∈ Γ be a point with |x − x̄| = d(x). By assumption

Hn−1(B(x, 2d(x)) ∩ Γ) ≥ Hn−1(B(x̄, d(x)) ∩ Γ) ≥ c dn−1(x). (164)

With the rescaling

ũ(ξ) =
1

d(x)2
u(x + d(x)ξ), Γ̃ =

1

d(x)
(−x + Γ), (165)

it is sufficient to show (163) for x = 0, d(x) = 1, u = ũ with ũ = ∇ũ = 0 on Γ since (163) is
invariant under this rescaling. Now Hn−1(Γ̃) ≥ c so we can apply the Poincaré inequality (see e.g.
[42], Cor. 5.12.8 and Cor. 4.5.3 and use that for p > 1 positive Hn−1 measure implies positive B1,p

capacity). ∫
B(0,2)

|ũ|p dx ≤ C
∫

B(0,2)
|∇ũ|p dx ≤ C

∫
B(0,2)

|∇2ũ|p dx ≤ Cλp. (166)

Combining this with (158) applied with u = ũ, x = 0 and r = 2 we find that(∫
B(0,2)

|Px(y)|p dy

) 1
p

≤ Cλ. (167)
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This yields the desired estimates for the coefficients of Px and thus (163).
Now define the extension uλ in two steps. If meas (IRn \ Aλ) = 0, we can take uλ = u. If

meas (IRn \ Aλ) > 0 then there exists a closed subset Ãλ of Aλ ∩ S such that meas (IRn \ Ãλ) ≤
2 meas (IRn \ Aλ). Let Bλ = Ãλ ∪ Γ and define on Bλ the function

v(x) =

{
u(x) if x ∈ Ãλ

0 if x ∈ Γ.
(168)

Combining (159) – (163) we see that for x, y ∈ Bλ,

|v(z) − Px(z)| ≤ Cλ|z − x|2, |∇Pz −∇Px| ≤ Cλ|z − x|, (169)

where

Px(z) =

{
u(x) + ∇u(x)(z − x) if x ∈ Ãλ,
0 if x ∈ Γ

(170)

Note also that the definition of Ãλ immediately implies that

|v| + |∇v| ≤ λ on Bλ. (171)

We will show that (169) implies that v has an extension ṽ : IRn → IR which satisfies ṽ|Bλ = v and

|ṽ(y) − Px(y)| ≤ Cλ|y − x|2 ∀x ∈ Bλ, ∀y ∈ IRn. (172)

Then Theorem 3.6.2 of Ziemer [42] guarantees that there exists uλ ∈ W 2,∞(IRn) such that

uλ = ṽ = v on Bλ, (173)

and ‖uλ‖W 2,∞ ≤ Cλ. In fact one can define uλ by mollification,

uλ(x) =
∫

IRn
ρ−n(x) ϕ

(
x − y

ρ(x)

)
ṽ(y) dy, (174)

where ρ is a smooth approximation of the distance function (i.e., ρ ∈ C∞(IRn \Bλ), c dist(x, Bλ) ≤
ρ(x) ≤ C dist(x, Bλ), |Dαρ| ≤ Cαρ1−|α|) and ϕ ∈ C∞

0 has the property ϕ�P = P for all polynomials
P of degree one (see [42], Lemmas 3.6.1 and 3.5.6 for the existence of ρ and ϕ). Note that Ziemer’s
construction only extends v to a neighborhood of Bλ of size 1. We may, however, assume without
loss of generality that diam S < 1 so that his construction suffices.

It remains to construct the extension ṽ. We assume for simplicity that

|v(z) − Px(z)| ≤ |z − x|2, |∇Pz −∇Px| ≤ |z − x| (175)

for x, z ∈ Bλ. The general situation is easily recovered by scaling. We define, for y ∈ IRn,

ṽ(y) = sup
x∈Bλ

Px(y) − M |y − x|2, (176)

where M > 1 will be chosen later. It follows from (175) that ṽ = v on Bλ and we have the trivial
bound,

ṽ(y) ≥ Px(y) − M |y − x|2 ∀x ∈ Bλ, ∀y ∈ IRn. (177)
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To prove an upper bound we first note that (175) and the closedness of Bλ imply that the supremum
in the definition of ṽ is attained at x̄(y). Taking into account that v(z) = Pz(z) for z ∈ Bλ and
that Px is affine we have for x, x̄ ∈ Bλ,

|Px̄(y) − Px(y)| = |Px̄(x̄) − Px(x̄) + ∇Px̄(y − x̄) −∇Px(y − x̄)|,
≤ |x − x̄|2 + |x − x̄||y − x̄|,
≤ 3

2
|x − x̄|2 +

1

2
|y − x̄|2. (178)

Together with the trivial estimate |x − x̄| ≤ |x − y| + |y − x̄|, this gives,

ṽ(y) = Px̄(y) − M |y − x̄|2,
≤ Px(y) + (

7

2
− M)|y − x̄|2 + 3|y − x|2. (179)

Taking M = 4 and using (177) we arrive at the desired assertion, |ṽ(y)− Px(y)| ≤ 4|y − x|2, ∀x ∈
Bλ, ∀y ∈ IRn.

To see that in (i) we can choose the functions uλ of class C1 we first note that for each ε > 0
there exist a C1 function vλ such that |meas{uλ �= vλ}| < ε and ||∇vλ||L∞ ≤ C||∇uλ||L∞, where C
only depends on n (see e.g. [17], Chapter 6.6.1, Thm. 1). In particular |vλ − uλ| ≤ δ := Cλε1/n

since the set where the two functions do not agree cannot contain a large ball. Let ρ be the smooth
distance function from Γ and define wλ = (η ◦ ρ)vλ. Here η : IR → [0, 1] is a smooth function which
vanishes on [0, δ1/2), is identically 1 on (2δ1/2,∞) and satisfies η′ ≤ 2δ−1/2. If we choose ε small
enough (and replace λ by λ/C) then wλ has all the desired properties. �

Proposition A.3 Let S be as in Proposition A.2 and let T be an open subset of S which satisfies

Hn(B(x̄, r) ∩ T ) ≥ crn, ∀x̄ ∈ T̄ , 0 < r < r0. (180)

Then the assertions of Proposition A.2 hold if the boundary conditions u = 0 on Γ and u = ∇u = 0
on Γ are replaced by

u = 0 on T (181)

and
u = ∇u = 0 on T, (182)

respectively.

Proof. The proof the same as Proposition A.2. To derive (163) we now apply a Poincaré inequality
for functions which vanish on a set of positive measure. �
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