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Abstract. We show that, if f : M
2×2 −→ R is rank-1 convex on the hyperboloid

H−
D :=

˘
X ∈ S2×2 : det X = −D, X11 ≥ c > 0

¯
, D ≥ 0, S2×2 is the set of 2×2 real

symmetric matrices, then f can be approximated by quasiconvex functions on M
2×2

uniformly on compact subsets of H−
D . Equivalently, every gradient Young measure

supported on a compact subset of H−
D is a laminate.

1. Introduction and Results

The notion of quasiconvexity was introduced by Morrey in the fundamental paper
[Mo]. He proves that the variational integral

I(u) :=
∫

Ω

f(∇u(x)) dx,

defined for sufficiently regular functions u : Ω −→ R
m, where Ω is a bounded

open set in R
n, ∇u(x) denotes the gradient of u at x and f : M

m×n −→ R is a
continuous function, is weakly lower semicontinuous if and only if f satisfies the
following so-called quasiconvexity condition: for any open bounded set U ⊂ R

n,∫
U

(f(F + ∇φ) − f(F )) dx ≥ 0, ∀F ∈ M
m×n, ∀φ ∈ C∞

0 (U) .

There is no general procedure to verify whether a given function f is quasiconvex
or not. A function f : M

m×n −→ R, on the m × n real matrices is called rank-one
convex if it is convex on each rank-one line, i.e., all the functions t �→ f(F + ta⊗ b)
are convex for every F ∈ M

m×n and a ∈ R
m, b ∈ R

n. It is easy to prove that
quasiconvex imply rank-one convex (see for example [Mu1]). Whether the converse
is true for m = 2, n ≥ 2, is major unsolved problem in the calculus of variation. In
1992, Šverák [Sv1] found a striking counterexample showing that rank-one convexity
does not imply quasiconvexity for any n ≥ 2, m ≥ 3. Pedregal and Šverák [PS]
showed that Šverák’s idea of the counterexample for m ≥ 3 cannot be used to
obtain a counterexample for the 2× 2 case. However, in 1999, Müller [Mu2] proved
that rank-one convexity imply quasiconvexity on 2× 2 diagonal matrices. Our aim
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of this article is to extend this result to the following two dimensional nonlinear
hypersurface, for any D ≥ 0, c > 0,

H−
D :=

{
X = (Xij)1≤i,j≤2 ∈ S2×2 : det X = −D, X11 ≥ c > 0

}
,

where S2×2 is the set of 2 × 2 real symmetric matrices.
The most concise statement of our result is in terms of gradient Young measures.

A Young measure ν is a (weak* measurable) map from a measurable set Ω ⊂ R
n

to the space of probability measures on R
d. The fundamental theorem for Young

measures [Yo1, Yo2, BL, Ta, Ba] implies that every sequence of maps u(j) : Ω −→
R

d which is bounded in L∞ contains a subsequence (not relabeled) that generates
a Young measures ν in the sense that

lim
j→∞

∫
Ω

f(u(j)(x))φ(x)dx =
∫

Ω

〈νx, f〉φ(x)dx ,

for all continuous function f and for all φ ∈ L1(Ω). Moreover ν have compact
support. Here 〈νx, f〉 :=

∫
Rd f(λ)dνx(λ). We say that ν is a W 1,∞-gradient Young

measure if Ω is open and ν is generated by a sequence of gradients ∇u(j), where
(u(j)) is bounded in W 1,∞. A Young measure is homogeneous if x �→ νx is the con-
stant map (a.e.). Kinderlehrer and Pedregal [KP] showed that homogeneous Young
measures are exactly those probability measures that satisfies Jensen’s inequality
for all quasiconvex functions:

〈ν, f〉 ≥ f(〈ν, id〉) ∀ f quasiconvex.

A probability measure µ is called a laminate if the Jensen’s inequality holds for all
rank-one convex functions, see [Pe]. It is well known that the question whether rank-
one convexity implies quasiconvexity can be rephrased as: Is every homogeneous
gradient Young measure a laminate (see e.g., [Mu1])? Our main result is:

Theorem 1.1. Every gradient Young measure supported on a compact subset of
the hypersurface H−

D , D ≥ 0 is a laminate.

This shows that rank-one convex functions on H−
D almost admit a quasiconvex

extension. More precisely the following assertion holds.

Corollary 1.2. Let f : M
2×2 −→ R be a function which is convex on every rank-

one line contained in H−
D =

{
X = (Xij)1≤i,j≤2 ∈ S2×2 : detX = −D, X11 ≥ c > 0

}
,

D ≥ 0. Let K ⊂ H−
D be compact and let ε > 0. Then there exists a quasiconvex

function fε : M
2×2 −→ R such that, supK |fε − f | < ε.

Šverák [Sv3, Lemma 3] proved that a probability measure supported on con-
nected subsets of 2×2 matrices without rank-one connections and commuting with
the determinant a Dirac mass. In particular, this argument applies to gradient
Young measures, since the determinant is weakly continuous. Together with Propo-
sition 1 of [Sv2] it follows that any gradient Young measure supported on the two
sheeted hyperboloid HD :=

{
X ∈ S2×2 : detX = D

}
is a Dirac mass, for D > 0. In

contrast, if A, B ∈ K ⊂ M
m×n differ by a matrix of rank-one then for any λ ∈ (0, 1),

λδA+(1−λ)δB is a nontrivial gradient Young measure supported on the set K. One
2



notices that the one sheeted hyperboloid
{(

z + x y
y z − x

)
: z2 − x2 − y2 = −1

}
is made by two families of straight lines and these lines are exactly the rank-one
lines. Presence of these rank-one lines is the main source of difficulties showing
gradient Young measures are laminates. However our idea here is to transform the
hard Jacobian constraint by means of some coordinates transformations used by
Evans and Gariepy [EG], inspired by the work of Schoen and Wolfson [SW] (see
[He] for the corresponding change of variables in the elliptic case) to some linear
constraint and then argue by using [Mu2, Theorem 2]. We will make use of the
following truncation result, which generalizes an earlier work of Zhang [Zh].

Proposition 1.3 [Mu3, Theorem 2]. Let K be a compact, convex set in M
m×n.

Suppose u(j) ∈ W 1,1
loc (Rn, Rm) and∫

Rn

dist(∇u(j)(x), K)dx → 0 .

Then there exists a sequence (v(j)) of Lipschitz functions such that

‖dist(∇v(j), K)‖∞ −→ 0, Ln{u(j) �= v(j)} → 0 .

In particular, (∇u(j)) and (∇v(j)) generates the same Young measure.

2. Linear constraint

The following lemma quite easily follows from Theorem 2 [Mu 2], just by rotating
and reflecting of the coordinate axes but we give a proof as the idea of the proof
will be used later.

Lemma 2.1. Let Ω be a bounded domain in R
2 and ν = (νx)x∈Ω be a W 1,∞

gradient Young measure supported on

K ⊂ P :=
{
X = (Xij)1≤i,j≤2 : X11 + X22 = 0, X12 + X21 = 0

}
.

Then µ is a laminate.

Proof. Let (u(j)) be a bounded sequence in W 1,∞(Ω, R2) and (∇u(j)) generates
the Young measure ν. Therefore, dist(∇u(j), K) −→ 0 in Lp(Ω) for all p < ∞
and hence u

(j)
1,1 + u

(j)
2,2 −→ 0 and u

(j)
1,2 + u

(j)
2,1 −→ 0 in Lp(Ω) for all p < ∞. Let

∇u(j) =

⎛⎝u
(j)
1,1 u

(j)
1,2

u
(j)
2,1 u

(j)
2,2

⎞⎠ , u
(j)
α,β(x) := ∂

∂ xβ
u

(j)
α (x), 1 ≤ α , β ≤ 2 and u(j) ∗

⇀ u in

W 1,∞(Ω, R2). Then the centre of mass satisfies νx := 〈νx, id〉 = ∇u(x) for a.e.,

x in Ω. Now consider, T = 1√
2

(
1 −1
1 1

)
∈ SO(2) and S = 1√

2

(
1 1
1 −1

)
∈

SO(2)
(

1 0
0 −1

)
. Define v(j) : T (Ω) −→ R

2 by v(j)(Tx) := Su(j)(x). Then

∇v(j)(Tx) = S∇u(j)(x)T−1 and it is easy to see that the non-diagonal terms in
the gradient matrix ∇v(j) converges to zero strongly in Lp(T (Ω)) for all p < ∞.
Assume v(j) ∗

⇀ v in W 1,∞(T (Ω), R2). Let µ = (µy)y∈T (Ω) be the Young measure
3



generated by the sequence (∇v(j)). The centre of mass satisfies µy = ∇v(y) and
µ is supported on the 2 × 2 diagonal matrices. Hence by Theorem 2 [Mu2], µ is
a laminate. Now we need to show that ν is also a laminate. Let f : M

2×2 −→ R

be a rank-one convex function. Then the function g : M
2×2 −→ R defined by

g(X) := f(SXT ), is also rank-one convex. By the fundamental theorem of Young
measure [Ba], and by passege to a subsequence, for any U ⊂⊂ Ω we obtain,∫

T (U)

g(〈µy, id〉) dy ≤
∫

T (U)

〈µy , g〉 dy

= lim
j→∞

∫
T (U)

g(∇v(j)(y)) dy

= lim
j→∞

∫
U

g(∇v(j)(Tx)) dx

= lim
j→∞

∫
U

g(S∇u(j)(x)T−1) dx

= lim
j→∞

∫
U

f(∇u(j)(x)) dx

=
∫

U

〈νx, f〉 dx .

By change of variables and by the definition of g, we have
∫

T (U) g(∇v(y)) dy =∫
U

f(∇u(x)) dx and the proof is finished. �

Lemma 2.2. Any gradient Young measure supported on

Pc :=
{
X = (Xij)1≤i,j≤2 : X11 + X22 = c, X12 + X21 = 0

}
c �= 0 is a laminate.

Proof. This follows from the change of variables u(x) �→ u(x) + (0,−cx2). �

3. Proof of theorem 1.2

Case I: D > 0.
Without loss of generality, we can assume that D = 1, that the Young measure

ν = (νx)x∈Ω is homogeneous and that Ω = (0, 1)2. Let (∇u(j)) ⊂ W 1,∞(Ω, R2×2),
generate the Young measure ν, u(j) ∗

⇀ u in W 1,∞(Ω, R2) and supp ν = K ⊂ H−
D .

Since K is compact, K ⊂ K̃ := BR ∩ {
X ∈ S2×2 : X11 ≥ c > 0

}
for some R >

0, where BR :=
{
X ∈ M

2×2 : |X | ≤ R
}
. Since K̃ is a compact, convex set and

dist(∇u(j), K̃) −→ 0 in Lp(Ω) for all p < ∞, by Proposition 1.3, there exists
a sequence (v(j)), with uniformly bounded Lipschitz constant such that (∇v(j))
generates the same measure ν and ‖dist(∇v(j), K̃)‖∞ −→ 0 as j → ∞. Hence we
can assume that our original generating sequence (u(j)), satisfies u

(j)
1,1 ≥ c/2 and

|∇u(j)| ≤ 2R. By Ascoli-Arzela Theorem u(j) −→ u uniformly on Ω. Since ν is
supported on H−

D , it is easy to see that det (∇u(j)(x)) + 1 and u
(j)
1,2 −u

(j)
2,1, converge

to zero strongly in Lp(Ω) for all p < ∞. Now our idea is to obtain a new sequence
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of uniformly bounded Lipschitz functions on some suitable domain which generates
a new Young measure µ, supported on the set P defined in Lemma 2.1. Then by
Lemma 2.1, such a measure µ will be a laminate and finally we will argue in similar
way as in the proof of Lemma 2.1 to show that the original measure ν is a laminate.
This will be obtained through the following steps.
Step 1. Change of variables:

As in [EG] consider the maps T (j), T : Ω −→ R
2, defined by T (j)(x1, x2) :=

(u(j)
1 (x), x2) and T (x1, x2) := (u1(x), x2), respectively. Since u

(j)
1 ( ·, t) and u1( ·, t)

are strictly monotonically increasing on (0, 1) for each 0 < t < 1, the maps T (j) :
Ω −→ T (j)(Ω) and T : Ω −→ T (Ω) are bi-Lipschitz, where

T (j)(Ω) =
{
(y1, y2) : u

(j)
1 (0, y2) < y1 < u

(j)
1 (1, y2), 0 < y2 < 1

}
and

T (Ω) = {(y1, y2) : u1(0, y2) < y1 < u1(1, y2), 0 < y2 < 1} .

Hence there exist Lipschitz maps g(j) : T (j)(Ω) −→ R
2 and g : T (Ω) −→ R

2, such
that

(3.1) x1 = g
(j)
1 (u(j)

1 (x), x2) , u
(j)
2 (x) = g

(j)
2 (u(j)

1 (x), x2)

and

(3.2) x1 = g1(u1(x), x2) , u2(x) = g2(u1(x), x2) .

From the definition of T (j), T and differentiating (3.1), with respect to x1, x2 we
obtain, for a.e. x

∇T (j)(x) =

⎛⎝u
(j)
1,1(x) u

(j)
1,2(x)

0 1

⎞⎠ ,

∇T (x) =

⎛⎝u1,1(x) u1,2(x)

0 1

⎞⎠
and

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 = g
(j)
1,1(T

(j)(x))u(j)
1,1(x)

0 = g
(j)
1,1(T

(j)(x))u(j)
1,2(x) + g

(j)
1,2(T

(j)(x))

u
(j)
2,1(x) = g

(j)
2,1(T

(j)(x))u(j)
1,1(x)

u
(j)
2,2(x) = g

(j)
2,1(T

(j)(x))u(j)
1,2(x) + g

(j)
2,2(T

(j)(x)) .

From (3.3), we have

(3.4) ∇g(j)(T (j)(x)) =
1

u
(j)
1,1(x)

⎛⎝ 1 − u
(j)
1,2(x)

u
(j)
2,1(x) det∇u(j)(x)

⎞⎠
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and similarly from (3.2), we obtain

(3.5) ∇g(T (x)) =
1

u1,1(x)

⎛⎝ 1 − u1,2(x)

u2,1(x) det∇u(x)

⎞⎠ ,

for a.e. x in Ω. Now observe that

∇(g(j) ◦ T (j))(x) = ∇g(j)(T (j)(x))∇T (j)(x)

=

⎛⎝ 1 0

u
(j)
2,1(x) u

(j)
2,2(x)

⎞⎠
and hence from (3.5), we conclude that ∇(g(j) ◦T (j)) ∗

⇀ ∇(g ◦T ) in L∞(Ω, M2×2).
From (3.1) and (3.2) it follows that g(j) ◦ T (j) ∗

⇀ g ◦ T in W 1,∞(Ω, R2).
Step 2. Domain selection:

Define, v
(j)
α (t) := u

(j)
1 (α, t) and vα(t) := u1(α, t) for α = 0, 1 on (0, 1). Since

u
(j)
1,1(x) ≥ c/2 on Ω, it follows that v

(j)
1 (t) − v

(j)
0 (t) ≥ c/2 > 0 on (0, 1) and from

the uniform convergence of (u(j)) we have, inft∈(0,1) (v1(t) − v0(t)) ≥ c/2. Choose
0 < ε < 1

4 inft∈(0,1) (v1(t) − v0(t)). Then for sufficiently large j0,

(3.6) Vε := {(y1, y2) : v0(y2) + ε < y1 < v1(y2) − ε, 0 < y2 < 1} ⊂
⋂

T (j)(Ω) ,

and trivially Vε ⊂ T (Ω). Define f (j) := g(j)
∣∣
Vε

. We need to prove that the
sequence (f (j)) is uniformly Lipschitz on Vε. Observe that for y ∈ Vε there
exists x(j) ∈ Ω such that y = T (j)(x(j)), so ∇f (j)(y) = ∇g(j)(T (j)(x(j))) =
∇(g(j) ◦ T (j))(x(j))

(∇T (j)(x(j))
)−1

. Hence from Step 1 and from the fact that
u

(j)
1,1 ≥ c/2, it follows that

∥∥f (j)
∥∥

W 1,∞(Vε,R2)
≤ M , for some M > 0. Sup-

pose f (j) ∗
⇀ f in W 1,∞(Vε, R

2). We prove that f = g on the smaller domain
Ṽε :=

{
(y1, y2) : v0(y2) + 3

2ε < y1 < v1(y2) − 3
2ε, 0 < y2 < 1

} ⊂ Vε. Let y =
Tx ∈ Ṽε ⊂ T (Ω) for some x ∈ Ω, then by the definition of Ṽε, T (j)(x) ∈ Vε. Since
f (j) is uniformly Lipschitz on Vε and T (j) −→ T on Ω, we get

(3.7) lim
j→∞

(
f (j) ◦ T (j)(x) − f (j) ◦ T (x)

)
= 0 .

From Step 1 and (3.7) we obtain, f(T (x)) = limj→∞ f (j)(Tx) = limj→∞ g(j)(Tx) =
limj→∞

[
g(j)(T (j)(x) + (g(j)(Tx) − g(j)(T (j)(x))

]
= g(T (x)) and hence f = g on

Ṽε.
Step 3. Transformed Young measure:

Let µ = (µy)y∈Vε be the Young measure generated by the sequence (∇f (j)),
obtained in Step 2. Suppose E is the support of the measure µ. Now observe that
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for any p < ∞

lim
j→∞

∫
Vε

∣∣∣f (j)
1,1 + f

(j)
2,2

∣∣∣p dy = lim
j→∞

∫
Vε

∣∣∣g(j)
1,1 + g

(j)
2,2

∣∣∣p dy

≤ lim
j→∞

∫
T (j)(Ω)

∣∣∣g(j)
1,1 + g

(j)
2,2

∣∣∣p dy

= lim
j→∞

∫
Ω

∣∣∣g(j)
1,1(T

(j)(x)) + g
(j)
2,2(T

(j)(x))
∣∣∣p u

(j)
1,1(x)dx

≤ M lim
j→∞

∫
Ω

∣∣∣det∇u(j)(x) + 1
∣∣∣p dx

= 0 ,

and similarly we can show that lim
j→∞

∫
Vε

∣∣∣f (j)
1,2 + f

(j)
2,1

∣∣∣p dy = 0. Thus the support

E of µ is contained in P :=
{
X = (Xij)1≤i,j≤2 : X11 + X22 = 0 X12 + X21 = 0

}
and hence by Lemma 2.1 µ is a laminate.
Step 4. Conclusion of the proof:

Define, M
2×2
+ :=

{
X = (Xij)1≤ i,j≤2 ∈ M

2×2 : X11 > 0
}

and consider the map
Φ : M

2×2
+ −→ M

2×2
+ by

(3.8) Φ(X) :=
1

X11

⎛⎝ 1 −X12

X21 detX

⎞⎠ .

From the definition of the map Φ, it follows that Φ = Φ−1 and by using the
formula det(A − B) = det(A) − Cof(A) : B + det(B) for 2× 2 matrices A, B one

obtains, det (Φ(X) − Φ(Y )) = − 1
X11Y11

det (X − Y ), for any matrices X, Y ∈
M

2×2
+ . Hence rank(X − Y ) = 1 if and only if rank (Φ(X) − Φ(Y )) = 1. Since

det : M
2×2 −→ R, is linear along any rank-one direction, by direct computation it

follows that

Φ(λX + (1 − λ)Y ) =
λX11

λX11 + (1 − λ)Y11
Φ(X) +

(1 − λ)Y11

λX11 + (1 − λ)Y11
Φ(Y ) ,

for any X , Y ∈ M
2×2
+ , rank(X − Y ) = 1 and 0 ≤ λ ≤ 1. Let h : M

2×2 −→ R be
a rank-one convex function and define h̃ : M

2×2
+ −→ R by

h̃(X) := X11h (Φ(X)) , for X ∈ M
2×2
+ .

Now we show that h̃(X) is rank-one convex on M
2×2
+ . Let X, Y ∈ M

2×2
+ , det(X −

Y ) = 0 and λ̃ :=
λX11

λX11 + (1 − λ)Y11
. Then (3.8) and the rank-one convexity of h,

imply that

h̃(λX + (1 − λ)Y ) = (λX11 + (1 − λ)Y11)h
(
λ̃Φ(X) + (1 − λ̃)Φ(Y )

)
≤ λX11 h(Φ(X)) + (1 − λ)Y11 h(Φ(Y ))

= λ h̃(X) + (1 − λ) h̃(Y ) .
7



It is well known that rank-one convex functions are locally Lipschitz, see e.g. [Da,
p.157]. Since ‖∇f (j)‖∞ ≤ R, ‖h̃‖L∞(BR) ≤ M , where BR =

{
X ∈ M

2×2 : |X | ≤ R
}
.

Recall the definition, Ṽε =
{
(y1, y2) : v0(y2) + 3

2 ε < y1 < v1(y2) − 3
2ε, 0 < y2 < 1

}
and T (Ω) = {(y1, y2) : u1(0, y2) < y1 < u1(1, y2), 0 < y2 < 1}. It follows that
L2

(
T (Ω) \ Ṽε

)
−→ 0 as ε → 0. Since, µ is a laminate and the generating sequence

satisfies ∇f (j)(y) ∈ M
2×2
+ a.e. y ∈ Vε, we have for a.e. y ∈ Vε

(3.9) h̃(∇f(y)) = h̃(〈µy , id〉) ≤ 〈µy, h̃〉 .

Hence for any 0 < ε < 1
4 inft∈(0,1) (v1(t) − v0(t)), we have∫

eVε

〈µy, h̃〉 dy = lim
j→∞

∫
eVε

h̃(∇f (j)(y)) dy

= lim
j→∞

∫
eVε

h̃(∇g(j)(y)) dy

= lim
j→∞

[∫
T (j)(Ω)

h̃(∇g(j)(y)) dy −
∫

T (j)(Ω)\eVε

h̃(∇g(j)(y)) dy

]

≤ lim
j→∞

[∫
T (j)(Ω)

h̃(∇g(j)(y)) dy + M L2
(
T (j)(Ω) \ Ṽε

)]

= lim
j→∞

[∫
Ω

h̃(∇g(j)(T (j)(x)))u
(j)
1,1 dx + M L2

(
T (j)(Ω) \ Ṽε

)]
= lim

j→∞

[∫
Ω

h̃(Φ(∇u(j)(x)))u
(j)
1,1 dx + M L2

(
T (j)(Ω) \ Ṽε

)]
= lim

j→∞

[∫
Ω

h(∇u(j)(x)) dx + M L2
(
T (j)(Ω) \ Ṽε

)]
=

∫
Ω

〈ν, h〉 dx + M L2
(
T (Ω) \ Ṽε

)
= 〈ν, h〉 + M L2

(
T (Ω) \ Ṽε

)
(3.10)

Therefore from (3.9) and (3.10), for sufficiently small ε,∫
eVε

h̃(∇g(y)) dy =
∫

eVε

h̃(∇f(y)) dy

≤ 〈ν, h〉 + M L2
(
T (Ω) \ Ṽε

)
,

and hence by passing the limit ε → 0, we obtain

(3.11)
∫

T (Ω)

h̃(∇g(y)) dy ≤ 〈ν, h〉 .

On the other hand by change of variables, the definition of h̃ and Φ, and by using
∇g(T (x)) = Φ(∇u(x)), we obtain

(3.12)
∫

T (Ω)

h̃(∇g(y)) dy =
∫

Ω

h(∇f(x)) dx = h(〈ν, id〉) .
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Hence Theorem 1.1 follows from (3.11) and (3.12).
Case II: D = 0.

In this case we follow the same steps as for D > 0, In Step 1, the equation (3.5)
becomes

∇g(T (x)) =
1

u1,1(x)

⎛⎝ 1 − u1,2(x)

u2,1(x) 0

⎞⎠
and Step 2 remains unchanged. The only difference to be noticed in Step 3 is∫

Vε
|f (j)

1,1 + f
(j)
2,2 − 1|p → 0, instead of

∫
Vε

|f (j)
1,1 + f

(j)
2,2 |p → 0. This shows that

the Young measure µ, generated by the sequence (∇f (j)) is supported on P1 ={
X = (Xij)1≤i,j≤2 : X11 + X22 = 1, X12 + X21 = 0

}
and hence by Lemma 2.2,

µ is a laminate. By step 4, it again follows that the original measure is laminate.
�
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[Sv2] V. Šverák, New examples of quasiconvex functions, Arch. Rat. Mech. Anal. 119 (1992),
293–300.
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