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SOME PROPERTIES OF THE SCHOUTEN TENSOR AND
APPLICATIONS TO CONFORMAL GEOMETRY

PENGFEI GUAN, JEFF VIACLOVSKY, AND GUOFANG WANG

1. INTRODUCTION

Let (M"™, g) be an n-dimensional Riemannian manifold, n > 3, and let the Ricci
tensor and scalar curvature be denoted by Ric and R, respectively. We define the
Schouten tensor

1 . 1
Ag:n_2 (RZC—ng)

There is a decomposition formula (see [1]):

(1) Riem = A, © g+ W,,

where W, is the Weyl tensor of g, and ® denotes the Kulkarni-Nomizu product (see
[1]). As Weyl tensor is conformally invariant, to study the deformation of conformal
metric, we only need to understand the Schouten tensor. A study of k-th elementary
symmetric functions of the Schouten tensor was initiated in [13], it was reduced to
certain fully nonlinear Yamabe type equations. In order to apply elliptic theory of
fully nonlinear equations, one often restricts Schouten tensor to be in certain cone
[} defined as follows (according to Garding [5]).

Definition 1. Let (A, -+, \,) € R". Let oy, denote the kth elementary symmetric
function

oA, An) = Z Ai - Ay
11 <o <ip
and we let
I} = component of {0}, > 0} containing (1,---,1).
Let T} denote the closure of T}, If (M, g) is a Riemannian manifold, and x € M,

we say g has positive (nonnegative resp.) T'y-curvature at x if its Schouten tensor
A, €T (UF resp.) at x. In this case, we also say g € T} (T} resp.) at x.
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We note that positive I';-curvature is equivalent to positive scalar curvature, and
the condition of positive ['p-curvature has some geometric and topological conse-
quences for the manifold M. For example, when (M, g) is locally conformally flat
with positive I';-curvature, then m;(M) = 0,V1 < i < ¢ by a result of Schoen-Yau
[11]. In this note, we will prove that positive I';-curvature for any & > % implies
positive Ricci curvature.

Theorem 1. Let (M, g) be a Riemannian manifold and x € M, if g has positive
(nonnegative resp.) T'g-curvature at x for some k > n/2. Then its Ricci curvature
is positive (nonnegative resp.) at x. Moreover, if I'y-curvature is nonnegative for
some k > 1, then

2k —n

o 2k—n
Ricy = 5 e =)

Ry g.

In particular if k > %,

iy 2 5 ?knz(%_ ’ (Z) 7

==

Ukz (Ag) - g

Remark. Theorem 1 is not true for £ = 1. Namely the condition of positive scalar
curvature gives no restriction on the lower bound of Ricci curvature .

Corollary 1. Let (M™,g) be a compact, locally conformally flat manifold with non-
negative I'y-curvature everywhere for some k > n/2. Then (M, g) is conformally
equivalent to either a space form or a finite quotient of a Riemannian S™1(c) x S!
for some constant ¢ > 0 and k = n/2. Especially, if g € T}, then (M, g) is confor-
mally equivalent to a spherical space form.

When n = 3,4, the result in Theorem 1 was already observed in [9] and [2].
Theorem 1 and Corollary 1 will be proved in the next section.
We will also consider the equation

(2) or(Az) = constant,

for conformal metrics § = e"?“g. This equation was studied in [13], where it was
shown that when k& # n/2, (2) is the conformal Euler-Lagrange equation of the
functional

n—2k

(3) Fi(g) = vol(g)™ =

/M ok(g) dvol(g),

when £ = 1,2 or for £k > 2 when M is locally conformally flat. We remark that
in the even dimensional locally conformally flat case, F,/; is a conformal invariant.
Moreover, it is a multiple of the Euler characteristic, see [13].
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This problem was further studied studied in [7], where the following conformal
flow was considered:

d
pri —(log ok (g) —logri(9)) - g,

9(0) = go,

where
1
| = — | dvol(q).
og Ty Vol(g)/Mogak(g) vol(g)

Global existence with uniform C'! a priori bounds of the flow was proved in [7]. It
was also proved that for k # n/2 the flow is sequentially convergent in C1® to a C>
solution of oy = constant. Also, if k < n/2, then Fy is decreasing along the flow,
and if &k > n/2, then Fj is increasing along the flow.

In Section 3, we will consider global properties of the functional F}, and give con-
ditions for the existence of a global extremizer. We will also derive some conformal
quermassintegral inequalities, which are analogous to the classical quermassintegral
inequalities in convex geometry.

2. CURVATURE RESTRICTION

We first state a proposition which describes some important properties of the sets
Jr
I
Proposition 1. (i) Each set T'} is an open convex cone with vertex at the origin,
and we have the following sequence of inclusions

rrcrt,c---cry.
(i) For any A = (Ay,-++, \,) € TF (TF resp.), V1 <i < n, let
(Afe) = (Ary o5 Aics A, o An),
then (Ali) € Ty, (T, resp.). In particular,
L ocVii, ={(\,-, M) ER" N+ A > 0,0 # 51
The proof of this proposition is standard following from [5].

Our main results are the consequences of the following two lemmas. In this note,
we assume that k& > 1.

Lemma 1. Let A = (A, Ao, -+, A1, An) € R”, and define

n

_ Zi:l Ai
Ay =A 2(n—1)(1’1’ ,1).
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If Ay €T, then
, (2k —n) <«
(4)  min i > ki —1) Z)\i'
i=1

In particular iof k

Y,
|3

| mm A\ > (2k —n)(n —1) (Z)_iak’} (AL

Proof. We first note that, for any non-zero vector A = (ay,--- ,a,) € I'J implies
o1(A) > 0. This can be proved as follow. As A € T'J, 01(A) > 0. If 0y(A) = 0, there
must be a; > 0 for some i since A is a non-zero vector. We may assume a,, > 0.
Let (Aln) = (a1, - ,an—1), we have o1(A|n) > 0 by Proposition 1. This would give
o1(A) = 01(A4|n) + a, > 0, a contradiction.

Now without loss of generality, we may assume that A is not a zero vector. By
the assumption Ay € [} for k > 2, so we have Y1 | \; > 0.

Define
Ag=(1,1,---,1,5,) e R" ' xR
and we have Ay, = (a,- - ,a,b), where
2k —n)(n—1)
5k = ;
2nk — 2k —n
n—l—i—ék n—l—i—ék
=1l—-— b=0p— ——
¢ 2(n—1) T - 1)
so that
(5) ok(An,) =0 and 0j(Ax,) >0 for j <k —1.

It is clear that J; < 1 and so that a > b. Since (4) is invariant under the transfor-
mation A to sA for s > 0, we may assume that Y., \; = tr(Ag) =n — 1+ and
Ap =min;—; .. , A;. We write

Ay = (ag, -+, ap).
We claim that
(6) An > 0.
This is equivalent to show
(7) a, > b.
Assume by contradiction that a,, < b. We consider A; = tAy + (1 — ¢t)A and
A=Ay, =tAr, + (1 =) Ar = (1 —t)a+tayr, -, (1 —t)a+ta,—1, (1 —t)b+tay).
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By the convexity of the cone T} (see Proposition 1), we know
A, €T, forany t € (0,1].

Especially, f(t) := ox(A;) > 0 for any ¢ € [0, 1]. By the definition of d;, f(0) = 0.

For any ¢ and any vector V' = (vy, -+ ,vy,), we denote (V|i) = (v1, -+, 01, Vi1, - - -
be the vector with the i-th component removed. Now we compute the derivative of
fato

[y

n—

f1(0) = ) (a;i— a)or_1(Aoli) + (an — b)oy—1(Ao|n).
i=1
Since (Apli) = (Ap|l) for i <n —1and >,  a; = (n— 1)a+ b, we have

f'(0) = (an = b)(or-1(Ao|n) — 011 (A1) <0,

for oy_1(Ag|n) — or—1(Ap|1) > 0. (Recall that b < a.) This is a contradiction, hence
Ap, > 0. It follows that

2%k —n
in \; >0 =——— i
i N2 0= g p g )

Finally, the last inequality in the lemma follows from the Newton-MacLaurin in-
equality. [ ]

Remark. 1t is clear from the above proof that the constant in Lemma 1 is optimal.

We next consider the case Ay € T'F.
2
Lemma 2. Let k = n/2 and A = (\y,---,\,) € R™ with Ay € T}, Then either
Ai >0 for any i or
A=A, )0)
up to a permutation. If the second case is true, then we must have a%(AA) =0.
Proof. By Lemma 1, to prove the Lemma we only need to check that for A =
()\1, e ,)\nfl, O) with AA € FZ_,
A=A, Vi,g=12---2k—1.
We use the same idea as in the proof of the previous Lemma. Without loss of
generality, we may assume that A is not a zero vector. By the assumption A, € F;
for k > 2, we have 377" \; > 0. Hence we may assume that 327"\, = n — 1.
Define
Ao=(1,1,---,1,0) € R"

It is easy to check that

(8) Apr, €T and  op(Ayp,) = 0.

7Un>
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That is, Ay, € ). If X’s are not all the same, we have

n—1

> (-1 =0,

i=1

and
n—1

d (-1 >0

i=1
Now consider A; = tAg + (1 — t)A and

1 1 1
At = AAt = tAAO —|— (1 — t)AA = (5 —|— t()\l — 1), trt 5 —|— t()\n,1 — 1), —5)
From the assumption that A € I}, (8) and the convexity of I}, we have
9) A, eTf fort>0.
For any i # j and any vector A, we denote (Alij) be the vector with the i-th and j-
th components removed. Let A = (%, cee %, —%) be n—1-vector, A* = (%, cee %, —%)

be n — 2-vector. It is clear that Vi # j, 4,7 <n —1,

or-1(Aoli) = op—1(A) > 0,

Uk_g(A0|ij) = Uk_Q(A*) > 0.
Now we expand f(t) = ox(A;) at t = 0. By (8), f(0) = 0. We compute

FO) = Y- Doi (Al
= ak_l(K)i(Ai—n:o

and
F10) = D (i = DN — Dor_a(Aolif)
i
= opa(A) Y (=1 = 1)
i

= —ora(AM)D (M- 1)? <0,

i=1
for o _o(Aolij) = ox—2(A*) > 0 for any i # j and > _,;(A; — 1) = (1 — A;). Hence
f(t) <0 for small ¢ > 0, which contradicts (9). u
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Remark. From the proof of Lemma 2, there is a constant C' > 0 depending only on

0§ (A
n and EAEN) such that 2
min \; > Coz(Ap).
Proof of Theorem 1. Theorem 1 follows directly from Lemmas 1 and 2. |

Corollary 2. Let (M, g) is a n-dimensional Riemannian manifold and k > n/2,
and let N = M x S' be the product manifold. Then N does not have positive I'j-
curvature. If N has nonnegative I'y-curvature, then (M, g) is an Finstein manifold,
and there are two cases: either k =n/2 or k >n/2 and (M, g) is a torus.

Proof. This follows from Lemmas 1 and 2. [ ]

Proof of Corollary 1. From Theorem 1, we know that the Ricci curvature Ricy is
nonnegative. Now we deform it by the Yamabe flow considered by Hamilton, Ye [15]
and Chow [4] to obtain a conformal metric g of constant scalar curvature. The Ricci
curvature Ricy is nonnegative, for the Yamabe flow preserves the non-negativity of
Ricci curvature, see [4]. Now by a classification result given in [12, 3], we have (M, g)
is isometric to either a space form or a finite quotient of a Riemannian S"~*(c) x S!
for some constant ¢ > 0. In the latter case, it is clear that k = n/2, otherwise it can
not have nonnegative I'y-curvature. ]

Next, we will prove that if M is locally conformally flat with positive I',_1-
curvature, then g has positive sectional curvature. If M is locally conformally flat,
then by (1) we may decompose the full curvature tensor as

Riem = A, © g,
Proposition 2. Assume that n = 3, or that M s locally conformally flat. Then
Schouten tensor A, € V," | if and only if g has positive sectional curvature.
Proof. Let m be any 2-plane in T),(N), and let X,Y be an orthonormal basis of =.
We have that
K(o) =Riem(X,Y, X,Y) =4, 09(X,Y, X,Y)
=A, (X, X))+ A,(Y)Y).
From this it follows that
min K(O’) = )\1 + )\2,

€Ty N
where A\; and )\, are the smallest eigenvalues of A, at p. [ ]
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Corollary 3. If (M, g) is locally conformally flat with positive I',,_-curvature, then
g has positive sectional curvature.

Proof. This follows easily from Propositions 1 and 2. |

3. EXTREMAL METRICS OF I';,-CURVATURE FUNCTIONALS

We next consider some properties of the functionals F; associated to o,. These
functionals were introduced and discussed in [13], see also [7]. Further variational
properties in connection to 3-dimensional geometry were studied in [9].

We recall that Fy, is defined by

n—2k

Fi(g) = vol(g)”

/Mak(g) dvol(g).

We denote C, = {g € [g0]|g € T’y }, where [go] is the conformal class of go.
We now apply our results to show that if gy € ', then there is an extremal
2

metric g. which minimizes F,, for m < n/2, and if m > n/2, there is an extremal
metric g. which maximizes F,,.

Proposition 3. Suppose (M, go) is locally conformally flat and go € T} for some
k> %, then Vm < % there is an extremal metric g* € [go] such that

(10) inf Fon(g) = Fm(9:"),
9€Cm
and Vm > 3, there is extremal metric g;* € [go] such that
(11) sup Fi(g) = Fi(ge"),
g€Cm

In fact, any solution to o,,(g) = constant is an extremal metric.

Proof. First by Corollary 1, (M, go) is conformal to a spherical space form. For any
g € Cp, from [7] we know there is a conformal metric g in C,, satisfying that o,,(q)
is constant and

(a). if m > n/2, then F,,(9) < Fn(9).
(b). if m < n/2, then F,,,(g9) > Fn(9).

A classification result of [13], [14] which is analogous to a result of Obata for the
scalar curvature, shows that ¢ has constant sectional curvature. Therefore g is the
unique critical metric unless M is conformally equivalent to S™, in which case any
critical metric is the image of the standard metric under a conformal diffeomorphism.
The clearly implies the conclusion of the Proposition. [ ]

Next we consider the case k < n/2. We have
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Proposition 4. Suppose (M, go) is locally conformally flat and go € T} for some
k < 5. Suppose furthermore that the space of solutions to the equation op = C is
compact, where C is a fized constant. Then there is an extremal metric g* € [go]
such that

inf Fi(g) = Fi(ge)-

9€Cy,
Proof. Since the space of solutions is assumed to be compact, there exists a critical
metric g¥ which has least energy. If the functional assumed a value strictly lower than
Fi(g¥), then by [7], the flow would decrease to another solution of o} = constant,
which is a contradiction since g¥ has minimal energy. |

Remark. An explicit example of this situation is given by the locally conformally
flat manifold M = SY(T') x S*!, where T is the radius of the S* factor. A moving
planes argument shows that all solutions of o, = constant must be symmetric, and
therefore the equation reduces to an ODE. The solutions were analyzed in [13];
depending on T' there are finitely many solutions, so the solution space is clearly
compact.

Recently, it was announced in [10] that, based on the local estimates established
in [6], if M is locally conformally flat, and not conformally equivalent to S™, then
the solution space is compact. It follows for k < n/2 there always exists a global
minimizer of Fj.

We conclude with conformal quermassintegral inequalities, which were speculated
in [7], and verified there for some special cases when (M, g) is locally conformally
flat and g €'y, org € FZH using the flow method. In the case of k = 2,n = 4,

2 2

the inequality was proved in [8] without the locally conformally flat assumption.

Proposition 5. Suppose (M, go) is locally conformally flat and go € T} for some
k> %, then for any 1 <1 <% <k <n there is a constant C(k,l,n) > 0, such that
for any g € [go] and g € T

(12) (Fi(g)'* < Clh, 1 n)(Fi(g)"

with equality if and only if (M, g) is a spherical space form.

Proof. By Proposition 3, we have a conformal metric g. of constant sectional cur-
vature satisfies such that

inf ﬂ(g) = ﬁ(ge>

gel;

and

sup Fr(9) = Fr(ge)-

9€Cy,
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Hence, we have for any g € I’}

FE@) _ (Fulg)
FE@T = Flo)T

(10 — DY
(Kl(n — )7

When the equality holds, g is an extremal of F;, hence a metric of constant sectional

curvature by [13]. u
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