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Abstract

Let p∗ = n/(n − 2) and n ≥ 3. In this paper, we first classify all non-constant solutions of⎧⎨
⎩

−∆u = up∗
+ in Rn,∫

Rn

up∗
+ dx < ∞.

We then establish a sup+ inf and a Moser-Trudinger type inequalities for the equation
−∆u = up∗

+ . Our results illustrate that this equation is much closer to the Liouville problem
−∆u = eu in dimension two than the usual critical exponent equation, namely −∆u = u

n+2
n−2

is.

1 Introduction

The Liouville equation in dimension two

−∆u = Keu (1)

and related problems have been extensively studied in the last twenty years. This equation
arises in many mathematical and physical problems, for instance, in the problem of prescribing
Gaussian curvature and Chern-Simons Higgs models. To understand the convergence or the
blow-up phenomenon of its solutions, a crucial step is the classification of bounded energy
solutions:

−∆u = eu in R
2,

∫
R2

eudx < ∞, (2)

which was obtained by Chen and Li in [9] (see other proofs in [11, 8, 15]). More precisely, all
solutions of (1) are in the form

φλ,x0(x) =
ln(32λ2)

(4 + λ2|x − x0|2)2 with λ > 0 and x0 ∈ R
2.

For the classification results of other related problems, see for instance [7, 20, 30]. The usual
higher dimensional analogue of (2) is

−∆u = u
n+2
n−2 in R

n (n ≥ 3), (3)
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which is a limit equation of semilinear equations involving the critical exponent of the Sobolev
inequality. Among them, the Yamabe equation is an important example. The classification of
positive solutions of (3) was obtained by Caffarelli, Gidas and Spruck in [6] (see also in [9]).

In this paper, we consider the equation

−∆u = up∗
+ in R

n (n ≥ 3), (4)

where u+ = max{0, u} and p∗ = n/(n − 2). This equation is a limit equation of the following
equation ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−∆u = M

up∗
+∫

Ω
up∗

+ dx
in Ω,

u|∂Ω = c, an unknown constant.

(5)

Equation (5) arises in the study of the free boundary problem, see [3, 31, 32]. The aim of this
paper is to show that the equation (4) (or (5)) is much closer to (1) than (3) is. We present here
a list of the similarities between these two equations:

1. Both equations (1) and (4) have a group of gauge which keep invariant the energy and the
equation.

2. Classification of bounded energy solution in whole space.

3. Existence of a sup+ inf type inequality.

4. Existence of a Moser-Trudinger type inequality.

5. Behaviors of blow-up solutions with or without Dirichlet boundary conditions.

In fact, for the equation −∆u = eu, if we define uλ(x) = u(λx) + 2 ln λ, we see easily that

−∆uλ = euλ and
∫
Ω

eudx =
∫
Ωλ

euλdx,

where Ωλ = Ω/λ = {y ∈ R2, λy ∈ Ω}. For the general problem −∆u = up with p > 1,
the equation remains unchanged under the transformation u(x) �→ uλ(x) = λqu(λx) with q =
2/(p − 1). But if we require further that∫

Ω
updx =

∫
Ωλ

up
λdx,

the only possibility is then p = n/(n − 2).

It is clear that (4) has no positive solution, since p∗ is subcritical with respect to the Sobolev
exponent n+2

n−2 , see [13]. Here we consider its bounded energy solutions:

−∆u = up∗
+ in R

n and
∫

Rn
up∗

+ dx < ∞. (6)

The bounded energy condition is very natural for the corresponding variational problem of (5),
see also the Moser-Trudinger inequality below.
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Theorem 1 Any non-trivial C2 solution u of (6) is rotationally symmetric. Moreover, there
are λ ∈ (0,∞) and x0 ∈ Rn such that

u(x) =

{
λn−2φ(λ|x − x0|) if λ|x − x0| ≤ r∗,
ω−1

n−1M
∗
n(|x − x0|2−n − (λ−1r∗)2−n)/(n − 2) if λ|x − x0| > r∗,

(7)

where ωn−1 is the volume of the unit (n − 1)-sphere, r∗ denotes the first zero of the unique
solution φ of {

φ′′(r) + n−1
r φ′(r) + φp∗(r) = 0,
φ(0) = 1, φ′(0) = 0,

(8)

and

M∗
n = ωn−1

∫ r∗

0
φp∗(r)rn−1dr. (9)

In particular, any solution satisfies ∫
Rn

up∗
+ = M∗

n.

Without the boundedness of energy, one can easily construct other solutions.

The sup+ inf type inequality for the Liouville equation (1) in dimension two was established
in [25] (see further developments in [4, 10]), while a sup× inf type inequality was established
for positive solutions of equation (3) in [24], see also [17]. Here we present a sup+ inf type
inequality for (4).

Theorem 2 Let K be a compact subset of Ω, a bounded domain in Rn. Then there exist two
positive constants C1(n) and C2(K,T ) such that

sup
K

u + C1 inf
Ω

u ≤ C2,

for any C2 solution u of (4) in Ω satisfying∫
Ω

up∗
+ dx ≤ T < ∞.

In dimension two, we have the well-known Moser-Trudinger inequality. Namely, for any
bounded domain Ω of R2 (or for any compact Riemannian surface), there is a constant C(Ω)
such that for any u ∈ H1

0 (Ω), ∫
Ω

e4πu2/‖∇u‖2
2 dx ≤ C(Ω),

which implies that

J(u) =
1
2

∫
Ω
|∇u|2dx − 8π log

∫
Ω

eudx ≥ −C, ∀ u ∈ H1,2
0 (Ω). (10)

Thus we can minimize associate functional to get solutions of the equation −∆u = Meu/

∫
Ω

eudx

with Dirichlet boundary condition when M < 8π. Inequality (10) is a slightly weaker, but
applicable form of the Moser-Trudinger inequality. We are interested in such type inequalities.
See other Moser-Trudinger type inequalities for the Liouville equation in [27, 16, 26]. The
Moser-Trudinger inequality has a higher dimensional analogue, which is the well-known Sobolev
inequality. Here, we present another higher dimensional generalization of the Moser-Trudinger
inequality, which looks more like the ordinary one.
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Theorem 3 Let Ω be any bounded smooth domain in Rn and

V (Ω) =
{

v ∈ H1(Ω) s.t. v|∂Ω
= constant,

∫
Ω

vp∗
+ dx = 1

}
.

Define

IM,Ω(u) =
1
2

∫
Ω
|∇u|2dx − M

p∗ + 1

∫
Ω

up∗+1
+ dx + Mu|∂Ω

(11)

for u ∈ V (Ω). Then

inf
u∈V (Ω)

IM,Ω(u) > −∞ if and only if M ≤ E∗
n,

where E∗
n = (M∗

n)2/n with M∗
n the constant given by (9).

Remark. Some similar functionals have been considered in [3, 28, 32]. Especially, in [32], a free
energy formulation of Thereom 3 was provided.1 Our proof is more direct and more precise.

The convergence of solutions of (4) (or (5)) is also more close to that of the Liouville equation.
Here we obtain a Brezis-Merle type result for equation (4).

Theorem 4 Let Ω be a bounded regular domain of Rn and uk be a sequence of regular solutions
satisfying ⎧⎨

⎩
−∆uk = (uk)p

∗
+ in Ω,∫

Ω
(uk)p

∗
+ dx ≤ T < ∞.

(12)

Then passing to a subsequence (denoted also by uk), we have one of the following possiblities

(1) uk is bounded in L∞
loc(Ω);

(2) uk tends to −∞ uniformly on compact set of Ω;

(3) there exists a finite subset S = {x1, x2, . . . , xm} ⊂ Ω such that uk tends to −∞ on compact
set of Ω\S. Moreover, (uk)p

∗
+ converges to

∑
i αiδxi in the sense of measure, with αi ≥ M∗

n,
∀ 1 ≤ i ≤ m.

Theorem 4 can be improved as in [19].

Theorem 5 In Theorem 4, if case (3) holds, then αi = M∗
nli with li ∈ N∗.

Theorem 5 is a generalization of the result obtained in [19] for the Liouville equation, see
also [18, 21, 33]. Our results illustrate that as a higher dimensional analogue, equation (4) is
more close to equation (2) than (3) is. There are other results to support our conclusion, see for
instance [32, 29]. The peculiarity of the index p∗ was noticed by many mathematicians, see for
example [3], [1] and [22]. We believe that many results obtained for two dimensional problems
will be naturally generalized to higher dimensional problems involving (6) or (5).

Part of the work was carried out while the first author was visiting Mathematics department
of Université de Cergy-Pontoise. He would like to thank the department for the hospitality.

1Our work is partly inspired by [32].
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2 A classification of solutions

Proposition 1 Any C2 solution u of (6) satisfies supx∈Rn u < ∞.

To prove the Proposition, we need several lemmas.

Lemma 1 Let BR be the ball of radius R, centered at the origin. Suppose that u ∈ C2(BR)
satisfies ⎧⎪⎪⎨

⎪⎪⎩
−∆u = up∗

+ in BR

u(x0) = 1 for some x0 ∈ BR/2

u ≤ A in BR.

Then there exists a positive constant C depending only on A and R such that

u(x) ≥ −C in BR/4.

Proof. Let u1 and u2 be solutions of{
−∆u1 = up∗

+ in BR

u1 = 0 on ∂BR,
(13)

and { −∆u2 = 0 in BR

u2 = u on ∂BR.
(14)

It is easy to see u = u1+u2 and 0 ≤ u1 ≤ C(R)Ap∗ . Furthermore, u2 ≤ A by maximum principle
and maxBR/2

u2 ≥ 1 − C(R)Ap∗ . Applying Harnack’s inequality to the nonnegative harmonic
function A − u2, we have

min
BR/4

u ≥ min
BR/4

u2 ≥ C

(
max
BR/2

u2 − A

)
+ A ≥ −C,

where C depends only on A and R.

Lemma 2 There exist constants C, δ > 0 such that for any u satisfying⎧⎨
⎩

−∆u = up∗
+ in B1∫

B1

up∗
+ dx < δ,

(15)

we have
max

x∈B1/4

u(x) < C.

Proof. Here, we use a trick of Schoen [23]. Notice that the energy ‖u+‖p∗ remains unchanged
under the transformation u �→ λn−2u(λx). Suppose that the result is false, then there exists a
sequence uk satisfying −∆uk = (uk)p

∗
+ in B1,∫

B1

(uk)p
∗

+ dx ≤ 1
k

and max
x∈B1/4

uk(x) ≥ k
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Consider hk(y) = (1/2 − r)n−2uk(y) with r = |y| and hk(yk) = maxB1/2
hk(y), then

(1/2 − rk)n−2uk
+(yk) ≥ (1/4)n−2 max

x∈B1/4

uk(x) ≥ (1/4)n−2k (16)

where rk = |yk|. Define wk(y) = λn−2
k uk(yk + λky) in Bµk/2, with

σk = (1/2 − rk), µn−2
k = hk(yk) = σn−2

k uk
+(yk) and λk = σk/µk.

Notice that for y ∈ Bσk/2(yk), we have (1/2 − |y|) ≥ σk − |y − yk| ≥ σk/2, therefore µn−2
k ≥

(σk/2)n−2uk(y) in Bσk/2(yk). Thus⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∆wk = (wk)p
∗

+ in Bµk/2∫
Bµk/2

(wk)p
∗

+ dx =
∫

Bσk/2(yk)
(uk)p

∗
+ dx ≤ 1/k

wk(0) = 1
wk(x) ≤ 2n−2 in Bµk/2.

(17)

Since µk → ∞ by (16), from Lemma 1 and the standard elliptic theory, we can obtain a
subsequence, noted always by wk such that wk converges in C2

loc(R
n) to w, which satisfies

⎧⎪⎨
⎪⎩

−∆w = 0 in Rn

w(0) = 1
w(x) ≤ 2n−2 in Rn.

(18)

So w is a harmonic function bounded above in Rn, hence w ≡ 1 in Rn. We reach clearly a
contradiction with the local uniform convergence of wk to w and the convergence of wk

+ to 0 in
Lp∗

loc(R
n). The lemma is thus established.

The proof of Proposition 1 follows readily from Lemma 1 and Lemma 2. By Proposition 1,
we have the following representation formula:

Proposition 2 Any C2 solution u of (6) satisfies

u(x) =
1

(n − 2)ωn−1

∫
Rn

|x − y|2−nup∗
+ (y)dy − c, (19)

for some positive constant c. Moreover, for large x, u satisfies

u(x) = −c + c0|x|2−n + o(|x|2−n), where c0 =
1

(n − 2)ωn−1

∫
Rn

up∗
+ dx. (20)

Proof. Define
ω(x) =

1
(n − 2)ωn−1

∫
Rn

|x − y|2−nup∗
+ (y)dy

Since u+ ∈ L∞ ∩ Lp∗(Rn), by Hölder’s inequality ω is well-defined. Obviously, ω ≥ 0 and
−∆ω = up∗

+ in Rn. Hence u − ω is harmonic and bounded from above by Proposition 1, then
there exists a constant c such that u = ω + c.
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Claim 1: c < 0. Suppose the contrary, we get u ≥ 0, so u is a non trivial solution of
−∆u = up∗ in Rn, which is impossible since p∗ is subcritical, see [13].

Claim 2: lim|x|→∞ ω(x) = 0. The proof is standard using the fact u+ ∈ L∞ ∩ Lp∗(Rn), thus
u+ ∈ Lq(Rn) for any p∗ ≤ q ≤ ∞.

By these two claims, we get that the support of u+ is compact, since lim|x|→∞ u = c < 0.
Now it is easy to check that when |x| tends to ∞

|x|n−2ω(x) =
1

(n − 2)ωn−1

∫
supp(u+)

|x|n−2up∗
+

|x − y|n−2
dy −→ 1

(n − 2)ωn−1

∫
supp(u+)

up∗
+ dy.

Proof of Theorem 1. Define f(t) = (t − c)p
∗

+ with c the positive constant in Proposition 2. We
notice that f is a C1 function in R and is nonincreasing in a neighborhood of 0. Moreover, ω
satisfies ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−∆ω = f(w) in Rn

ω > 0 in Rn

lim
|x|→∞

ω(x) = 0.
(21)

The classical result of moving plane insures the symmetry of ω.

Remark. We see that our proof works also to classify all bounded energy solutions of −∆u = up
+

with p ∈ [1, p∗). The rotational symmetry of solutions of −∆u = up
+ for more general p > 1 was

proved in [14], under some additional assumptions that solutions are bounded from above and
the Morse index i(u) is finite.

Using Theorem 1, we can refine Lemma 2 as follows:

Proposition 3 For any δ ∈ (0,M∗
n), there exists a constant C such that any solution of (15)

satisfies maxx∈B1/4
u(x) < C.

3 sup + inf type inequalities

In this section, we prove Theorem 2. As in [19], one can reduce the proof of Theorem 2 to the
following lemma.

Lemma 3 There exist two positive constants C1 and C2 such that for any C2 solution u of

−∆u = up∗
+ in B1,

∫
B1

up∗
+ dx ≤ T < ∞,

we have u(0) + C1 infB1 u ≤ C2.

Proof. Suppose it is false, then for any C > 0, we get a sequences uk such that −∆uk = (uk)p
∗

+

in B1 and ∫
B1

(uk)p
∗

+ dx ≤ T < ∞, uk(0) + C inf
B1

uk ≥ k.

Thus we have uk(0) tends to ∞ as k → ∞. As in the proof of Lemma 2, we consider the sequence
of functions hk(x) = (1 − r)n−2uk(x), define µn−2

k = hk(yk) = maxB1
hk, σk = (1 − |yk|) and

7



λk = σk/µk. If we denote wk(y) = λn−2
k uk(yk + λky) in Bµk/2, then we can get a subsequence

(still denoted by uk) which converges in C2
loc(R

n) to a function w, satisfying
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∆w = wp∗
+ in Rn∫

Rn
wp∗

+ dx ≤ T

w(0) = 1
w(x) ≤ 2n−2 in Rn.

(22)

Applying Theorem 1, w(x) is given by (7). Since w(0) = 1 and w(x) ≤ 2n−2, then λ ∈ [1, 2].
Hence for C1(n) and R(n) large enough, we must have w(0)+C1 inf∂BR

w < 0. Moreover, by the
local convergence of wk to w, we deduce that for k sufficiently large, wk(0) + C1 inf∂BR

wk < 0.
Using the definition of yk and noting that uk is super-harmonic, then (for k large enough),

uk(0) + C1 inf
B1

uk ≤ uk(yk) + C1 inf
B(yk ,λkR)

uk = λ2−n
k

(
wk(0) + C1 inf

BR

wk
)

< 0.

This contradicts the choice of uk when C ≥ C1, the proof is done.

Remark. More precisely, we can take C1 as any constant greater than (n−2)(2r∗)n−2ωn−1/M
∗
n.

Otherwise, using the transformation, we can state that for the same C1, C2 and any r ∈ (0, 1),

u(0) + C1 inf
Br

u ≤ C2r
2−n.

Proof of Theorem 2. For K ⊂⊂ Ω, ∃ λ0 > 0 such that for any x ∈ K, B(x, λ0) ⊂ Ω. Suppose
that x0 ∈ K realize supK u(x), we define v(x) = λn−2

0 u(x0 + λ0x) in B1. Since

u(x0) + C1 inf
Ω

u ≤ u(x0) + C1 inf
B(x0,λ0)

u = λ2−n
0

(
v(0) + C1 inf

B1

v

)
,

we get supK u + C1 infΩ u ≤ C2λ
2−n
0 by the above lemma.

4 Blow-up Analysis

Proof of Theorem 4. Our proof is inspired by that in [5]. Passing to a subsequence, we can
assume that (uk)p

∗
+ converges to a bounded nonnegative measure µ, in the sense of measure.

Denote
S = {x ∈ Ω s.t. µ({x}) ≥ M∗

n}
and

Σ = {x ∈ Ω s.t. ∃ xk ∈ Ω satisfying xk → x, uk(xk) → ∞}.

Step 1. Ω \ S = Ω \ Σ, i.e. S = Σ and card(S) ≤ T/M∗
n.

If x0 ∈ Ω such that µ({x0}) < M∗
n, then there is r0 > 0 such that µ(B(x0, r0)) < M∗

n. Thus
for k sufficiently large, ∫

B(x0,r0)
(uk)p

∗
+ dx ≤ δ < M∗

n.
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Applying Proposition 3 to rn−2
0 uk(x0+r0x), we get C satisfying maxB(x0,r0/4) uk ≤ Cr2−n

0 , hence
(uk)+ is bounded in L∞(B(x0, r0/4)) and x0 �∈ S. On the other hand, if x0 ∈ Ω \ Σ, we get
r0 > 0 such that (uk)+ is bounded in L∞(B(x0, r0/4)). Clearly this implies that

lim
r→0

lim sup
k→∞

∫
B(x0,r)

(uk)p
∗

+ dx = 0.

This means that µ({x0}) = 0, so x0 �∈ S.

Step 2. S = ∅ implies that case (1) or (2) occurs.

By Step 1, (uk)+ in bounded in L∞
loc(Ω), therefore µ ∈ L1 ∩ L∞

loc(Ω). Define
{

−∆vk = (uk)p
∗

+ in Ω
vk = 0 on ∂Ω

and

{ −∆v = µ in Ω
v = 0 on ∂Ω.

(23)

We have then vk converges uniformly to v on compact set of Ω, hence wk = uk −vk is a sequence
of harmonic function bounded above on each compact subset of Ω. Using Harnack’s principle,
we get a subsequence (denoted also by wk) such that

(i) either wk is bounded in L∞
loc(Ω), which corresponds to case (1);

(ii) or wk tends to −∞ uniformly on compact set of Ω, corresponding to case (2).

Step 3. S �= ∅ implies that case (3) holds.

By Step 1, (uk)+ is bounded in L∞
loc(Ω\S). Consider vk, v defined by (23) and wk = uk −vk.

Analogously, vk is bounded in L∞
loc(Ω \ S), and after passing to a subsequence, either wk is

bounded is L∞
loc(Ω \ S) or wk tends uniformly to −∞ on compact set of Ω \ S. Now we prove

that the first case cannot occur. Suppose the contrary, we choose x1 ∈ S and r > 0 such that
B(x1, r) ∩ S = {x1}, thus there is a constant C > 0 such that uk ≥ −C on ∂B(x1, r). Consider{

−∆zk = (uk)p
∗

+ in B(x1, r)
zk = −C on ∂B(x1, r)

and

{ −∆z = µ in B(x1, r)
z = −C on ∂B(x1, r).

(24)

Thus zk → z a.e. in B(x1, r) and zk ≤ uk in B(x1, r). Moreover, since µ({x1}) ≥ M∗
nδx1 ,

z(x) ≥ M∗
n

c(n)
1

|x − x1|n−2
+ O(1)

where c(n) is a constant depending only on n. Therefore∫
B(x1,r)

zp∗
+ dx = ∞ because zp∗

+ ≥ C

|x − x1|n near x1.

On the other hand, by Fatou’s lemma,∫
B(x1,r)

zp∗
+ dx ≤ lim inf

∫
B(x1,r)

(zk)
p∗
+ dx ≤ lim inf

∫
B(x1,r)

(uk)p
∗

+ dx ≤ T,

which gives a contradiction. Thus wk tends to −∞ on compact set of Ω \ S, so is uk.
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Proof of Theorem 5. The proof is rather technical and very similar to that in [19], so we give
here only the proof of crucial step.

Proposition 4 Let R > 0, uk be a sequence of functions satisfying −∆uk = (uk)p
∗

+ in BR such
that maxBR

uk → ∞, maxBR\Br
uk → −∞ with any r ∈ (0, R). In addition, assume that

lim
k→∞

∫
BR

(uk)p
∗

+ dx = α and uk(x)|x|n−2 ≤ C0 < ∞,

then α = M∗
n. There exist also positive constants C, k0 such that for any k ≥ k0, uk ≤ 0 in

BR \ BCδk
where δ2−n

k = maxBR
uk.

Proof. Let u be any solution −∆u = up∗
+ satisfying u(x)|x|n−2 ≤ C0 in BR. By Lemma 3 and

the transformation, we have for any r > 0

u(0) + C1 inf
Br

u ≤ C2

rn−2
. (25)

Furthermore, for r ≤ R/2, v(x) = rn−2u(rx) satisfies

−∆v = vp∗
+ and v(x) ≤ 2n−2C0 in B2 \ B1/2.

Consider {
−∆w = vp∗

+ in B2 \ B1/2

w = 0 on ∂(B2 \ B1/2).
(26)

Clearly ‖w‖∞ ≤ C and ξ = v − w is a harmonic function bounded above by 2n−2C0. By
Harnack’s principle, we have positive constant β such that

sup
∂B1

(
2n−2C0 − ξ

)
≤ β−1 inf

∂B1

(
2n−2C0 − ξ

)
.

We deduce then
sup
∂B1

v ≤ β inf
∂B1

v + C. (27)

Associating (27) to (25), we obtain

sup
∂Br

u(x) ≤ C

rn−2
− βu(0)

C1
, ∀ r ≤ R/2. (28)

Now we return to our sequence of functions uk. Denote uk(xk) = δ2−n
k = maxBR

uk(x). By
uk(xk)|xk|n−2 ≤ C0, we get |xk| ≤ Cδk, we know also δk → 0. Applying (28) for the function
uk(xk + x) (defined on BR/2 for k large), we get constants C and k0 such that

for any k ≥ k0 and x ∈ BR/4 \ BCδk
, uk(x) ≤ 0. (29)

On the other hand, we have maxBR\BR/4
uk → −∞, so we can replace BR/4 by BR in (29).

Now it suffices to consider the sequence of functions vk(x) = δn−2
k uk(xk + δkx). by similar blow

up argument as before, it is easy to get that vk converges to ϕ(|x|) given by (8), uniformly on
compact set of Rn. The rest of proposition is then easy to be done.
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5 An Optimal inequality

In this section, we will prove Theorem 3, an optimal Moser-Trudinger type inequality. Let Ω
be any smooth domain in Rn and V (Ω), IM,Ω(u) be defined as in Theorem 3. Some similar
functionals have been considered in [3, 28, 32]. Our proofs and results here are more direct and
more precise. For studying the functional IM , we introduce two another ones:

J (u) =
‖∇u‖2

2‖u‖p∗−1
p∗

‖u‖p∗+1
p∗+1

and KM (u) =
1
2

∫
Ω
|∇u|2dx − M

p∗ + 1

∫
Ω
|u|p∗+1dx (30)

We denote

α0 = inf
H1

0∩Lp∗+1(Ω)
J (u) and βΩ(M) = inf

u∈H1
0 (Ω), ‖u‖p∗=1

KM (u).

Lemma 4 We have

(1) α0 is a positive constant independent of Ω.

(2) βΩ(M) is a decreasing function of M and βΩ(M) > 0 if and only if M < M1 = α0(p∗+1)/2.

Proof. For the positivity of α0, it suffices to note that 2/2∗ + (p∗ − 1)/p∗ = 1, where 2∗ =
2n/(n−2) is the critical exponent for Sobolev’s embedding of H1(Ω) into Lq(Ω), namely 1/2∗ =
1/2 − 1/n. By Hölder’s inequality, ‖u‖p∗+1

p∗+1 ≤ ‖u‖p∗−1
p∗ ‖u‖2

2∗ . Therefore,

α0 ≥ inf
H1(Rn)

J (u) ≥ inf
H1(Rn)

(‖∇u‖2

‖u‖2∗

)2

> 0.

We observe that J (u) remains unchanged under the transformation u(x) �→ λn−2u(x0 + λx) for
any λ ∈ Rn and x0 ∈ Rn. Associating with the density of C∞

0 (Rn) in H1(Rn) and the density
of C∞

0 (Ω) in H1
0 (Ω), we deduce that

α0 = inf
H1

0∩Lp∗+1(Ω)
J (u) = inf

H1(Rn)
J (u).

Assertions in (2) for the functional KM (u) are easy consequences of the definition of α0.

Remark. A natural question is to ask whether the constant α0 can be achieved. We claim
that the answer is negative when Ω is bounded. Suppose the contrary, then the infimum of
J is achieved by u in H1

0 (Ω). Extending u by 0, it is also a minimizer with compact support
in H1(Rn). Note that J is invariant under the transformation u �→ ξλn−2|u|(λx), for positive
constants ξ and λ, without loss of generality, we may assume that u ≥ 0 and ‖u‖p∗ = ‖u‖p∗+1 =
1. Taking R > 0 such that supp(u) ⊂ BR, then u satisfies the Euler-Lagrange equation⎧⎪⎨

⎪⎩
−2∆u = g(u) = α0(p∗ + 1)up∗ − α0(p∗ − 1)up∗−1 in BR

u ≥ 0 in BR

u = 0 on ∂BR.

(31)

The classical Pohozaev’s identity gives(
1 − n

2

)∫
BR

g(u)udx + n

∫
BR

G(u)dx = 2
∫

∂BR

R

(
∂u

∂ν

)2

dσ ≥ 0, (32)
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where G(u) =
∫ u

0
g(s)ds. Thus,

l.h.s. of (32) =
(

1 − n

2

)
α0 [(p∗ + 1) − (p∗ − 1)] + nα0

(
1 − p∗ − 1

p∗

)
= 0,

which implies that ∂u/∂ν = 0 on ∂BR. But this contradicts the fact u �≡ 0 in view of the Hopf
lemma.

5.1 The B1 case

Here we will prove Theorem 3 for the special case Ω = B1. In our proof, we need several times
the following construction: for v ∈ H1

0 (B1) and M ∈ R, set

vλ(x) =

⎧⎪⎨
⎪⎩

λ2−nv(x/λ) if 0 ≤ r = |x| ≤ λ,

M

(n − 2)ωn−1

(
r2−n − λ2−n

)
if λ ≤ r ≤ 1.

(33)

We remark that vλ|B1\Bλ
is the unique minimizer of the functional

1
2
‖∇u‖2

L2(B1\Bλ) + Mu|∂B1

in Λλ = {u ∈ H1(B1 \ Bλ) |u|∂Bλ
= 0, u|∂B1

= constant }. By a direct calculation, we find

Lemma 5 For any v ∈ H1
0 (B1), λ ∈ (0, 1] and M ∈ R, we have ‖(vλ)+‖p∗ = ‖v+‖p∗ and

IM,B1(vλ) = λ2−n(KM (v) − h(M)) + h(M), (34)

where

h(M) =
M2

2(n − 2)ωn−1
.

For simplicity, we denote β(M) = βB1(M), V = V (B1) and IM = IM,B1 . We show first the
existence of a critical value M such that IM (u) is bounded from below in V iff M ≤ M , then
we show that M is just E∗

n. The critical value M is determined as follows

Proposition 5 There exists a unique constant M ∈ (0,M1] such that β(M ) = h(M ). Moreover,
we have

(1) for any M < M , infV IM (u) > −∞ and it is achieved by a nonnegative function.

(2) for any M > M , infV IM (u) = −∞.

Proof. Clearly, β(M) is achieved in V for any M < M1, thus β is a decreasing continuous
function in (−∞,M1), so is β − h. Of course, β(0) − h(0) = β(0) is positive, we have also
limM↑M1 β(M) = β(M1).

Step 1: β(M1) ≤ h(M1).

If it is false, there exists c0 > 0 such that β(M1) = h(M1) + c0. Take any σ > 0, we
have u ∈ H1

0 (B1) such that ‖u‖p∗ = 1 and KM1+σ(u) < 0. By Schwarz symmetrization, we

12



can assume that u is a nonnegative decreasing radial function. Choose λ ∈ (0, 1) such that
c = ‖(u − u(λ))+‖p∗ = [M1/(M1 + σ)]1/(p∗−1), we define

v = (u − u(λ))+, v = v/‖v‖p∗ and w(x) = λn−2v(λx).

We have then v, w ∈ H1
0 (B1) with Lp∗-norm equal to 1, thus

KM1(v) = λ2−nKM1(w) ≥ λ2−nβ(M1) = λ2−n(h(M1) + c0). (35)

Using the choice of λ, KM1+σ(v) = c2KM1(v). Otherwise,

KM1+σ(u) −KM1+σ(v)

=
1
2

∫
B1\Bλ

|∇u|2dx − M1 + σ

p∗ + 1

∫
B1

up∗+1dx +
M1 + σ

p∗ + 1

∫
B1

vp∗+1dx

=
1
2

∫
B1\Bλ

|∇u|2dx − M1 + σ

p∗ + 1

∫
B1

(
up∗+1 − (u − u(λ))p

∗+1
+

)
dx

≥ 1
2

∫
B1\Bλ

|∇u|2dx − (M1 + σ)
∫

B1

up∗
+ u(λ)dx

=
1
2

∫
B1\Bλ

|∇u|2dx − (M1 + σ)u(λ)

≥ −h(M1 + σ)
(
λ2−n − 1

)
.

(36)

The first inequality follows form the convexity of function f(t) = tp
∗+1

+ and the second one from
the remark below (33). Combining (35) and (36), we get −c2(h(M1) + c0) ≥ −h(M1 + σ), e.g.

(M1 + σ)2

2(n − 2)ωn−1

(
M1 + σ

M1

)2/(p∗−1)

≥ M2
1

2(n − 2)ωn−1
+ c0,

which is impossible when σ is small enough. Thus β(M1) ≤ h(M1) and M exists uniquely in
(0,M1].

Step 2: For any M > M , the infimum of IM on V is −∞.

By the definition of M , there exists v ∈ V such that KM (v) < h(M). If we take vλ defined
by (33), we see that vλ ∈ V and IM (vλ) tends to −∞ when λ → 0.

Step 3: For any M < M , the infimum of IM on V is achieved by a nonnegative function.

Let vk be a minimizing sequence of IM in V . Denote vk |∂B1
= ck. Considering the function

F (c) = IM (u + c), we get easily (for any domain Ω)

Lemma 6 F is a concave function in R and the maximum is realized uniquely by c such that
‖(u + c)+‖p∗ = 1.

In view of this lemma and ‖vk
+‖p∗ = 1, we have

IM(vk) ≥ IM (vk − ck) = KM ((vk − ck)+) +
1
2

∫
B1

|∇(vk − ck)−|2dx

≥ 1
2
‖∇(vk − ck)−‖2

2 + δ‖∇(vk − ck)+‖2
2

≥ min(1/2, δ)‖∇vk‖2
2.

(37)
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In the second inequality, we have used M < M1 and ‖(vk − ck)+‖p∗ ≤ 1.

If ck ≥ 0, we can replace vk by vk
+ to reduce the energy. If ck < 0, we can replace first

vk by ck + (vk − ck)+ to reduce the energy, so we can assume that vk ≥ ck in B1. Denote
now vk∗ the Schwarz symmetrization of vk, clearly IM (vk∗ ) ≤ IM(vk) (vk − ck is positive and
vk∗ = (vk − ck)∗ + ck). So we can assume that vk is a radially decreasing function. Suppose
supp(vk

+) = Bλ with λ < 1, define wk(x) = λn−2vk(λx) and define wk
λ by (33) with v = wk(x).

It is clear that vk(x) = wk
λ(x) in Bλ. Using again the remark below (33) and KM (wk) ≥ β(M) ≥

h(M),

IM(vk) ≥ IM (wk
λ) = λ2−n

(
KM (wk) − h(M)

)
+ h(M) ≥ KM (wk) = IM(wk).

This means that we can substitute vk by wk, and we get again a nonnegative function in V .

Thus we obtain a minimizing sequence of IM with nonnegative functions vk. Estimate (37)
and ‖vk‖p∗ = 1 mean that vk is bounded in H1(B1). This proves the step and the proof of the
Proposition is completed.

Remark. For M < M , by the standard elliptic theory, we can conclude by the Euler equation
that the nonnegative minimizer of IM is a positive, radially decreasing function in B1.

Proposition 6 We have M = E∗
n, and for any M ≤ E∗

n, infV IM (u) ≥ ME∗
n

2(n − 2)ωn−1
.

Proof. Let φ be the unique positive solution of
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∆φ = E∗
nφp∗ in B1

φ = 0 on ∂B1∫
B1

φp∗dx = 1.
(38)

Claim 1: M ≤ E∗
n. Consider the family of functions φλ given by (33) with v = φ and M = E∗

n.
We have

Lemma 7 IE∗
n
(φλ) is independent of λ ∈ (0, 1] and IE∗

n
(φ) = KE∗

n
(φ) = h(E∗

n).

Proof. Notice that φλ is a regular family w.r.t. to λ and −∆φλ = E∗
n(φλ)p

∗
+ in B1. Hence, we

have (IE∗
n
(φλ)

)′
λ

=
∫

B1

∇φλ∇(φλ)′dx + E∗
n

∫
B1

(φλ)p
∗

+ (φλ)′dx + E∗
n(φλ)′|∂B1

=
(∫

∂B1

∂φλ

∂r
dσ + E∗

n

)
× (φλ)′|∂B1

= 0.

(39)

Using (34), the independence of λ gives then IE∗
n
(φ) = KE∗

n
(φ) = h(E∗

n).
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Lemma 6 implies that β(E∗
n) ≤ KE∗

n
(φ) = h(E∗

n), which, in turn, implies that M ≤ E∗
n by

Proposition 5.

Claim 2: E∗
n ≤ M . Since M ≤ E∗

n, then for any M < M , the minimizer is clearly the unique
positive function wM ∈ H1(B1) satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∆wM = M(wM )p
∗

in B1

wM = cM on ∂B1∫
B1

(wM )p
∗
dx = 1.

(40)

Indeed, wM = ξφ(λx) with some convenient λ ≤ 1 and ξ > 0, we prove then

Lemma 8 For any M ∈ (0, E∗
n), IM(wM ) ≥ ME∗

n

2(n − 2)ωn−1
> h(M).

Define G(M) = 1
M IM(wM ) − M

2(n−2)ωn−1
, then

G′(M) = − 1
2M2

∫
|∇wM |2dx − 1

2(n − 2)ωn−1

+
1
M

∫
∇wM∇ηdx −

∫
(wM )p

∗
ηdx + η|∂B1 ,

(41)

where η = (wM )′. The sum of the three last terms is zero by equation (40), thus G′(M) ≤
− 1

2(n−2)ωn−1
in (0, E∗

n], so G(M) ≥ E∗
n−M

2(n−2)ωn−1
for M ≤ E∗

n since G(E∗
n) = 0. Consequently

IM(wM ) ≥ ME∗
n

2(n − 2)ωn−1
>

M2

2(n − 2)ωn−1
, ∀ M ∈ (0, E∗

n). (42)

Furthermore, for any M ≤ M , β(M) ≥ infV IM by definition. Thus if M < E∗
n, we get

β(M ) = lim
M↑M

β(M) ≥ lim
M↑M

inf
V

IM = lim
M↑M

IM (wM ) = IM(wM ) > h(M ),

which contradicts clearly the defintion of M , this completes the proof.

For completing the Proof of Theorem 3 for the unit disk, we need to check the case M = E∗
n.

As infV IE∗
n
≥ limM↑E∗

n
(infV IM) ≥ limM↑E∗

n
h(M) = h(E∗

n) and infV IE∗
n
≤ IE∗

n
(φ) = h(E∗

n),
we conclude immediately that infV IE∗

n
= h(E∗

n) is achieved by φ given by (38).

Corollary 1 We have E∗
n ∈ [α0, α0(p∗ + 1)/2] and infV IE∗

n
= (E∗

n)2

2(n−2)ωn−1
.

5.2 The general domain case

Let vλ(x) = λ2−nv(x/λ), we get vλ ∈ V (Bλ) iff v ∈ V (B1) and IM,Bλ
(vλ) = λ2−nIM,B1(v),

hence infV (Bλ) IM,Bλ
= λ2−n infV IM,B1. Thus Theorem 3 holds true for any Bλ (λ > 0).

Let Ω ∈ Rn be a bounded domain, up to a translation, we can suppose there exist R1, R2 > 0
such that BR1 ⊂⊂ Ω ⊂⊂ BR2 .

15



For any M ≤ E∗
n and v ∈ V (Ω), if c = v|∂Ω > 0, we have IM (v) ≥ KM (v+) ≥ 0 since

M ≤ M1 and v+ ∈ H1
0 (Ω), ‖v+‖p∗ = 1. If c < 0, denote v = vχΩ + cχBR2

\Ω, then v ∈ V (BR2)
and IM,Ω(v) = IM,R2(v). So we get infV (Ω) IM > −∞.

For any M > E∗
n, if M > M1, by the definition of M1 and the construction of (33), it is

easy to see that the infimum of IM is −∞. If M ∈ (E∗
n,M1], we take a sequence vk ∈ V (BR1)

such that IM,BR1
(vk) tends to −∞ as k tends to ∞. If ck = vk|∂BR1

is positive, using similar
argument as above, we get IM (vk) ≥ 0. Thus ck ≤ 0 for great k, in this case we denote
vk = vkχBR1

+ ckχΩ\BR1
. Obviously vk ∈ V (Ω) and IM,Ω(vk) = IM,BR1

(vk) tends to −∞.
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