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Abstract:
The formulation of Seiberg-Witten maps from the point of view of consistent defor-

mations of gauge theories in the context of the Batalin-Vilkovisky antifield formalism is
reviewed. Some additional remarks on noncommutative Yang-Mills theory are made.

1 Introduction

Using arguments from string theory, noncommutative Yang-Mills theory has been shown
[1] to be equivalent, by a redefinition of the gauge potentials and the parameters of the
gauge transformation, to a Yang-Mills theory with standard gauge symmetries and with an
effective action containing, besides the usual Yang-Mills term, higher dimensional gauge
invariant operators.

By considering an expansion in the parameter of noncommutativity ϑ, noncommutative
Yang-Mills theory can be understood as a consistent deformation of standard Yang-Mills
theory in the sense that the action and gauge transformations are deformed simultaneoulsy
in such a way that the deformed action is invariant under the deformed gauge transfor-
mations. An appropriate framework for the analysis of such consistent deformations of
gauge theories has been shown [2] to be the antifield-antibracket formalism (see [3, 4, 5, 6]
in the Yang-Mills context, [7] for the generic case and [8, 9] for reviews).

By reformulating the question of existence of Seiberg-Witten maps in this context
[10, 11, 12], the whole power of the theory of general (anti-)canonical transformations is
available and Seiberg-Witten maps appear as ”time-dependent” canonical transformations
that map the gauge structure of the noncommutative theory to that of the commutative
one. In the generic case, this leads to an appropriate “open” version of the gauge equiv-
alence condition, valid only up to terms vanishing when the equations of motions hold.
These features have been shown [12] to be crucial for the construction of a Seiberg-Witten
map in the case of the noncommutative Freedman-Townsend model.
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2 Equivalent formulations of Seiberg-Witten maps

Notations and conventions are as in [12], except that for later convenience, we denote the
deformation parameter by ϑ instead of g. Consider a gauge theory determined by the
minimal proper solution Ŝ[φ̂, φ̂∗; ϑ] of the master equation,

1

2
(Ŝ, Ŝ) = 0, (1)

and suppose that Ŝ[φ̂, φ̂∗; ϑ] admits formal power series expansion in the deformation

parameter ϑ: Ŝ[φ̂, φ̂∗; ϑ] =
∑∞

s=0 ϑsS(s)[φ̂, φ̂∗] . Then, the deformed theory defined by Ŝ is
a consistent deformation of the undeformed theory determined by the master action

S(0)[φ̂, φ̂∗] = Ŝ[φ̂, φ̂∗; ϑ]
∣∣∣
ϑ=0

,
1

2
(S(0), S(0)) = 0 . (2)

In what follows we also use expansions in antifield number; the antifield number of a local
function1 or of a local functional is denoted by a subscript, e.g. Ŝ =

∑
k≥0 Ŝk.

In the context of the antifield formalism, the existence of a Seiberg-Witten map trans-
lates into the following four equivalent formulations.

• There exists a canonical field-antifield transformation2 φ̂[φ, φ∗; ϑ], φ̂∗[φ, φ∗; ϑ] such
that

Ŝ[φ̂[φ, φ∗; ϑ], φ̂∗[φ, φ∗; ϑ]; ϑ] = Seff
0 [φ; ϑ] +

∑
k≥1

S
(0)
k [φ, φ∗], (3)

⇐⇒ Ŝ[φ̂, φ̂∗; ϑ] = Seff
0 [φ[φ̂; φ̂∗; ϑ]; ϑ] +

∑
k≥1

S
(0)
k [φ[φ̂, φ̂∗; ϑ], φ∗[φ̂, φ̂∗; ϑ]], (4)

where Seff
0 [φ̂; 0] = S

(0)
0 [φ̂; 0].

• There exists a generating functional of “second type” F [φ, φ̂∗; ϑ] in ghost number
−1, with

φ̂A(x) =
δLF

δφ̂∗
A(x)

, φ∗
A(x) =

δLF

δφA(x)
, (5)

such that

Ŝ[
δLF

δφ̂∗ , φ̂∗; ϑ] = Seff
0 [φ; ϑ] +

∑
k≥1

S
(0)
k [φ,

δLF

δφ
], (6)

with initial condition F =
∫

dnx φ̂∗
AφA + O(ϑ).

• The differential condition

∂Ŝ

∂ϑ
=

∂Seff
0

∂ϑ
+ (Ŝ, Ξ̂) (7)

holds. The associated field-antifield redefinition satisfies the differential equations

∂φA(x)

∂ϑ
= (φA(x), Ξ(ϑ)),

∂φ∗
A(x)

∂ϑ
= (φ∗

A(x), Ξ(ϑ)), (8)

1In this context, a local function is a formal power series in ϑ each term of which depends on the fields, the antifields
and a finite number of their derivatives.

2Only canonical transformation that reduce to the identity at order 0 in the deformation parameter are considered here.
Invertibility of these transformations in the space of formal power series is then guaranteed.
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where Ξ(ϑ) is the same function of the unhatted fields and antifields than Ξ̂(ϑ) is in
terms of the hatted ones. The formal solution to this differential equation is given
by

φA(x) = [P exp
∫ ϑ

0
dϑ′(·, Ξ̂(ϑ′))]φ̂A(x), φ∗

A(x) = [P exp
∫ ϑ

0
dϑ′(·, Ξ̂(ϑ′))]φ̂A(x). (9)

• The deformed and undeformed theories are weakly gauge equivalent in the follow-
ing sense. In the case of an irreducible gauge theory, there exists a simultaneous
redefinition3 of the original gauge fields ϕ̂i = f i[ϕ] and the parameters ε̂α = gα

β [ϕ](εβ)

of the irreducible generating set of nontrivial gauge transformations R̂i
α[φ̂](ε̂α) such

that
(δ̂ε̂ϕ̂

i)|ϕ̂=f,ε̂=g ≈ δεf
i . (10)

Here ≈ means terms that vanish when the equations of motions associated to Seff
0 [ϕ] ≡

Ŝ0[f [ϕ]] hold, while δ̂ε̂, δε are respectively given by

δ̂ε̂ =
∑

k=0 ∂µ1 . . . ∂µk

(
R̂i

α[ϕ̂](ε̂α)
)

∂
∂(∂µ1 ...∂µk

ϕ̂i)
, (11)

δε =
∑

k=0 ∂µ1 . . . ∂µk

(
Ri

α[ϕ](εα)
)

∂
∂(∂µ1 ...∂µk

ϕi)
, (12)

with Ri
α[ϕ](εα) being the irreducible generating set of nontrivial gauge transforma-

tions of the undeformed theory.

Finally, the existence of a Seiberg-Witten map is controlled by the BRST differential
of the undeformed theory. In particular, if one can show that in a relevant subspace, the
representatives of the cohomology of s(0) can be chosen to be antifield independent, i.e.,

(S(0), C) = 0 =⇒ C = C ′
0 + (S(0), D), (13)

the Seiberg-Witten map are guaranteed to exist and can be constructed as a succession
of canonical transformations [12].

3 Remarks on noncommutative U(N) Yang-Mills theory

We assume the space-time manifold to be Rn with coordinates xµ , µ = 1, . . . , n. The
Weyl-Moyal star-product is defined through

f ∗ g(x) = exp (i∧12) f(x1)g(x2)|x1=x2=x, ∧12 =
ϑ

2
θµν∂x1

µ ∂x2
ν , (14)

for a real, constant, antisymmetric matrix θµν . The parameter ϑ has mass dimensions −2.
A minimal proper solution of the master equation for noncommutative U(N) Yang-Mills
theory is given by:

Ŝ =
∫

dnx Tr
(
− 1

4κ2
F̂ µν ∗ F̂µν + Â∗µ ∗ D̂µĈ +

1

2
Ĉ∗ ∗ [Ĉ ∗, Ĉ]

)
, (15)

where fields, ghost fields, and their conjugated antifields are u(N) valued and Tr denotes

ordinary matrix trace. In particular, Â∗µ = Â∗µ
B gBATA, Ĉ∗ = Ĉ∗

BgBATA, with TA being

3A square bracket means a local dependence on the fields and their derivatives, while the round bracket means that this
dependence is linear and homogeneous.

3



generators of Lie algebra u(N) and gAB = Tr TATB being an invariant metric on the
algebra. We denote by [A ∗, B] = A ∗B − (−)|A||B|B ∗A the graded star commutator and
by {A ∗, B} = A ∗ B + (−)|A||B|B ∗ A the graded star anticommutator. Noncommutative
Yang-Mills theory is a particular case of a consistent deformation of standard Yang-Mills
theory in the sense explained in the previous section. The deformation parameter is ϑ,
the parameter of ”noncommutativity”.

In the noncommutative Yang-Mills case, the differential condition (7) can be explicitly
solved by

∂Seff
0

∂ϑ
=

1

κ2

∫
dnx Tr

iθαβ

2
( − 1

2
F̂ µν{F̂αµ

∗, F̂βν} +
1

8
{F̂ ρσ ∗, F̂ρσ}F̂αβ), (16)

Ξ̂ =
∫

dnx Tr
iθαβ

2
( − 1

2
Â∗µ{F̂αµ + ∂αÂµ

∗, Âβ} +
1

2
Ĉ∗{Âα

∗, ∂βĈ}), (17)

The evolution equations ∂Â/∂ϑ = −(Â, Ξ̂) and ∂Ĉ/∂ϑ = −(Ĉ, Ξ̂) then reproduce the
original differential equations of [1].

Linearity in antifields of the generating functional Ξ̂ implies that the generating func-
tional F of second type can also be chosen linear in antifields,

F =
∫

dnx Tr
(
Â∗µfµ + Ĉ∗h

)
(18)

where fµ = fA
µ [A; ϑ]TA and h = hA[A, C; ϑ]TA, with h linear and homogeneous in the

ghosts CA and their derivatives). Linearity in antifields then implies that equation (6)
reduces to

∫
dnx Tr − 1

4κ2
F̂µνF̂

µν [f ; ϑ] = Seff
0 [A; ϑ] (19)

(∂µh + [fµ
∗, h])A = γfA

µ , (20)

1

2
[h ∗, h]A + γhA = 0 , (21)

where γ is the gauge part of the BRST differential of the commutative theory:

γ =
∑
k=0

[∂ρ1 . . . ∂ρk
(DµC)B ∂L

∂(∂ρ1 . . . ∂ρk
AB

µ )
−

−1

2
∂ρ1 . . . ∂ρk

(fB
DECDCE)

∂L

∂(∂ρ1 . . . ∂ρk
CB)

] . (22)

Note that for a generating functional F of general form, i.e., not necessarily linear in the
antifields, equations (20) and (21) would contain equations of motion terms [12].

Equation (20) is the Seiberg-Witten equation (3.3) of [1] under the form δ̂λ̂Â = δλÂ,

with the identifications Âµ ↔ fµ, λ̂ ↔ h and λ ↔ C. When solving (20)-(21), it is
useful to solve first the BRST version of the integrability condition (21) before solving
the Seiberg-Witten equation (20), because it contains as unknown functions only the
noncommutative gauge parameter h as a function of θµν , CA AA

µ and their derivatives.
Remarks:

1. The existence of the Seiberg-Witten map can be infered a priori from the knowledge
of the local BRST cohomology of commutative Yang-Mills theory [13]. The point
is that in the infinitesimal noncommutative deformation, only differentiated ghosts
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appear in the antifield dependent terms while the local cohomology in ghost number
0 of the BRST differential s(0) of commutative Yang-Mills theory can be shown to
depend only on undifferentiated antifields and undifferentiated ghosts. This implies
the existence of the Seiberg-Witten generating functional to first order in the defor-
mation parameter ϑ. Furthermore, one can show that this reasoning can be iterated,
which allows to prove the existence of the Seiberg-Witten map along the lines of
section 2.5 of [12].

2. Besides the expansion in the deformation parameter ϑ, it is often useful to consider
an expansion in the homogeneity of the fields. The BRST differential of the non-
commutative theory then reduces to lowest order to the BRST differential s[0] of
N free commutative abelian fields. In both expansions, the contracting homotopy
that allows to invert s(0) respectively s[0] in the relevant subspace can be explicitly
constructed by a simple change of generators that consists essentially in replacing
the derivatives of the gauge potentiels by the symmetrized derivatives of the gauge
potentials and the symmetrized covariant derivatives of the field strenghts. This last
symmetrization includes the first index of the field strength in order to get rid of the
redundancies due to the Bianchi identities (see e.g. [14, 13] for details). This explicit
form of the contracting homotopy operator allows to construct the generating func-
tional Ξ̂ of equation (17) and to solve the gauge equivalence conditions recursively
(see also [15]).

3. A natural question to ask is whether the whole noncommutative deformation is triv-
ial in the sense that it can be undone by a field redefinition. This question can
also be addressed using local BRST cohomology. Indeed, in the Yang-Mills case,
it turns out that the infinitesimal deformation of the action corresponds to a non
trivial BRST cohomology class in ghost number 0 implying the non triviality of the
noncommutative deformation. In noncommutative Chern-Simons theory however,
results on the local BRST cohomology of standard Chern-Simons theory imply that
the whole noncommutative deformation is trivial. This has been shown directly in
[16].

4. After gauge fixing, which corresponds merely to another canonical transformation in
the antifield formalism, the appropriate formulation to control the Seiberg-Witten
map during perturbative renormalization is the functional differential equation (7),
which should be promoted to an analogous equation for the generating functional for
1PI Green’s function, in the same way than the master equation (1) gets promoted
to the Zinn-Justin equation and controls the gauge invariance. Since it is well known
how the second term on the right hand side of (7) renormalizes (see e.g. [17]), the
question reduces to the renormalization of the higher dimensional operator ∂Seff

0 /∂ϑ
given in (16).
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