Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

Low-rank approximation of integral operators by interpolation
by

Steffen Börm and Lars Grasedyck

Low-rank approximation of integral operators by interpolation

Steffen Börm and Lars Grasedyck
Max Planck Institute of Mathematics in the Sciences
Inselstr. 22-26, D-04103 Leipzig, Germany

August 27, 2002

A central component of the analysis of panel clustering techniques for the approximation of integral operators is the so-called η-admissibility condition " $\min \{\operatorname{diam}(\tau), \operatorname{diam}(\sigma)\} \leq 2 \eta \operatorname{dist}(\tau, \sigma)$ " that ensures that the kernel function is approximated only on those parts of the domain that are far from the singularity.

Typical techniques based on a Taylor expansion of the kernel function require the distance of such a subdomain to be "far enough" from the singularity such that the parameter η has to be smaller than a given constant depending on properties of the kernel function.

In this paper, we demonstrate that any η is sufficient if interpolation instead of Taylor expansion is used for the kernel approximation, which paves the way for grey-box panel clustering algorithms.

1 Introduction

1.1 Model problem

Let Ω be a subdomain or submanifold of \mathbb{R}^{d}. We consider a Fredholm integral operator of the form

$$
\mathcal{G}[u](x)=\int_{\Omega} g(x, y) u(y) \mathrm{d} y
$$

with an asymptotically smooth kernel function g, i.e., there exist constants $C_{\text {as1 }}$ and $C_{\text {as2 }}$ and a singularity degree $s \in \mathbb{N}$ such that for all $z \in\left\{x_{j}, y_{j}\right\}$ the inequality

$$
\begin{equation*}
\left|\partial_{z}^{n} g(x, y)\right| \leq C_{\text {as1 }}\left(C_{\text {as } 2}\|x-y\|\right)^{-n-s} n! \tag{1}
\end{equation*}
$$

holds. This kind of operator occurs, e.g., in the integral equation formulation of the Poisson problem in \mathbb{R}^{3}, where g is the singularity function $g(x, y)=\|x-y\|^{-1}$. A standard Galerkin discretisation of \mathcal{G} for a basis $\left(\varphi_{i}\right)_{i \in I}, V:=\operatorname{span}\left\{\varphi_{i}: i \in I\right\}$, yields a matrix G with entries

$$
\begin{equation*}
G_{i, j}:=\int_{\Omega} \int_{\Omega} \varphi_{i}(x) g(x, y) \varphi_{j}(y) \mathrm{d} x \mathrm{~d} y . \tag{2}
\end{equation*}
$$

Since the support of the kernel g is in general not local, one expects a dense matrix G.
The algorithmic complexity for computing and storing a dense matrix is quadratic in the number of degrees of freedom, therefore different approaches have been introduced to avoid dense matrices: for translation-invariant kernel functions and simple geometries, the matrix G has Toeplitz structure, which can be exploited by algorithms based on the fast Fourier transformation. If the underlying geometry can be described by a small number of smooth maps, wavelet techniques can be used in order to compress the resulting dense matrix [3]. Our approach is a refined combination of the panel clustering method [6] and hierarchical matrices $[1,4,5]$, which are based on the idea of replacing the kernel function locally by degenerate approximations.

1.2 Low rank approximation

Let $r \times s \subseteq I \times I$ be a sub-block of the product index set. We define the corresponding domains

$$
\tau:=\cup_{i \in r} \operatorname{supp}\left(\varphi_{i}\right), \quad \sigma:=\cup_{i \in s} \operatorname{supp}\left(\varphi_{i}\right)
$$

and (minimal) axially parallel boxes B_{τ}, B_{σ} containing τ, σ.
We assume that $\operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)>0$ holds, which implies that $\left.g\right|_{B_{\tau} \times B_{\sigma}}$ is smooth. For the corresponding sub-matrix $R:=\left.K\right|_{r \times s}$ we seek a low rank matrix \tilde{R} such that the approximation error $\|R-\tilde{R}\|$ is of the same size as the discretisation error $\inf _{v \in V}\|u-v\|$ for the (unknown) solution u. The aim of this paper is to prove that the matrix \tilde{R} of rank k can easily be constructed by interpolation of the kernel g in such a way that the approximation error behaves like

$$
\|R-\tilde{R}\|=\mathcal{O}\left(C_{r, s}^{-k}\right)
$$

for a constant $C_{r, s}<1$, i.e., exponential convergence with respect to the order k even if B_{τ} and B_{σ} are arbitrarily close to each other.

2 Interpolation scheme

2.1 Interpolation operators

We denote the space of k-th order polynomials in one spatial variable by \mathcal{P}_{k} and fix a family $\left(\mathcal{I}_{k}\right)_{k \in \mathbb{N}_{0}}$ of interpolation operators

$$
\mathcal{I}_{k}: C([-1,1]) \rightarrow \mathcal{P}_{k}
$$

corresponding to interpolation points $\left(x_{i, k}\right)_{i=0}^{k}$ and associated Lagrange polynomials $\left(\mathcal{L}_{i, k}\right)_{i=0}^{k}$, such that for all $u \in C([-1,1])$

$$
\begin{equation*}
\mathcal{I}_{k} u=\sum_{i=0}^{k} u\left(x_{k, i}\right) \mathcal{L}_{k, i} . \tag{3}
\end{equation*}
$$

The operators are projections, i.e., for all $p \in \mathcal{P}_{k}$

$$
\begin{equation*}
\mathcal{I}_{k} p=p \tag{4}
\end{equation*}
$$

holds. For each $k \in \mathbb{N}_{0}$, we introduce the Lebesgue constant $\Lambda_{k} \in \mathbb{R}_{\geq 1}$ by requiring that

$$
\begin{equation*}
\left\|\mathcal{I}_{k} u\right\|_{\infty,[-1,1]} \leq \Lambda_{k}\|u\|_{\infty,[-1,1]} \tag{5}
\end{equation*}
$$

holds for all $u \in C([-1,1])$.
We assume that there are constants $C_{\lambda}, \lambda \in \mathbb{R}_{>0}$ satisfying

$$
\begin{equation*}
\Lambda_{k} \leq C_{\lambda}(k+1)^{\lambda} \tag{6}
\end{equation*}
$$

for all $k \in \mathbb{N}$. For standard interpolation schemes, this estimate is fulfilled. E.g., for Chebyshev interpolation (cf. [7]), we even have $\Lambda_{k} \leq 2 \log (k+1) / \pi+1 \leq k+1$.

If $J=[a, b]$ is an arbitrary closed interval, the transformed interpolation operator is given by $\mathcal{I}_{k}^{J}:=\left(\mathcal{I}_{k}\left(u \circ \Phi_{J}\right)\right) \circ \Phi_{J}^{-1}$, where $\Phi_{J}:[-1,1] \rightarrow J, x \mapsto((b-a) x+(b+a)) / 2$ is the affine mapping from the reference interval to J. The properties (4) and (5) carry over to \mathcal{I}_{k}^{J}, the corresponding interpolation points and Lagrange polynomials are given by $x_{k, i}^{J}:=\Phi_{J}\left(x_{k, i}\right)$ and $\mathcal{L}_{k, i}^{J}:=\mathcal{L}_{k, i} \circ \Phi_{J}^{-1}$.

2.2 Multidimensional interpolation operator

Let us fix an axially parallel box $B \subseteq \mathbb{R}^{d}$ with

$$
B=J_{1} \times \cdots \times J_{d},
$$

where $\left(J_{j}\right)_{j=1}^{d}$ are closed intervals.
The corresponding k-th order tensor product interpolation operator is given by

$$
\begin{equation*}
\mathcal{I}_{k}^{B}:=\mathcal{I}_{k}^{J_{1}} \otimes \cdots \otimes \mathcal{I}_{k}^{J_{d}} . \tag{7}
\end{equation*}
$$

This is a projection mapping from $C(B)$ to

$$
\mathcal{Q}_{k}:=\operatorname{span}\left\{p_{1} \otimes \cdots \otimes p_{d}: p_{i} \in \mathcal{P}_{k} \text { for all } i \in\{1, \ldots, d\}\right\}
$$

and the following stability result holds:
Lemma 2.1 (Stability) For $k \in \mathbb{N}_{0}, m \in\{1, \ldots, d\}$ and $u \in C(B)$, we have

$$
\left\|\left(\bigotimes_{i=1}^{m} \mathcal{I}_{k}^{J_{i}}\right) \otimes\left(\bigotimes_{i=m+1}^{d} I\right) u\right\|_{\infty, B} \leq \Lambda_{k}^{m}\|u\|_{\infty, B}
$$

i.e., applying interpolation to the first m coordinate directions is stable. In the case $d=m$, this estimate takes the form

$$
\left\|\mathcal{I}_{k}^{B} u\right\|_{\infty, B} \leq \Lambda_{k}^{d}\|u\|_{\infty, B}
$$

Proof. We use the representation

$$
\left(\bigotimes_{i=1}^{m} \mathcal{I}_{k}^{J_{i}}\right) \otimes\left(\bigotimes_{i=m+1}^{d} I\right)=\prod_{i=1}^{m}\left(\left(\bigotimes_{j=1}^{i-1} I\right) \otimes \mathcal{I}_{k}^{J_{i}} \otimes\left(\bigotimes_{j=i+1}^{d} I\right)\right)
$$

and apply the one-dimensional estimate to each of the factors.

3 Approximation

Our analysis is based on the following approximation result from [2, Lemma 3.12].
Lemma 3.1 (Melenk) Let $J \subseteq \mathbb{R}$ be a closed finite interval. Let $u \in C^{\infty}(J)$ such that there are constants $C_{u}, \gamma_{u} \in \mathbb{R}_{\geq 0}$ satisfying

$$
\left\|u^{(n)}\right\|_{\infty, J} \leq C_{u} \gamma_{u}^{n} n!
$$

for all $n \in \mathbb{N}_{0}$. Then we have

$$
\begin{equation*}
\min _{v \in \mathcal{P}_{k}}\|u-v\|_{\infty, J} \leq C_{u} 4 e\left(1+\gamma_{u}|J|\right)(k+1)\left(1+\frac{2}{\gamma_{u}|J|}\right)^{-(k+1)} \tag{8}
\end{equation*}
$$

Theorem 3.2 (Interpolation error) Let $u \in C^{\infty}(B)$ such that there are constants $C_{u}, \gamma_{u} \in \mathbb{R}_{\geq 0}$ satisfying

$$
\begin{equation*}
\left\|\partial_{j}^{n} u\right\|_{\infty, B} \leq C_{u} \gamma_{u}^{n} n! \tag{9}
\end{equation*}
$$

for all $j \in\{1, \ldots, d\}$ and $n \in \mathbb{N}_{0}$. Then we have

$$
\begin{equation*}
\left\|u-\mathcal{I}_{k}^{B} u\right\|_{\infty, B} \leq 8 e \Lambda_{k}^{d} C_{u}\left(1+\gamma_{u} \operatorname{diam}(B)\right)(k+1)\left(1+\frac{2}{\gamma_{u} \operatorname{diam}(B)}\right)^{-(k+1)} \tag{10}
\end{equation*}
$$

Proof. Since \mathcal{I}_{k} is a projection, we have for all $v \in \mathcal{P}_{k}$

$$
\left\|u-\mathcal{I}_{k}^{J_{i}} u\right\|_{\infty, J_{i}}=\left\|(u-v)-\mathcal{I}_{k}^{J_{i}}(u-v)\right\|_{\infty, J_{i}} \leq\left(1+\Lambda_{k}\right)\|u-v\|_{\infty, J_{i}}
$$

Due to (9), we can combine this estimate with Lemma 3.1 and find

$$
\left\|u-\left(\bigotimes_{j=1}^{i-1} I\right) \otimes \mathcal{I}_{k}^{J_{i}} \otimes\left(\bigotimes_{j=i+1}^{d} I\right) u\right\|_{\infty, B}
$$

$$
\begin{aligned}
& \leq C_{u} 4 e\left(1+\Lambda_{k}\right)\left(1+\gamma_{u}\left|J_{i}\right|\right)(k+1)\left(1+\frac{2}{\gamma_{u}\left|J_{i}\right|}\right)^{-(k+1)} \\
& \leq C_{u} 8 e \Lambda_{k}\left(1+\gamma_{u} \operatorname{diam}(B)\right)(k+1)\left(1+\frac{2}{\gamma_{u} \operatorname{diam}(B)}\right)^{-(k+1)}
\end{aligned}
$$

To conclude the proof, we apply this estimate to the following telescope sum:

$$
\begin{aligned}
\left\|u-\mathcal{I}_{k}^{B} u\right\|_{\infty, B} & \leq \sum_{i=1}^{d}\left\|\left(\bigotimes_{j=1}^{i-1} \mathcal{I}_{k}^{J_{j}}\right) \otimes\left(\bigotimes_{j=i}^{d} I\right) u-\left(\bigotimes_{j=1}^{i} \mathcal{I}_{k}^{J_{j}}\right) \otimes\left(\bigotimes_{j=i+1}^{d} I\right) u\right\| \\
& =\sum_{i=1}^{d}\left\|\left(\bigotimes_{j=1}^{i-1} \mathcal{I}_{k}^{J_{j}}\right) \otimes\left(I-\mathcal{I}_{k}^{J_{i}}\right) \otimes\left(\bigotimes_{j=i+1}^{d} I\right) u\right\| \\
& \quad{ }^{L .2 .1} \sum^{d} \sum_{i=1}^{d} \Lambda_{k}^{i-1}\left\|\left(\bigotimes_{j=1}^{i-1} I\right) \otimes\left(I-\mathcal{I}_{k}^{J_{i}}\right) \otimes\left(\bigotimes_{j=i+1}^{d} I\right) u\right\| \\
& \leq 8 e \Lambda_{k}^{d} d C_{u}\left(1+\gamma_{u} \operatorname{diam}(B)\right)(k+1)\left(1+\frac{2}{\gamma_{u} \operatorname{diam}(B)}\right)^{-(k+1)}
\end{aligned}
$$

4 Application to the model problem

4.1 Approximation of the kernel

Let $r \times s \subseteq I \times I$ denote the index sub-set and $\tau \times \sigma$ the support of the corresponding basis functions from Section 1. For both τ and σ we fix axially parallel closed bounding boxes B_{τ} and B_{σ} satisfying

$$
\tau \subseteq B_{\tau}, \quad \sigma \subseteq B_{\sigma} \quad \text { and } \quad \operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)>0
$$

The k-th order cluster interpolation operator is defined in terms of the multidimensional interpolation operator (7) by $\mathcal{I}_{k}^{\tau}:=\mathcal{I}_{k}^{B_{\tau}}$. We define the constants

$$
C_{g}:=\frac{C_{\mathrm{as} 1}}{\left(C_{\mathrm{as} 2} \operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)\right)^{s}} \quad \text { and } \quad \gamma_{g}:=\frac{1}{C_{\mathrm{as} 2} \operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)}
$$

The function $x \mapsto g(x, y)$ fulfils the assumption (9) due to (1). Theorem 3.2 yields

$$
\begin{aligned}
& \left\|g(\cdot, y)-\mathcal{I}_{k}^{\tau}[g(\cdot, y)]\right\|_{\infty, B_{\tau}} \\
& \leq 8 e d \Lambda_{k}^{d} C_{g}\left(1+\gamma_{g} \operatorname{diam}\left(B_{\tau}\right)\right)(k+1)\left(1+\frac{2}{\gamma_{g} \operatorname{diam}\left(B_{\tau}\right)}\right)^{-(k+1)}
\end{aligned}
$$

Analogously, we get for the interpolation operator $\mathcal{I}_{k}^{\sigma}:=\mathcal{I}_{k}^{B_{\sigma}}$

$$
\left\|g(x, \cdot)-\mathcal{I}_{k}^{\sigma}[g(x, \cdot)]\right\|_{\infty, B_{\sigma}}
$$

$$
\leq 8 e d \Lambda_{k}^{d} C_{g}\left(1+\gamma_{g} \operatorname{diam}\left(B_{\sigma}\right)\right)(k+1)\left(1+\frac{2}{\gamma_{g} \operatorname{diam}\left(B_{\sigma}\right)}\right)^{-(k+1)}
$$

Depending on the diameters of B_{τ} and B_{σ} we define the kernel approximation

$$
\tilde{g}(x, y):= \begin{cases}\mathcal{I}_{k}^{\tau}[g(\cdot, y)](x) & \text { if } \operatorname{diam}\left(B_{\tau}\right) \leq \operatorname{diam}\left(B_{\sigma}\right) \tag{11}\\ \mathcal{I}_{k}^{\sigma}[g(x, \cdot)](y) & \text { otherwise }\end{cases}
$$

For $C_{\text {diam }}:=\min \left\{\operatorname{diam}\left(B_{\tau}\right), \operatorname{diam}\left(B_{\sigma}\right)\right\}$ we get the estimate

$$
\begin{equation*}
\|g-\tilde{g}\|_{\infty, B_{\tau} \times B_{\sigma}} \leq 8 e d \Lambda_{k}^{d} C_{g}\left(1+\gamma_{g} C_{\mathrm{diam}}\right)(k+1)\left(1+\frac{2}{\gamma_{g} C_{\text {diam }}}\right)^{-(k+1)} \tag{12}
\end{equation*}
$$

4.2 Approximation of the matrix block

We define the entries of the matrix \tilde{R} by

$$
\tilde{R}_{i j}:=\int_{\tau} \int_{\sigma} \phi_{i}(x) \tilde{g}(x, y) \phi_{j}(y) \mathrm{d} x \mathrm{~d} y
$$

In the case $\operatorname{diam}\left(B_{\tau}\right) \leq \operatorname{diam}\left(B_{\sigma}\right)$, we have $\tilde{g}(x, y)=\mathcal{I}_{k}^{\tau}[g(\cdot, y)](x)$, i.e.,

$$
\tilde{g}(x, y)=\sum_{\nu \in K} g\left(x_{K, \nu}, y\right) \mathcal{L}_{K, \nu}(x)
$$

with $K:=\{0, \ldots, k\}^{d}$ and

$$
x_{K, \nu}:=\left(x_{k, \nu_{1}}, \ldots, x_{k, \nu_{d}}\right) \quad \text { and } \quad \mathcal{L}_{K, \nu}:=\mathcal{L}_{k, \nu_{1}} \otimes \cdots \otimes \mathcal{L}_{k, \nu_{d}}
$$

due to (3). We have the representation $\tilde{R}=X Y^{\top}$ with

$$
X_{i \nu}=\int_{\tau} \phi_{i}(x) \mathcal{L}_{K, \nu} \mathrm{~d} x \quad \text { and } \quad Y_{j \nu}=\int_{\sigma} \phi_{j}(y) g\left(x_{K, i}, y\right) \mathrm{d} x
$$

for $i \in r, j \in s$ and $\nu \in K$, which implies $\operatorname{rank} \tilde{R} \leq \# K=(k+1)^{d}$. By the same arguments, we can prove that $\operatorname{rank} \tilde{R} \leq(k+1)^{d}$ holds for the second case $\operatorname{diam}\left(B_{\tau}\right) \geq$ $\operatorname{diam}\left(B_{\sigma}\right)$, too.

Lemma 4.1 The error in the Frobenius norm $\|M\|_{F}=\left(\sum_{i, j} M_{i j}^{2}\right)^{1 / 2}$ is bounded by

$$
\begin{align*}
& \|R-\tilde{R}\|_{F} \\
& \leq \sqrt{\# r \# s} C_{g, r, s} \Lambda_{k}^{d}(k+1) \quad\left(1+2 C_{\text {as } 2} \frac{\operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)}{\min \left\{\operatorname{diam}\left(B_{\tau}\right), \operatorname{diam}\left(B_{\sigma}\right)\right\}}\right)^{-(k+1)}, \tag{13}
\end{align*}
$$

where the constant $C_{g, r, s}$ is
$C_{g, r, s}:=\operatorname{eed}\left(\max _{i}\left\|\phi_{i}\right\|_{L^{1}}\right)^{2} C_{\mathrm{as} 1} C_{\mathrm{as} 2}^{-s} \operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)^{-s}\left(1+\frac{\min \left\{\operatorname{diam}\left(B_{\tau}\right), \operatorname{diam}\left(B_{\sigma}\right)\right\}}{C_{\mathrm{as} 2} \operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)}\right)$

Proof. The element-wise error is bounded by

$$
\begin{aligned}
\left|R_{i, j}-\tilde{R}_{i, j}\right| & \stackrel{(12)}{\leq} \int_{\Omega} \int_{\Omega}\left|\phi_{i}(x) \phi_{j}(y)\right| \mathrm{d} x \mathrm{~d} y \\
& \quad 8 e d \Lambda_{k}^{d} C_{g}\left(1+\gamma_{g} C_{\mathrm{diam}}\right)(k+1)\left(1+\frac{2}{\gamma_{g} C_{\mathrm{diam}}}\right)^{-(k+1)} \\
\leq & C_{g, r, s} \Lambda_{k}^{d}(k+1)\left(1+2 C_{\mathrm{as} 2} \frac{\operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)}{\min \left\{\operatorname{diam}\left(B_{\tau}\right), \operatorname{diam}\left(B_{\sigma}\right)\right\}}\right)^{-(k+1)}
\end{aligned}
$$

Since $\Lambda_{k}^{d}(k+1)$ is bounded by a polynomial and since $C_{\text {as2 }}$ and $\operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)$ are positive, we get exponential convergence with respect to the order k. In order to find a uniform bound of the rate of the exponential convergence, one typically demands the standard admissibility

$$
\min \left\{\operatorname{diam}\left(B_{\tau}\right), \operatorname{diam}\left(B_{\sigma}\right)\right\} \leq \operatorname{dist}\left(B_{\tau}, B_{\sigma}\right),
$$

or η-admissibility

$$
\min \left\{\operatorname{diam}\left(B_{\tau}\right), \operatorname{diam}\left(B_{\sigma}\right)\right\} \leq 2 \eta \operatorname{dist}\left(B_{\tau}, B_{\sigma}\right)
$$

for a fixed $\eta>0$.

References

[1] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. Introduction to hierarchical matrices with applications. Technical Report 18, Max Planck Institute for Mathematics in the Sciences, 2002.
[2] Steffen Börm, Maike Löhndorf, and J. Markus Melenk. Approximation of integral operators by variable-order interpolation. Technical report, Max Planck Institute for Mathematics in the Sciences, 2002. to appear.
[3] Wolfgang Dahmen and Reinhold Schneider. Wavelets on manifolds I: Construction and domain decomposition. SIAM J. of Math. Anal., 31:184-230, 1999.
[4] Wolfgang Hackbusch. A sparse matrix arithmetic based on \mathcal{H}-matrices. Part I: Introduction to \mathcal{H}-matrices. Computing, 62:89-108, 1999.
[5] Wolfgang Hackbusch and Boris Khoromskij. A sparse matrix arithmetic based on \mathcal{H} matrices. Part II: Application to multi-dimensional problems. Computing, 64:21-47, 2000.
[6] Wolfgang Hackbusch and Zenon Paul Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathematik, 54:463-491, 1989.
[7] T.J. Rivlin. The Chebyshev Polynomials. Wiley-Interscience, 1984.

