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THE SET OF GRADIENTS OF A BUMP

JAN KOLÁŘ AND JAN KRISTENSEN

Abstract. The range of the gradient of a differentiable real-valued function
with a non-empty and bounded support (i.e., a bump) is investigated. For a
smooth bump f on R

2 it is shown that the interior int∇f(R2) is connected
and dense in ∇f(R2). A purely topological characterization of such gradient
ranges is however impossible. We give an example of a compact set K ⊂ R

2

that is homeomorphic to the closed unit disk, but such that no affine image of
K is the gradient range of a smooth bump on R

2. For smooth bumps on R
n we

show that the gradient range cannot be separated by a totally disconnected set.
The proof relies on a Morse-Sard type result involving irreducible separators
of R

n. Proofs are carried out for a class of C1 functions containing all those
whose first order derivatives are Lipschitz or of bounded variation.

Finally, we present an example of a C1-smooth bump on �2, which has a
gradient range with non-empty and disconnected interior, and a C∞-smooth
weak bump on �2 with the same property.

1. Introduction

A real-valued function f : X → R defined on a Banach space is called a bump if its
support spt f (i.e., the closure of {x ∈ X : f(x) �= 0}) is non-empty and bounded.
When X is a Hilbert space we identify the (Fréchet) derivative f ′(x) ∈ X∗ in the
usual way with the gradient ∇f(x) ∈ X .

The range of the gradient ∇f(Rn) of a C1-smooth bump f on Rn is a locally
connected continuum that contains 0 ∈ Rn in its interior (see Lemma 2.5). On
the other side, explicit constructions (see [6]), show that the gradient range of a
C1-smooth bump on R

n may fail to be simply connected. Furthermore, in a Banach
space X with separable dual X∗, any analytic subset A of X∗ can be realized as
the range of the derivative of a C1-smooth bump on X provided the interior of A is
connected, contains the origin, and every point x ∈ A is accessible by an arc from
intA (see [14]; the special case of sets with convex interior is treated in [15]; both
papers contain further material on the finite- and infinite-dimensional case).

It is natural to ask whether there is a topological condition which, together with
the condition that 0 ∈ Rn belongs to the interior, characterize the range of the
derivative. For example we would like to know the answers to the following two
questions; the first has been raised previously in [6].

Question. Is the gradient range of a C1-smooth bump on Rn regularly closed (i.e.,
equal to the closure of its interior)?

Question. Does the gradient range of a C1-smooth bump on Rn have a connected
interior?
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In [15] it is shown that the gradient range of a C2-smooth bump on the plane is
regularly closed, and in [5] it is shown that there exists a C1-smooth and Lipschitz
continuous bump on �2 for which the gradient range has an empty interior. (Note
that 0 ∈ int (∇f(�2)) always holds for a C1-smooth bump f on �2, see e.g. [6].)

The authors are not aware of any previous attempts to answer the question about
connectedness of the interior.

The main goal of this paper is to show that the range of the gradient of a smooth
bump on the plane has connected interior. Under the same assumptions, it is also
shown that the gradient range is regularly closed. However, we have proved this
under much weaker smoothness assumptions on the bump in [19]. Another objective
is to show that the class of gradient ranges of smooth bumps on the plane is not
invariant under homeomorphisms of the plane that have the origin as fixed point.
This clearly excludes existence of a topological condition which, together with the
condition that the origin belongs to the interior, characterize such gradient ranges.

For smooth bumps on higher dimensional spaces the situation is less clear. Our
main result in this direction asserts that they have gradient ranges that cannot
be separated by totally disconnected sets. (For Cn-smooth bumps this has been
shown already in [15].) However, we cannot even give partial answers to the above
questions; for example, it is unclear whether the gradient range of a C∞-smooth
bump on R3 is regularly closed, and whether it has a connected interior.

The infinite-dimensional case is very different. We show that given any regularly
open set G in �2, there exists a C1-smooth and Lipschitz continuous bump f on �2,
such that G = int∇f(�2). (An open set G is regularly open if G = intG.) If we al-
low for so-called weak bumps (cf. [10]), then we can improve the smoothness to C∞.
Starting with examples from [5] and [10], the key procedure here is an inexpensive
modification of a bump so that it becomes affine on an open set (Proposition 6.1).

Related references for bumps on finite-dimensional spaces are [6] and [15]. The
literature on bumps in the infinite-dimensional case is substantially larger, and
includes [1], [2], [3], [5], [6], [7], [10], [14], [15] and [24]. For more information about
the ranges of derivatives of bumps and related matter we refer to the survey paper
[4].

We proceed with the precise statements of our main results.

Theorem 1.1. Let f : R
2 → R be a C1-smooth bump, such that either

(i) ∇f has a modulus of continuity ω = ω(t) with the property
∫ 1

0
dt

ω(t) = ∞,
or

(ii) ∇f is of bounded variation.
Then the interior int∇f(R2) is connected and dense in ∇f(R2).

In particular, the gradient range of a C1,1-smooth bump on the plane cannot
have the figure-of-eight shape, which was proven by P. Hájek and M. Johanis [16]
by a different method.

Theorem 1.2. There exists a set K ⊂ R2 which is homeomorphic to the closed
unit disk, and which has the property that no affine transformation of K is the
gradient range of a C1,1-smooth bump on R2.

The closed unit disk is the gradient range of a C∞-smooth bump on R2. For
example, when b(x) = ϕ(‖x‖2), where ϕ : R → R is a C∞ function with bounded
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support, and 2 maxt∈R |ϕ′(t)t| = 1, then ∇b(R2) = B[0, 1]. (On Rn, ‖ · ‖ always
denotes the euclidean norm. B(x, r) denotes the open ball with centre x and radius
r, B[x, r] the corresponding closed ball.) With K as above, let u ∈ intK and put
K̃ = −u + K. There exists a homeomorphism H : R2 → R2, such that H(0) = 0
and H(B[0, 1]) = K̃ (cf. [22], §61.V, Theorem 3). Note that B[0, 1] is the gradient
range of a smooth bump, whereas K̃ is not.

Recall that a topological space is totally disconnected if it is not connected
between any pair of points. For subsets of Rn this is equivalent to the property
that each (connected) component be a singleton.

Theorem 1.3. Let f : Rn → R be a C1-smooth bump which satisfies either
(i) ∇f has a modulus of continuity ω = ω(t) with the property

∫ 1

0
dt

ω(t) = ∞,
or

(ii) ∇f is of bounded variation.
Then the gradient range ∇f(Rn) cannot be separated by a totally disconnected set,
i.e., whenever C ⊂ Rn is totally disconnected, then ∇f(Rn) \ C is connected.

In particular, if n ≥ 2 then there is no such a bump f with ∇f(Rn) = B[0, 1] ∪
B[2e1, 0]. In fact, there is no such f with ∇f(Rn) = F8×[0, 1]n−2 ⊂ Rn, where F8 =
B[0, 1] ∪ B[2e1, 0] ⊂ R2, since the function g(x, y) = f(x, y, z0) would contradict
Theorem 1.1 for a suitable z0 ∈ Rn−2. There is more which can be derived using
restrictions and projections in a similar manner, but it is not our goal to deal with
it here.

A weak bump (cf. [10]) on a Banach space X is a non-constant, real-valued
function f : X → R for which there exists a continuous norm ω on X , such that
the support of f is bounded with respect to ω. The following is a special case of
Example 6.3.

Theorem 1.4. Let G be a regularly open set in �2. There exists a C1-smooth and
Lipschitz continuous bump f on �2 with int∇f(�2) = G. Furthermore, there exists
a C∞-smooth and Lipschitz continuous weak bump g on �2 with int∇g(�2) = G.

The proofs of Theorems 1.1 and 1.3 both contain a step involving a function
f : Rn → R and a continuum C ⊂ Rn, such that ∇f = 0 on C. It is crucial
for the strategy of the proof that we can conclude that f is constant on C. If f
is a Cn function, then this is a consequence of the classical Morse-Sard theorem.
However, for less smooth functions this conclusion is known to fail (cf. [25]), and
it is precisely this fact that forces us to work with the smoothness assumptions (i)
or (ii). Actually, H. Whitney [25] gave an example of a simple arc in R3 and a C2

function which is critical, but not constant, on the arc. That the assumptions (i)
or (ii) still suffice is because the continuum C is special, it is by construction an
irreducible separator of Rn. (A set C is an irreducible separator of Rn if Rn \ C is
disconnected, but Rn \ C′ is connected whenever C′ ⊂ C is a proper subset of C.)

Proposition 1.1. Let f : Rn → R be a C1 function, such that either
(i) ∇f has a modulus of continuity ω = ω(t) with the property

∫ 1

0
dt

ω(t) = ∞,
or

(ii) ∇f is of bounded variation.
Then f is constant on each bounded irreducible separator of Rn, which is contained
in the critical set {x ∈ R

n : ∇f(x) = 0}.
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We reemphasize that in the stated generality the result does not follow from a
general Morse-Sard theorem. However, for functions on R2 we do not know any
counter-example to the conclusion of the Morse-Sard theorem under the smoothness
hypothesis (i). The conclusion of the Morse-Sard theorem for C1 functions on R2

satisfying (ii) was obtained in [23]. For functions on R
n with n ≥ 3 we have already

mentioned that the conclusion of the Morse-Sard theorem cannot cover functions
that merely satisfy (i) or (ii), and that it is then crucial to consider irreducible
separators. On the other side, the conditions (i) or (ii) cannot be omitted, even
when only irreducible separators of R2 are considered. Again, this follows from [25]
(or see [20]).

The organization of the paper: in Section 2 we recall some elementary facts from
Topology and derive some preliminary results that are used in the subsequent sec-
tions. Section 3 contains an elementary proof for regular closedness of the gradient
range of C2-smooth bumps on the plane. The proof strategy is very different from
those of the other proofs for regular closedness that we are aware of. Section 4
contains the proof of the main result, Theorem 1.1. In Section 5 we prove Theo-
rems 1.2 and 1.3, but in the opposite order. The proof of Theorem 1.2 relies on
a quantitative version of Theorem 1.3, and hence we found it expedient to prove
the latter first. Section 6 contains the results about bumps and weak bumps on
infinite-dimensional spaces, and finally we present the proof of Proposition 1.1 in
Section 7.

2. Preliminaries

In this section we have collected some elementary results that are used through-
out the paper. Furthermore we recall some terminology and results from [22]. Let
X be a topological space, S ⊂ X and a, b ∈ X \ S.
� S separates (the space X between) a and b if there exist sets M , N ⊂ X with
M ∪ N = X \ S, M ∩ N = ∅ = M ∩N and a ∈ M , b ∈ N . In this case S is also
called a separator. (See [22], §46.VII.)
� S is an irreducible separator (of X ) between a and b if S is a separator between
these points, but any proper subset R ⊂ S, is not.

When X is connected, S is a separator (of X ) if X \ S is disconnected. (This is
of course the same as S being a separator between two points of X .)

A separator always contains a separator which is also a closed set. This is the
content of the next result, which is a special case of the results in [22], §46.VII.

Lemma 2.1. If S separates a and b, then there exists a closed set C in X , such
that C ⊆ S and C separates a and b.

Proof. By definition there are sets M , N ⊂ X , such that M ∪N = X \S, M ∩N =
∅ = M ∩N and a ∈M , b ∈ N . It is not hard to show that C = ∂M ∩ ∂ N has the
stated properties. �

The following result recalls some useful properties of irreducible separators of
locally connected metric spaces.

Lemma 2.2. Let X be a locally connected metric space.
(1) Let C be a closed set, A and B two distinct components of X \ C, and let

a ∈ A and b ∈ B. The set C is an irreducible separator between a and b if and only
if ∂ A = C = ∂ B.
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(2) If A is open and connected and B is a component of X \A, the set ∂ B is an
irreducible separator between each pair of points a ∈ A and b ∈ B.

(3) Every closed separator between a and b contains a closed irreducible separator
between a and b.

Proof. (1), (2) and (3) are Theorems 1, 2 and 3, respectively, of [22], §49.VI. �

Lemma 2.3. Every irreducible separator of Rn is closed and connected.

Proof. It follows from Lemma 2.1 that every irreducible separator is closed. That
it is connected then follows from Theorem 3 of [22], §59.IV. �

The following elementary lemma is used to show that a given point u ∈ R
n is an

interior point in the gradient set. A slight extension is derived in Section 5.

Lemma 2.4. Let G ⊂ Rn be bounded and open. Assume f : G→ R is continuous,
differentiable on G, f = 0 on ∂ G and f is not identically zero on G. Then 0 ∈ R

n

is an interior point of ∇f(G).

Proof. Let M = max f(G) > 0. (In the opposite case f should be replaced by −f .)
Find x0 ∈ G such that f(x0) = M . Obviously x0 ∈ G, and therefore ∇f(x0) = 0,
so that 0 ∈ ∇f(G). More generally, let f̃(x) = f(x) − u · x, where u ∈ R

n is
arbitrary, such that ‖u‖ < M/ diamG. Find x̃0 ∈ G, such that f̃(x̃0) = max f̃(G).
If x̃0 ∈ ∂ G, then f̃(x0)−f̃(x̃0) = f(x0)−f(x̃0)−u·(x0−x̃0) = M−0−u·(x0−x̃0) ≥
M − ‖u‖ diamG > 0, hence f̃(x̃0) < f̃(x0), which contradicts f̃(x̃0) = max f̃(G).
Hence x̃0 ∈ G, and thus ∇f̃(x̃0) = 0, that is, ∇f(x̃0) = u. This shows that
B(0,M/ diamG) ⊆ ∇f(G). �

Without additional smoothness hypotheses on the bump we cannot say so much
about its gradient range.

Lemma 2.5. Let f : Rn → R be a C1-smooth bump. The gradient range ∇f(Rn)
is a locally connected continuum, which contains 0 ∈ R

n in its interior.

Proof. The support of f is contained in an open ball B, so 0 ∈ int∇f(B) =
int∇f(Rn) by Lemma 2.4. The closure B of the ball is a locally connected contin-
uum, so the same is true of ∇f(B) = ∇f(Rn) (see [22], §50.II, Theorem 5). �

3. Regular closedness from the inverse function theorem

We are aware of different types of arguments for regular closedness of the gradient
range. The following is an elementary and, we believe, elegant argument that was
developed in discussions with Bernd Kirchheim. It is based on the inverse function
theorem and a trick that has previously been used in [9] and [18]. Using less
elementary tools it works also for C1,1-smooth bumps on the plane. As mentioned
in the Introduction this result was also obtained for C2-smooth bumps in [15] by a
different method, and it is also contained in our Theorems 1.1 and 1.3.

Lemma 3.1. Assume f : R2 → R is a C2-smooth bump. Then ∇f(R2) is regularly
closed. The same is true also for C1,1-smooth bump functions.

Proof. Let f be a C2-smooth bump and put K = ∇f(R2). Then K is clearly a
continuum, and 0 ∈ intK by Lemma 2.4. If x ∈ R2 is a point where det∇2f(x) �= 0,
then, in view of the inverse function theorem, there exists an open neighbourhood
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U of x such that the restriction of ∇f to U is a C1 diffeomorphism. It follows
in particular, that ∇f |U is an open map, and thus that ∇f(x) ∈ intK. Hence
obviously ∇f(M) ⊆ intK, where M = {x : det∇2f(x) �= 0}. So we may focus
on gradients corresponding to Ω = {x : ∇f(x) �= 0} \M . We know already that
∇f(∂Ω) ⊆ intK. Since int∇f(Ω) ⊆ intK, it is enough to show that ∂∇f(Ω) ⊆
∇f(∂Ω). For that purpose, define for each ε > 0 the auxiliary map Fε(x) =
∇f(x) + ε(−x2, x1), x = (x1, x2) ∈ R2. Now

∇Fε(x) = ∇2f(x) + ε

(
0 −1
1 0

)
,

and hence using the formula det(A + B) = detA + cof A · B + detB and that
cof A·B = 0 when A is symmetric and B is anti-symmetric, we deduce det∇Fε(x) =
det∇2f(x) + ε2 for all x. If therefore we restrict x ∈ Ω, then det∇Fε(x) = ε2 �= 0,
so that Fε : Ω → R2 is an open map. (Notice that this argument does not work
when n ≥ 3.) Because Ω is bounded, Fε(Ω) is compact, and therefore Fε(Ω) ⊇
Fε(Ω) = Fε(Ω) ∪ ∂ Fε(Ω), and thus Fε(Ω) ∪ ∂ Fε(Ω) ⊆ Fε(Ω) ∪ Fε(∂ Ω). Since
Fε(Ω) is open, it follows that ∂ Fε(Ω) ⊆ Fε(∂ Ω).

We assert that letting ε ↘ 0, ∂∇f(Ω) ⊆ ∇f(∂ Ω) results. Indeed, let u ∈
∂∇f(Ω) and r > 0. Take x ∈ Ω with ∇f(x) ∈ B(u, r

2 ) and v ∈ B(u, r
2 ) \ ∇f(Ω).

If v ∈ ∇f(∂Ω), then obviously B(u, r) ∩ ∇f(∂ Ω) �= ∅. Suppose v /∈ ∇f(∂ Ω), so
that v ∈ B(u, r

2 )\∇f(Ω). Because Fε converges uniformly to ∇f on Ω, we have for
sufficiently small ε > 0 that v ∈ B(u, r

2 ) \ Fε(Ω) and Fε(x) ∈ B(u, r
2 ). Therefore,

for such ε, we can select uε ∈ B(u, r
2 )∩∂ Fε(Ω). But ∂ Fε(Ω) ⊆ Fε(∂ Ω), so there is

xε ∈ ∂Ω with Fε(xε) ∈ B(u, r
2 ). Again by uniform convergence, ∇f(xε) ∈ B(u, r)

for sufficiently small ε, and consequently B(u, r) ∩ ∇f(∂Ω) �= ∅ also in this case.
Since ∇f(∂ Ω) is closed, this proves the assertion and concludes the proof.

Now, let us consider the more general case f ∈ C1,1(R2). Then F (y) = ∇f(y) is
Lipschitz continuous and hence differentiable almost everywhere. First let x ∈ R2

be such that F is differentiable at x and det∇F (x) �= 0. We will show that
F (x) ∈ intK. Let L = ∇F (x) and let L̃(y) = F (x)+L ·(y−x). By the assumption,
L is an invertible matrix, and L̃ is an affine bijection, and ‖Lv‖ ≥ ‖v‖/‖L−1‖
for v ∈ R2. Obviously, | deg(L̃,B[x, r], z)| = 1 for every r > 0 and every z ∈
B(F (x), r/‖L−1‖) ⊆ L̃(B(x, r)). Since L̃ is a good approximation of F , it is easy
to show that there is ε > 0 such that also | deg(F,B[x, ε], z)| = 1 for every z in
B(F (x), ε/2‖L−1‖). The last set is therefore a subset of K = F (R2) and ∇f(x) =
F (x) is its interior point. Because F is differentiable in a dense set, it remains only
to consider points of the open set

Ω = {x : F (x) �= 0 and there is a neighbourhood of x where det∇F = 0

whenever ∇F exists}.
The rest of the proof is the same, we just have to observe that, since ∇F is sym-
metric at almost all points where it exists, det∇Fε = ε2 a.e. in Ω, hence Fε is a
mapping of bounded distortion. Therefore Fε is open on Ω. �

4. Proof of Theorem 1.1

The proof relies in an essential way upon the notion of index for planar closed
curves and related properties of the topology of the plane. The absence of these
features in R

n when n ≥ 3 forces us to work exclusive with bumps on R
2. It is
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at present not at all clear whether or not a similar result is true for bumps on Rn

when n ≥ 3. (As mentioned in the Introduction the result fails for bumps on �2.)
Another issue is the smoothness of the bump. It is far from clear to us whether or
not the result is true for bumps on R2 that are merely C1-smooth. In the proof the
additional smoothness is required only when using Proposition 1.1. As mentioned
in the Introduction such a result fails without additional smoothness assumptions.

In this section a (planar) curve is a continuous map γ : [0, 1] → R2. With an
abuse of the notation we denote by γ also its image γ([0, 1]). The points γ(0) and
γ(1) are called the end-points of the curve γ, and γ is closed when γ(0) = γ(1).
When γ is a closed curve and x /∈ γ the index of γ with respect to x is denoted
by indγ(x). We refer to [22] for the definition and the properties of the index. In
the definition below, which is central to the proof, we use the index to distinguish
a class of points on a curve.

Definition 4.1. A point u ∈ R
2 is an essential point of the curve γ ⊆ R

2 with
respect to the set K ⊆ R2 if u is an end-point of γ or if for every neighbourhood U
of u the set

Iγ−γ0(U) = {indγ−γ0(v) : v ∈ U \ (γ ∪ γ0 ∪K)}
contains at least two elements, where γ0 is any curve connecting the end-points of
γ and such that u /∈ γ0.

Remarks. (1) The definition is independent of the choice of γ0: Let γ̃0 be another
curve that connects the end-points of γ and for which u /∈ γ̃0. Since γ0 ∪ γ̃0 is
compact we can find a connected neighbourhood Ũ of u that does not intersect
γ0 ∪ γ̃0. On Ũ the index of the closed curve γ0 − γ̃0 is constant, say equal to c, so
Iγ−γ̃0(Ũ) = Iγ−γ0(Ũ) + c. Now, if U is a neighbourhood of u such that Iγ−γ0(U)
contains less than two points, then the same is true for Iγ−γ̃0(U ∩ Ũ). Similarly for
γ0 and γ̃0 interchanged.

(2) Obviously, if u is an essential point of γ with respect to K, then u ∈ γ and
u /∈ intK.

For the proof of Theorem 1.1 we need some properties of essential points. We
proceed to establish these.

Lemma 4.1. Let F : R2 → R2 be continuous and γ̂ be a curve in R2. Assume u
is an essential point of γ = F ◦ γ̂ with respect to K = F (R2). If γ̂0 is any curve
connecting the end-points of γ̂, then u ∈ γ0 = F ◦ γ̂0.

Proof. Assume for a contradiction that u /∈ γ0. This means that γ0 can be used in
the Definition 4.1 of essential point. Let U be a neighbourhood of u. For s, t ∈ [0, 1],
define the homotopies Γ̂s(t) = sγ̂0(t) + (1 − s)γ̂(t) and

Γs(t) =
{
F (Γ̂s(2t)) for 0 ≤ t < 1

2
γ0(2 − 2t) for 1

2 ≤ t ≤ 1.

Here Γ is a homotopy in K carrying Γ0 = γ − γ0 to Γ1 = γ0 − γ0, so that,
by homotopy invariance of the index, indγ−γ0(v) = indγ0−γ0(v) = 0 for every
v ∈ R2 \K = R2 \ (γ ∪ γ0 ∪K). Thus Iγ−γ0(U) ⊆ {0}, and u is not an essential
point of γ with respect to K. This contradiction concludes the proof. �

Recall that a set is said to cut between two points if it intersects every contin-
uum that contains the two points (see [22], §47.IX). The next lemma summarizes
additional properties of cuts and separators of R

n that are used below.
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Lemma 4.2. For a closed set H ⊂ Rn and points a, b ∈ Rn the following are
equivalent:
(1) H separates a and b;
(2) there exist disjoint open sets G0, G1, such that G0 ∪ G1 = Rn \ H, a ∈ G0,
b ∈ G1;
(3) H cuts between a and b;
(4) H intersects every curve connecting a and b;
(5) a and b are in different components of Rn \H.

Proof. (1) ⇐⇒ (2) follows from the definition. (2) =⇒ (3) =⇒ (4) is obviously
true (for any set H). (4) =⇒ (5) since the components of the open set Rn \H are
path-connected. For (5) =⇒ (2) let G0 be the component of Rn \H containing a
and let G1 = Rn \ (H ∪G0). Then obviously ∂ G0 ⊆ H , hence G0 ∪H is closed and
G1 open. �

Lemma 4.3. Let f : R2 → R be a C1-smooth bump, which satisfies either

(i) ∇f has a modulus of continuity ω = ω(t) with the property
∫ 1

0
dt

ω(t) = ∞,
or

(ii) ∇f is of bounded variation.
If γ̂ is a curve in R

2 and γ = ∇f(γ̂), then, besides the end-points, γ has no essential
points with respect to K = ∇f(R2).

Proof. We can assume without loss in generality that a = γ̂(0) �= γ̂(1) = b. Assume
u ∈ γ \ {a, b} is an essential point of γ with respect to K. Obviously, u /∈ intK,
so that in particular, u �= 0 by Lemma 2.5. Put H = (∇f)−1(u); then H ⊂ spt f ,
so H is bounded. Furthermore, by Lemma 4.1, H intersects every curve that has a
and b as end-points, so according to Lemma 4.2, H has the properties (1)-(5). In
particular, H separates a and b, hence by Lemma 2.2 it contains a closed subset C,
which is the common boundary of two disjoint open and connected sets A, B ⊂ R2.
Since C ⊆ H and H is bounded, at least one of the sets A, B must be bounded too.
Choose one and call it Ω. Note that Ω is then an open, bounded and connected
set and ∂ Ω is an irreducible separator. Now ∂Ω ⊆ H , so ∇f = u on ∂ Ω, and
it therefore follows from Proposition 1.1 applied to the function x �→ f(x) − u · x
and the irreducible separator ∂ Ω, that f(x) − u · x = c on ∂ Ω for some constant
c. Finally, use Lemma 2.4 to the function x �→ f(x) − u · x− c and the set Ω, and
infer that u ∈ int∇f(Ω) ⊆ intK. This contradiction concludes the proof. �

We identify R2 with C in the usual way and write S1 = {z ∈ C : |z| = 1} and
S2 = C∪{∞}. When f : W → S1 is a continuous map from a subset W ⊆ S2 to S1

and K ⊆ W we write f ∼ 1 on K if there exists a continuous function φ : K → R,
such that f(w) = eiφ(w) for w ∈ K. The following result is instrumental in the
proof of Theorem 1.1.

Theorem 4.1 (Eilenberg [13], pages 75 and 88). Let u, v ∈ C be two distinct
points. A subset K ⊆ S2 \{u, v} does not cut S2 between u and v if and only if
r ∼ 1 on K, where

r(w) =

⎧⎨⎩
u−w
|u−w|

|v−w|
v−w if w ∈ C \ {u, v}

1 if w = ∞.
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Obviously, if K is bounded, then K does not cut R2 = C between u and v if and
only if r ∼ 1 on K. See also [22], §62.II.

Proof of Theorem 1.1. LetK = ∇f(R2), and recall from Lemma 2.5 that 0 ∈ intK.
Let G be the component of K that contains 0. It suffices to show that G is dense
in K. We argue by contradiction, and assume that we can find a u ∈ K \G. Since
0 ∈ G it follows in particular that ∂ G separates S2 between 0 and u.

Take x0, x ∈ R2 with ∇f(x0) = 0 and ∇f(x) = u, and choose a point ũ near u,
not on the straight line through 0 and u, and so that the triangle 0ũu is oriented
clockwise. Denoting by vw the linear parameterization of the oriented segment
[v, w], define γ0 = 0u and γ1 = 0ũ + ũu. Since R2 \ γ0 and R2 \ γ1 do not cut S2

between v = 0 and u, we have by Theorem 4.1 the representations

(4.1) r(w) = eiφ0(w) on R
2 \ γ0 and r(w) = eiφ1(w) on R

2 \ γ1,

where φ0 : R2 \ γ0 → R and φ1 : R2 \ γ1 → R are continuous functions. (It is not
difficult to find φ0, φ1 explicitly.)

For each w ∈ R2 \ (γ0 ∪ γ1), indγ0−γ1(w) ∈ {0, 1}. Choose an arbitrary point
w0 ∈ R2 \ (γ0 ∪ γ1) with indγ0−γ1(w0) = 0. Because eiφ0(w0) = r(w0) = eiφ1(w0),
φ0(w0)−φ1(w0) = 2k0π for some k0 ∈ Z, and since (φ0−φ1)/2π : R2\(γ0∪γ1) → Z

is continuous, it follows that

φ0(w) − φ1(w) = 2πk0 for all w, such that indγ0−γ1(w) = 0.

Similarly, there is a k1 ∈ Z, such that

φ0(w) − φ1(w) = 2πk1 for all w, such that indγ0−γ1(w) = 1,

and hence we have shown that for w ∈ R2 \ (γ0 ∪ γ1)

(4.2) φ0(w) − φ1(w) = 2πk0 + 2π(k1 − k0) indγ0−γ1(w)

holds. Now fix a curve γ̂ with γ̂(0) = x0 and γ̂(1) = x (e.g. γ̂ = x0x), and let
γ = (∇f) ◦ γ̂. Note that γ ⊆ K and that γ(0) = 0 and γ(1) = u. Take v ∈ ∂ G \ γ0.
Clearly, v is not an end-point of γ and it is not an interior point of K (since G
was a component of intK). Hence Iγ−γ0(V ) �= ∅ for every neighbourhood V of
v (we use K = ∇f(R2) in Definition 4.1). By Lemma 4.3, v is not an essential
point of γ with respect to K either. We can therefore find ε = ε(v, γ0) > 0, such
that Iγ−γ0(B(v, ε)) contains at most one element, and thus precisely one element.
Denote the unique element by ĩndγ−γ0(v) ∈ Z. As indicated the unique element
is independent of the choice of ε = ε(v, γ0) since Iγ−γ0(V ′) ⊆ Iγ−γ0(V ′′) when
V ′ ⊆ V ′′. Hence we have hereby defined a function ĩndγ−γ0 : ∂ G \ γ0 → Z, and
by the properties of the index, it is a locally constant, continuous function. Define
ĩndγ−γ1 similarly on ∂ G \ γ1.

Take v ∈ ∂ G \ (γ0 ∪γ1) and let ε = min{ε(v, γ0), ε(v, γ1), dist(v, γ0 ∪γ1)}. Since
v /∈ intK, the set B(v, ε) \ (γ ∪ γ0 ∪ γ1) is non-empty, and for each of its elements
w we have

indγ−γ1(w) = indγ−γ0(w) + indγ0−γ1(w).

Now indγ−γ1(w) = ĩndγ−γ1(v), indγ−γ0(w) = ĩndγ−γ0(v) and indγ0−γ1 is constant
on B(v, ε), so it follows that

(4.3) ĩndγ−γ1(v) = ĩndγ−γ0(v) + indγ0−γ1(v).
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Define

φ(v) =

{
φ0(v) + 2π(k1 − k0)ĩndγ−γ0(v) for v ∈ ∂ G \ γ0

φ1(v) + 2π(k1 − k0)ĩndγ−γ1(v) + 2πk0 for v ∈ ∂ G \ γ1.

Observe that the definition is consistent by (4.2) and (4.3). Since γ0∩γ1 = {0, u} ⊂
R2 \ ∂ G, φ(v) is defined for every v ∈ ∂ G, and because ĩndγ−γ0 , ĩndγ−γ1 are
continuous, also φ : ∂ G → R is continuous. Finally, we check from (4.1) and the
definition of φ that r(v) = eiφ(v) for all v ∈ ∂ G, so that, according to Theorem
4.1, ∂ G does not cut S2 between v = 0 and u. This contradiction concludes the
proof. �

5. Separators of the gradient set. Proofs of Theorems 1.2 and 1.3.

In terms of topological dimension Theorem 1.3 states that any separator of the
gradient range of a suitably smooth bump on Rn must at least be of dimension one,
that is, the gradient range is two-dimensionally connected (cf. [22], §46.XI). It is
not hard to show that a particular consequence is that the topological dimension of
the gradient range at each of its points is at least two, i.e. if f denotes the bump,
dimu ∇f(Rn) ≥ 2 for all u ∈ ∇f(Rn). When n = 2 this is easily seen to imply
that ∇f(R2) is regularly closed. However, it does not follow from Theorem 1.3 that
∇f(R2) has connected interior, as is obvious from the following

Example 5.1. Let

K = [0, 1]2 \
∞⋃

j=1

2j−1⋃
k=1

Qj,k,

where Qj,k = xj,k + (0, 4−j)2 and xj,k = (2−1 + 2−j, k2−j). Then K is a locally
connected, compact and two-dimensionally connected subset of R2, and it is not
hard to see that the interior intK has two components.

Proof of Theorem 1.3. Suppose the theorem is false, so that there exists a bump f
satisfying all the hypotheses, but for which the gradient set K = ∇f(Rn) can be
separated by a totally disconnected set C ⊂ Rn. By Lemma 2.1 we can assume
that C is closed and therefore 0-dimensional, cf. [17], Chapter II, §4 A.

We assert that C ∩ ∂ K separates K. To prove this, use Lemma 2.2 on the
locally connected metric space K (cf. Lemma 2.5), to find an irreducible separator
F ⊆ C ∩K. Assume there is x ∈ F ∩ intK and ε > 0 such that B(x, ε) ⊂ K. Since
F ∩B(x, ε) is 0-dimensional, it does not separate B(x, ε) (see [17], Chapter IV , §5,
Corollary 2). Therefore F \ {x} separates K, which contradicts its irreducibility.
Consequently, F ⊆ ∂ K and C ∩ ∂ K separates K as asserted.

Henceforth we assume that C ⊆ ∂ K. Let K0 denote a component of K \C that
does not contain 0 ∈ Rn. Since K is locally connected, K0 is open relative to K
(cf. [22], §49.II, Theorem 4) and its boundary relative to K is ∂K K0 = C ∩ K0.
The set U = (∇f)−1(K0) is therefore non-empty, bounded and open, and ∂ U ⊆
(∇f)−1(C). Select a component V of U , let W denote the unbounded component
of Rn\V and let Ω be the component of Rn\W that contains V . By Lemma 2.2(2),
∂Ω is an irreducible separator between any pair of points x ∈ Ω and y ∈ W , and
thus, ∂ Ω is connected by Lemma 2.3. It is also a subset of ∂ U , so that ∇f(∂Ω) is
a connected subset of C and hence is a singleton: ∇f(x) ≡ u ∈ C on ∂Ω. Apply
Proposition 1.1 to the function x �→ f(x) − u · x and the irreducible separator
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∂Ω and deduce that f(x) − u · x = c on ∂Ω for some constant c ∈ R. Next use
the Lemma 2.4 on the function x �→ f(x) − u · x − c and the set Ω to infer that
u ∈ int∇f(Ω) ⊆ intK. Thus C ∩ intK �= ∅, which is the desired contradiction. �

The following result is a quantitative version of Theorem 1.3. It is used in the
proof of Theorem 1.2.

Proposition 5.1. Let f : R2 → R be a C1,1-smooth bump and put K = ∇f(R2),
L = Lip(∇f) and A = L2(co spt(f)) (i.e., the area of the convex hull of the sup-
port). Suppose that C is a closed set that separates K and let K0 denote a com-
ponent of K \ C that does not contain 0. Define the numbers r = sup{diamC0 :
C0 component of C ∩K0} and R = sup{dist(u,C ∩K0) : u ∈ K0}. If each com-
ponent of C ∩K0 intersects ∂ K, then

(5.1)
r

R
≥ e−

AL2

R2√
2e

(
AL2

R2 + 1
) .

Proof. We shall derive the inequality by establishing first a stronger, but less ap-
pealing inequality. We may assume that r < R, since otherwise (5.1) is trivially
satisfied. Observe that for the rescaled function f̃(x) = L

R2 f(R
Lx) we have the re-

lations r̃ = r
R , R̃ = 1, L̃ = 1 and Ã = AL2

R2 , and consequently that we can assume
without loss in generality that 0 < r < R = 1 and L = 1. With these simplifica-
tions in place, select ū ∈ K0 such that dist(ū, C ∩ K0) = 1, and let x̄ be a point
where ∇f(x̄) = ū. Define the open set U = (∇f)−1(K0) ⊂ spt(f). Let V denote
the component of U that contains x̄, and define the open set Ω as in the proof
of Theorem 1.3. Note that Ω ⊂ co spt(f), and also that ∇f(∂Ω) is a connected
subset of C ∩K0, which is therefore contained in a single component C0 of C ∩K0.
By assumption we can take u0 ∈ C0 ∩ ∂ K. Define g(x) = f(x) − u0 · x, x ∈ R2,
and observe that ‖∇g(x)‖ ≤ r on ∂Ω. The proof of inequality (5.1) relies on the
following elementary observation, which we formulate in a slightly more general
form than is strictly needed for the proof.

Lemma 5.1. Let G ⊂ Rn be a bounded open set. If h : G → R is continuous,
differentiable on G and osc(h, ∂G) < osc(h,G), then 0 ∈ Rn is an interior point for
∇h(G).

Proof. Because G is bounded, there exists ε > 0, such that if hu(x) = h(x) − u · x,
x ∈ G, then osc(hu, ∂ G) < osc(hu, G) for all u ∈ B(0, ε). Fix u ∈ B(0, ε). By
continuity and compactness we can write

osc(hu, G) = max
G

hu − min
G

hu

and
osc(hu, ∂G) = max

∂G
hu − min

∂G
hu.

Therefore the assumption on the oscillations can be restated as(
max

G
hu − max

∂G
hu

)
+

(
min
∂G

hu − min
G
hu

)
> 0,

and it follows from this that there is x ∈ G with ∇hu(x) = 0 and hence u ∈
∇h(G). �
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Because u0 /∈ intK, the above lemma yields osc(g, ∂Ω) ≥ osc(g,Ω). However,
it appears to be difficult to estimate the oscillation over ∂ Ω directly, so instead we
estimate the oscillation over smoother sets close by. To facilitate this, let d(x) =
dist(x, ∂ Ω) = inf{‖x − y‖ : y ∈ ∂Ω} denote the distance from x to the boundary
∂Ω. There exists a regularized distance δ : Ω → R, which is C∞ on Ω and has the
properties 1

2d(x) ≤ δ(x) ≤ d(x), ‖∇δ(x)‖ ≤ 1 and |∂αδ(x)| ≤ M|α|d(x)1−|α| for all
x ∈ Ω and any multi-index α, where M|α| ∈ [1,∞) are constants. We refer to [8],
Theorem 10 on page 78, for an explicit construction.

For ε ∈ (0, 1), let

(5.2) Ωε = {x ∈ Ω : δ(x) > ε}.
By the Morse-Sard theorem L1(δ({x ∈ Ω : ∇δ(x) = 0})) = 0, and so for almost
every ε ∈ (0, 1), ∇δ(x) �= 0 for all x ∈ ∂Ωε. Hence Ωε has a C1 boundary for almost
all ε ∈ (0, 1). We have to deal with the possibility that ∂ Ωε can be disconnected.
Note that B(x̄, 1) ⊆ U , and therefore that B(x̄, 1) ⊆ V ⊆ Ω. Hence, B(x̄, 1−ε) ⊆ Ωε

for ε ∈ (0, 1). In particular, x̄ ∈ Ωε, and ∂ Ωε separates R2 between x̄ and any point
x ∈ ∂ Ω. By Lemma 2.2 there exists an open, connected set W , such that x̄ ∈ W ,
W ⊆ Ωε, ∂ W ⊆ ∂ Ωε and ∂ W is an irreducible separator of R2. In view of
Lemma 2.3, ∂ W is connected. Because W is connected, ∂W ⊆ ∂ Ωε, x̄ ∈ W and
B(x̄, 1 − ε) ⊆ Ωε, we deduce that also B(x̄, 1 − ε) ⊆ W . In the following we can
therefore assume without loss in generality that ∂Ωε is connected, since otherwise
we can replace Ωε by the set W . The boundary ∂ Ωε is then a simple closed C1-
curve for almost all ε ∈ (0, 1). Since ‖∇g(x)‖ ≤ r + ε on ∂ Ωε, we can for such ε
estimate

osc(g, ∂Ωε) ≤ 1
2 (r + ε)H1(∂ Ωε).

For 0 < � < σ < 1 it follows from the coarea formula that

A ≥ L2(Ω) >
∫ σ

�

H1(∂ Ωt) dt,

and hence

ess inf
�<t<σ

(tH1(∂ Ωt)) <
A

ln σ
�

.

Let α ∈ (0, 1), and take ε ∈ (r, rα), such that

εH1(∂ Ωε) ≤ A

ln rα

r

=
A

1 − α
· 1
ln 1

r

.

With this choice of ε,

osc(g, ∂Ωε) ≤ εH1(∂ Ωε) ≤ A

1 − α
· 1
ln 1

r

.

Next, to estimate the oscillation over Ωε from below, let λ ∈ (0, 1) and assume
that rα < λ. Then ε < λ too, so B(x̄, 1 − λ) ⊂ B(x̄, 1 − ε) ⊆ Ωε. In particular
it follows that Ωε contains the segment γ = [x̄ − (1 − λ)v, x̄ + (1 − λ)v], where
v = (ū− u0)/‖ū− u0‖. Moreover, ∇g(x̄) = ū− u0 and Lip(∇g) = 1. Hence,

osc(g,Ωε) ≥
∫

γ

∇vg ≥
∫ 1−λ

−(1−λ)

(1 − |s|) ds = 1 − λ2,
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and consequently,

1 − λ2 ≤ osc(g,Ωε) ≤ osc(g, ∂ Ωε) ≤ A

1 − α
· 1
ln 1

r

when r < λ
1
α . Together with the opposite case, we can summarize this as

r ≥ min
{
λ

1
α , exp

(
− A

1 − α
· 1
1 − λ2

)}
for α, λ ∈ (0, 1). We will take α, λ ∈ (0, 1), such that

λ
1
α = exp

(
− A

1 − α
· 1
1 − λ2

)
, i.e. λ2 = exp

(
− α

1 − α
· 2A
1 − λ2

)
.

This can be solved for α:
1
α

= 1 +
2A

(y − 1) ln y
> 1, where y = λ2.

Hence

λ
1
α = y

1
2α = exp

(
A

y − 1
+ 1

2 ln y
)
,

where y = λ2 ∈ (0, 1). We choose y ∈ (0, 1) where this quantity is maximal, that
is,

y = A+ 1 −
√
A2 + 2A (∈ (0, 1)).

Inserting this in the estimate and rearranging terms we arrive at

r ≥
√
A+ 1 −

√
A2 + 2A exp

(
− 1

2 (A+
√
A2 + 2A)

)
.

Because
√
A2 + 2A ≤ A+ 1 and√
A+ 1 −

√
A2 + 2A =

(
A+ 1 +

√
A2 + 2A

)− 1
2 ≥ 1√

2(A+ 1)

we deduce that
r ≥ 1√

2e(A+ 1)
e−A,

which is the desired inequality. �

Proof of Theorem 1.2. Let

h(x) =
e−x√

2e(x+ 1)
, x ∈ (0,∞).

Then h is strictly decreasing and h(x) → 0 as x → ∞. For given values of 0 <
r < R we can therefore find a unique x = x(r,R) > 0, such that h(x/R2) = r/R.
In particular, for each positive integer j we can take rj ∈ (0, 2−1−j), such that
x(rj , 2−j) ≥ j.

Let sj = 2−1 + 2−2 + · · · + 2−j and define the function

fj(t) = max{2−j − 21−j

rj
|t− sj |, 0}, t ∈ R,

and put

f(t) =
∞∑

j=1

fj(t), t ∈ R.
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It is clear that f is a continuous function. Let

γ1(t) = (t, f(t)), t ∈ [0, 1],

and let γ2 denote any curve with end-points (0, 0) and (1, 0), which, except for the
end-points, lies in the open lower half-plane. Define γ = γ1 + γ2. Then γ is a
Jordan curve, and if we take K to be the closure of the interior domain bounded
by γ, then it follows from Proposition 5.1 that K has the desired property. �

6. Examples

Recall that a bump is a function with non-empty and bounded support. In
this section ω denotes a norm on X which is ‖.‖-continuous. (Therefore we may
assume that ω(x) ≤ ‖x‖ and B‖ ‖(0, 1) ⊆ Bω(0, 1).) An ω-bump is a function
whose support is non-empty and bounded with respect the the norm ω, cf. [10].
(The Fréchet differentiability and continuity of functions is always regarded with
respect to ‖.‖.) If ω(.) = ‖.‖ then ω-bumps are, of course, bumps; in the general
case we also refer to ω-bumps as weak bumps.

In recent years there has been an increasing interest in the ranges of derivatives
of bumps on infinite dimensional spaces (see [7], [2], [14], [5], [1] and the literature
cited therein). For the previously constructed bumps, ranges of their derivatives
have connected interiors. Using an example of [5] we construct a C1-smooth bump
on �2 whose gradient set has disconnected interior, and also a C∞-smooth weak
bump (on any Banach space, which has separable dual, and that admits a C∞-
smooth and Lipschitz continuous bump, e.g. �2) with the same property. This
makes strong contrast with our result in R2; note that in Rn weak bumps and
bumps coincide.

We remark that if X has separable dual, then X has an equivalent Fréchet
differentiable norm and therefore admits a C1-smooth Lipschitz continuous bump
(see [12]), which reduces the number of assumptions in Examples 6.2–6.4 in the
case p = 1.

First we need two technical lemmas.

Lemma 6.1. For every a, b, α, β ∈ R with a < b and for every ε > 0 there is
a function f ∈ C∞(R) with f(x) = α for x ≤ a, f(x) = β for x ≥ b and |f ′(x)| <
|β−α|
b−a + ε for x ∈ R. Furthermore,

∣∣∣f(x) −
(
α+ β−α

b−a (x− a)
)∣∣∣ < ε(b− a) holds for

x ∈ [a, b].

Proof. Consider a mollification of a function g, which is linear in [a1, b1] ⊂ (a, b)
and g(x) = α for x ≤ a1 and g(x) = β for x ≥ b1. �

Lemma 6.2. For every η > 0 and δ > 0 there is a ∈ (0, δ) and a function φ ∈
C∞(R), 0 ≤ φ ≤ 1, such that φ(t) = 1 for t ≤ a, φ(t) = 0 for t ≥ δ and, for t > 0,

(6.1) |φ′(t)| ≤ η

t
.

Proof. Since limt→0+ − η
4 ln t

δ = ∞, there exists a ∈ (0, δ), such that − η
4 ln a

δ = 1.
Let f be as in the previous lemma with β = b = δ, α = a, and with ε chosen so
that |f ′(t)| ≤ 2 and, for t ∈ [α, δ], |f(t) − t| ≤ α

2 ≤ t
2 and hence f(t) ≥ t

2 .
Let φ(t) = − η

4 ln f(t)
δ . Then |φ′(t)| = |η4 f ′(t)

f(t) | ≤ η
t , φ(t) = − η

4 ln a
δ = 1 for t ≤ a,

φ(t) = − η
4 ln δ

δ = 0 for t ≥ δ. �
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Lemma 6.3. Let X be a Banach space and p ∈ N ∪ {∞}. Then the following
assertions are equivalent:

(1) there is a Lipschitz function N : X → R, N ∈ Cp(X \{0}) and K > 0, such
that ‖x‖ ≤ N (x) ≤ K‖x‖ for all x ∈ X;

(2) there is a Lipschitz Cp-smooth bump g on X;
(3) there is a Lipschitz Cp-smooth bump h on X, such that 0 ∈ inth′(X).

Proof. (1) =⇒ (2): Let g(x) = φ(N (x)) with φ from Lemma 6.1. (2) =⇒ (3):
See [1], Corollary 3.3. (3) =⇒ (2) is obvious. (2) =⇒ (1) is due to Leduc [24], see
also [11], Proposition 3.2, and [12], Proposition II.5.1. �

Proposition 6.1. Let p ∈ N ∪ {∞} and let X be a Banach space which admits a
Lipschitz Cp-smooth bump. Let b ∈ Cp(X), xA ∈ X, A = b′(xA) ∈ X∗ and ε > 0.
Then there exists f ∈ Cp(X), such that f ′(x) = A in a neighbourhood U of xA,
f(x) = b(x) whenever ‖x− xA‖ ≥ ε and f ′(X) ⊆ b′(X) ∪ B(A, ε).

Proof. Let K and N be as in (1). Choose 0 < δ < ε/3, such that ‖b′(x)−A‖ ≤ ε/3
when ‖x− xA‖ < δ. Let η = 1/LipN . Let φ and a be as in Lemma 6.2, ψ0(x) =
φ(N (x)), ψ1(x) = 1 − φ(N (x)) and

f(x) = b
(
xA + (x− xA)ψ1(x− xA)

)
+ ψ0(x− xA)A(x− xA).

Then f(x) = b(x) and f ′(x) = b′(x) whenever ‖x−xA‖ > δ and also f(x) = b(xA)+
A(x − xA) and f ′(x) = A whenever x ∈ U = B(xA, a/K). Obviously, 0 ≤ ψ1 ≤ 1
and, by (6.1), ‖ψ′

1(x)‖ ≤ η LipN/N (x) ≤ 1/‖x‖ for x �= 0. Furthermore,

f ′(x) = b′
(
xA + (x− xA)ψ1(x− xA)

)
ψ1(x− xA)

+
〈
b′

(
xA + (x − xA)ψ1(x− xA)

)
, x− xA

〉
ψ′

1(x− xA)

+Aψ0(x − xA) + 〈A, x− xA〉ψ′
0(x − xA)

and therefore if ‖x− xA‖ < δ, then

‖f ′(x) −A‖ ≤
∥∥∥〈
b′

(
xA + (x− xA)ψ1(x− xA)

) −A, x− xA

〉
ψ′

1(x− xA)
∥∥∥

+ ‖b′(xA + (x− xA)ψ1(x− xA)) −A‖ψ1(x− xA)
≤ ε

3‖x− xA‖‖ψ′
1(x− xA)‖ + ε

3ψ1(x− xA) < ε.

Hence f ′(X) ⊆ f ′(B(xA, δ)) ∪ f ′(X \ B(xA, δ)) ⊆ B(A, ε) ∪ b′(X). �

Example 6.1. Let p ∈ N ∪ {∞} and let X be a Banach space which admits a
Lipschitz Cp-smooth bump. Assume there is a Cp-smooth ω-bump b on X, such that
int b′(X) = ∅. Then there is a Cp-smooth ω-bump f on X, such that int f ′(X) is
disconnected.

(Note that if b is Lipschitz then f can also be taken to be Lipschitz.)

Proof. Using Proposition 6.1 twice, we get a function f1 ∈ Cp(X) with bounded
support, such that f ′

1(X) ⊆ b′(X) ∪ B(A1, ε) ∪ B(A2, ε), A1, A2 ∈ b′(X), ε <
‖A1−A2‖ and f ′

1(x) = Ai on a non-empty open set Ui. Let h be as in (3) of Lemma
6.3. Obviously there are rescaled translations h1, h2 of h, hi(x) = cih(rix + ai),
such that spthi ⊆ Ui and h′i(X) ⊆ B(0, ε). Let f(x) = f1(x)+h1(x)+h2(x). Then
the interior of f ′(X) ⊆ b′(X) ∪ B(A1, ε) ∪ B(A2, ε) has at least one component in
each B(Ai, ε). �
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Example 6.2. Let p ∈ N∪{∞} and let X be a Banach space with a separable dual,
and which admits a Cp-smooth and Lipschitz continuous bump. Assume b ∈ Cp(X)
is an ω-bump. Let

C(b) = {λb′(x) : x ∈ X,λ ≥ 0}.
Let G ⊂ X∗ be an open set, such that (X∗ \ C(b)) ∩ (X∗ \G) is dense in X∗ \G.
(This is true e.g. when G is regularly open and int C(b) = ∅). Then there is a
Cp-smooth ω-bump f on X, such that int f ′(X) = G.

Proof. As a consequence of Ekeland’s variational principle, b′(X) is dense in a
neighbourhood of 0 in X∗ (cf. [12] page 58, Proposition 5.2) and hence C(b) is
dense in X∗. Using the separability of X∗, choose {ai = sibi} dense in X∗ with
si > 0 and bi ∈ b′(X) \ {0}. Fix R > 0 so that spt b ⊆ Bω(0, R).

Put rj = 1
j , and note that for any bounded set U2 ⊂ X∗ and open set U1 ⊆ U2,

G =
⋃{ai + rjU1 : ai + rjU2 ⊆ G}, because for every x ∈ G and j there is

ai ∈ x− rjU1; and x− rjU1 + rjU2 ⊆ G for large j. Let h be as in Lemma 6.3 (3),
U1 = inth′(X) and U2 = h′(X).

For each i and j, using Proposition 6.1 (with A = ai = sibi and sib instead
of b), we get fi,j ∈ Cp(X), such that f ′

i,j(x) = ai on a non-empty open set Gi,j

and f ′
i,j(X) ⊆ C(b) ∪ (ai + rjU2). Now we can scale h, shift its support into Gi,j

and add the result to fi,j: For a suitable si,j , yi,j , hi,j(x) = rjsi,jh(x/si,j + yi,j),
and gi,j = fi,j + hi,j we then have spt gi,j ⊆ Bω(0, R) and ai + rjU1 ⊆ g′i,j(X) ⊆
C(b) ∪ (ai + rjU2).

Now, find zi,j ∈ X , i, j ∈ N with ω(zi,j) ≤ 30R and ω(zi,j−zi′,j′) > 3R whenever
(i, j) �= (i′, j′) (we have dimX = ∞) and let f(x) =

∑{gi,j(x+ zi,j) : ai + rjU2 ⊆
G}. Then f ∈ Cp(X) and G ⊆ f ′(X) ⊆ C(b) ∪ G. Hence int f ′(X) = G by the
assumptions on G. �

Example 6.3. Let p ∈ N ∪ {∞} and let X be a separable infinite-dimensional
Banach space which admits a Cp-smooth and Lipschitz continuous bump. Let G
be a regularly open subset of X∗. Then there is a weak bump f ∈ Cp(X) with
int f ′(X) = G.

Furthermore, for every regularly open set G in �2, there is a C1-smooth bump g
on �2 with int∇g(�2) = G.

Proof. On any separable infinite-dimensional Banach space, there is, by [10], page
345, a weak bump b ∈ C∞(X) with int C(b) = ∅.

[5] gives an example of a Lipschitz C1-smooth bump b : �2 → R, such that C(b)
has empty interior.

In both cases, f is then obtained from Example 6.2. �

Note that, in the case of �2, it is enough to assume, say, that G is open and for
every x = (xi) ∈ �2 \G there is n ∈ N, such that x is in the closure of the relative
interior of �2 \ G in the hyperplane {z = (zi) : zn = xn}. This depends on the
fact that C(b) ⊆ Z = {0} ∪ {(zi) ∈ �2 : zi �= 0 for infinitely many i ∈ N} for the
particular ω-bump from [5] or [10].

Example 6.4. In �2, let G1 = {(xi) ∈ �2 : ‖(xi)‖ < 1, x1 �= 0}, Z1 = {(xi) ∈ �2 :
‖(xi)‖ < 1, x1 = 0 and xi �= 0 for infinitely many i ∈ N} ∪ {0}, and G = G1 ∪ Z1.
Then, for every y ∈ G, there is a C1-smooth and Lipschitz continuous bump f on
�2, such that ∇f(�2) = −y +G.
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Proof ingredients. The set G consists of two open hemispheres G1 and intercon-
nection Z1 which is disjoint with intG = G1. The bump from [5] (see above)
allows crossing of the interconnection with the derivatives staying in the set Z. It
has bounded derivatives, therefore we may stay in B(0, 1). Shifting the derivative
range using a composition of functions is standard. One component of G1 together
with Z1 is to be filled using [14] or [15] (Z1 is analytic). Proposition 6.1 allows to
fill the other component of G1. �

7. Proof of Proposition 1.1

The proposition is naturally divided in two parts that we state and prove sepa-
rately.

Proposition 7.1. Let ω : (0,∞) → (0,∞) be a continuous nondecreasing function
satisfying

(7.1)
∫ 1

0

dt

ω(t)
= ∞.

If f : Rn → R is a C1 function satisfying

(7.2) ‖∇f(x) −∇f(y)‖ ≤ ω(‖x− y‖)
for x, y ∈ R

n, and ∇f = 0 on an irreducible separator C of R
n, then f is constant

on C.

Proof. In view of Lemma 2.1, C is closed, and by Lemma 2.2 we can take distinct
components Ω, Λ of Rn \C, such that ∂ Ω = C = ∂ Λ. The conclusion follows if we
can show that the vector field

V =
{ ∇f in Ω

0 in Rn \ Ω

is curl-free (in the distributional sense) on Rn. That is,

V j
,i − V i

,j = 0 (i, j = 1, . . . , n)

holds in the distributional sense on R
n. Indeed, suppose that this has been done.

Then, by a standard result, V = ∇g for some C1 function g : Rn → R. Because Ω
is open and connected, we can assume that g = f on Ω. Now ∇g = 0 on Rn \Ω, so
in particular, ∇g = 0 on Λ. Since Λ is open and connected, g must be constant on
Λ = Λ ∪ C. But f = g on Ω = Ω ∪ C, so f is constant on C too.

It remains to show that the vector field V is curl-free. To this end let ϕ ∈
C∞

c (Rn), i, j ∈ {1, . . . , n}, i �= j and compute

〈V j
,i − V i

,j , ϕ〉 =
∫

Ω

(f,iϕ,j − f,jϕ,i).

As in the proof of Proposition 5.1, see (5.2), we consider the auxiliary sets Ωε =
{x ∈ Ω : δ(x) > ε}, where δ(x) is a regularized distance from x to ∂Ω and ε > 0.
Recall that Ωε has a C1 boundary for almost all ε ∈ (0, 1). If for such ε we let
N = −∇δ/‖∇δ‖, then N is the outward unit normal on ∂ Ωε and we have the
Gauss-Green formula ∫

Ωε

divW =
∫

∂Ωε

W ·N
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for any C1 vector field W defined on a neighbourhood of Ωε. If {ρt} denotes a
standard mollifier we get for almost every ε that∫

Ωε

(f,iϕ,j − f,jϕ,i) = lim
t→0+

∫
Ωε

div
(
ϕ(ρt � f,i)ej − ϕ(ρt � f,j)ei

)
=

lim
t→0+

∫
∂ Ωε

(
ϕ(ρt � f,i)N j − ϕ(ρt � f,j)N i

)
=

∫
∂ Ωε

ϕ
(
f,iN

j − f,jN
i
)
.

In view of (7.2) it therefore holds for almost all ε that∣∣∣∣∫
Ωε

(f,iϕ,j − f,jϕ,i)
∣∣∣∣ ≤ ∫

∂ Ωε

‖∇f‖|ϕ| ≤ ω(ε)Hn−1(B ∩ ∂Ωε)max |ϕ|,

where B is a ball containing the support of ϕ. For 0 < � < σ < 1 we proceed as in
the proof of Proposition 5.1 and find that

Ln(B ∩ Ω) ≥ ess inf
�≤t≤σ

(
ω(t)Hn−1(B ∩ ∂Ωt)

) ∫ σ

�

dt

ω(t)
.

By virtue of (7.1) this implies that

ess inf
0<t≤σ

(
ω(t)Hn−1(B ∩ ∂Ωt)

)
= 0,

and consequently

lim inf
ε→0+

∣∣∣∣∫
Ωε

(f,iϕ,j − f,jϕ,i)
∣∣∣∣ = 0.

On the other hand we also have by the dominated convergence theorem that

lim
ε→0+

∫
Ωε

(f,iϕ,j − f,jϕ,i) =
∫

Ω

(f,iϕ,j − f,jϕ,i),

hence ∫
Ω

(f,iϕ,j − f,jϕ,i) = 0,

and V is curl-free. �

Proposition 7.2. Let f : Rn → R be a C1 function. If ∇f is locally of bounded
variation (i.e., the distributional partial derivatives f,ij are Radon measures on Rn)
and ∇f = 0 on a bounded irreducible separator C of Rn, then f is constant on C.

Proof. Define the sets Ω, Λ as in the proof of Proposition 7.1. Because C is bounded,
the complement Rn \C has precisely one unbounded component. We can therefore
assume that Ω is bounded.

As in the proof of Proposition 7.1 we denote by δ a regularized distance function
to the boundary ∂Ω. Let ρ be an even C∞ function with the properties ρ(x) ≥ 0
for all x, ρ(x) = 0 for ‖x‖ > 1 and

∫
Rnρ = 1. Define ∆(x) = 1

4 diamΩδ(x)
2 and the

auxiliary function

(7.3) F (x) =
∫

Rn

ρ(y)f(x− ∆(x)y) dy, x ∈ Ω.

Then F is a C∞ function on Ω, and it is not hard to show that

lim
y→x, y∈Ω

F (y) = f(x) and lim
y→x, y∈Ω

∇F (y) = 0

for each x ∈ ∂Ω. In the next step we establish an integral inequality for the second
order partial derivatives of the function F . As it does not rely on the specific
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behaviour of f on the boundary of Ω, and since it could be of independent interest
we state it as a lemma.

Lemma 7.1. Let f : R
n → R be a C1 function for which the first order partial

derivatives are locally of bounded variation, and for a bounded open set Ω ⊂ Rn

define the function F as in (7.3). For all indices i, j it then holds that∫
Ω

|F,ij(x)| dx ≤ c
∑

1≤k,l≤n

|f,kl|(Ω),

where |f,kl|(Ω) is the total variation of the measure f,kl on Ω and c is a constant
depending only on M2.

Proof of Lemma 7.1. First we assert that the general case of Lemma 7.1 can be
deduced from the special case, where f is C2. This follows by approximation using
mollifiers: let f (t) = ρt � f , where {ρt} denotes a standard smooth mollifier, and
let F (t) denote the corresponding auxiliary function. We assume that the lemma
holds for the pairs f (t), F (t). From standard properties of mollifiers (see e.g. [26],
Chapter 5) we have, for all pairs i, j and k, l of indices from {1, . . . , n}, that as
t↘ 0,

|F (t)
,ij (x)| → |F,ij(x)| for each x ∈ Ω, and

|f (t)
,kl |Ln�B ∗

⇀ |f,kl|�B in C0
0(B)∗,

where B ⊂ Rn is any open ball, and C0
0(B) is the Banach space of real-valued

continuous functions on B that vanish on the boundary ∂ B. The assertion of the
lemma for f , F now follows by use of Fatou’s lemma and standard properties of
weak∗ convergence of measures.

Henceforth in establishing the lemma we can assume that f is C2. We then have,
for every x ∈ Ω,

F,ij(x) =
∫

Rn

ρ(y)
(
f,ij(x−∆(x)y)−f,ik(x−∆(x)y)∆,j(x)yk−f,kj(x−∆(x)y)∆,i(x)yk

+f,kl(x− ∆(x)y)∆,j(x)∆,i(x)ykyl − f,k(x− ∆(x)y)∆,ij(x)yk

)
dy,

where we have used the usual summation convention of summing over repeated
indices. Before we go any further let us remark that for each fixed y ∈ B(0, 1) the
map Φ: Rn → Rn defined as Φ(x) = x−∆(x)y for x ∈ Ω and Φ(x) = x otherwise, is
a C1 map. For x ∈ Ω its n-dimensional Jacobian is JΦ(x) = | det(I−y⊗∇∆(x))| =
|1 − trace(y ⊗ ∇∆(x))|, so JΦ(x) ≥ 1 − ‖∇∆(x)‖ ≥ 1

2 . It follows that Φ is a C1

diffeomorphism, and hence in particular that Φ is a diffeomorphism of Ω onto itself.
If Ψ = Φ−1 is the inverse map, then Ψ maps Ω diffeomorphically onto itself, and
its Jacobian JΨ(x) is not larger than 2.

We now proceed with the estimations and integrate |F,ij(x)| over x ∈ Ω. The
first term is estimated from above by interchanging the order of integration and
changing the coordinates x �→ Φ(x):∣∣∣∣∫

Ω

∫
Rn

ρ(y)f,ij(x − ∆(x)y) dy dx
∣∣∣∣ ≤ 2

∫
Ω

|f,ij(x)| dx.

Using that |∆,i(x)| ≤ 1
2 the following terms are estimated by similar means:∣∣∣∣∫

Ω

∫
Rn

ρ(y)
(
− f,ik(x − ∆(x)y)∆,j(x)yk − f,kj(x− ∆(x)y)∆,i(x)yk+
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+f,kl(x− ∆(x)y)∆,j(x)∆,i(x)ykyl

)
dy dx

∣∣∣ ≤
3

∑
1≤k,l≤n

∫
Ω

|f,kl(x)| dx.

To estimate the last term, observe that

f,k(x− ∆(x)y) − f,k(x) = −
∫ 1

0

f,kl(x− t∆(x)y)yl dt∆(x),

and use that
∫
ykρ(y) dy = 0 to obtain∣∣∣∣∫

Ω

∫
Rn

f,k(x− ∆(x)y)∆,ij(x)ykρ(y) dy dx
∣∣∣∣ ≤

∑
1≤k,l≤n

∫
Ω

∫
Rn

ρ(y)
∫ 1

0

|f,kl(x− t∆(x)y)| dt∆(x)|∆,ij (x)| dy dx.

Because |∆,ij(x)| ≤ 1
2 diamΩ (M2 + 1), this is not larger than

M2 + 1
2 diamΩ

∑
1≤k,l≤n

∫
Ω

∫
Rn

ρ(y)
∫ 1

0

|f,kl(x− t∆(x)y)| dt∆(x) dy dx.

To finish the proof of the lemma we proceed similarly to above by interchanging
the orders of integrations and changing variables in the x-integral. �

Now we may continue the proof of Proposition 7.2. Because f = F on ∂ Ω, it
suffices to show that the vector field

V =
{ ∇F on Ω

0 else.

is curl-free. The reason for this is exactly the same as in Proposition 7.1. Suppose
we knew that V is of Sobolev class W 1,1(Rn,Rn). Then the distributional partial
derivatives V j

,i can be represented by the approximate partial derivatives ap-∂V j

∂xi
,

which exist almost everywhere, and it is then easy to see that V is curl-free on Rn.
(Obviously ap-∂V j

∂xi
= 0 at every point of density of ∂Ω.)

Hence the proof is complete if we can show that V is of class W 1,1. To that end
we show that each coordinate function V j is of class ACL (see [26], Theorem 2.1.4).
Fix x′0 ∈ Rn−1 and put v(t) = V j(x′0, t), t ∈ R. It is clear that v is continuous and
that it vanishes outside a bounded set. Put

� = {t ∈ R : (x′0, t) ∈ ∂Ω}.
Then � is closed and v ≡ 0 on �. Since F,j is C∞ and W 1,1 on Ω, v is C∞ and W 1,1

on R \ �. Let

w(t) =
{
v′(t) if t /∈ �

0 if t ∈ �.

Clearly, w ∈ L1(R) and for a < b with a, b /∈ �∫ b

a

w(t) dt =
∫

(a,b)\

v′(t) dt.
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We can write (a, b) \ � =
⋃

i∈I(ai, bi), where (ai, bi), i ∈ I, is an at most countable
collection of disjoint intervals. We can assume that a1 = a and b2 = b. Since v = 0
at all the remaining ai and bi’s we get∫

(a,b)\

v′(t) dt =
∑
i∈I

∫ bi

ai

v′(t) dt =
∑
i∈I

(
v(bi) − v(ai)

)
= v(b) − v(a).

This implies that v is absolutely continuous on R, and concludes the proof, since
en could be replaced by any direction. �
Remark. A function f : Rn → R is delta-convex if it can be written as a difference of
two convex real-valued functions. Because convex real-valued functions are locally
of class BV 2, also delta-convex functions are locally of class BV 2 (see e.g. [23]). The
squared distance function to a subset A ⊆ Rn, i.e. d2(x) = inf{‖x−y‖2 : y ∈ A}, is
an example of a delta-convex function (because d2(x) = ‖x‖2−supy∈A(2x·y−‖y‖2)).
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