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Abstract

In previous papers, a class of hierarchical matrices (H-matrices) is introduced which are data-sparse
and allow an approximate matrix arithmetic of almost optimal complexity. Here, we investigate a new
approach to exploit the H-matrix structure for the solution of large scale Lyapunov and Riccati equations
as they typically arise for optimal control problems where the constraint is a partial differential equation
of elliptic type. This approach leads to an algorithm of linear-logarithmic complexity in the size of the
matrices.
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1 Introduction

1.1 Overview

In 1980, Roberts [17] published a method to solve the algebraic matrix Riccati equation by use of the matrix
sign function. Since the method basically involves the inversion, addition and multiplication of matrices,
one expects a cubic complexity in the size of the matrices.

In this paper we consider the same method but make use of a special matrix representation, the so-called
H-matrices, instead of the standard matrix representation. Our analysis consists of two parts:

1. We prove that the solution of the algebraic matrix Riccati equation can be approximated in the
H-matrix format. This existence result indicates the possibility to apply the H-matrix arithmetic.
Moreover, we prove that the matrices in Roberts method can be approximated by matrices in
H-matrix representation.

2. We develop an efficient numerical scheme to compute an H-matrix approximation to the solution of
the algebraic matrix Riccati equation with almost linear complexity in the size of the matrices, i.e.,
O(n logq n) for n × n matrices.

This article contains six sections: the current section gives a short overview. The second section introduces
a linear quadratic optimal control problem leading to a Riccati equation. The solution procedure based on
the matrix sign function is introduced in Section 3. In Section 4 we investigate the structure of the matrices
appearing in the solution procedure and observe that H-matrices are a good choice for an (approximate)
representation of the matrices. The influence of the approximation error in the numerical scheme will be
analysed in Section 5 while the numerical results in the last section show the behaviour of our method applied
to two model problems.
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1.2 Lyapunov and Riccati Equation

An equation of the form
AT X + XA − XFX + G = 0

for given A, G, F ∈ Rn×n and unknown X ∈ Rn×n is called (algebraic matrix) Riccati equation. For F = 0
the equation simplifies to a so-called Lyapunov equation. The standard approach to solve a Riccati equation
is to apply Newton’s method resulting in a series of Lyapunov equations.

1.3 Large scale Lyapunov Equations

A fixed Lyapunov equation can, e.g., be solved by the Bartels-Stewart algorithm [2], which is of complexity
O(n3). When dealing with large scale Lyapunov or Riccati equations (i.e., n is considerably large) one is
interested in reducing the complexity for a certain class of matrices A, F, G.

Rosen and Wang [18] assume that the matrix A stems from the discretisation of a partial differential equation
of elliptic type, while G is allowed to be arbitrary. Then it is possible to apply multigrid techniques and
solve the Lyapunov equation with O(n2) operations.

Penzl [15] assumes that A is symmetric positive definite and that G is a symmetric positive semidefinite
matrix of low rank kG = O(1). Then the eigenvalues of the solution X decay exponentially, such that the
solution can be approximated by a matrix of low rank. The low rank structure can be utilised (e.g., in the
Smith method [16]) to compute the solution with O(n) operations. However, one has to solve sparse linear
systems of equations in each step.

Let us consider a simple example: the matrix A ∈ Rn×n is assumed to be the symmetric stiffness matrix
from the Ritz-Galerkin discretisation (e.g., linear finite elements) of a partial differential operator of elliptic
type. Then the solution X to AT X +XA+ I = 0 (I is the identity) is X = − 1

2A−1. Here, the matrix G = I
is not of low rank, but the solution X can still be represented in a suitable format that is explained in the
following section.

1.4 H-Matrices

In previous papers ([6],[7],[9],[10],[11]) a class of hierarchical matrices (H-matrices) has been introduced that
allows a sparse approximation to large, dense stiffness matrices arising in boundary element method or finite
element method applications. In the FEM case, it is the inverse of the stiffness matrix that is dense and can
be approximated by an H-matrix ([3]).

We consider matrices over the (product) index set I × J . The product index set I × J is partitioned into
blocks r×s ⊂ I ×J , where the blocks r×s are nodes of a so-called H-tree TI×J . Each of those blocks allows
for a low rank representation of the corresponding matrix block. The maximal rank of the matrix blocks is
denoted by k.

The definition of the H-tree TI×J and the set MH,k(TI×J) of H-matrices can be found in [6] and [7]. Here,
it suffices to know that the leaves of the H-tree TI×J form a partition of I × J and a matrix M belongs to
MH,k(TI×J) if the rank of M restricted to a leaf of TI×J is bounded by k.

Since H-matrices of fixed (block-wise) rank k corresponding to the H-tree TI×J are not a linear subspace of
R

I×J , some kind of projection of the sum, product and inverse into the set of H-matrices is necessary. For the
(exact) sum of H-matrices one can calculate a best approximation (in the Frobenius norm ‖M‖2

F =
∑

i,j M2
ij)

in MH,k(TI×J). This is called the formatted addition (⊕). For the product and inverse of H-matrices
the formatted multiplication � and inversion Ĩnv (introduced in [9],[6],[7]) is some approximation but not
necessarily a best approximation.

Associated to the H-tree TI×J are
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• the depth p > 1 of the H-tree,

• the sparsity constant Csp and

• the idempotency constant Cid.

The depth p of the H-tree is typically proportional to log(|I| + |J |) (|I| denotes the number of elements in
I). The constants Csp and Cid are defined and estimated in [6] and [7] (a constant similar to Csp was also
used in [11]). Based upon these three values one can estimate the complexity of the standard arithmetic
operations for H-matrices.

Theorem 1.1 Let k ∈ N denote the blockwise rank, n := |I|, m := |J | and TI×J be an H-tree with sparsity
constant Csp and depth p > 1. Then the storage requirements NH,store and computational complexity NH·v of
the matrix vector multiplication and NH⊕H of the formatted addition for matrices belonging to MH,k(TI×J)
are bounded by

NH,store ≤ Cspk(n + m)p,

NH·v ≤ 2Cspk(n + m)p,

NH⊕H ≤ 20Cspk
2(n + m)p + 368Cspk

3(n + m).

Let TI×J be an H-tree with idempotency constant Cid. Then the computational complexity of the formatted
multiplication NH�H and the formatted inversion NgInv(H)

of matrices belonging to MH,k(TI×J) (n = m for
the inversion) can be estimated by

NH�H ≤ 394C2
spCidk2(n + m)p max{k, p},

NgInv(H)
≤ NH�H.

Proof. [9], [6] and [7].

Remark 1.2 A matrix M ∈ Rn×m of rank at most k can be represented in factorised form M = ABT with
matrices A ∈ Rn×k and B ∈ Rm×k. We call this an R(k)-representation of the matrix M . For k � n, m,
this is an efficient way to store and evaluate the matrix M .

The (exact) multiplication of an R(k)-matrix with an arbitrary matrix yields again an R(k)-matrix.
The (exact) multiplication of two H-matrices belonging to MH,k(TI×J) as in Theorem 1.1 yields an H-matrix
belonging to MH,k̃(TI×J) with k̃ := CspCidkp. The computational cost for the exact multiplication is
O(k2(n + m)p2) (see [6], [7]).

2 Problem Description

2.1 The Autonomous Linear Quadratic Optimal Control Problem

Let n, ny, nu ∈ N, x0 ∈ Rn, A ∈ Rn×n, B ∈ Rn×nu and C ∈ Rny×n. The autonomous linear quadratic
optimal control problem is to find u ∈ L2(0,∞; Rnu) minimising the quadratic performance index

J(u) :=
∫ ∞

0

(
y(t)T y(t) + u(t)T u(t)

)
dt (2.1)

for the solution x ∈ L2(0,∞; Rn) of the differential equation

ẋ(t) = Ax(t) + Bu(t), t ∈ (0,∞),
y(t) = Cx(t),
x(0) = x0.
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Theorem 2.1 ([13] Existence of a linear state feedback solution) If (A, B) is stabilisable and (A, C)
detectable, that is there exist matrices Kstab ∈ Rnu×n and Kdet ∈ Rny×n such that A + BKstab and
AT + CT Kdet are stability matrices (spectrum in the left complex halfplane), then the optimal control u
exists and can be realised in linear state feedback form as

u(t) = −BT Xx(t), t ∈ (0,∞),

where X ∈ Rn×n is the (in the set of symmetric positive semidefinite matrices) unique solution of the
algebraic matrix Riccati equation

AT X + XA − XFX + G = 0

for the matrices F := BBT and G := CT C.

In general, the structure of the matrix A can be arbitrary and the stability and detectability is neither
easy to check nor always given. In the applications that we are aiming at, the matrix A will be the spatial
discretisation of some partial differential operator of elliptic type. Therefore, A is a stability matrix and
thus the system stabilisable and detectable.

2.2 The Algebraic Matrix Riccati Equation

According to Theorem 2.1, we seek a symmetric positive semidefinite solution X ∈ Rn×n of the algebraic
matrix Riccati equation

AT X + XA − XFX + G = 0. (2.2)

Here, A ∈ Rn×n is a stability matrix and F, G ∈ Rn×n are symmetric positive semidefinite. The rank of the
matrices F = BBT and G = CT C is bounded by nu and ny, where BT ∈ Rnu×n and C ∈ Rny×n.

Remark 2.2 If A stems from the discretisation of some partial differential operator, then the dimension
n grows with decreasing mesh size. The ranks nu, ny of the matrices F and G on the other hand can be
independent of the discretisation. In that case one can assume nu, ny � n, which will lead to an (approxi-
mate) low rank representation of the solution X. Our method can exploit this low rank structure, but is not
restricted to this case.

Remark 2.3 Let A = M−1Â and F = M−1F̂M−1 with a symmetric positive definite matrix M , a sym-
metric negative definite matrix Â and a symmetric positive semidefinite matrix F̂ (as it typically occurs for
finite element discretisations, see Section 6). Then the algebraic matrix Riccati equation (2.2) reads

ÂM−1X + XM−1Â − XM−1F̂M−1X + G = 0. (2.3)

If we multiply by W := M− 1
2 from the left and right of (2.3), the equation transforms into

WÂW WXW + WXW WÂW − WXW WF̂W WXW + WGW = 0. (2.4)

If we define Ã := WÂW , F̃ := WF̂W and G̃ := WGW then we can solve the transformed algebraic matrix
Riccati equation

ÃAX̃ + X̃Ã − X̃F̃ X̃ + G̃ = 0

where all matrices Ã, F̃ , G̃ are symmetric, and gain the solution X by X := M
1
2 X̃M

1
2 . The eventual low

rank structure of the matrices F, G is preserved and the symmetry of Ã can be beneficial. Since the calculation
of M

1
2 and M− 1

2 is rather expensive, the transformation to the symmetric case is usually omitted.
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3 Solution Strategy

There is a variety of strategies for solving algebraic matrix Riccati equations for matrices of a certain
structure. Basically, one can either try to solve the (nonlinear) equation (2.2) directly, or one can apply
Newton’s method to simplify the equation to a linear one. The latter results in a series of Lyapunov equations
and is almost always the method of choice for solving sparse large scale Riccati equations. The method that
we propose is essentially based on the sign-iteration due to Roberts [17]. It can be applied to the Lyapunov
as well as the Riccati equation and is neither limited to some low rank structure of F and G nor does depend
on the sparsity of A (but we adopt the data-sparsity of A). However, the analysis in this paper is only done
for the case that F is of low rank, which corresponds to a low dimensional control u. The motivation for
our particular choice of the solution process is to minimise the total number of matrix inversions which we
consider as a suitable complexity unit in the overall cost estimate.

3.1 Newton’s Method Applied to the Riccati Equation

The Newton iteration

Xi+1 solves (A − FXi)T Xi+1 + Xi+1(A − FXi) + XiFXi + G = 0 (3.1)

converges (locally) quadratically to the solution X of the Riccati equation (2.2), if F and G are symmetric
and the initial guess X0 stabilises (A,−F ) (see, e.g., [12]). This is the case if A is a stability matrix and
the initial guess is chosen as X0 := 0. In this case, the solution to the Lyapunov equation (3.1) is explicitly
given as (see [14])

Xi+1 =
∫ ∞

0

exp(t(A − FXi)T )(XiFXi + G) exp(t(A − FXi))dt. (3.2)

Moreover, all matrices A − FXi are again stability matrices but typically not symmetric, while XiFXi + G
is symmetric positive semidefinite.

3.2 Solving the Riccati or Lyapunov Equation by Use of the Matrix Sign Func-
tion

Definition 3.1 (Matrix sign function) We define the matrix sign function as

sign : {M ∈ C
n×n | ∀λ ∈ σ(M) : 
e(λ) �= 0} → C

n×n, M → 1
πi

∮
Γ

(ξI − M)−1dξ − I,

where Γ is an arbitrary path of index 1 around the eigenvalues of M with positive real part and I denotes
the n × n identity matrix.

Example 3.2 (Matrix sign of a diagonalisable matrix) Let M ∈ Cn×n be a matrix that is diagonalis-
able, M = TDT−1, T ∈ Rn×n, D = diag(λ1, . . . , λn) and 
e(λj) �= 0 for all j ∈ {1, . . . , n}. Let Γ be a path
of index 1 around the eigenvalues of M with positive real part. For each of the eigenvalues λj there holds

1
πi

∮
Γ

(ξ − λj)−1dξ − 1 =
{

2 − 1 = 1 if 
e(λj) > 0,
0 − 1 = −1 if 
e(λj) < 0.

We can compute sign(M) as follows:

sign(M) = sign(TDT−1)

=
1
πi

∮
Γ

(ξI − TDT−1)−1dξ − I =
1
πi

∮
Γ

T (ξI − D)−1T−1dξ − I

= T diag(s1, . . . , sn)T−1, sj =
{

1 if 
e(λj) > 0,
−1 if 
e(λj) < 0.
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An algorithm to solve certain Riccati equations by use of the matrix sign function is presented in [17] and
we summarise the main result in

Theorem 3.3 (Representation by the matrix sign function) Let A ∈ Rn×n be a stability matrix,
F, G ∈ Rn×n symmetric positive semidefinite. Then the stabilising solution X of (2.2) satisfies[

N11

N21

]
X = −

[
N12

N22

]
, (3.3)

where the matrices N11, N12, N21, N22 ∈ Rn×n are[
N11 N12

N21 N22

]
:= sign

([
AT G
F −A

])
−
[

I 0
0 I

]

and
[

N11

N21

]
is of full rank n. In the Lyapunov case F = 0, this simplifies to

X =
1
2
N12.

A method to solve (3.3) efficiently is presented in the last part of Section 5. A simple method to calculate the
sign function of a matrix S is Newton’s method applied to the equation X2 = I with initial guess X0 := S,
as it is described in [17].

Theorem 3.4 (Newton’s method to calculate the matrix sign function) Let S ∈ Rns×ns be a
matrix whose spectrum does not intersect the imaginary axis. Then the iteration

S0 := S, Si+1 :=
1
2
(Si + S−1

i ) (3.4)

converges (locally quadratically) to the sign of S.

Lemma 3.5 (Global convergence of Newton’s method) Let S ∈ Rns×ns be a matrix whose spectrum
σ(S) does not intersect the imaginary axis. Let ‖ · ‖2 denote the spectral norm of a matrix and

µ := max

{
1 + |
e(λ)| + |
e(λ)|−1 +

|�m(λ)|
|
e(λ)|

∣∣∣∣∣ λ ∈ σ(S)

}
.

Then the minimal number of iterations imin of (3.4) necessary to get

∀λ ∈ σ(Simin) : |λ2 − 1| ≤ ε (3.5)

for a given ε ∈ (0, 1) is bounded by imin = O(log(µ)2 + log(log(1/ε))). If S = TJT−1 is a Jordan decompo-
sition of S then the minimal number of iterations jmin of (3.4) necessary to get

‖Sjmin − sign(S)‖2 ≤ ε

is bounded by
jmin = O (

log(µ)2 + log(log(1/ε + cond(T )))
)
.

If the spectral values λ ∈ σ(S) fulfil |
e(λ)| ≥ |�m(λ)| then the number of iterations jmin necessary to get
‖Sjmin − sign(S)‖2 ≤ ε is bounded by O(log(ρ) + log(log(1/ε + ρ))), where ρ := maxλ∈σ(S)(|λ| + |λ−1|).
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Proof. Equation (3.5)
To prove (3.5) , we analyse the convergence for each λ0 = x0 + iy0 ∈ σ(S) separately. The corresponding
spectral values for the operators Sj are defined by the sequence

λj+1 :=
1
2
(λj + λ−1

j ),

xj+1 := 
e(λj+1) =
1
2
xj(1 +

1
x2

j + y2
j

),

yj+1 := �m(λj+1) =
1
2
yj(1 − 1

x2
j + y2

j

).

Throughout the proof we will make use of the following basic facts:

|yj/xj | ≤ |yj−1/xj−1| (j ∈ N), (3.6)
1
8
≤ x2

j + y2
j ≤ 8 ⇒ |yj+1/xj+1| ≤ 7

9
|yj/xj |, (3.7)

x2
j + y2

j ≥ 1/2 ⇒ |yj+1| ≤ 1
2
|yj |. (3.8)

We distinguish between three phases of convergence:

Phase 1 (Convergence towards equilibrium)
The first phase P1 = {0, . . . , j1} is defined by the condition x2

j < y2
j for all j ∈ P1 and x2

j1+1 ≥ y2
j1+1.

From (3.6) we conclude that x2
j1+j ≥ y2

j1+j for all j ∈ N. We want to prove that after O(log(µ)2)
iterations we leave Phase 1 and xj1+1 is bounded from above and below.

Start of Phase 1

Case 1: x2
0 + y2

0 > 8. As long as x2
j + y2

j > 8 the iterates decrease by a factor of 1/3:

|xj+1| ≤ 1
2
|xj |(1 + 1/8) ≤ 9

16
|xj |,

|yj+1| =
1
2
|yj|(1 − 1/(x2

j + y2
j )) ≤ 1

2
|yj |,

x2
j+1 + y2

j+1 ≤ 81
256

x2
j +

1
4
y2

j ≤ 1
3
(x2

j + y2
j ). (3.9)

Since x2
j+1 + y2

j+1 is also bounded from below (by 4/3) we come to Case 3 after log(x2
0 + y2

0)
iterations.

Case 2: x2
0 + y2

0 < 1
8 . Then |y1| = 1

2 |y0(1 − 1/(x2
0 + y2

0))| ≥ 1
4 |y0|−1 ≥ 1/2, therefore we come to Case

1 or Case 3 in the first iteration. x1 is bounded from below and above by

1
2
(|x0| + |x0|−1) ≥ |x1| =

1
2
|x0|(1 +

1
x2

0 + y2
0

) ≥ 1
2
|x0|,

while |y1| ≤ |y0|
|x0| |x1| ≤ µ|x0|−1. If x2

1 + y2
1 > 8 (Case 1) then we will need O(log(µ)) iterations to

get to Case 3.
Case 3: x2

0 + y2
0 ∈ [ 18 , 8].

Core of Phase 1. Without loss of generality, we assume x2
0 +y2

0 ∈ [ 18 , 8] (at most O(log(µ)) iterations
are necessary to ensure this). Whenever the iterates x2

j +y2
j are contained in [ 18 , 8] the ratio |yj+1/xj+1|

decreases by 7
9 (see (3.7) ). After O(log(µ)) of these steps we will therefore leave Phase 1. At last we

show that every O(log(µ)) iterations one of the iterates is contained in [18 , 8].

Let x2
j + y2

j ∈ [ 18 , 8] and x2
j+1 + y2

j+1 �∈ [ 18 , 8]. We prove that after at most j′ = O(log(µ)) steps we
either get back to x2

j+j′ + y2
j+j′ ∈ [ 18 , 8] or we leave Phase 1. In the latter case we bound x2

j+j′ from
below and above.
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Case 1: x2
j+1 + y2

j+1 > 8. Since

y2
j+1 =

1
4
y2

j (1 − 1/(x2
j + y2

j ))2 ≤ 1
4
8 · 49 ≤ 98,

x2
j+1 =

1
4
x2

j (1 + 1/(x2
j + y2

j ))
2 ≤ 1

4
8 · 81 ≤ 162,

we will either leave Phase 1 with |xj+j′ | ∈ (2, 13) or we will arrive after 4 steps (see (3.9) ) at
x2

j+j′ + y2
j+j′ ∈ [ 18 , 8].

Case 2: x2
j+1 + y2

j+1 < 1
8 . As in the start of Phase 1, Case 2, we get either y2

j+2 ≥ 1
4 or x2

j+2 ≥ 1
4 . We

will now bound xj+1 from below and xj+2, yj+2 from above.

|xj+1| ≥ 1
2
|xj | ≥ 1

2
|x0|
|y0| |yj| ≥ 1

8
µ−1,

|xj+2| ≤ 1
2
(|xj+1| + |xj+1|−1|) ≤ 5µ,

|yj+2| ≤ µ|xj+2| ≤ 5µ2.

After at most O(log(µ)) iterations one of the iterates j + j′ fulfils x2
j+j′ + y2

j+j′ ∈ [ 18 , 8].

The number of iterations necessary to leave Phase 1 is O(log(µ)2).

Phase 2 (Linear convergence)
From Phase 1 we have x2

j1+1 ≥ y2
j1+1 and |xj1+1| ∈ [18µ−1, 5µ]. It follows |xj1+2| ∈ [12 , 5µ] and after

O(log(µ)) steps we get |xj′2 | ∈ [12 , 2]. After another O(1) steps (3.8) yields |yj2 | < 1
8 and ||xj2 |−1| < 1

8 .
After O(log(µ)) iterations we leave Phase 2.

Phase 3 (Quadratic convergence)
Phase 3 is defined by the condition |yj2 | < 1

8 and ||xj2 | − 1| < 1
8 . We prove

||xj+1| − 1| ≤ 2 max{||xj | − 1|, |yj|}2,

|yj+1| ≤ 2 max{||xj | − 1|, |yj|}2

for all j ≥ j2. Let q := max{||xj | − 1|, |yj|}. Then

||xj+1| − 1| = |1
2
|xj |(1 +

1
x2

j + y2
j

) − 1|

= |1
2
|xj | − 1 +

1
2
|xj |−1 +

1
2

|xj |
x2

j + y2
j

− 1
2
|xj |−1|

≤ |1
2
|xj | − 1 +

1
2

∞∑
ν=0

(1 − |xj |)ν | + 1
2

y2
j

|xj |3 + |xj |y2
j

≤ 1
2
(1 − |xj |)2 1

|xj | +
3
4
y2

j ≤ 2q2,

|yj+1| =
1
2
|yj ||1 − 1

x2
j + y2

j

| =
1
2
||yj |x2

j + |yj |3 − |yj||
x2

j + y2
j

≤ 4
7
|y3

j | +
4
7
(|x2

j − 1||yj |) ≤ 1
14

|yj |2 +
4
7
||xj | − 1|||xj + 1||yj |

≤ 1
14

|y2
j +

60
49

||xj | − 1||yj| ≤ 2q2.

Consequently we get max{||xj2+j | − 1|, |yj2+j |} ≤ 22j

8−2j

= 4−2j

, which ensures |λ2
jmin

− 1| ≤ ε for
jmin = O(log(µ)2 + log(log(1/ε))).

8



Let S = TJT−1 be a Jordan decomposition of S, where

J =

⎡⎢⎣ J1

. . .
Jl

⎤⎥⎦ , Ji =

⎡⎢⎢⎢⎢⎣
λi 1

. . . . . .
. . . 1

λi

⎤⎥⎥⎥⎥⎦ ,

consists of l Jordan blocks Ji. We define the series J (0) := J, J (j+1) := 1
2 (J (j) + (J (j))−1) which preserves

the block-diagonal structure. We fix a single Jordan block Ji with corresponding eigenvalue λ and define
the sequence

λj+1 :=
1
2
(λj + λ−1

j ), λ0 := λ.

We define the upper-diagonal structure (of the same size as J)

U(α, β) :=

⎡⎢⎢⎢⎢⎣
α β

. . . . . .
. . . β

α

⎤⎥⎥⎥⎥⎦ .

Let J (j) = U(λj , βj). Then it holds

J (j+1) = U(λj+1, βj+1), βj+1 =
1
2
βj(1 − λ−2

j )

such that |βj+1| ≤ max{1, |λ−2
j |}|βj | and

|βj | ≤ ηj , η := max
i=1,...,j

(1 + |λ−2
i |).

As in the first part of the proof (core of Phase 1, Case 2) the norm of λ−1
j is bounded by 8µ such that

|βj | ≤ (8µ)j (this is only a rough estimate). After imin steps of iteration (3.4) we get

Simin = T

⎡⎢⎢⎣
J

(imin)
1

. . .
J

(imin)
l

⎤⎥⎥⎦T−1, J
(imin)
i = U(λimin , βimin),

with |βimin | ≤ (8µ)imin . From (3.5) it follows

|βimin+1| ≤ 2ε|βimin |,

such that after imin steps of the iteration we get

|β2imin | ≤ (16εµ)imin .

Taking ε̃ := ε/(16µ cond2(T )) instead of ε yields

‖S2imin − sign(S)‖2 ≤ ε.
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4 Structure of the Matrices Involved

4.1 Sylvester Equation

Before we formulate the theorems in detail, we first outline the basic idea. Let A ∈ Cn×n, B ∈ Cm×m,
G ∈ Cm×n. The spectra σ(A), σ(B) of A, B are assumed to be contained in the sets (see Figure 1)

σ(A) ⊂ SA := {x + iy ∈ C | λA,1 < x < λA,2, |y| ≤ µ} (4.1)
σ(B) ⊂ SB := {x + iy ∈ C | λB,1 < x < λB,2, |y| ≤ µ}, (4.2)

where
λA,2 + λB,2 < −3. (4.3)

The assumption (4.3) is only needed to simplify the basic idea, later we will only need λA,2 + λB,2 < 0. In

ΓA
ΓB

SA SB

(A)

(B)

σ

σ

Figure 1: The spectrum σ(A) of A is contained in SA, that of B in SB. The sets ΓA, ΓB have a distance of
at least 1 to SA, SB.

order to express the matrix exponentials exp(tA), exp(tB) by the Dunford-Cauchy representation

exp(tA) =
1

2πi

∮
ΓA

exp(ξt)(ξI − A)−1dξ,

exp(tB) =
1

2πi

∮
ΓB

exp(ηt)(ηI − B)−1dη,

we define closed paths around SA, SB:

ΓA :=
{

a + ib
∣∣∣ (a ∈ [λA,1 − 1, λA,2 + 1] ∧ b ∈ {−µ− 1, µ + 1})

∨ (a ∈ {λA,1 − 1, λA,2 + 1} ∧ b ∈ [−µ − 1, µ + 1])
}

,

ΓB :=
{

a + ib
∣∣∣ (a ∈ [λB,1 − 1, λB,2 + 1] ∧ b ∈ {−µ− 1, µ + 1})

∨ (a ∈ {λB,1 − 1, λB,2 + 1} ∧ b ∈ [−µ − 1, µ + 1])
}
.

The paths are chosen such that dist(ΓA, σ(A)) ≥ 1 and dist(ΓB , σ(B)) ≥ 1. From (4.3) we conclude that
the unique solution X ∈ C

m×n to the Sylvester equation

BX + XA + G = 0 (4.4)

is (cf. [14])

X =
∫ ∞

0

exp(tB)G exp(tA)dt. (4.5)
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Insertion of the Dunford-Cauchy representation yields

X = − 1
4π2

∮
ΓA

∮
ΓB

(ξI − A)−1G(ηI − B)−1

∫ ∞

0

exp(t(ξ + η))dtdξdη. (4.6)

If we replace
∫∞
0

exp(t(ξ + η))dt by a suitable quadrature formula
∑k

j=−k ωj exp(tj(ξ + η)) (with tj, ωj

independent of ξ + η), then the modified solution reads

X̃ := − 1
4π2

∮
ΓA

∮
ΓB

(ξI − A)−1G(ηI − B)−1
k∑

j=−k

ωj exp(tj(ξ + η))dξdη (4.7)

=
k∑

j=−k

ωj exp(tjB)G exp(tjA).

The error ‖X − X̃‖ is estimated in the following theorem preceded by two auxiliary lemmata.

Lemma 4.1 Let M ∈ Cn×n, z ∈ C with dist(z, σ(M)) ≥ 1.

1. If M is symmetric, then ‖(zI − M)−1‖2 ≤ 1.

2. If M = TDT−1, D = diag(d1, . . . , dn), then ‖(zI − M)−1‖2 ≤ cond2(T ).

Proof. Let M = TDT−1, D = diag(d1, . . . , dn). Then

‖(zI − M)−1‖2 = ‖T (zI − D)−1T−1‖2 ≤ cond2(T )‖(zI − D)−1‖2 ≤ cond2(T ).

If M is symmetric, then cond2(T ) = 1.

Lemma 4.2 (Stenger) Let z ∈ C with 
e(z) ≤ −1. Then for each k ∈ N the points and weights

tj := log
(

exp(jk−1/2) +
√

1 + exp(2jk−1/2)
)

, (4.8)

ωj := (k + k exp(−2jk−1/2))−1/2, j = −k, . . . , k, (4.9)

fulfil ∣∣∣∣∣∣
∫ ∞

0

exp(tz)dt −
k∑

j=−k

ωj exp(tjz)

∣∣∣∣∣∣ ≤ Csinc exp(|�m(z)|/π) exp(−
√

k), (4.10)

where the constant Csinc does not depend upon k, z.

Proof. The function t → exp(tz) is holomorphic in C and satisfies [20, (4.2.59)] with C2 = 1, α = 1, β = 1.
The points tj are the zk from [20, Example 4.2.11] and the ωj are the weights in [20, (4.2.60)] (with d := π−1,
h = k−1/2 and n = N = M = k). Applying [20, Example 4.2.11] yields the estimate∣∣∣∣∣∣

∫ ∞

0

exp(tz)dt −
k∑

j=−k

ωj exp(tjz)

∣∣∣∣∣∣ ≤ C3 exp(−
√

k)

with a constant C3 depending upon z. Finally, we estimate the constant C3. As in [20, Example 4.2.11] we
define

φ(z) := log(sinh(z)), φ′(z) =
1

tanh(z)
,
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such that φ is a conformal map of Dd := {z ∈ C : | arg(sinh(z))| < d} (the analyticity domain for the
integrand) onto the strip Dd := {z ∈ C : |�m(z)| < d}. For the function G(t, z) := exp(tz) satisfying the
conditions of [20, Example 4.2.11] the quadrature rule of Stenger can be analysed by use of the splitting∣∣∣∣∣∣
∫ ∞

0

G(t, z)dt − h
k∑

j=−k

G(tj , z)
φ′(tj)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ ∞

0

G(t, z)dt − h
∞∑

j=−∞

G(tj , z)
φ′(tj)

∣∣∣∣∣∣+
∣∣∣∣∣∣h

−k−1∑
j=−∞

G(tj , z)
φ′(tj)

∣∣∣∣∣∣+
∣∣∣∣∣∣h

∞∑
j=k+1

G(tj , z)
φ′(tj)

∣∣∣∣∣∣ .
Due to [20], each term in the above error estimate can be bounded by

1
3
Csinc sup

�e(ξ)>0,|�m(ξ)|≤d

|G(ξ, z)| exp(−
√

k),

where the constant Csinc does not depend upon k, z. From the estimate

|G(ξ, z)| = exp(
e(z)
e(ξ) −�m(ξ)�m(z))
�e(z)≤0,�e(ξ)>0

≤ exp(|�m(z)|/π)

we obtain C3 ≤ Csinc exp(|�m(z)|/π).

Theorem 4.3 (Representation of the solution to the Sylvester equation) Let A ∈ Cn×n, B ∈
C

m×m, G ∈ C
n×m. The spectra σ(A), σ(B) of A, B are assumed to be contained in the sets SA, SB

defined in (4.1) , (4.2) , where we assume λA,2 + λB,2 < 0. We define

α := 3|λA,2 + λB,2|−1,

cA := max{‖(zI − αA)−1‖2 | z ∈ C, dist(z, σ(αA)) ≥ 1},
cB := max{‖(zI − αB)−1‖2 | z ∈ C, dist(z, σ(αB)) ≥ 1}.

For each k ∈ N and j ∈ {−k, . . . , k} let tj ∈ [0, 1 +
√

k] and ωj ∈ (0, 1) denote the points and weights from
(4.8) , (4.9) . If X is the unique solution to (4.4) , then the matrix

X̃ :=
k∑

j=−k

αωj exp(αtjB)G exp(αtjA)

and the constant

C(A, B) := cAcBCsinc exp(
2 + 2αµ

π
)

α

4π2
(8 + α(µ + λA,2 − λA,1))(8 + α(µ + λB,2 − λB,1))

fulfil
‖X − X̃‖2 ≤ C(A, B)‖G‖2 exp(−

√
k).

Proof. If X is a solution to (4.4) then X satisfies

(αB)X + X(αA) + αG = 0.

The spectra of αA, αB fulfil αλA,2 + αλB,2 ≤ −3 and we can define the sets ΓA, ΓB as

ΓA :=
{
a + ib

∣∣∣ (a ∈ [αλA,1 − 1, αλA,2 + 1] ∧ b ∈ {−αµ − 1, αµ + 1})

∨ (a ∈ {αλA,1 − 1, αλA,2 + 1} ∧ b ∈ [−αµ − 1, αµ + 1])
}

,

ΓB :=
{
a + ib

∣∣∣ (a ∈ [αλB,1 − 1, αλB,2 + 1] ∧ b ∈ {−αµ − 1, αµ + 1})

∨ (a ∈ {αλB,1 − 1, αλB,2 + 1} ∧ b ∈ [−αµ − 1, αµ + 1])
}
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such that dist(ΓA, σ(αA)) ≥ 1, dist(ΓB , σ(αB)) ≥ 1, 
e(ξ + η) ≤ −1 for ξ ∈ ΓA, η ∈ ΓB, and
σ(αA) ⊂ ΓA, σ(αB) ⊂ ΓB. Let k ∈ N and tj , ωj be the points and weights from Lemma 4.2. We
estimate the approximation error by

‖X − X̃‖2
(4.6),(4.7)

=

∥∥∥∥∥− 1
4π2

∮
ΓA

∮
ΓB

(ξI − αA)−1αG(ηI − αB)−1

⎛⎝∫ ∞

0

exp(t(ξ + η))dt −
k∑

j=1

ωj exp(tj(ξ + η))

⎞⎠ dξdη

∥∥∥∥∥
2

|�m(ξ+η)|≤2+2αµ

≤ 1
4π2

∮
ΓA

∮
ΓB

cAα‖G‖2cBCsinc exp(
2 + 2αµ

π
) exp(−

√
k)dξdη

≤ C(A, B)‖G‖2 exp
(
−
√

k
)

.

Corollary 4.4 (R(k)-approximation to the solution of the Sylvester equation) We use the same
notation as in Theorem 4.3. Let kG denote the rank of G. Then the minimal rank kX needed to approximate
the solution X to (4.4) up to an error of ‖X̃ − X‖2 ≤ ε, ε ∈ (0, 1), by an R(kX)-matrix X̃ is bounded by

kX ≤ kG log(C(A, B)‖G‖2ε
−1)2. (4.11)

Since ‖G‖2 = ‖AX − XB‖2 ≤ (‖A‖2 + ‖B‖2)‖X‖2 we also get the estimate for the relative error

‖X̃ − X‖2 ≤ ε‖X‖2

with X of rank kX ≤ kG log(C(A, B)(‖A‖2 + ‖B‖2)ε−1)2.

Remark 4.5 If we consider only the dependency on ε in (4.11) then we have kX = O(log(1/ε)2), while in
[8] the estimate kX = O(log(1/ε)) is established. However, the desired accuracy ε, the size of the matrices
and the spectrum of the matrices is typically not independent. If we assume that the desired accuracy ε
is of the size log(1/ε) = O(q), the size of the matrices n and m is log(n + m) = O(q), the norm of the
matrices is log(‖A‖+ ‖B‖) = O(q), the distance λ between the spectrum of A and that of −B is bounded by
log(1/λ) = O(q) and the maximum of the imaginary part of the eigenvalues of A and B is bounded by O(λ),
then the estimate (4.11) and the one from [8] read

kX = O(q2),

which coincides with the estimate from Penzl [15] for the symmetric Lyapunov case.

Lemma 4.6 (Approximation of the operator exponential) Let µ ∈ R≥0 and A ∈ Cn×n with spec-
trum σ(A) ⊂ {x + iy ∈ C | x ≥ 2 and |y| ≤ µ}. For the parabola

ΓA := {1
2
(µ + 1)−2η2 +

1
2

+ iη | η ∈ (−∞,∞)} (4.12)

and the interior ΩA := {ξ + iη | η ∈ (−∞,∞) and ξ > 1
2 (µ + 1)−2η2 + 1

2} we define the so-called strong
P-positivity constant

M := sup
z∈C\ΩA

‖(zI − A)−1‖2(1 +
√
|z|).

Then the matrix exponential exp(−A) can be approximated by a linear combination of resolvents, i.e., for
each kE ∈ N there exist points zj ∈ C \ ΩA and weights wj ∈ C such that

‖ exp(−A) −
kE∑

j=−kE

wj(zjI − A)−1‖2 ≤ M exp
(
4(µ + 1)2 − (µ + 1)2/3k

2/3
E

)
. (4.13)
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Proof. We want to apply [5, Theorem 2.4]. The integration parabola is defined by

Γb = {a

4
η2 + b + iη | η ∈ (−∞,∞)},

where a := 1
2 (µ+1)−2 and b := 2− 3

2 (µ+1)2. In the following we further estimate the expression appearing
in [5, (2.12)]. We choose the parameter k := 4 and get

b(k) = 2 − (k − 1)/(4a) = b,

d = (1 − 1√
k

)
k

2a
= 2(µ + 1)2,

s = ((2πd)2a/k)1/3 = (2π2(µ + 1)2)1/3,

c = M1 exp(d2a/k + d − b) = M1 exp((µ + 1)2/2 + 2(µ + 1)2 − 2 +
3
2
(µ + 1)2)

= M1 exp(4(µ + 1)2/2 − 2).

To estimate the constant

M1 = sup
z∈C,|�m(z)|≤2(µ+1)2

|2az/k − i|
1 +

√|az2/k + b − iz| , (4.14)

we distinguish between two cases for z = x + iy:

1. If |x| ≤ 6(µ + 1)2 then M1 ≤ |2az/k − i| =
√

(1
4 (µ + 1)−2|x|)2 + (1

4 (µ + 1)−2|y| + 1)2 ≤ 3.

2. If |x| > 6(µ + 1)2 then we estimate the numerator in (4.14) by

|2az/k − i| = |1
4
(µ + 1)−2x + i(

1
4
(µ + 1)−2y − 1)| ≤ 1

4
(µ + 1)−2|x| + 3/2 ≤ 2 +

|x|
4(µ + 1)

.

The denominator can be bounded from below if we consider only the real part:

|az2/k + b − iz| ≥ |1
8
(µ + 1)−2x2 + 2 − 1

8
(µ + 1)−2y2 − 3

2
(µ + 1)2 + y|.

From

| − 1
8
(µ + 1)−2y2 − 3

2
(µ + 1)2 + y| ≤ 4(µ + 1)2 and

|1
8
(µ + 1)−2x2 + 2| ≥ 1

72
(µ + 1)−2x2 +

1
9
(µ + 1)−2x2 ≥ 1

72
(µ + 1)−2x2 + 4(µ + 1)2

we get 1 +
√|az2/k + b − iz| ≥ 1 +

√
1
72 (µ + 1)−2x2 ≥ 2/3 + 1

12 (µ + 1)−1|x|. Therefore M1 ≤ 3.

The error estimate [5, (2.12)] reads

‖ exp(−A) −
kE∑

j=−kE

wj(zjI − A)−1‖2 ≤ M
√

π 3 exp(4(µ + 1)2 − 2)
[

Z1

N1
+

Z2

N2

]
, (4.15)

where

Z1 = 2
√

k exp(−s(kE + 1)2/3) = 4 exp(−(2π2(µ + 1)2)1/3(kE + 1)2/3)

≤ 4 exp(−((2π2)1/3 − 1)(µ + 1)2/3) exp(−(µ + 1)2/3k
2/3
E )

≤ 4 exp(−3
2
(µ + 1)2/3) exp(−(µ + 1)2/3k

2/3
E ),
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Z2 = k exp(−s(kE + 1)2/3) = Z1,

N1 =
√

a(1 − exp(−s(kE + 1)2/3)) ≥ (µ + 1)−1 1√
2
(1 − exp(−4)) ≥ 1

2
(µ + 1)−1,

N2 = (kE + 1)1/3(2πdka2)1/3 = (kE + 1)1/3(4π(µ + 1)−2)1/3 ≥ 2(µ + 1)−1.

Inserting these bounds in (4.15) , yields[
Z1

N1
+

Z2

N2

]
≤ 3

2
(µ + 1)4 exp

(
−3

2
(µ + 1)2/3

)
exp

(
−(µ + 1)2/3k

2/3
E

)
≤ 6 exp(−3

2
) exp

(
−(µ + 1)2/3k

2/3
E

)
,

‖ exp(−A) −
kE∑

j=−kE

wj(zjI − A)−1‖2

≤ M
√

π3 exp
(
4(µ + 1)2 − 2

)
6 exp(−3

2
) exp

(
−(µ + 1)2/3k

2/3
E

)
≤ M exp

(
−(µ + 1)2/3k

2/3
E + 4(µ + 1)2

)
.

Corollary 4.7 (Approximation of the solution to the Sylvester equation by a sum of resolvents)
Let A ∈ Cn×n, B ∈ Cm×m, G ∈ Cn×m, λ1 < λ2 ∈ R<0, µ ∈ R≥0. The spectra σ(A), σ(B) of A, B are
assumed to be contained in

S := {x + iy ∈ C | λ1 < x < λ2 and |y| < µ}.
We define the constants

α :=
3
2
|λ2|−1,

c := max
C∈{αA,αB}

max{‖(zI − C)−1‖2 | z ∈ C, dist(z, σ(C)) ≥ 1},

ce := max
C∈{A,B}

max
t≥0

‖ exp(tC)‖2.

For each k := (2kE + 1)2(2kI + 1) with kI , kE ∈ N and

kE ≥
(

(log(M) + 2)(
µ(1 +

√
kI)

2|λ2| + 1)−2/3 + 4(
µ(1 +

√
kI)

2|λ2| + 1)4/3

)3/2

(4.16)

we define the integration parabola Γ, the interior Ω and the strong P-positivity constant M by

Γ := {1
2
((1 +

√
k)αµ + 1)−2η2 +

1
2

+ iη | η ∈ (−∞,∞)},

Ω := {ξ + iη | η ∈ (−∞,∞) and ξ >
1
2
((1 +

√
k)αµ + 1)−2η2 +

1
2
},

M := max
t∈[0,1+

√
kI ]

max
C∈{A,B}

sup
z∈C\Ω

‖((z − 2)I + αtC)−1‖2(1 +
√
|z|).

Then there exist points tj ∈ [0,∞) and weights wj ∈ C, j ∈ {1, . . . , k}, such that the solution X to (4.4) can
be approximated by a matrix X̃ =

∑k
j=1 wj(zjI − B)−1G(zjI − A)−1 with

‖X − X̃‖2 ≤ c2Csinc exp((2 + 2αµ)/π)
3‖G‖2

32π2|λ2| (13 + 3|λ2|−1(µ − λ1))2 exp
(
−
√

kI

)
(4.17)

+ ceM
9‖G‖2

2|λ2| (2kI + 1) exp
(

2 + 4(
3 + 3

√
kI

|λ2| µ + 1)2 − (
3 + 3

√
kI

|λ2| µ + 1)2/3k
2/3
E

)
.
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If A and B are symmetric then

‖X − X̃‖2 ≤ 3Csinc exp(2/π)‖G‖2
|λ1|2
|λ2|3 exp(−

√
kI) + M(9kI + 9/2)|λ2|−1‖G‖2 exp(6 − k

2/3
E ).

Proof. Let X be the unique solution to (4.4) . According to Theorem 4.3, the matrix

Y :=
kI∑

j=−kI

αωj exp(αtjB)G exp(αtjA)

fulfils

‖X − Y ‖2 ≤ c2Csinc exp((2 + 2αµ)/π)
α‖G‖2

4π2
(8 + α(µ + λ2 − λ1))2 exp(−

√
kI)

= c2Csinc exp((2 + 2αµ)/π)
3‖G‖2

32π2|λ2| (13 + 3|λ2|−1(µ − λ1))2 exp(−
√

kI)

which produces the first term in (4.17) . The spectra of the matrices −αtjA+2I,−αtjB+2I are contained in
{x+iy ∈ C | x > 2 and |y| < α(1+

√
kI)µ}. Application of Lemma 4.6 for the matrices−αtjA+2I,−αtjB+2I

instead of A and α(1 +
√

kI)µ instead of µ yields

‖ exp(αtjA − 2I) −

=:EA,j︷ ︸︸ ︷
kE∑

i=−kE

w̃j,i(z̃j,iI − (−αtjA + 2I))−1 ‖2

≤ M exp
(
4(α(1 +

√
kI)µ + 1)2 − (α(1 +

√
kI)µ + 1)2/3k

2/3
E

)
and the same for B instead of A. For the matrix

X̃ :=
kI∑

j=−kI

αωjEB,j exp(2I)G exp(2I)EA,j

we get the error estimate

‖Y − X̃‖2 = ‖Y −
kI∑

j=−kI

αωj exp(2I) exp(αtjB − 2I)G exp(2I)EA,j

+
kI∑

j=−kI

αωj exp(2I) exp(αtjB − 2I)G exp(2I)EA,j − X̃‖2

≤ (2kI + 1)αce‖G‖2e
2M exp

(
4(α(1 +

√
kI)µ + 1)2 − (α(1 +

√
kI)µ + 1)2/3k

2/3
E

)
+ (2kI + 1)α

kImax
j=−kI

‖EA,j‖2‖G‖2e
2M exp

(
4(α(1 +

√
kI)µ + 1)2 − (α(1 +

√
kI)µ + 1)2/3k

2/3
E

)
(4.16)

≤ (2kI + 1)α3ce‖G‖2e
2M exp

(
4(α(1 +

√
kI)µ + 1)2 − (α(1 +

√
kI)µ + 1)2/3k

2/3
E

)
= ceM

9‖G‖2

2|λ2| (2kI + 1) exp
(

2 + 4(
3 + 3

√
kI

2|λ2| µ + 1)2 − (
3 + 3

√
kI

2|λ2| µ + 1)2/3k
2/3
E

)
.

If A and B are both symmetric, then we can apply Lemma 4.1 and get c = 1, ce = 1, µ = 0.

Corollary 4.8 (H-matrix approximation to the solution of the Sylvester equation) We use the
same notation as in Corollary 4.7. We assume

G ∈ MH,kG(TI×J)
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and that for δ ∈ R>0 all resolvents (zjI − A)−1, (zjI − B)−1 can be approximated by an H-matrix A(j) ∈
MH,kA(TJ×J ), B(j) ∈ MH,kB(TI×I) with

‖(zjI − A)−1 − A(j)‖2 ≤ δ, ‖(zjI − B)−1 − B(j)‖2 ≤ δ (4.18)

(for a more detailed analysis concerning the existence of H-matrix approximants the reader is referred to
[3]). If we define the approximate solution

XH :=
k∑

j=1

wjB
(j)GA(j),

then the approximation error is of the size

‖X − XH‖2 = O
(
exp(−

√
kI) + exp(−k

2/3
E ) + δ

)
(neglecting linear terms in kI) while Remark 1.2 yields

XH ∈ MH,kX (TI×J), kX = O (
log(n + m)2(kA + kB)kGk2

EkI

)
.

If the rank needed for the H-approximants is kA = kB = O(log(1/δ)) then

‖X − XH‖2 = O(δ) for kX = O(kG log(n + m)2 log(1/δ)6).

Since ‖G‖2 = ‖AX − XB‖2 ≤ (‖A‖2 + ‖B‖2)‖X‖2, we also get the above estimates for the relative error.

4.2 Lyapunov Equation

The Lyapunov equation
AT X + XA + G = 0 (4.19)

for A, G ∈ Rn×n is a special Sylvester equation (4.4) for B := AT . Let the spectrum σ(A) of A be contained
in the left complex halfplane and let X denote the unique solution to (4.19) .

If G is of low rank kG > 0, then Remark 4.5 proves that for each ε ∈ (0, 1) there exists a matrix XR of rank
O(log(1/ε)) such that ‖X − XR‖2/‖X‖2 ≤ ε. For the ease of presentation we neglect the constants.

If G is an element of the H-matrix class MH,kG(TI×I) and if the resolvents (zI − A)−1 in (4.18) can be
approximated by an H-matrix up to an error of ε ∈ (0, 1) with blockwise rank kA = O(log(1/ε)), then
Corollary 4.8 proves that there exists a matrix XH ∈ MH,kX (TI×I) of blockwise rank kX = O(log(1/ε)6)
such that ‖X − X̃‖2/‖X‖2 ≤ ε. Again we neglect the constants.

These results are a generalisation of the ones from [8] and [15] (for the R(k)-matrix case) to the H-matrix
case. With the assumption that A ∈ R

n×n is symmetric positive definite and G of low rank kG, the author
of [15] was able to prove that the singular values λ1 ≥ . . . ≥ λn ≥ 0 of X are bounded by

λm·kG+1

λ1
≤ (

m−1∏
j=0

κm,j − 1
κm,j + 1

)2, κm,j := cond2(A)
2j+1
2m . (4.20)

Remark 4.9 In order to compare our estimate to the result by Penzl [15] we have to analyse (4.20) . We
assume that the spectral condition of A is larger than 1. Let ε ∈ (0, 1) and

m := �(log2(cond2(A)) + 1)(log2(1/ε) + 1)�.
It follows for j ≤ �log2(1/ε)� that κj = (cond2(A))

2j+1
2m ≤ (cond2(A))1/ log2(cond2(A)) ≤ 2 and⎛⎝m−1∏

j=0

κm,j − 1
κm,j + 1

⎞⎠2

≤
⎛⎝�log2(1/ε)�∏

j=0

1
3

⎞⎠2

≤ 3−2 log2(1/ε) ≤ ε.
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This proves that the solution X to (4.4) can be approximated up to a relative error of ε by a matrix X̃ of
rank O(kC log2(cond2(A)) log2(1/ε))).

A conclusion of all the previous results is that the solution X to the Lyapunov equation can be approximated
by an H-matrix (or R(k)-matrix) if G is an H-matrix (or R(k)-matrix). An algorithm to compute the
H-matrix (or R(k)-matrix) approximation efficiently will be presented in the following sections.

4.3 Riccati Equation

Let A, F, G ∈ Rn×n and let the spectrum σ(A) of A be contained in the left complex halfplane. A solution
X of the Riccati equation

AT X + XA − XFX + G = 0 (4.21)

can (for theoretical considerations) be regarded as a solution of the Lyapunov equation

AT X + XA + G̃ = 0, G̃ := G − XFX.

If F and G are of rank kF , kG � n then G̃ is of rank at most kG̃ = kF + kG and we can apply Remark 4.5
to prove that the rank kX that is necessary to approximate X up to a relative error of ε in the set of
R(k)-matrices is kX = O(log(1/ε)).

If F is of rank kF � n and G ∈ MH,kG(TI×I), kG � n, then G̃ ∈ MH,kG+kF (TI×I) and we can apply
Corollary 4.8 to prove that the blockwise rank kX that is necessary to approximate X up to a relative error
of ε in the set MH,kX (TI×I) is kX = O(log(1/ε)6).

Note that we make use of the low rank of the matrix F , while G can be an H-matrix. For the general
situation that F is not of low rank, the algorithms presented later are still applicable, but we cannot bound
the (blockwise) rank needed to approximate the solution to (4.21) .

4.4 Matrix Sign Function

In the last two subsections we have seen that the solution X to the Riccati or Lyapunov equation can (under
moderate assumptions) be represented as an H-matrix. The following two questions arise:

• Does the matrix sign
([

AT G
F −A

])
consist of H-matrix substructures ?

• Do the iterates Si from (3.4) bear any specific structure ?

We assume that the matrices F, G ∈ Rn×n are symmetric, F is of low rank kF := rank(F ) and A− FX is a
stability matrix (X solves (4.21) ). We define the matrix

S :=
[

AT G
F −A

]
.

For the solution X to (4.21) there holds

S =
[

X −I
I 0

] [ −(A − FX) −F
0 (A − FX)T

] [
X −I
I 0

]−1

18



and it follows (see [17] and use sign(S)S = Ssign(S))

sign(S) =
[

X −I
I 0

]
sign

([ −(A − FX) −F
0 (A − FX)T

])[
X −I
I 0

]−1

=
[

X −I
I 0

] [
I Z
0 −I

] [
0 I
−I X

]
=
[ −XZ − I 2X + XZX

−Z I + ZX

]
, (4.22)

where Z satisfies the Lyapunov equation

AZ + ZAT + G̃ = 0, G̃ := −FXZ − ZXF − 2F. (4.23)

According to Remark 4.5, the matrix Z can be approximated by a low rank matrix Z̃ with kZ := rank(Z̃) =
O(kF log(1/ε)) and ‖Z − Z̃‖2 ≤ ε. A direct conclusion is

Corollary 4.10 (Approximation of sign(S)) The matrix sign(S) can be approximated by a matrix

K =
[

K11 K12

K21 K22

]
, K11 + I, K21, K22 − I, K12 − 2X ∈ R(kZ).

We denote the index set by I := {1, . . . , n}. The matrices K11, K21 and K22 are contained in MH,kZ (TI×I)
and K12 is contained in the same space (H-matrix or low rank matrix) as X but with rank increased by kZ .
The approximation error ‖Z − Z̃‖2 leads to the estimate

‖sign(S) − K‖2 ≤ ε(1 + ‖X‖2
2) = O(ε).

Lemma 4.11 Let A0 := A − FX and F0 := F . For each i ∈ N0 we define

Ai+1 :=
1
2
(
Ai + A−1

i

)
and (4.24)

Fi+1 :=
1
2
(
Fi + A−1

i FiA
−T
i

)
. (4.25)

Ultimately Ai converges to −I (because A0 is a stability matrix) and Fi converges to −Z. The iterates Fi

can be approximated by a matrix F̃i of rank at most 2kZ , such that

‖Fi − F̃i‖2 ≤ ε‖Ai‖2.

Proof. Since Y := − 1
2Z solves (due to (4.23) ) the Lyapunov equation (A−FX)Y + Y (A−FX)T + F = 0,

it holds

S̃0 :=
[

A − FX F
0 −(A − FX)T

]
=
[

Y −I
I 0

] [ −(A − FX)T 0
0 A − FX

] [
Y −I
I 0

]−1

.

For the matrix

S̃0 =
[

A0 F0

0 −AT
0

]
=

[
Y −I
I 0

] [ −AT
0 0

0 A0

] [
Y −I
I 0

]−1

we perform the Newton iteration (3.4), S̃i+1 := 1
2 (S̃i + S̃−1

i ), and get

S̃i =
[

Ai Fi

0 −AT
i

]
=
[

Y −I
I 0

] [ −AT
i 0

0 Ai

] [
Y −I
I 0

]−1

=
[

Ai −Y AT
i − AiY

0 AT
i

]
.

It follows Fi = −Y AT
i − AiY = 1

2 (ZAT
i + AiZ) and for the matrix F̃i := 1

2 (Z̃AT
i + AiZ̃) of rank 2kZ we

obtain
‖Fi − F̃i‖2 ≤ 1

2
(‖Z − Z̃‖2‖AT

i ‖2 + ‖Ai‖2‖Z − Z̃‖2) ≤ ε‖Ai‖2.
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Lemma 4.12 Let A0 ∈ Cn×n be a regular diagonalisable matrix whose spectrum σ(A0) does not intersect
the imaginary axis. Let A0 = TD0T

−1 be a diagonalisation of A0, d := maxλ∈σ(A) |λ + λ−1|. For all i ∈ N

we define

Ai :=
1
2
(
Ai−1 + A−1

i−1

)
.

If for all x+ iy ∈ σ(A) the imaginary part is bounded by |y| ≤ |x|, then the norms of Ai, A
−1
i can be bounded

by
‖A−1

i ‖2 ≤
√

2 cond2(T ), ‖Ai‖2 ≤
(
2−id +

√
2
(
1 − 2−i

))
cond2(T ). (4.26)

If σ(A0) ⊂ R, then

‖A−1
i ‖2 ≤ cond2(T ), ‖Ai‖2 ≤ (

1 + 2−i (d − 1)
)
cond2(T ). (4.27)

Proof. We define for i ∈ N the matrices

Di :=
1
2
(Di−1 + D−1

i−1),

such that Ai = TDiT
−1. Let ‖M‖T := ‖T−1MT ‖2. Then ‖Ai‖T = ‖Di‖2 and ‖Ai‖2 ≤ cond2(T )‖Ai‖T .

Case (4.26) : If |y| ≤ |x| for all x + iy ∈ σ(A) then this implies |�m(di)| ≤ |
e(di)| for di = (D0)ii. For all
subsequent di = (Dj)ii with x + iy = (Dj−1)ii it follows

di =
1
2
(x + iy +

x − iy

x2 + y2
) = x +

x

x2 + y2
+ i(y − y

x2 + y2
)

which implies |�m(di)| ≤ |
e(di)|.
We prove ‖D−1

i ‖2 ≤ √
2 for all i ∈ N and by induction

‖Di‖2 ≤ 2−id +
i−1∑
j=1

2−j
√

2,

which is fulfilled for i = 1. Let i ∈ N and Di−1 = diag(d1, . . . , dn).

‖D−1
i ‖2 = 2 max

i=1,...,n
|di + d−1

i |−1
|�m(di)|≤|�e(di)|≤ 2/

√
2 =

√
2.

‖Di‖2 = ‖1
2
(Di−1 + D−1

i−1)‖2 ≤ 1
2

√
2 +

1
2
(2−i+1d +

i−2∑
j=1

2−j
√

2) = 2−id +
i−1∑
j=1

2−j
√

2.

Case (4.27) : Same as above but all (Dj)ii are real-valued and thus 2 maxi=1,...,n |di + d−1
i |−1 ≤ 1.

Theorem 4.13 (Newton iteration for sign(S) with low rank G ) Let the matrices F, G ∈ Rn×n be
symmetric, F of rank kF and G of rank kG. Let ε ∈ (0, 1) and A ∈ R

n×n. We assume:

1. The solution X to (4.21) can be approximated by a matrix X̃ of rank kX such that ‖X − X̃‖2 ≤ ε.

2. A − FX is a stability matrix.

3. Each of the matrices Ai from (4.24) in Lemma 4.11 can be approximated by a matrix Ãi ∈ MH,kA(TI×I)
such that ‖Ai − Ãi‖2 ≤ ε.
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Then each iterate Si of the iteration (3.4) can be approximated by a matrix

K(i) =

[
K

(i)
11 K

(i)
12

K
(i)
21 K

(i)
22

]
, K

(i)
11 , K

(i)
22 ∈ MH,kA+2kZ (TI×I), K

(i)
12 ∈ R(2kX + 2kZ), K

(i)
21 ∈ R(2kZ)

and the approximation error is bounded by

‖Si − K(i)‖2 ≤ ε(1 + ‖Ai‖2(2 + ‖X‖2 + ‖X‖2
2)).

Proof. Using the notation from Lemma 4.11, the statement holds for

S0 =
[

X −I
I 0

] [ −(A − FX) −F
0 (A − FX)T

] [
X −I
I 0

]−1

=
[

X −I
I 0

]
(−S̃0)

[
X −I
I 0

]−1

and we can conclude

Si =
[

X −I
I 0

]
(−S̃i)

[
X −I
I 0

]−1

=
[

X −I
I 0

] [ −Ai −Fi

0 AT
i

] [
0 I
−I X

]
=
[

AT
i + XFi −AT

i X − XAi − XFiX
Fi −Ai − FiX

]
.

We define K
(i)
11 := ÃT

i + XF̃i, K
(i)
22 := −Ãi − F̃iX , K

(i)
12 := −AT

i X̃ − X̃Ai − XF̃iX , K
(i)
21 := F̃i and get the

error estimate

‖Si − K(i)‖2 ≤ ‖Ai − Ãi‖2 + ‖X‖2‖F̃i − Fi‖2

+ max{‖Fi − F̃i‖2, 2‖Ai‖2‖X − X̃‖2 + ‖F̃i − Fi‖2‖X‖2
2}

≤ ε + ε‖X‖2‖Ai‖2 + max{ε‖Ai‖2, 2ε‖Ai‖2 + ε‖Ai‖2‖X‖2
2}

= ε(1 + 2‖Ai‖2 + ‖Ai‖2‖X‖2 + ‖Ai‖2‖X‖2
2).

From Lemma 4.11 the rank of F̃i is bounded by 2kZ . Due to the ideal property (see Remark 1.2) of
R(k)-matrices, we have rank(K(i)

12 ) ≤ 2kX + 2kZ . Since Ãi ∈ MH,kA(TI×I), it follows that K
(i)
11 , K

(i)
22 ∈

MH,kA+2kZ (TI×I)

Theorem 4.14 (Newton iteration for sign(S) with H-matrix G) Let the matrices F, G ∈ Rn×n be
symmetric, F of rank kF and G ∈ MH,kG(TI×I). Let ε ∈ (0, 1) and A ∈ Rn×n. The depth of TI×I is
denoted by p and the constants describing the sparsity and idempotency are Csp, Cid. We assume:

1. The solution X to (4.21) can be approximated by X̃ ∈ MH,kX (TI×I) such that ‖X − X̃‖2 ≤ ε.

2. A − FX is a stability matrix.

3. Each of the matrices Ai from (4.24) can be approximated by a matrix Ãi ∈ MH,kA(TI×I) such that
‖Ai − Ãi‖2 ≤ ε.

Then each iterate Si of the iteration (3.4) can be approximated by a matrix

K(i) =

[
K

(i)
11 K

(i)
12

K
(i)
21 K

(i)
22

]
, K

(i)
11 , K

(i)
22 ∈ MH,k′(TI×I), K

(i)
12 ∈ R(3kX), K

(i)
21 ∈ R(2kZ)

with k′ := 2CspCidp max{k, kX} + 2kZ such that the approximation error is bounded by

‖Si − K(i)‖2 ≤ ε(1 + ‖Fi‖2(1 + ‖X‖2) + 2‖Ai‖2).
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Proof. Using the notation from Lemma 4.11, the statement holds for

S0 =
[

X −I
I 0

] [ −(A − FX) −F
0 (A − FX)T

] [
X −I
I 0

]−1

=
[

X −I
I 0

]
(−S̃0)

[
X −I
I 0

]−1

and we can conclude, as in the previous Theorem,

Si =
[

AT
i + XFi −AT

i X − XAi − XFiX
Fi −Ai − FiX

]
.

We define the matrices K
(i)
11 := ÃT

i + XF̃i, K
(i)
22 := −Ãi − F̃iX , K

(i)
12 := −ÃT

i X̃ − X̃Ãi − XF̃iX , K
(i)
21 := F̃i

and get the error estimate

‖Si − Ki‖2 ≤ ε(1 + 2‖Ai‖2 + ‖Ai‖2‖X‖2 + ‖Ai‖2‖X‖2
2).

From Lemma 4.11 the rank of F̃i is bounded by 2kZ . Due to the ideal property of R(k)-matrices,
we get K

(i)
11 , K

(i)
22 ∈ MH,kA+2kZ (TI×I). Remark 1.2 ensures X̃Ãi, Ã

T
i X̃ ∈ MH,k′′(TI×I) with k′′ :=

CspCidp max{k, kX}. Since rank(XF̃iX) ≤ 2kZ , we get K
(i)
12 ∈ MH,k′(TI×I) with k′ := 2k′′ + 2kZ .

Remark 4.15 In Theorem 4.13 and Theorem 4.14 we need three assumptions:

1. The solution X can be approximated in a suitable format, namely by an R(k)-matrix or an H-matrix
X̃. This has already been investigated in Remark 4.5 and Corollary 4.8.

2. A − FX is a stability matrix. This can be assumed because we seek a stabilising solution X.

3. Each of the matrices Ai can be approximated by an H-matrix. If A is the (sparse) stiffness matrix
from the (finite element or finite difference) discretisation of an elliptic partial differential operator,
then A − FX belongs to MH,kF (TI×I). The set of H-matrices was chosen such that the inverse A−1

to A can be approximated by an H-matrix Ã−1 with moderate blockwise rank. Since the matrix A1 is
a rank 2kF -perturbation of 1

2 (A + A−1), we can approximate A1 by an H-matrix. Moreover, the Ai

can be regarded as the discretisation of an elliptic pseudo-differential operator which makes it plausible
that they can again be approximated by an H-matrix.

5 Using H-Matrices for the Solution

In the last section we have used the matrix exponential in order to prove that, if the matrix G is an H-matrix
or R(k)-matrix, then the solution X to the Riccati or Lyapunov equation is an H-matrix or R(k)-matrix. The
representation of the solution X used in Corollary 4.4 and Corollary 4.8 leads to an algorithm where one can
insert H-matrix arithmetics to get a fast solver for the Lyapunov equation. For the solution of the Riccati
equation (4.21) one has to deal with a series of Lyapunov equations (4.19), where one can exploit the fact
that the matrices Aν appearing in the Lyapunov equation in the ν-th Newton step are rank-kF -perturbations
of A.

An entirely different approach for the solution of the Riccati equation is to use the algorithm of Subsection 3.2
with the formatted H-matrix arithmetics. We already know that the iterates in (3.4) can be approximated
by blockwise R(k)-matrices and H-matrices, but the influence of the approximation error in the numerical
scheme has to be analysed. It turns out that scaling strategies (since sign(S) = sign(αS) for α > 0 one can
choose a scaling parameter α in each step to accelerate convergence) are not advisable.

5.1 Application of the Matrix Sign Function

The formatted H-matrix operations (⊕,�, Ĩnv) introduce some kind of “rounding” error that has not yet
been regarded. Our main concern is the iterative scheme (3.4) to compute the matrix sign function. Since
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there will be O(log(n)) steps, the rounding errors could be amplified such that the approximate solution
does not approximate the solution.

We start the (exact) Newton iteration with the matrix S0 :=
[

AT G
F −A

]
and define the (exact) iterates for

i ∈ N0 as Si+1 := 1
2 (Si +S−1

i ). The exact starting matrix is replaced by some approximation S̃0 ∈ MH,k(T )
where T is, as we have derived in Theorem 4.13 and Theorem 4.14, the partitioning

T =
[

TI×I I × I
I × I TI×I

]
(if G has low rank), T =

[
TI×I TI×I

I × I TI×I

]
(if G is an H-matrix),

for the index set I = {1, . . . , n}. For the sake of simplicity we assume that the rank k in the blockwise low
rank structures is always the same, which could be enforced by taking the maximum of all ranks appearing
in Theorem 4.13 and Theorem 4.14.

The (inexact) iterates are defined as

S̃i+1 :=
1
2
(S̃i ⊕ Ĩnv(S̃i)) ∈ MH,k(T ), (5.1)

where ⊕ and Ĩnv are the formatted H-matrix addition and inversion in the set MH,k(T ). The accuracy
δ, ρ of the formatted addition and inversion, respectively, can be controlled by the blockwise rank k of the
H-matrices. Typically, we have k = O(log(1/δ) + log(1/ρ)).

Theorem 5.1 (Error propagation) Let ρ, δ > 0, imax ∈ N and for all i = 0, . . . , imax

‖S̃−1
i − Ĩnv(S̃i)‖2 ≤ δ (H-matrix inversion error), (5.2)∥∥∥(S̃i + Ĩnv(S̃i)

)
−
(
S̃i ⊕ Ĩnv(S̃i)

)∥∥∥
2
≤ ρ (H-matrix addition error). (5.3)

We define the error amplification coefficients

c0 := ‖S̃0 − S‖2(δ + ρ)−1.

ci+1 :=
1
2
(1 + ci + ci

‖S−1
i ‖2

2

1 − ci(ρ + δ)‖S−1
i ‖2

)

by induction for i ∈ N0 and assume that

ci(ρ + δ)‖S−1
i ‖2 < 1 (5.4)

for all i = 0, . . . , imax. Then the distance of the inexact iterate to the exact iterate can be bounded by

‖S̃i − Si‖2 ≤ ci(ρ + δ). (5.5)

Proof. By induction, where (5.5) for i = 0 is fulfilled due to the definition of c0. For the induction step
i → i + 1 we define

Ei := Si − S̃i,

Di := Ĩnv(S̃i) − S̃−1
i ,

Ri := (S̃i + Ĩnv(S̃i)) − (S̃i ⊕ Ĩnv(S̃i)).
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Then the (inexact) iterate in step i + 1 can be written as

S̃i+1 =
1
2
(S̃i ⊕ Ĩnv(S̃i)) =

1
2
(S̃i + Ĩnv(S̃i) + Ri)

=
1
2
(Si − Ei + (Si − Ei)−1 + Di + Ri)

(5.4)
=

1
2
(Si − Ei + S−1

i

∞∑
ν=0

(EiS
−1
i )ν + Di + Ri)

= Si+1 +
1
2
(−Ei + Di + Ri +

∞∑
ν=1

(EiS
−1
i )ν).

Using the Definition of ci and (5.4), (5.5) we get

‖S̃i+1 − Si+1‖2 ≤ 1
2
(ci(ρ + δ) + δ + ρ + ‖S−1

i ‖2

∞∑
ν=1

(ci(ρ + δ)‖S−1
i ‖2)ν)

=
1
2
(1 + ci + ci‖S−1

i ‖2
2

∞∑
ν=0

(ci(ρ + δ)‖S−1
i ‖2)ν)(ρ + δ)

=
1
2
(1 + ci + ci

‖S−1
i ‖2

2

1 − ci(ρ + δ)‖S−1
i ‖2

)(ρ + δ) = ci+1(ρ + δ).

Corollary 5.2 We use the notation from Theorem 5.1 and define

s := max
i∈N0

‖S−1
i ‖2.

We fix a number of iterations imax ∈ N and assume

∀i ∈ {1, . . . , imax} ρ + δ ≤ 1
2
(c0 + i + 1)−2s−4i−3.

Then the error amplification coefficients ci, i ∈ {0, . . . , imax}, can be bounded by

ci ≤ (c0 + i)s2i. (5.6)

To achieve ‖S̃imax − Simax‖2 ≤ ε one has to take

ρ + δ ≤ min{ε(c0 + imax)−1s−2imax ,
1
2
(c0 + imax + 1)−2s−4imax−3}.

If we assume that the rank k needed to gain a relative error ξ in the H-matrix arithmetic is proportional
to log(ξ−1), then the rank k needed to get an overall accuracy of ε (error due to the formatted H-matrix
arithmetics and due to the error propagation) is k = O(log(ε−1) + log(imax) + imax log(s)).

Proof. We prove (5.6) by induction. The case i = 0 is obvious. Since limi→∞ Si = limi→∞ S−1
i , we get

s ≥ 1. For the induction step we have to show

1
2
(1 + ci + ci

‖S−1
i ‖2

2

1 − ci(ρ + δ)‖S−1
i ‖2

) ≤ (c0 + i + 1)s2i+2.

Estimating ‖S−1
i ‖2 ≤ s and multiplying both sides by 1 − ci(ρ + δ)s it suffices to prove

1
2
((1 + ci)(1 − ci(ρ + δ)s) + cis

2) ≤ (c0 + i + 1)s2i+2(1 − ci(ρ + δ)s).
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The left side can be bounded by

1
2
((1 + ci)(1 − ci(ρ + δ)s) + cis

2) ≤ 1
2

+
1
2
ci +

1
2
cis

2 ≤ 1
2

+ cis
2 ≤ 1

2
+ (c0 + i)s2i+2,

the right-hand side fulfils

(c0 + i + 1)s2i+2(1 − ci(ρ + δ)s) ≥ 1 + (c0 + i)s2i+2 − (c0 + i + 1)s2i+2ci(ρ + δ)s.

Therefore, we have to ensure

1
2
≥ (c0 + i + 1)s2i+2ci(ρ + δ)s = (c0 + i + 1)(c0 + i)s4i+3(ρ + δ)

which is true due to the assumption ρ + δ ≤ 1
2 (c0 + i + 1)−2s−4i−3.

The bound on the error amplification coefficients cimax yields

‖S̃i − Si‖2

(5.5)

≤ (c0 + imax)s2imax(ρ + δ),

which gives the last assertion of the corollary.

Remark 5.3 Theorem 5.1 is only a worst case estimate. In practice the error amplification is almost
negligible. However, in the literature (see, e.g., [1]) an acceleration technique by scaling is proposed for
Newton’s method to calculate the sign of a matrix. Iteration (3.4) is replaced by

Si+1 :=
1
2
(αSi + α−1S−1

i ), α > 0,

which is equivalent to one Newton step with the matrix αSi instead of Si (both have the same sign). In the case
α < 1 the norm of the inverse is amplified by a factor of α−1 and estimate (5.6) indicates the consequences:
the error is amplified by α−2 for each Newton step where the scaling technique is used. Therefore, scaling is
only an option in the first step if the initial error is c0 = 0.

From Theorem 5.1 the bound for the distance of the inexact iterates S̃i of (5.1) to the exact iterates Si

grows with increasing i, therefore it could happen that Newton’s method converges while (5.1) is divergent.
The next Lemma ensures at least local quadratic convergence for the inexact iterates.

Lemma 5.4 (Local convergence) We use the notation from Theorem 5.1, including assumptions (5.2),
(5.3), (5.4). We define

σ := max
i∈N0

‖S̃i + S̃−1
i ‖2 ≥ 2,

and assume

q := ‖S̃2
0 − I‖2 ≤ 1

4
, (5.7)

ρ + δ ≤ 1
8
σ−1. (5.8)

Then it holds for i ∈ N that
‖S̃2

i − I‖2 ≤ q2i

+ σ(ρ + δ).

Proof. The case i = 0 is true due to the definition of q. We define

Ei := I − S̃2
i ,

Di := Ĩnv(S̃i) − S̃−1
i ,

Ri := (S̃i + Ĩnv(S̃i)) − (S̃i ⊕ Ĩnv(S̃i)).
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The induction step i → i + 1 follows. First we get

S̃2
i+1 =

(
1
2
S̃i +

1
2
S̃−1

i +
1
2
(Di + Ri)

)2

=
1
4
S̃2

i +
1
4
S̃−2

i +
1
2
I +

1
2
(S̃i + S̃−1

i )(Di + Ri)2 +
1
4
(Di + Ri)2

=
3
4
I − 1

4
Ei +

1
4

∞∑
ν=0

Eν
i +

1
2
(S̃i + S̃−1

i )(Di + Ri)2 +
1
4
(Di + Ri)2

= I +
1
4

∞∑
ν=2

Eν
i +

1
2
(S̃i + S̃−1

i )(Di + Ri)2 +
1
4
(Di + Ri)2,

‖S̃2
i+1 − I‖2 ≤ 1

4
‖Ei‖2

2

1 − ‖Ei‖2
+

1
2
σ(ρ + δ) +

1
4
(ρ + δ) ≤ (q2i

+ σ(ρ + δ))2

1 − q2i − σ(ρ + δ)
+

1
2
σ(ρ + δ) +

1
4
(ρ + δ).

We have to prove

1
4

(q2i

+ σ(ρ + δ))2

1 − q2i − σ(ρ + δ)
+

1
2
σ(ρ + δ) +

1
4
(ρ + δ) ≤ q2i+1

+ σ(ρ + δ).

Multiplying both sides by 1 − q2i − σ(ρ + δ), we get for the left side

LS :=
1
4
(q2i

+ σ(ρ + δ))2 +
1
2
(1 − q2i − σ(ρ + δ))σ(ρ + δ) +

1
4
(1 − q2i − σ(ρ + δ))(ρ + δ)

and for the right side
RS := (q2i+1

+ σ(ρ + δ))(1 − q2i − σ(ρ + δ)).

The left side can be estimated by

LS ≤ 1
4
q2i+1

+
1
2
σ(ρ + δ) +

1
4
(ρ + δ) ≤ 1

4
q2i+1

+
5
8
σ(ρ + δ),

while the right side can be estimated by

RS = q2i+1 − q2i

q2i+1 − q2i+1
σ(ρ + δ) + σ(ρ + δ) − (σ(ρ + δ))2 − σ(ρ + δ)q2i ≥ 1

2
q2i+1

+
5
8
σ(ρ + δ).

Corollary 5.5 (Stopping criterion) In Theorem 5.1 we have seen that the attainable accuracy decreases
as the number of iterations increases. Therefore, one has to stop the iteration as soon as possible. On the
other hand, the convergence is locally quadratic (Lemma 5.4), such that stopping just before the quadratic
convergence would lead to an approximate solution that is not even close to the solution. This dilemma can
be overcome by the following simple criterion:

• In each step of Newton’s method calculate the approximate spectral norm ηi := ‖S̃2
i − I‖2 (the power

iteration takes O(log(n)) steps to determine ηi up to 10 percent relative error).

• After each iteration i compute
θi :=

ηi−1

ηi
(≈ q−2i

).

• If the convergence rate θi stays smaller than 3
2 , then stop after a fixed number of iterations (e.g., 5).

The convergence is dominated by the H-matrix errors ρ, δ.

• If the convergence rate θi grows larger than 3
2 , then stop if the rate θi decreases, that is θi <

3
4 maxj=1,...,i θj.
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So far we have investigated how to compute the sign of the matrix S =
[

AT G
F −A

]
. The last step is to

compute the solution X that solves equation (3.3):[
N11

N21

]
X = −

[
N12

N22

]
,

[
N11 N12

N21 N22

]
:= sign

([
AT G
F −A

])
−
[

I 0
0 I

]
.

According to (4.22), we know

N11 = −XZ − 2I, N12 = 2X + XZX,

N21 = −Z, N22 = ZX,

where Z satisfies (4.23) and can be approximated by a rank-kZ matrix Z̃ and N11 ≈ −XZ̃ − 2I. Therefore
it is advisable to compute a low rank approximation R11 to (N11 + 2I) and a low rank approximation R22

to N22 (this conversion is not expensive because N11 and N22 are given in the H-matrix format). Equation
(3.3) reads [

R11 − 2I
N21

]
X = −

[
N12

R22

]
,

If R11 − 2I is invertible (this is easy to check, because R11 is of low rank), one can directly apply the
Sherman-Morrison-Woodbury formula to compute

X := (2I − R11)−1N12 =
1
2
N12 +

1
4
U(I − 1

2
V T U)−1V T N12, UV T := R11

(the invertibility of R11−2I is equivalent to the invertibility of the 2kZ ×2kZ -matrix I− 1
2V T U). If R11−2I

is not invertible, we solve the normalised equation[
N11

N21

]T [
N11

N21

]
X = −

[
N11

N21

]T [
N12

N22

]
,

where the matrix on the left side is

MLS := 4I + 2ZX + 2XZ + ZXXZ + ZZ = 4I + 2ZX + (2X + ZXX + Z)Z

and can be approximated by an R(2kZ) matrix plus 4I. Using the low rank approximations R11, R22 we get

MLS = 4I − 2R11 − 2RT
11 + RT

11R11 + NT
21N21 =: 4I + RLS .

The right side is

MRS := −RT
11N12 + 2N12 − N21R22 = Z(2XX + XXZX + 2ZX) + XZX + 4X

which can be approximated by an R(2kZ) matrix plus 4X . Using a low rank representation UV T of RLS

we get the solution

X :=
1
4
MRS − 1

16
U(I +

1
4
V T U)−1V T MRS.

Remark 5.6 (Complexity) In order to estimate the overall complexity of our method to solve the algebraic
matrix Riccati equation, we first summarise the necessary steps of the algorithm:

1. Compute the matrices A, F, G. This involves choosing a proper discretisation scheme and computation
of the entries. The achievable accuracy (for a fixed blockwise rank) for the solution of the Riccati
equation may depend upon the discretisation error.

2. Store the matrix S0 :=
»

AT G
F −A

–
in the H-matrix format MH,k(T ) described at the beginning of

Subsection 5.1. It may be necessary to convert subblocks of the matrices A, F, G to fit the H-matrix
format, but typically the entries of the H-matrix format can be computed directly.
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3. Compute sign(S0) by Newton’s method (5.1) , Si+1 := 1
2 (Si ⊕ Ĩnv(Si)), using the formatted H-matrix

arithmetics. The number of iterations necessary depends on the spectrum of the matrix A0 = A− FX
and is typically proportional to log(cond(A)) (see Lemma 3.5).

4. Solve the equation (3.3) , which basically involves the inversion of a low rank perturbation of the
identity.

The complexity for the first two steps depends on the discretisation scheme, but it should be negligible, e.g.,
proportional to the storage requirements of the H-matrix S0.

In the third step, we have to compute the formatted sum and inverse of H-matrices in MH,k(T ) which is of
complexity O(n log(n)2k2). Assuming that the number of iterations is proportional to log(n), this amounts
to O(n log(n)3k2).

The last step is again negligible.

5.2 Error Estimation

Let X̃ be an approximate solution to (4.21) and denote the exact solution by X . We want to estimate the
relative error ‖X − X̃‖2/‖X‖2 of the approximation, but the exact solution X is not available.

If we define R(X̃) := AT X̃ + X̃A − X̃FX̃ + G then the difference Z := X̃ − X fulfils the equation

(A − FX̃)T Z + Z(A − FX̃) − ZFZ − R(X̃) = 0.

So far we have not gained anything, because in order to determine Z (or ε := ‖Z‖2/‖X‖2) we have to solve
again a Riccati equation. The crux is that it is sufficient to determine Z up to a relative error of 1

2 : let ε < 1
2

and Z̃ be an approximation to Z with

‖Z̃ − Z‖2 ≤ 1
2
‖Z‖2.

Then it holds

‖Z̃‖2

‖X̃‖2

≤ ‖Z̃ − Z‖2 + ‖Z‖2

‖X‖2 − ‖X̃ − X‖2

≤ 3
2
(1 − ε)−1 ‖Z‖2

‖X‖2
≤ 3

‖Z‖2

‖X‖2
,

‖Z̃‖2

‖X̃‖2

≥
1
2‖Z‖2

(1 + ε)‖X‖2
≥ 1

3
‖Z‖2

‖X‖2
.

The relative error ‖X̃ − X‖2/‖X‖2 of the approximate solution X̃ is therefore bounded by

1
3
‖Z̃‖2

‖X̃‖2

≤ ‖X̃ − X‖2

‖X‖2
≤ 3

‖Z̃‖2

‖X̃‖2

.

This error estimator leads again to the task of solving a Riccati equation (only up to a relative error of 1/2),
but simply taking ‖R(X̃)‖/‖A‖ or a similar easier computable value does not give a reliable estimate for the
relative error.

6 Numerical Examples

The numerical examples in this section serve two purposes: in the one-dimensional example we can compare
our results to the ones gained in the literature. Since the structure of the matrices is rather simple, there are
plenty of methods available, but many of them depend on the special one-dimensional structure. In the two-
dimensional example the matrix G from the Riccati equation (4.21) is not of low rank, the differential operator
has “jumping coefficients” and the structure of the matrix A is not as simple as in the one-dimensional case.
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6.1 The One-Dimensional Low-Rank Model Problem

We consider the linear quadratic optimal control problem of the one-dimensional heat flow: the goal is to
minimise

J(u) :=
∫ ∞

0

(
y(t)2 + u(t)2

)
dt

for u ∈ L2(0,∞), where y is defined by the differential equation

∂
∂tx(t, ξ) = ∂2

∂ξ2 x(t, ξ) + b(ξ)u(t), ξ ∈ (0, 1), t ∈ (0,∞),
x(t, ξ) = 0, ξ ∈ {0, 1}, t ∈ (0,∞),
x(0, ξ) = x0(ξ), ξ ∈ (0, 1),
y(t) =

∫ 0.3

0.2 x(t, ξ)dξ, t ∈ (0,∞).

The starting value x0 ∈ L2(0, 1) is given and

b(ξ) :=
{

1 ξ ∈ (0.2, 0.3),
0 otherwise.

The differential equation is discretised by finite differences on a uniform mesh of (0, 1) with n inner grid-points
and mesh width h = (n + 1)−1. If we define the matrices

Aij :=

⎧⎨⎩
−2h−2 i = j
h−2 |i − j| = 1
0 otherwise

, Bi1 :=
{

1 ih ∈ [0.2, 0.3]
0 otherwise ,

C1j :=
∫ 0.3

0.2

φj(x)dx, i, j ∈ {1, . . . , n},

where φi denotes the i-th Lagrange basis function for the interpolation, then the discrete problem is the
autonomous linear quadratic optimal control problem of Subsection 2.1 with nu = ny = 1 (this implies
rank(B) = rank(C) = 1).

The H-tree for the index set I = {1, . . . , n} is defined in [9, Section 5]. For the iterates of Newton’s method
to compute the matrix sign function of S :=

»
AT G
F −A

–
we use the format from Theorem 4.13 depicted in

Figure 2 with MH,k(TI×I)-matrices in the two diagonal blocks and R(20)-matrices in the two (largest) off-
diagonal blocks. The relative error ‖X−X̃‖2/‖X‖2 for the approximate R(20)-matrix solution X̃ can be seen
in Table 1 and the singular values of X̃ are depicted in Figure 3. A blockwise singular value decomposition
of sign(S) is depicted in Figure 3.

Figure 2: The structure of the matrices Si. The grey boxes are full matrices, the white squares are R(k)-
matrices.
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Figure 3: Left: the first (largest) 20 singular values of the solution X in logarithmic scale from 10−15 to 100.
Right: a blockwise singular value decomposition of sign(S). Depicted are the first (largest) k singular values
of each R(k)-block in logarithmic scale from 10−15 to 100 as in the left image. Singular values smaller than
10−15 are plotted as 10−15.

If we use full matrices instead of H-matrices in the two diagonal blocks and R(20)-matrices in the two
(largest) off-diagonal blocks, then we would need about 15 years to compute the solution for n = 65536
degrees of freedom (by use of the matrix sign function) on a SUN QUASAR. The complexity is cubic in n.

The results by Rosen and Wang [18] computed on a SUN SPARC 600 for n = 101 degrees of freedom took
2062 seconds. This extrapolates to approximately 27 years for n = 65536 degrees of freedom, which is
equivalent to roughly one year on a SUN QUASAR. The complexity is quadratic in n.

For n = 65536 degrees of freedom we need about 6 hours to compute the solution X up to a relative error
of 10−3 (cf. Table 1). The complexity is almost linear in n.

The storage requirements for the (exact) solution for n = 65536 degrees of freedom would be 35 Gigabytes,
and due to the quadratic dependency on n we are not able to store or compute the exact solution X for
larger n. An R(20) representation of X takes only 20 Megabytes (linear dependency on n).

Penzl [16] computed a low rank approximation X̃ to the solution of the Lyapunov equation (4.19) with
matrices A, G similar to the ones in our example. The work for n = 10000 degrees of freedom amounted
to 108 flops, whereas the exact solution by the Bartels-Stewart algorithm would take 1013 flops. Since the
CPU time is not mentioned, we cannot directly compare those results to the ones from our method.

6.2 The Two-Dimensional H-Matrix Model Problem

In the previous section we have compared our method to existing methods for a low rank approximation
of the solution X to the Riccati equation. Now, we want to give an example where the matrix G in the
Riccati equation is not of low rank, but an H-matrix of full (global) rank. While our method can exploit the
H-matrix structure and computes an approximation to the solution with linear-logarithmic complexity in
the size of the matrices, there are no known algorithms in the literature that can achieve a similar efficiency.
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rank k number of degrees of freedom n
256 1024 4096 16384 65536

k=1 1.510-1 1.310-1 2.510-0 divergent divergent
k=2 2.610-4 4.210-4 1.210-3 5.610-4 6.710-4
k=3 1.210-5 1.310-5 1.510-5 2.310-5 3.910-5
k=4 9.110-8 1.110-7 1.010-6 1.810-6 6.210-7
k=5 4.610-9 1.110-8 1.510-8 3.010-8 3.110-8
k=6 3.710-10 2.410-10 4.910-10 5.910-10 1.710-9
Newton steps 14 17 20 23 26
time [sec.], k=2 8.5 67 462 3033 18263
time [sec.], full 17.7 1814 ≈ 1.1105 ≈ 7.4106 ≈ 4.8108

Table 1: The table contains the relative error ε := ‖X̃ − X‖2/‖X‖2 for increasing rank k and n degrees of
freedom. The number of Newton steps to compute sign(S) are 5

3 log2(n). In the last two rows we compare
the time in seconds (on a SUN QUASAR with 450 Mhz) needed to compute the solution for the H-matrix
approach (rank k = 2) and the full matrix approach.

The following example is the two-dimensional optimal control of the heat equation. The goal is to minimise

J(u) :=
∫ ∞

0

(
y(t)2 + u(t)2

)
dt

for u ∈ L2(0,∞) where y is defined by the differential equation

∂
∂tx(t, ξ) =

(
∂1
∂ξ1

+ ∂2
∂ξ2

)(
σ(ξ)

[
∂

∂ξ1
x(t, ξ)

∂
∂ξ2

x(t, ξ)

])
+ b(ξ)u(t), ξ ∈ (0, 1)2, t ∈ (0,∞),

x(t, ξ) = 0, ξ ∈ [0, 1]2 \ (0, 1)2, t ∈ (0,∞),
x(0, ξ) = x0(ξ), ξ ∈ (0, 1)2,

y(t) =
(∫

(0,1)2 x(t, ξ)2dξ
)1/2

, t ∈ (0,∞).

The starting value x0 ∈ L2((0, 1)2) is given and the functions b, σ are (see Figure 4)

σ(ξ) :=

⎧⎨⎩
10 ξ ∈ [0, 1] × [38 , 5

8 ]
0.1 ξ ∈ [ 38 , 5

8 ] × (
[0, 3

8 ) ∪ (5
8 , 1]

)
,

1.0 otherwise
b(ξ) :=

{
1 ξ ∈ [0, 1

8 ] × [ 38 , 5
8 ]

0 otherwise .

The differential equation is discretised (in the weak or variational formulation) using the space of nodal affine
finite elements on a uniform triangulation of (0, 1)2 with n inner grid points. We denote the (Lagrange) basis
functions by φi (i = 1, . . . , n). The resulting discrete problem is the autonomous linear quadratic optimal
control problem from Section 2 with nu = 1, ny = n and matrices A, B, C defined as follows. The entries of
the mass matrix and the stiffness matrix are

Eij :=
∫

(0,1)2
φi(ξ)φj(ξ)dξ, Ãij :=

∫
(0,1)2

σ(ξ)〈∇φj(ξ),∇φi(ξ)〉dξ

for i, j ∈ {1, . . . , n}. Both E and Ã are symmetric positive definite, but Ã is ill-conditioned. The entries of
the discrete right-hand side B̃ are

B̃i1 :=
∫

(0,1)2
b(ξ)φi(ξ)dξ, i = 1, . . . , n.

Finally, the matrices A, B, C are

A := −E−1Ã, B := E−1B̃, C := E1/2.
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σ=10 σ=0.1 σ=1.0 b=1.0 b=0.0

Figure 4: The functions b and σ on (0, 1)2.

We store the matrices Ã and G = CT C = E in the H-matrix format based on the H-tree TI×I that was
established for this two-dimensional uniform triangulation of [0, 1]2 in [10]. Similarly, appropriate H-trees
can be constructed for arbitrary triangulations (see [7]).

The singular values of the solution X are depicted in Figure 5, where one can see that the singular values
do not decay rapidly as it was the case in the one-dimensional example with low rank G.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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10
-6

10
-9

10
-12

10
-15

R(20)-matrix

Figure 5: The first 20 singular values of the solution X in logarithmic scale from 10−15 to 100.

For the iterates of Newton’s method to compute the matrix sign function of S :=
»

AT G
F −A

–
we use the

format from Theorem 4.13 depicted in Figure 6 with MH,k(TI×I)-matrices in three of the blocks of S and
an R(2k)-matrix in the lower left block. The relative error ‖X − X̃‖2/‖X‖2 for the approximate H-matrix
solution X̃ can be seen in Table 2 and a blockwise singular value decomposition of X is depicted in Figure 6.

The mass matrix E has to be inverted, which is done in the set MH,k(TI×I). By taking the formatted
inverse Ĩnv(E) instead of E−1 we introduce an error (besides the discretisation error), but since E is well
conditioned this error is rather small (see [3]). The matrix F = BBT is of rank 1 but again we use the
formatted inverse Ĩnv(E) to define an approximation to F .

We compute an approximation X̃ to the solution X of (4.21) as described in Section 5 with rank k for the
blockwise rank of the H-matrices and rank 2k for the rank of the lower left block that corresponds to the
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Figure 6: Left: the structure of the matrices Si. The grey boxes are full matrices, the white squares are
R(k)-matrices. Right: a blockwise singular value decomposition of X . Depicted are the first (largest) 8
singular values of each R(k)-block in logarithmic scale from 10−15 to 100 as in Figure 3. Singular values
smaller than 10−15 are plotted as 10−15.

iterates Fi. The results for k = 1, . . . , 7 can be seen in Table 2, where we estimate the relative error ε by

ε = ‖X − X̃‖2/‖X‖2 ≈ ‖XH − X̃‖2/‖XH‖2

for an H-matrix approximation XH computed with rank k = 8.

rank k number of degrees of freedom n
256 1024 4096 16384

k=1 4.110-3 1.510-2 2.010-2 7.210-2
k=2 1.610-4 2.110-3 7.610-3 2.310-2
k=3 7.410-5 3.410-4 1.610-3 8.110-3
k=4 1.410-5 1.110-4 4.010-4 6.010-4
k=5 3.110-6 2.210-5 2.010-4 2.610-4
k=6 8.410-7 6.910-6 5.210-5 7.510-5
k=7 5.710-7 1.610-6 1.210-5 2.010-5
Newton steps 10 11 12 13
time [sec] 20 570 5784 38613

Table 2: The Table presents the relative error ε. Last but one row: number of Newton steps to compute
sign(S). Last row: time in seconds to compute the rank k = 2 solution on a SUN QUASAR with 450 Mhz.
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