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Abstract

A two-dimensional effective model for the semi-soft elastic behavior of nematic elastomers is

derived in the thin film limit. The model is used to investigate numerically the force-stretch curves,

the deformed shape, and to resolve the local patterns in the director orientation in a stretching

experiment. From the force-stretch curves we recover the two critical stretches which mark the

transition from hard to soft and back to hard response. We present an analytical model for their

dependence on the aspect ratio of the sample, and compare with numerical results.

PACS numbers: 62.20.-x,61.30.-v,61.41.+e
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I. INTRODUCTION

Nematic elastomers combine the typical entropic elastic properties of cross-linked polymer

networks with the orientational instabilities of liquid crystals [1–3, and references therein].

Besides their appeal as a model system, nematic elastomers have several potential applica-

tions, ranging from optical waveguides [4] to thermo-mechanical actuators [5] and artificial

muscles [6]. Recent investigations have also focused on dynamical effects [7] and on alterna-

tive actuation mechanisms, such as UV light [8].

Stretching experiments on sheets of nematic elastomers have revealed semi-soft elastic

response and formation of a characteristic striped pattern of the director orientation [9, 10].

Theoretically, the presence of an instability related to the coupling of elastic deformations to

the alignment of the nematic director had been first predicted by Golubović and Lubensky

[11], and an expression for the elastic free-energy was derived by means of the Gaussian

approximation by Bladon, Terentjev and Warner (BTW) [12]. The force versus stretch dia-

grams computed with this energy are ideally soft, in the sense that the force is zero up to a

critical stretch. The typical experimentally observed behavior, however, is semi-soft. More

precisely, three different response regimes emerge with increasing stretch: initially hard re-

sponse without any movement of the director, then soft response accompanied by striped

patterns in the director orientation field, and, finally, hard response with the director aligned

along the direction of maximal stretch. This semi-soft behavior has been attributed to fluc-

tuations in the director orientation at cross-linking by Verwey, Warner and Terentjev (VWT)

[13]. They obtained a correction to the BTW energy and were able to reproduce, within a

macroscopically affine approximation, the main features of the experimental observations.

Their work focuses on uniform macroscopic deformation gradients and does not attempt to

resolve the non-uniform structures present around the clamps in the typical experimental

geometry (see Fig. 1), such as those observed by Zubarev et al. [14]. To derive the force

versus stretch diagrams, VWT computed a formula for the effective energy corresponding

to a macroscopic uniaxial deformation as a function of a scalar stretching parameter. The

dependence of the effective energy density on the full strain tensor was not addressed.

In this paper, we investigate the reorientation process as a function of position and applied

stretch, including the inhomogeneities around the clamps, based upon a determination of the

two-dimensional effective energy describing the macroscopic behavior of thin sheets. This
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procedure yields a coarse-grained description of the system, with (energetically optimal)

fine-scale oscillations correctly accounted for in the energetics, but averaged out in the

kinematics. In Section II we formulate a reduced two-dimensional theory describing thin

films of nematic elastomers, and in Section III we derive the corresponding macroscopic

effective energy. Then we use in Section IV the effective energy to compute numerically (with

finite elements) the local deformation, the director orientation, and the force transmitted by

the sample in the standard experimental geometries. Combining the numerical results with

an analytical model, we propose a formula for the critical stretch marking the transition

from soft to hard mechanical response and a procedure to extract the values of the material

parameters from force-stretch curves. A three-dimensional analysis, including numerical

simulations, of the ideally soft BTW model was reported in [15–18].

II. DIMENSIONAL REDUCTION

The free energy density derived by VWT can be written, after an affine change of coor-

dinates in the reference configuration [19], as

W̃VWT(F̂ , n̂, n̂0) = |F̂ |2 − α|F̂ T n̂|2 − β|F̂ n̂0|2 (1)

where F̂ = ∇û is the gradient of the deformation field û, |F̂ |2 = F̂ijF̂ij , n̂ is a unit vector

denoting the nematic director, n̂0 is a unit vector parallel to the average director at cross-

linking. The hat is used to denote three-dimensional vectors and tensors. From now on

we assume that n̂0 is a constant unit vector parallel to the y axis, in agreement with the

experimental configurations. The customary assumption of incompressibility is incorporated

by requiring that the energy be infinite whenever det F̂ �= 1. The parameter α (0 < α < 1)

includes both the strength of the nematic ordering and the strength of the coupling to the

elastic degrees of freedom, and has typically a value of order 0.5. The small parameter β

accounts for the fluctuation of the director at cross-linking, and is typically of order 0.01 to

0.2. For β = 0, W̃VWT reduces to the BTW ideally soft energy.

Experiments are performed in a thin-film geometry (see Fig. 1), and numerical investiga-

tions with the ideally soft BTW energy revealed no structure in the out-of-plane direction

[16]. Since we are only interested in stretching experiments (and not in compression, where

buckling can play a role) we assume that the director is in-plane and that the deformation
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FIG. 1: Experimental geometry. The sample is a thin sheet (typically the thickness is less than

0.5mm, and the lateral dimensions are of the order of 10mm). The top figure represents the initial

condition, where the orientation of the director is uniform and parallel to the y axis. Extension

with rigid clamps (thicker lines) in direction x leads then to striped patterns in the orientation of

the director. These patterns disappear again at large stretches (bottom figure).

is linear in z,

û(x, y, z) = (ux(x, y), uy(x, y), γ(x, y)z) . (2)

The incompressibility constraint gives γ = 1/ det∇u, where ∇u is the 2× 2 in-plane defor-

mation gradient. For films thinner than the scale of variation of the in-plane determinant

we can neglect z∇γ in computing the full deformation gradient. The VWT energy (1) gives

then, in the thin-film limit, the expression

W (F,n) = |F |2 +
1

det2 F
− α|F Tn|2 − β|Fn0|2 , (3)

where F = ∇u. Minimizing over n we get

W (F ) = λ2
1 + (1 − α)λ2

2 +
1

λ2
1λ

2
2

− β|Fn0|2 (4)
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where λ1 ≤ λ2 denote the singular values of the deformation gradient F , i.e., the eigenvalues

of (F T F )1/2. The rest of this paper is concerned with a detailed analysis of the variational

problem

minimize
∫

W (∇u)dxdy (5)

which determines the deformation field u from the energy (4).

III. EFFECTIVE ENERGY

The energy density (4) is not convex, and indeed the energy of affine deformations can be

reduced by formation of fine structures. Aim of this section is a determination of the effective

energy Weff , also called the quasiconvex envelope [20], which results from minimizing Eq. (4)

over all possible fine structures with a given average. We first compute the minimum over

specific microstructures, and then show that our result is optimal, in the sense that no other

microstructure can deliver a lower energy.

We start by writing the energy in the equivalent form

W (F ) = (1 − β)λ2
1(F ) + (1 − α − β)λ2

2(F )

+
1

λ2
1(F )λ2

2(F )
+ β|Fn⊥

0 |2 (6)

where (x, y)⊥ = (−y, x), and where we have used the identities |F |2 = λ2
1(F ) + λ2

2(F ) =

|Fn0|2 + |Fn⊥
0 |2. The last two terms in (6) are convex. Indeed, |Fn⊥

0 | is convex in F , and

(det F )−2 is convex in the determinant of F , and taking the determinant of a gradient vector

field ∇u commutes with taking spatial averages [see our discussion after Eq. (16)]. We thus

consider fine structures where only the first two terms in Eq. (6) are modified. At the level

of deformation gradients, we replace F with the two gradients

Fδ1,2 = F + δ1,2a⊗ n0 (7)

where δ1 < 0 < δ2, (a ⊗ b)ij = aibj , and a is a unit vector which solves a · F−1n0 = 0.

The latter condition is equivalent to det Fδ = det F , and since |Fδn
⊥
0 | = |Fn⊥

0 | the last two

(convex) terms of (6) are unchanged by replacing F with Fδ. The fact that the difference

Fδ1 −Fδ2 is a rank-one matrix guarantees that there exists a continuous v(x) whose gradient

takes values Fδ1 and Fδ2 . Thus, the affine deformation u(x) = Fx can be perturbed by
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FIG. 2: Sketch of the function χ(t) as defined in Eq. (8). The sketch in the upper right corner

indicates the corresponding pattern generated in the sample, which from an elastic viewpoint

consists of alternating in-plane shears, with interfaces with normal n0 = ey.

superimposing fine-scale oscillations, according to

v(x) = Fx + aχ
(
x · n0

ε

)
, (8)

where χ(t) is a periodic function of period |δ1|+ |δ2|, with derivative δ1 < 0 for −δ2 < t < 0,

and derivative δ2 > 0 for 0 < t < −δ1 (see Fig. 2). Here ε is a small parameter which

represents the length-scale of the microstructure. We do not resolve this scale explicitly, since

experiments show a clear separation between the microstructure size (ε � 1 ÷ 10µm) and

the sample size (10 mm). Models which explicitly resolve these length scales, by including

Frank-type energies, have been considered within simple geometries e.g. in [21–23].

Now we choose δ1,2 so that the average energy per unit area of the microstructure∫
−W (∇v) =

|δ2|
|δ1| + |δ2|W (Fδ1) +

|δ1|
|δ1| + |δ2|W (Fδ2) (9)

is minimal. Since the product λ1(Fδ)λ2(Fδ) = det Fδ does not depend on δ, the sum of the

first two terms in (6) is minimal whenever they are equal. This happens when λ1,2 = µ1,2,

where

µ1,2 = a±1/4(det F )1/2 , (10)
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and

a = 1 − α

1 − β
. (11)

In the following we shall eliminate α from all equations in favor of a, which gives a more

direct characterization of the phase boundaries [24]. The values δ1,2 must therefore be the

solutions of the equation |Fδ|2 = µ2
1 + µ2

2, which is equivalent to the quadratic equation

δ2 + 2δa · Fn0 + |F |2 − (µ2
1 + µ2

2) = 0 . (12)

This equation has two real roots of opposite sign for |F |2 < µ2
1 + µ2

2. We conclude that

all deformation gradients which obey λ1(F ) ≥ aλ2(F ) are unstable towards formation of

microstructure as above. We call the corresponding region in the space of deformation

gradients the soft (S) phase, and the rest, where the energy cannot be lowered by laminates

as in Eq. (8), the hard (H) phase.

Our result is

Weff(F ) = g(λ2(F ), detF ) + β|Fn⊥
0 |2 , (13)

where

g(s, d) =

⎧⎪⎨⎪⎩ d−2 + (1 − β)(d2/s2 + as2) in H,

d−2 + 2a1/2(1 − β)d in S.
(14)

As above, H represents all deformation gradients F such that det F ≥ aλ2
2(F ), and S those

where the opposite inequality holds.

Equations (13-14) have been obtained by evaluating the energy (6) on the laminates

constructed in Eqs. (7-12). We now show that this construction is optimal. To do this, we

consider a generic perturbation u of a given affine deformation Fx and show that its average

energy density

∫
−W (∇u) ≥

∫
−Weff (∇u) (15)

=
∫
−
[
g (λ2(∇u), det∇u) + β

∣∣∣(n⊥
0 · ∇)u

∣∣∣2] ,

is at least Weff(F ). Since g is a convex function, as can be checked by verifying that the

matrix of its second derivatives is positive semidefinite, we obtain from Jensen’s inequality

[25] that (15) is greater than or equal to

g
(∫
−λ2(∇u),

∫
− det∇u

)
+ β

∣∣∣∣∫−(n⊥
0 · ∇)u

∣∣∣∣2 . (16)
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Now
∫− det∇u = det F by Gauss-Green’s formula, and since λ2(F ) is convex in F we get,

again by Jensen,
∫−λ2(∇u) ≥ λ2(

∫−∇u) = λ2(F ). Since g is increasing in its first argument,

we conclude that ∫
−Weff (∇u) ≥ Weff

(∫
−∇u

)
= Weff(F ) . (17)

This shows that the construction of Eqs. (7-12) is optimal.

Energy reduction by formation of stripe domains as shown in Fig. 2 is well known in

the literature on nematic elastomers, at least for uniaxial deformations. The arguments

in this section extend the construction to all deformation gradients, and prove optimality.

It is interesting to observe that, even in this larger class of constructions, the lamination

direction (i.e. the normal to the stripes in the reference configuration) remains n0, whereas

the widths of the stripes are no longer equal (since, in general, δ1 �= −δ2) [26].

IV. RESULTS

We have solved numerically the minimization problem
∫

Weff(∇u), subject to the bound-

ary conditions sketched in Fig. 1, where Weff is the effective energy of Eqs. (13-14). Our

computations have been performed with a Matlab finite element toolbox developed by F.

Alouges, based on linear elements on an unstructured triangulation of the domain, which

was generated using the public-domain mesh generator Triangle by J. R. Shewchuk. Typ-

ical meshes ranged from a few hundred to a few thousand nodes, and they were refined close

to the clamps and to the free edge.

Figure 3 shows the transmitted force as a function of imposed stretch for different values

of β and a typical aspect ratio AR = lx/ly = 3 [27]. For small β the response approaches

the ideally soft behavior, which is characterized by zero force up to a threshold (called s2

below). For finite β the force-stretch diagram is Z-shaped, in agreement with experiment

(see e.g. [1, 2]). The additional kink appearing at small stretches (called s1 below) marks

the transition from an initially hard response to the intermediate semi-soft behavior, and is

absent for β = 0. The effect of changing the anisotropy parameter a is shown in Fig. 4.

Figure 5 shows the effect of sample geometry at fixed material parameters. To better

elucidate the influence of the geometry on the response, we compare our results with the

affine approximation, on which most previous theoretical analysis are based [1, 2, 4, 13].

This is obtained by neglecting the constraint exerted by the clamps against contractions in
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FIG. 3: Force versus stretch at a = 0.5, AR = 3, β = 0.1, 0.05, 0.01, and 0.001 (from higher

to lower curve). The dot marks the value obtained from Eq. (19). The inset shows a blow-up of

the region around s2 for β = 0.01, and the two linear fits used to determine s2. The dots in the

blow-up mark the computed points.

direction y, and gives for the force the expression⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(1 − β)1/3a1/3(s − s−2) 1 < s < saff

1

2β(1 − β)1/3a1/3s saff
1 < s < saff

2

2(1 − β)1/3a1/3[a(1 − β) + β]s − 2√
as2 s > saff

2

(18)

where saff
1 = (1 − β)−1/3 and saff

2 = a−1/2(1 − β)−1/3. For large aspect ratios the importance

of the clamps decreases, and the numerical curves converge to the affine approximation

(see Fig. 5). From the data it is also clear that the first critical stretch s1 has very little

dependence on the aspect ratio AR (see inset of Fig. 5). We now investigate in more detail

the dependence of s2 on the geometry. This is relevant since the formulas for saff
1 and saff

2

are often used to identify the values of the material parameters a and β from experiments.

Thus a better understanding of the effect of AR on s2 will lead to a more accurate estimate

of the material parameters, as suggested in [2].
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FIG. 4: Force versus stretch at β = 0.1, AR = 3, a = 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3 (from higher

to lower curve).

For simplicity we start from the ideally soft β = 0 case. In the explicit construction

shown in Fig. 6 the deformation gradient ∇u takes only four different values, and all of

them are in the zero set of Wβ=0(F ) [Eq. (4), with β = 0]. This means that all of them

have singular values a−1/3 and a1/6; in region A the eigenvector corresponding to the largest

eigenvalue is ey, in C it is ex, whereas in B± the orientation is determined from continuity

of the deformation u along the interfaces.

A straightforward computation [17] shows that the construction of Fig. 6 can be performed

for stretches up to

s0
2 = a−1/2 − AR0

AR

(
a−1/2 − 1

)
(19)

where

AR0 =
1 + a−1/2

2

⎛⎝
√√√√1 +

4a1/2

(1 + a1/2)2
− 1

⎞⎠ . (20)

It follows that, for β = 0, the force transmitted for all stretches up to s0
2 is exactly zero. The

numerical values of s0
2 are in good agreement with the values of s2 obtained numerically for
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FIG. 5: Force versus stretch at a = 0.5, β = 0.1, AR = 0.5, 1.5, 3, 5, and 20 (from higher to lower

curve). The dashed curve shows the affine approximation, which is appropriate for AR → ∞. The

inset shows a blow-up of the region at small stretches (the computed points are marked by crosses).

very small β (see Fig. 3).

For finite β, we superimpose the AR-dependent correction just derived on saff
2 [defined

after Eq. (18)], and get the estimate

s∗2 = a−1/2(1 − β)−1/3 − AR0

AR

(
a−1/2 − 1

)
(21)

for the critical stretch s2.

We now turn to the numerical validation of this approximation. Values of s2 are extracted

from a finite set of stretch-force data points with a method analogous to the one used in [2]

to get s2 from experimental data. Indeed, we select ranges of points to the left and to the

right of the kink, and fit them with straight lines. The first coordinate of their intersection

defines s2. Small changes in the set of points used for this fitting give an estimate of the

error intrinsic in this procedure, which is typically less than 0.05%. The results so obtained

are in good agreement with the prediction of Eq. (21), but small systematic deviations are
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FIG. 6: Ideally soft (β = 0) piecewise affine deformations including the effects of the clamps. The

upper panel shows the reference configuration, the lower one the deformed configuration. The

maximal stretch at zero strain is attained when the B± regions touch the clamps (so that the A

regions reduce to triangles). The figure has been drawn with AR = 3, a = 0.5.

still observable. We plot in the inset of Fig. 7 the deviation s2 − s∗2. We observed that the

dependence of such differences on a is approximately quadratic. In Fig. 7 we also plot the

scaled quantities a2(s2 − s∗2) as a function of aspect ratio. The resulting dependence can be

well approximated by

a2(s2 − s∗2) �
0.014

AR3/2
. (22)

The figure shows that this fit is satisfactory for all a and β we explored up to inverse aspect

ratios of order 1.

In order to illustrate the use of the present results in reconstructing material parameters

from experimental measurements, and to assess the relevance of the proposed method, we

now give an example based on a numerical experiment. We choose a material with typical

parameters a = 0.5, β = 0.1, and AR = 1.5 [27]. From the numerical force-stretch curve,
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FIG. 7: Deviation of the numerically computed values of s2 from s∗2 as given in Eq. (21), scaled

with a2 (dots), as a function of the inverse aspect ratio 1/AR. The curve is Eq. (22). The inset

shows the unscaled values of s2 − s∗2. The data points correspond to a = 0.4, 0.5, 0.6, and 0.7;

β = 0.01 and 0.1.

as plotted in Fig. 5, we extract by fitting with straight lines ssim
1 = 1.036 and ssim

2 = 1.361.

From the affine approximation, i.e., by setting ssim
1,2 = saff

1,2 as after Eq. (18), one can then

estimate

β = 1 − (ssim
1 )−3 � 0.101 , aaff =

(
ssim
1

ssim
2

)2

� 0.579 . (23)

This corresponds to the calculation done e.g. in [2] starting from experimental data. To

improve the result, one should solve the nonlinear equation s2(a) = ssim
2 , where s2(a) is given

by Eqs. (20-22). The numerical solution is a � 0.500. A simpler method is to first compute

the correction ∆s2 = s2(a
aff)−saff

2 (aaff) � −0.0986, where aaff is the approximation obtained

for a with the affine approximation [Eq. (23)], and then to compute

a � s2
1

(s2 − ∆s2)2
� 0.52 . (24)
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FIG. 8: Rotation angle in the center of the sample for a = 0.5 and β = 0.2, 0.1, 0.05, 0.01, 0.005

(lower to upper curve).

Iteration of the procedure leads in a few steps to a very good solution of the nonlinear

problem. This shows that the proposed scheme can correct the 15% error in the identification

of the material parameter a given by the simple affine scheme of Eq. (23). The correction

remains significant for larger AR: for AR = 3 it is of 8%, for AR = 7 of 4%.

The local orientation of the director has been measured in stretching experiments by

X-ray scattering [10, 14, 22]. To compare our results with these observations, we have

reconstructed the local orientation of the director from the computed deformation gradients.

For gradients F = ∇u in phase H the eigenvector associated with the largest eigenvalue of

FF T gives the desired orientation. Gradients in phase S can be decomposed uniquely into

their two components as discussed in Section II, then for each component the direction is

recovered as above. These directions can be identified through the angles they form with
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FIG. 9: Rotation angle in various points along the axis of the sample for a = 0.5 and β = 0.01.

The highest curve is the point at the center of the sample, at distance lx/2 from each clamp, i.e.

the same as plotted in Fig. 8. The other curves correspond to the points at distance 3lx/8, lx/4,

and lx/8 from one clamp, still along the axis of the sample, as displayed in Fig. 10. The dashed

curve gives the theoretical prediction of Eq. (25), expressed in terms of s1 and s2 as determined in

the text.

ey. By symmetry, these two angles differ only in the sign for points along the central axis

of the sample, and we only plot the positive one. In Fig. 8 we plot the director orientation

in the center of the sample as a function of the imposed stretch for different values of β. In

Fig. 9 we fix one value of β and explore the director orientation in different points along the

axis of the sample. The plots are compared with the theoretical expression

sin2 θ =
s2
2

s2
2 − s2

1

(
1 − s2

1

s2

)
, (25)

which was derived in the affine approximation in [13, 22].
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FIG. 10: Direction of the stripes across the sample for a = 0.5, β = 0.1, AR = 3, at a typical stretch

in the semi-soft range s = 1.3. The stripes are parallel to the x-axis in the reference configuration,

the picture shows their orientation in the deformed configuration. The dots mark the points used

for displaying the local director rotation in Fig. 9.

We observe a change in behavior for the lower curves (corresponding to points close to the

clamps) for stretches slightly above the one where the director in the central point is fully

reoriented (angle = 90o). This is due to the sharp increase in stress transmitted following

the passage of part of the sample from phase S to phase H. Figure 10 reports the expected

direction of the stripes across the sample, as should be seen in optical experiments. They

are mostly parallel to the x axis, except for the regions around the clamps.

Figure 11 shows the sample profiles at different stretches. For stretches larger than

s2 the curvature of the free edge is much more localized in nematic elastomers than in

more conventional rubbers, as shown by the comparison with a neo-Hookean material (an

incompressible material with the isotropic, convex energy density W (F ) = |F |2). In the

figure we also compare with results from three-dimensional simulations performed with β =

0, but with the addition of a small neo-Hookean regularization, which had given the same

picture at large stretches.

V. CONCLUSIONS

We have investigated the behavior of thin sheets of nematic elastomers in stretching ex-

periments, through a combination of analytical and numerical techniques. Our method iden-

tifies an effective energy, which only depends on the average in-plane deformation gradient.

The effective energy results from an instability towards formation of fine-scale oscillations,
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FIG. 11: Sample profile (full curves) at various stretches for β = 0.01 and a = 0.5, compared with

the corresponding result for a neo-Hookean material (dotted curves) and with the results obtained

with three-dimensional simulations with β = 0 and a neo-Hookean regularization in [16] (dashed

curves).

for deformation gradients in part of the phase space, leading to two distinct macroscopic

modes of response, called soft and hard. In the soft response mode stripe domains, corre-

sponding to small-scale oscillations in the director orientation, are expected. We identify all

possible stripe patterns and show that no other small-scale structure can further reduce the

energy.

Numerical simulations, based on the effective energy, give accurate estimates of force-

stretch characteristics, sample profiles and spatially-resolved director rotation. Our results

lead to a method for an accurate identification of material parameters from experimental

force-stretch curves. This procedure has been demonstrated with a concrete example.
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