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ON TEMPORAL ASYMPTOTICS FOR THE P’TH POWER
VISCOUS REACTIVE GAS

MARTA LEWICKA AND PIOTR B. MUCHA

Abstract. In this paper we investigate the long time behaviour of solutions to the
system governing a heat-conductive, viscous reactive p’th power gas confined between
two parallel plates. For initial-boundary value problems with the end points held at
a prescribed temperature or insulated, we prove the global existence of physically
relevant solutions and establish their rate of convergence to equilibria, for generic
initial data. The estimates for different boundary conditions are presented in a
unified manner.

1. Introduction.

The purpose of this paper is to describe the asymptotic behaviour of a viscous
reactive Newtonian fluid, confined between two infinite parallel plates, and under-
going the dynamic combustion. We assume that the pressure P , in terms of the
absolute temperature θ and specific volume ξ, is given by

P =
θ

ξp
, (1.1)

with the pressure exponent p ≥ 1.
The complete system of governing equations, in the mass-Lagrangian form, ex-

pressing the balance of mass, momentum and energy, coupled with the description
of the chemical reaction, is the following

ξt = vx, (1.2)

vt =
(
−P + µ

vx

ξ

)
x

, (1.3)

θt =
(
−P + µ

vx

ξ

)
vx +

(
κ

θx

ξ

)
x

+ δf(ξ, θ, z), (1.4)

zt =
(

σ
zx

ξ2

)
x

− f(ξ, θ, z). (1.5)

Here the quantities ξ (specific volume), θ (temperature), v (velocity), and z (the
concentration of the unburned fuel) are unknown functions of (x, t) ∈ [0, 1]× [0,∞),
subject to physical constraints

ξ > 0, θ > 0, z ≥ 0, (1.6)

while µ, κ, σ, δ, are positive constants, representing viscosity, conductivity, the spe-
cies diffusion coefficient, and the reaction rate (the so-called Frank-Kamenetskii
parameter), respectively. The intensity of the chemical reaction is given through
the function f , depending on ξ, θ, z.

1991 Mathematics Subject Classification. 76N10, 35B40, 35Q35.
Key words and phrases. viscous reactive gas, p’th power gas, temporal asymptotics.

1



2 MARTA LEWICKA AND PIOTR B. MUCHA

We impose the following boundary conditions

v(0, t) = v(1, t) = 0,

zx(0, t) = zx(1, t) = 0,
(1.7)

along with either the Dirichlet temperature condition

θ(0, t) = θ(1, t) = Θ, (D)

where Θ > 0 is a prescribed constant, or the Neumann condition

θx(0, t) = θx(1, t) = 0. (N)

The initial data are given by:

ξ(x, 0) = ξ0(x), v(x, 0) = v0(x), θ(x, 0) = θ0(x) z(x, 0) = z0(x) (1.8)

and subject to the physical constraints (1.6). The two initial-boundary value prob-
lems (1.1) – (1.8) along with the condition (D) or (N), will be referred to as
(IBV P )D and (IBV P )N respectively.

Note that equations (1.3) and (1.4) may be written as conservation laws of
momentum and energy of the system:

vt = Sx, (M)

(
θ +

1
2
v2

)
t

= (Sv − q)x + δf. (E)

where S = −P + µvx/ξ is the stress tensor and q = −κθx/ξ the heat flux. The
function f in (E) and (1.5) has typically the form

f(ξ, θ, z) = εξ1−mzm exp
θ − 1
εθ

, (1.9)

which is called the Arrhenius rate law for chemical reaction, with constants ε > 0
and m ≥ 1. The model (1.1)–(1.5), (1.9) for the perfect gas case (p = 1) was
introduced in [KP] and studied in [BB], [GZ], [CHT].

The first main result of this paper (Theorem I) concerns the global existence of
physically relevant solutions to (IBV P )D and (IBV P )N , for generic initial data.
A key element of the proof is deriving the uniform upper and lower bounds on the
density ξ of the fluid. The main idea here is due to Kazhikhov [K]. His method was
later developed and extended to a variety of other boundary conditions or pressure
laws [KS], [BB], [FP], [J], [N], [MY], [M], [W]. In our case we apply the analysis
from [LW]. The form of the pressure P in (1.1) can be seen as a generalization of the
equation of state for the prefect gas, as well as a modification of the relation for the
barotropic gas, where P = ξ−p. From this point of view, (1.1) is an interpolation
between these models. For the analysis of existence issue for the barotropic fluid
we refer to [M], [MY].

Our second concern is proving the convergence of the specific volume, velocity,
temperature, and the concentration of species to their respective equilibrium val-
ues. The temporal asymptotics of a one-dimensional Newtonian fluid with different
exponents p ≥ 1 in (1.1) was studied in [LW]. In this work, however, the heat is
not allowed to be generated by chemical reactions (δ = 0), and the solution quan-
tities converge exponentially fast. In general (Theorem II), the rate of convergence
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(exponential or power) depends on the parameter m in (1.9). More precisely, our
analysis applies to all intensity functions f of the form

f(ξ, θ, z) = zmf̃(1/ξ, θ, z),

where m ≥ 1 is an integer and f̃ is continuous and defined on (0,∞)×[0,∞)×[0,∞).
We additionally require that f̃ be positive in (0,∞)×(0,∞)×[0,∞) and be bounded
on every set of the form [λ, Λ] × [0,∞) × [0,∞).

The paper is organised as follows. In Section 2 we state our main theorems,
while in Sections 3 and 4 we gather some preliminary global pointwise and integral
estimates relevant for the further analysis. The key bounds are obtained in Sections
5 and 6. The final two Sections are devoted to establishing the convergence and
its rate of the solutions to their equilibria. As in [LW], the estimates for different
boundary conditions are presented in a unified manner.

2. Main results.

For the convenient formulation of the existence theory for the initial-boundary
value problems, we recall the standard definitions of the Sobolev norms:

||u0||2W 1
2 ((0,1)) =

∫ 1

0

(
u2

0 + (u0)2x
)
dx,

||u||2
W 2,1

2 ((0,1)×(t,T ))
=

∫ T

t

∫ 1

0

(
u2 + u2

xx + u2
t

)
dxdτ,

||u||2
W 1,0

2 ((0,1)×(t,T ))
=

∫ T

t

∫ 1

0

(
u2 + u2

x

)
dxdτ.

Theorem 0. Consider the inital-boundary value problems given by (IBV P )D or
(IBV P )N . Let the initial data

ξ0, v0, θ0, z0 ∈ W 1
2 ((0, 1))

satisfy the physical constraints (1.6) and be compatible with the relevant boundary
conditions. Then there exists a unique local regular solution (ξ, v, θ, z) on [0, 1] ×
[0, Tloc), for some Tloc > 0, with

v, θ, z ∈ W 2,1
2 ((0, 1) × (0, Tloc)), ξ, ξt ∈ W 1,0

2 ((0, 1) × (0, Tloc)).

The proof follows from the elementary fluid mechanics theory (see [AKM]), based
on the energy method, and thus we omit it. We remark that the result presented
in Theorem 0 is not sharp, however since our interest is to analyze the long time
behaviour of solutions, we require them to be as regular, as stated.

Our first main theorem concerns the global in time existence of solutions with the
regularity as in Theorem 0. From now on we adopt the convention that any constant
that appears will depend at most on the norms of the initial data, minx∈[0,1] ξ0(x)
and minx∈[0,1] θ0(x). Also, we denote such generic “small” constants by λ, and
“large” constants by Λ.



4 MARTA LEWICKA AND PIOTR B. MUCHA

Theorem I. Let the assumptions of Theorem 0 be satisfied. Then there exists a
unique global regular solution (ξ, v, θ, z) on [0, 1]× [0,∞), such that:

v, θ, z ∈ W 2,1
2 ((0, 1) × (0, T )), ξ, ξt ∈ W 1,0

2 ((0, 1) × (0, T )).

Moreover there holds

sup
k∈N

||v, θ, z||W 2,1
2 ((0,1)×(k,k+1)) + sup

k∈N
||ξ, ξt||W 1,0

2 ((0,1)×(k,k+1)) ≤ Λ

and

λ ≤ ξ(x, t) ≤ Λ,

∫ ∞

0

∫ 1

0

θ2
xdxdτ ≤ Λ.

In order to prove the global in time existence of solutions, it is enough to provide
a control on the magnitudes of norms of their traces. The relevant uniform in time
estimates, allowing the prolongation of the local solution, will be stated in Lemmas
6.1 and 6.2.

Based on these estimates and other bounds, derived in Sections 5 and 6, we
are able to establish the rate of convergence of solutions to the equilibrium states.
Here, a distinction arises between the (IBV P )D and (IBV P )N with respect to the
limiting temperature. More precisely, seting

Θ̄ =

⎧⎨
⎩

Θ for (IBV P )D,∫ 1

0

(
θ0 +

1
2
v2
0 + δz0

)
dx for (IBV P )N ,

we have the following result:

Theorem II. Let (ξ, v, θ, z) be as in Theorem I. Then:

(i) max
x∈[0,1]

(|ξ(x, t) − 1| + |v(x, t)| + |θ(x, t) − Θ̄|) ≤
{

Λe−λt for m = 1,
Λt−1/2(m−1) for m > 1,

(ii) max
x∈[0,1]

z(x, t) ≤
{

Λe−λt for m = 1,
Λt−1/3(m−1) for m > 1.

3. Elementary pointwise estimates.

In this Section we demonstrate that the solution quantities ξ and z satisfy the
physical constraints while for the temperature θ a weaker form of (1.6) is valid.
Our proof can be seen as an application of a standard maximum principle to the
parabolic structure of the governing equations (1.4) and (1.5).

All subsequant results, unless otherwise indicated, apply to both boundary value
problems (IBV P )D and (IBV P )N .

Lemma 3.1. (i) ξ(x, t) > 0,
(ii) θ(x, t) ≥ 0,

(iii) 0 ≤ z(x, t) ≤ max
x∈[0,1]

z0(x).
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Proof. The equation (1.2) can be equivalently written as

	t + 	2vx = 0,

where 	 = ξ−1 is the density of the gas. Since ξ0 > 0, we get

	(x, t) = 	(x, 0) exp
{∫ t

0

	(x, s)vx(x, s)dx

}
> 0,

which establishes (i) for all times t < Tloc, where Tloc is as in Theorem 0.

To prove (ii), define a nonpositive function θ−(x, t) = min{θ(x, t), 0}. Integrating
(1.4) in space and neglecting positive terms in the right hand side we obtain

d
dt

∫ 1

0

θ−dx +
∫ 1

0

θ−vx

ξp
dx ≥ 0.

Hence
d
dt

∫ 1

0

|θ−|dx ≤ C(t)
∫ 1

0

|θ−|dx,

where C(t) = max
x∈[0,1]

|vx(x, t)/ξp(x, t)|. Noting
∫ 1

0 |θ−|(x, 0)dx = 0 and the local

integrability of C(t), following from Theorem 0, we conclude (ii).

Now set z−(x, t) = min{z(x, t), 0} and z+(x, t) = max{z(x, t), maxy∈[0,1] z0(y)}.
Multiplying (1.5) by z−, integrating in space and recalling the boundary conditions
(1.7) we receive

1
2

d
dt

∫ 1

0

z2
−dx = −σ

∫ 1

0

(z−, x)2

ξ2
dx −

∫ 1

0

fz−dx.

Hence
d
dt

∫ 1

0

z2
−dx ≤ −2

∫ 1

0

fz−dx = −2
∫ 1

0

f̃zm−1z2
−dx ≤ C(t)

∫ 1

0

z2
−dx,

where the locally uniform bound C(t) follows from the assumed properties of the
function f̃ . Recalling

∫ 1

0 z2−(x, 0)dx = 0, we conclude that
∫ 1

0 z2−dx = 0, which
implies z(x, t) ≥ 0. In order to prove the upper bound in (iii), we multiply (1.5) by
z+ and integrate in space, obtaining

1
2

d
dt

∫ 1

0

z2
+dx = −σ

∫ 1

0

(z+, x)2

ξ2
dx −

∫ 1

0

fz+dx ≤ 0.

In view of the initial condition
∫ 1

0
z2
+(x, 0)dx = 0 we conclude that

∫ 1

0
z2
+dx = 0

and the proof is complete.

4. Entropy and energy bounds.

In this Section we identify the relevant thermodynamic quantities and establish
some general integral bounds related to the solution quantities ξ, v, θ, z.

Note first, that without loss of generality, we may assume that
∫ 1

0 ξ0(x)dx = 1.
Then it follows from (1.2) and (1.7) that∫ 1

0

ξ(x, t)dx = 1.
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Recall now (compare [LW]) that the entropy η of a solution to (M), (E) is a
concave function given by

η(θ, ξ) = ln θ + h(ξ),

where h(ξ) =
{

ln ξ for p = 1
1

p−1

(
1 − ξ1−p

)
for p > 1 ,

(4.1)

and satisfying the following entropy identity:

ηt = µ
v2

x

ξθ
+ κ

θ2
x

ξθ2
+ δ

f

θ
−

(q

θ

)
x
. (4.2)

For the Neumann problem, the entropy flux, −q/θ, is zero at the boundary. For
the Dirichlet problem this is generally not true; we can, however, track the global
entropy change for either temperature boundary condition noting that

d
dt

∫ 1

0

(
θ +

1
2
v2 + δz − Θ̄η

)
dx

= −
∫ 1

0

qxdx − Θ̄
∫ 1

0

(
µ

v2
x

ξθ
+ κ

θ2
x

ξθ2
+ δ

f

θ
−

(q

θ

)
x

)
dx

= Θ̄
∫ 1

0

(
µ

v2
x

ξθ
+ κ

θ2
x

ξθ2
+ δ

f

θ

)
dx.

(4.3)

The above formula follows from equations (M), (E), (4.2), and the fact that both
conditions (D) and (N) imply that the term (1 − Θ̄/θ)q vanishes at the boundary.

Lemma 4.1. (i)
∫ 1

0

v2(x, t)dx ≤ Λ ,

(ii) λ ≤
∫ 1

0

θ(x, t)dx ≤ Λ,

(iii)
∫ t

0

∫ 1

0

(
µ

v2
x

ξθ
+ κ

θ2
x

ξθ2
+ δ

f

θ

)
dxdτ ≤ Λ.

Proof. Integrating (4.3) over [0, t], we get∫ 1

0

(
θ +

1
2
v2 + δz − Θ̄η

)
dx + Θ̄

∫ t

0

∫ 1

0

(
µ

v2
x

ξθ
+ κ

θ2
x

ξθ2
+ δ

f

θ

)
dxdτ ≤ Λ. (4.4)

Integrating (4.1) in space and then using Jensen’s inequality we receive∫ 1

0

ηdx ≤ ln
(∫ 1

0

θdx

)
+ h

(∫ 1

0

ξdx

)
= ln

(∫ 1

0

θdx

)
.

Thus, in view of (4.4) we see that∫ 1

0

(
θ +

1
2
v2 + δz

)
dx + Θ̄

∫ t

0

∫ 1

0

(
µ

v2
x

ξθ
+ κ

θ2
x

ξθ2
+ δ

f

θ

)
dxdτ

≤ Λ + Θ̄ ln
(∫ 1

0

θdx

)
.

(4.5)

In particular,
∫ 1

0 θdx ≤ Λ + Θ̄ ln
(∫ 1

0 θdx
)
, which yields (ii). Using (ii) in (4.5) we

establish (i) and (iii).
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5. Pointwise bound on ξ and global L2
bound on θx.

This Section is devoted to proving the bounds stated in Theorem I, which are
crucial for establishing the convergence result of Theorem II. A central difficulty in
the derivation of the pointwise uniform bound on the specific volume ξ is associ-
ated with the presence of an a priori unknown impulse

∫ 1

0
S(1, τ)dτ , arising at the

boundary. The requisite bound is obtained through an analysis of the momentum
balance (M), in combination with estimates following from (4.2) and Lemma 4.1.
Since the argument does not involve reaction terms, it can be carried out exactly
as in the proof of Theorem I in [LW], and thus we omit it.

Theorem 5.1. λ ≤ ξ(x, t) ≤ Λ.

In the remaining part of this Section we show the other crucial bound, which
is a global L2 estimate on the temperature gradient. First, we note the following
simple consequence of the equation (1.5).

Lemma 5.2.
∫ t

0

∫ 1

0

z2
xdxdτ ≤ Λ.

Proof. Multiply (1.5) by z and integrate in space, to get

1
2

d
dt

∫ 1

0

z2dx + σ

∫ 1

0

z2
x

ξ2
dx ≤ 0.

Now integrating in time yields

1
2

∫ 1

0

z2(x, t)dx + σ

∫ t

0

∫ 1

0

z2
x

ξ2
dxdτ ≤ Λ,

which completes the proof.

The main difficulty in establishing the temperature gradient bound comes from
the Dirichlet temperature condition, due to the a priori unknown energy flux∫ 1

0 [q(0, τ) − q(1, τ)]dτ , through the boundary. This is circumvented by identifying
a thermodynamic quantity ω which serves as a Lyapunov function for solutions.

We begin by stating the preliminary estimates, proved in [LW].

Lemma 5.3. (i) Define vm(t) = max
x∈[0,1]

v(x, t). Then
∫ t

0

v2
mdτ ≤ Λ.

(ii)
∫ t

0

∫ 1

0

(
S2v2 + v2v2

x

)
dxdτ ≤ Λ

(
1 +

∫ t

0

∫ 1

0

θ2v2dxdτ

)
.

(iii) For every ε > 0 there exists a constant Λ such that
∫ 1

0

ξ2
x(x, t)dx +

∫ t

0

∫ 1

0

ξ2
xdxdτ ≤ Λ + ε

∫ t

0

∫ 1

0

θ2
xdxdτ.

Theorem 5.4.
∫ t

0

∫ 1

0

θ2
xdxdτ ≤ Λ.

Proof. Let the constant γ > 0 be such that the quantity

ω = θ +
1
2
v2 + δz − Θ̄η + γ,
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satisfies ω ≥ θ/2 (for θ ≥ 0 and λ ≤ ξ ≤ Λ, compare Theorem 5.1). Note that by
(M), (E) and (4.2) we have

ωt = (Sv)x + δσ

(
zx

ξ2

)
x

−
((

1 − Θ̄
θ

)
q

)
x

− Θ̄
(

µ
v2

x

ξθ
+ κ

θ2
x

ξθ2
+ δ

f

θ

)

ωx =
(

1 − Θ̄
θ

)
θx + vvx + δzx − Θ̄h′(ξ)ξx.

Utilizing the above identities, Lemma 5.3 (ii) and (iv), and recalling the boundary
conditions, we obtain from integration by parts and Young’s inequality:

1
2

∫ 1

0

ω2(x, t)dx ≤ Λ +
∫ t

0

∫ 1

0

ωωtdxdτ

≤ Λ +
∫ t

0

∫ 1

0

ω

(
Sv + δσ

zx

ξ2
−

(
1 − Θ̄

θ

)
q

)
x

dxdτ

= Λ −
∫ t

0

∫ 1

0

ωx

(
Sv + δσ

zx

ξ2
+

κ

ξ

(
1 − Θ̄

θ

)
θx

)
dxdτ

≤ Λ − λ

∫ t

0

∫ 1

0

(
1 − Θ̄

θ

)2

θ2
xdxdτ

+ Λ
∫ t

0

∫ 1

0

(
S2v2 + v2v2

x + ξ2
x + z2

x

)
dxdτ,

≤ Λ − λ

∫ t

0

∫ 1

0

(
1 − Θ̄

θ

)2

θ2
xdxdτ + Λ

∫ t

0

∫ 1

0

(
θ2v2 + ξ2

x

)
dxdτ.

(5.1)

But Lemma 3.1 (iii) gives
∫ t

0

∫ 1

0

(
1 − Θ̄

θ

)2

θ2
xdxdτ ≥

∫ t

0

∫ 1

0

(
1
2
− Θ̄2

θ2

)
θ2

xdxdτ

≥ 1
2

∫ t

0

∫ 1

0

θ2
xdxdτ − Λ,

(5.2)

which, together with (5.1) and in view of ω ≥ θ/2 implies∫ 1

0

θ2(x, t)dx +
∫ t

0

∫ 1

0

θ2
xdxdτ ≤ Λ + Λ

∫ t

0

∫ 1

0

(
θ2v2 + ξ2

x

)
dxdτ

≤ Λ + Λ
∫ t

0

v2
m(τ)

∫ 1

0

θ2(x, τ)dxdτ + Λ
∫ t

0

∫ 1

0

ξ2
xdxdτ.

(5.3)

Now from Lemma 5.3 (i) and Gronwall’s inequality applied to (5.3) we see that∫ 1

0

θ2(x, t)dx ≤ Λ
(

1 +
∫ t

0

∫ 1

0

ξ2
xdxdτ

)
. (5.4)

Substituting (5.4) into (5.3) and again noting Lemma 5.3 (i), yields∫ 1

0

θ2dx +
∫ t

0

∫ 1

0

θ2
xdxdτ ≤ Λ

(
1 +

∫ t

0

∫ 1

0

ξ2
xdxdτ

)
. (5.5)

This estimate when combined with Lemma 5.3 (iii) completes the proof.
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6. Global integral bounds on ξ, v, θ, z.

In this Section we establish several uniform in time bounds of the norms of vari-
ous combinations of the solution quantities and their derivatives. This will, in par-
ticular, imply the existence of a regular global solution to (IBV P )D or (IBV P )N ,
as stated in Theorem I. Another consequence of the bounds in Lemmas 6.1 and 6.2
is the L2 convergence of spacial derivatives of the solution to 0 (Lemma 6.3), from
which we will deduce the pointwise convergence in Section 7.

We first recall a few estimates, proved in [LW].

Lemma 6.1. (i)
∫ 1

0

(
ξ2
x + v2

x

)
dx ≤ Λ,

(ii)
∫ t

0

∫ 1

0

(
ξ2
x + v2

x + v2
xx + θ2ξ2

x + θ2v2
x + ξ2

xv2
x + v4

x

)
dxdτ ≤ Λ.

Our next goal is to prove the bounds involving the reaction equation (1.5) and
the conservation of energy (1.4).

Lemma 6.2. (i)
∫ t

0

∫ 1

0

fdxdτ ≤ Λ and 0 ≤ f(ξ, θ, z)(x, t) ≤ Λ,

(ii)
∫ 1

0

θ2
xdx +

∫ t

0

∫ 1

0

(
θ2

xx + θ2
xξ2

x

)
dxdτ ≤ Λ,

(iii)
∫ 1

0

z2
xdx +

∫ t

0

∫ 1

0

(
z2

xx + z2
xξ2

x

)
dxdτ ≤ Λ.

Proof. To prove (i) note the following simple consequence of (1.4), (1.7) and Lemma
3.1 (iii):∫ t

0

∫ 1

0

fdxdτ = −
∫ t

0

∫ 1

0

ztdxdτ =
∫ 1

0

z0dx −
∫ 1

0

z(x, t)dx ≤ Λ.

The boundedness of f is a straightforward consequence of the assumed properties
of f̃ and the global pointwise bounds on ξ and z.

Next, from (E), integration by parts and Young’s inequality, it follows for either
boundary conditions (D) or (N) that

d
dt

(∫ 1

0

θ2
xdx

)
= 2

∫ 1

0

θxθxtdx = −2
∫ 1

0

θtθxxdx

≤ Λ
∫ 1

0

(|θvxθxx| + |v2
xθxx| + |θxξxθxx| + |fθxx|

)
dx − λ

∫ 1

0

θ2
xxdx

≤ Λ
∫ 1

0

(
θ2v2

x + v4
x + θ2

xξ2
x + f2

)
dx − λ

∫ 1

0

θ2
xxdx.

(6.1)

Note the following interpolation inequality

max
x∈[0,1]

θ2
x(x, t) ≤ Λ

∫ 1

0

θ2
x(x, t)dx + λ

∫ 1

0

θ2
xx(x, t)dx. (6.2)

Thus, in view of Theorem 5.4:∫ t

0

∫ 1

0

θ2
xξ2

xdxdτ ≤
∫ t

0

max
x∈[0,1]

θ2
x(x, τ)

(∫ 1

0

ξ2
xdx

)
dτ

≤ Λ + λ

∫ t

0

∫ 1

0

θ2
xxdxdτ.

(6.3)
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Now, integrating (6.1) over [0, t] and noting (i), we receive the boundedness of the
first two summands in (ii). Recalling (6.3) concludes the proof of (ii).

To demonstrate (iii), we proceed in a similar manner; by (1.5), the boundary
condition (1.7) and Young’s inequality we obtain:

d
dt

(∫ 1

0

z2
xdx

)
= 2

∫ 1

0

zxzxtdx = −2
∫ 1

0

ztzxxdx

= −2σ

∫ 1

0

zxx

(
zx

ξ2

)
x

dx + 2
∫ 1

0

fzxxdx

≤ Λ
∫ 1

0

(
z2

xξ2
x + f2

)
dx − λ

∫ 1

0

z2
xxdx.

(6.4)

Again, since

max
x∈[0,1]

z2
x(x, t) ≤ Λ

∫ 1

0

z2
x(x, t)dx + λ

∫ 1

0

z2
xx(x, t)dx,

in view of Lemma 5.2 it follows that∫ t

0

∫ 1

0

z2
xξ2

xdxdτ ≤
∫ t

0

max
x∈[0,1]

z2
x(x, τ)

(∫ 1

0

ξ2
xdx

)
dτ

≤ Λ + λ

∫ t

0

∫ 1

0

z2
xxdxdτ.

(6.5)

Upon integrating (6.4) in time and inserting (6.5), the boundedness of the first two
summands in (iii) follows. Hence, by (6.5) the proof is complete.

Note that due to the results of Section 5, we have actually concluded the proof
of Theorem I. Here comes our first convergence result.

Lemma 6.3. lim
t→+∞

∫ 1

0

(
ξ2
x + v2

x + θ2
x + z2

x

)
(x, t)dx = 0.

Proof. It is sufficient to show that the following functions and their derivatives are
integrable in time:

∫ 1

0
ξ2
x(x, t)dx,

∫ 1

0
v2

x(x, t)dx,
∫ 1

0
θ2

x(x, t)dx,
∫ 1

0
z2

x(x, t)dx. The
integrability of the mentioned functions is stated in Theorem 5.4, Lemma 6.1, and
Lemma 5.2. The integrability of the derivatives of

∫ 1

0 θ2
x(x, t)dx and

∫ 1

0 z2
x(x, t)dx

is a consequence of (6.3), (6.4) and Lemma 6.1. To deal with the remaining two
derivatives, we note that by (M) and (1.2) there holds:∣∣∣∣ d

dt

(∫ 1

0

v2
xdx

)∣∣∣∣ =
∣∣∣∣2

∫ 1

0

vxvxtdx

∣∣∣∣
=

∣∣∣∣2
∫ 1

0

vtvxxdx

∣∣∣∣ ≤ Λ
∫ 1

0

(
θ2

x + θ2ξ2
x + ξ2

xv2
x + v2

xx

)
dx,

∣∣∣∣ d
dt

(∫ 1

0

ξ2
xdx

)∣∣∣∣ =
∣∣∣∣2

∫ 1

0

ξxξxtdx

∣∣∣∣ =
∣∣∣∣2

∫ 1

0

ξxvxxdx

∣∣∣∣ ≤ Λ
∫ 1

0

(
ξ2
x + v2

xx

)
dx.

From Lemma 6.1, the proof is complete.
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7. Pointwise convergence results.

We start by strengthening the result of Lemma 3.1 (ii), which justifies the phys-
ical relevance of the solution θ.

Lemma 7.1. λ ≤ θ(x, t) ≤ Λ.

Proof. First, note that for the (IBV P )D and (IBV P )N there holds, respectively:

|θ(x, t) − Θ| ≤
∫ 1

0

|θx|dx ≤
(∫ 1

0

θ2
xdx

)1/2

, (7.1)

and ∣∣∣∣θ(x, t) −
∫ 1

0

θdx

∣∣∣∣ ≤
(∫ 1

0

θ2
xdx

)1/2

. (7.2)

Thus, in view of Lemma 6.3 and Lemma 4.1 (ii), we see that the proof is completed
by showing that θ is bounded away from 0 on a bounded time interval [0, T ]. Define
w(x, t) = θ−1(x, t). By (1.4) we receive

wt − κ

(
wx

ξ

)
x

=
w

ξp
vx − µ

w2

ξ
v2

x − 2κ
w2

x

wξ
− δw2f ≤ w

ξp
vx − µ

w2

ξ
v2

x. (7.3)

Now define

w+(x, t) = max
{
w(x, t) − Θ̄−1, 0

}
.

Fix a natural number N and note that multiplying (7.3) by a nonnegative factor
wN−1

+ , by Young’s inequality we get

(w+)tw
N−1
+ − κ

(
(w+)x

ξ

)
x

wN−1
+ ≤ vx

ξp
wwN−1

+ − µ
v2

x

ξ
w2wN−1

+

≤ λ
(
|vx|ww

(N−1)/2
+

)2

+ Λ
(
w

(N−1)/2
+

)2

− µ
v2

x

ξ
w2wN−1

+ ≤ ΛwN−1
+ ,

(7.4)

Integrating by parts and recalling the initial conditions (D) or (N) we have
∫ 1

0

(
(w+)x

ξ

)
x

wN−1
+ dx =

(w+)x

ξ
wN−1

+

∣∣∣∣
1

0

− (N − 1)
∫ 1

0

(w+)2x
ξ

wN−2
+ dx ≤ 0,

and thus, integrating (7.4) in space, by Hölder’s inequality, we obtain

1
N

d
dt

(∫ 1

0

wN
+ dx

)
≤ Λ

∫ 1

0

wN−1
+ dx ≤ Λ

(∫ 1

0

wN
+ dx

)(N−1)/N

.

Hence, for every N there holds

d
dt

(∫ 1

0

wN
+ dx

)1/N

=
1
N

(∫ 1

0

wN
+ dx

)1/N−1

· d
dt

(∫ 1

0

wN
+ dx

)
≤ Λ,

and we see that the following bound is true for every large number N and every
t ∈ [0, T ]:

(∫ 1

0

wN
+ (x, t)dx

)1/N

≤ Λ(1 + T ). (7.5)
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Since the constant Λ in (7.5) is independent of N , we have:

max
t∈[0,T ]

max
x∈[0,1]

w+(x, t) ≤ Λ(1 + T ),

which yields the desired lower bound on θ.

We are now in a position to prove the pointwise convergence of solutions.

Theorem 7.2. lim
t→+∞ max

x∈[0,1]

(|ξ(x, t) − 1| + |v(x, t)| + |θ(x, t) − Θ̄| + z(x, t)
)

= 0.

Proof. From (1.7) we have

|v(x, t)| ≤
∫ 1

0

|vx|dx ≤
(∫ 1

0

v2
xdx

)1/2

. (7.6)

Also,

|ξ(x, t) − 1| =
∣∣∣∣ξ(x, t) −

∫ 1

0

ξdx

∣∣∣∣ ≤
(∫ 1

0

ξ2
xdx

)1/2

. (7.7)

Thus the pointwise convergence of ξ and v ma be immediately concluded, in view
of Lemma 6.3.

For the convergence of z, note that by (1.5) and (1.7) there holds

d
dt

(∫ 1

0

zdx

)
= −

∫ 1

0

fdx ≤ 0. (7.8)

On the other hand, by (1.5), the assumed properties of f̃ , and Young’s inequality
we get

0 =
d
dt

(∫ 1

0

zdx

)
+

∫ 1

0

fdx ≥ d
dt

(∫ 1

0

zdx

)
+ λ

(∫ 1

0

zdx

)m

,

and thus for large times t there holds:∫ 1

0

z(x, t)dx ≤
{

Λe−λt for m = 1,
Λt−1/(m−1) for m > 1.

(7.9)

Since ∣∣∣∣z(x, t) −
∫ 1

0

zdx

∣∣∣∣ ≤
(∫ 1

0

z2
xdx

)1/2

,

by Lemma 6.3 we receive the convergence of z.
Finally, the pointwise convergence of θ to the equilibrium temperature Θ̄ can be

proved for (IBV P )D directly from (7.1) and Lemma 6.3. For the Neumann problem
(IBV P )N we first note that the quantity

∫ 1

0

(
θ + v2/2 + δz

)
dx is constant in time,

and thus
∣∣θ(x, t) − Θ̄

∣∣ ≤
∣∣∣∣θ(x, t) −

∫ 1

0

θdx

∣∣∣∣ +
1
2

∫ 1

0

v2(x, t)dx + δ

∫ 1

0

z(x, t)dx. (7.10)

By (7.2), Lemma 6.3 and already established pointwise convergence of v and z, the
proof is complete.
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8. Proof of Theorem II.

In this Section we establish the rate of convergence of solutions to their equilib-
rium values. Here, the identity (4.3) supplies a natural Lyapunov function A, upon
which we build our proof. Noting the pointwise convergence in Theorem 7.2, the
result follows through a Taylor expansion associated with A.

Define the following nonnegative quantities:

V(t) :=
∫ 1

0

(
v2

x + θ2
x

)
(x, t)dx, D(t) :=

∫ 1

0

(
µ

ξx

ξ
− v

)2

(x, t)dx,

A(t) :=
∫ 1

0

(
θ +

1
2
v2 + δz − Θ̄η + γ

)
(x, t)dx,

where γ = Θ̄(ln Θ̄ − 1).

Lemma 8.1. There exist constants ε1, ε2 > 0 such that

d
dt

(A + ε1D + ε2V) + λ (A + ε1D + ε2V) ≤
∫ 1

0

zdx.

Proof. The proof will be divided into several steps.

STEP 1. Observing the boundedness of θ, it follows from the Taylor expansion of
ln, that

λ(θ − Θ̄)2 ≤ (θ − Θ̄ ln θ) + γ ≤ Λ(θ − Θ̄)2. (8.1)

Analogously, using the boundedness of ξ, and the concavity of h:

λ

∫ 1

0

(ξ − 1)2dx ≤ −
∫ 1

0

h(ξ)dx ≤ Λ
∫ 1

0

(ξ − 1)2dx. (8.2)

Adding (8.1) and (8.2) yields:

λ

∫ 1

0

(
(θ − Θ̄)2 + (ξ − 1)2 + v2 + z

)
dx

≤ A ≤ Λ
∫ 1

0

(
(θ − Θ̄)2 + (ξ − 1)2 + v2 + z

)
dx.

(8.3)

Since

1
2
µ

(
ξx

ξ

)2

≤ v2 +
(

µ
ξx

ξ
− v

)2

, (8.4)

and recalling (7.1) for the Dirichlet condition, or (7.10) and (7.2) for (N), together
with (7.7), (7.6) and (8.3) we receive

A(t) ≤ Λ
∫ 1

0

(
θ2

x + ξ2
x + v2 + z

)
dx

≤ Λ
[
D(t) +

∫ 1

0

(
θ2

x + v2 + z
)
dx

]
≤ Λ

(
D(t) + V(t) +

∫ 1

0

zdx

)
.

(8.5)

STEP 2. We are now going to establish the following bound:

d
dt

D(t) + λD(t) ≤ ΛV(t). (8.6)
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The balance of momentum (M) can be rewritten in the form:(
µ

ξx

ξ
− v

)
t

=
(

θ

ξp

)
x

.

Multiplying by µξx/ξ − v and integrating over [0, 1], we see that

d
dt

D(t) = 2
∫ 1

0

(
θx

ξp
− p

θξx

ξp+1

) (
µ

ξx

ξ
− v

)
dx

≤ −λ

∫ 1

0

θ

(
µ

ξx

ξ
− v

)2

dx + Λ
∫ 1

0

(
µ

ξx

ξ
− v

) (
θx

ξp
− pθ

µξp
v

)
dx,

which in view of Lemma 7.1 and using Young’s inequality implies

d
dt

D(t) + λD(t) ≤ Λ
∫ 1

0

(
θx

ξp
− pθ

µξp
v

)2

dx ≤ Λ
∫ 1

0

(
θ2

x + v2
)
dx.

Now (8.6) follows, by the above inequality and (7.6).

STEP 3. Recalling (M), integrating by parts and using Young’s inequality gives

d
dt

(∫ 1

0

v2
xdx

)
= 2

∫ 1

0

vxvxtdx = −2
∫ 1

0

vtvxxdx

≤ Λ
∫ 1

0

(|θxvxx| + |θξxvxx| + |ξxvxvxx|) dx − λ

∫ 1

0

v2
xxdx

≤ Λ
∫ 1

0

(
θ2

x + θ2ξ2
x + ξ2

xv2
x

)
dx − λ

∫ 1

0

v2
xxdx.

Thus, together with (6.1), we receive

d
dt

V(t) + λ

∫ 1

0

(
v2

xx + θ2
xx

)
dx

≤ Λ
[
V(t) +

∫ 1

0

(
v4

x + ξ2
x + θ2

xξ2
x + ξ2

xv2
x + f2

)
dx

]
.

(8.7)

Noting the boundedness of
∫ 1

0

(
ξ2
x + v2

x

)
dx (by Theorem 6.1(i)), the interpolation

inequality (6.2) and the analogous one below:

max
x∈[0,1]

v2
x(x, t) ≤ Λ

∫ 1

0

v2
x(x, t)dx + λ

∫ 1

0

v2
xx(x, t)dx,

in view of Lemma 6.2 (i), we see that the integral on the right hand side of (8.7) is
estimated by

λ

∫ 1

0

(
v2

xx + θ2
xx

)
dx + Λ

(
V(t) +

∫ 1

0

(
ξ2
x + f

)
dx

)
.

Hence, recalling (8.4) and (7.6), we get:

d
dt

V(t) ≤ Λ
(
D(t) + V(t) +

∫ 1

0

fdx

)
. (8.8)

STEP 4. By (4.3), Theorem 5.1 and Lemma 7.1 we have

d
dt

A(t) + λV(t) ≤ −Θ̄δ

∫ 1

0

f

θ
dx ≤ −λ

∫ 1

0

fdx. (8.9)

Now, bringing together (8.5), (8.6), (8.8) and (8.9), the theorem follows.
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Proof of Theorem II. We first deal with convergence of ξ, v and θ. We treat
separately the two cases m = 1 and m > 1. If m = 1 then by Lemma 8.1, (7.9),
and the nonnegativity od A (see (8.3)), we receive immediately that

D + V ≤ Λ (A + ε1D + ε2V) ≤ Λe−λt.

By (7.6), (7.7), (8.4) and (7.1), (7.2), (7.10), the result follows.

If m > 1, then by Lemma 8.1 and (7.9)
d
dt

(A + ε1D + ε2V) + λ (A + ε1D + ε2V) ≤ Λt−1/(m−1),

and thus

D + V ≤ Λ (A + ε1D + ε2V) ≤ Λe−λt

(
Λ +

∫ t

1

eλss−αds

)
, (8.10)

with α = 1/(m− 1). Note that for large s we have
d
ds

(
eλss−α

)
=

(
λ − αs−1

)
s−αeλs > 0.

Hence, for large times t we receive

e−λt

∫ t

1

eλss−αds = e−λt

∫ t/2

1

eλss−αds + e−λt

∫ t

t/2

eλss−αds

≤ e−λt/2

(
t

2

)−α

+ e−λt

(
t

2

)−α ∫ t

t/2

eλsds ≤ Λ
(

t

2

)−α

.

Recalling (8.10), we conclude

D + V ≤ Λt−1/(m−1).

As in the case m = 1, this estimate implies the pointwise convergence rate of the
solution, as stated in (i).

Now we turn to proving (ii). Using an interpolation inequality from [BIN] (Chap.
XVIII) we see that for any constant ε ∈ (0, 1) there holds

max
x∈[0,1]

z(x, t) ≤ ε

(∫ 1

0

z2
xdx

)1/2

+ Λε−2

∫ 1

0

zdx. (8.11)

Now, in view of Lemma 6.2 (iii) and (7.9), the estimate (ii) is obtained by substitut-
ing ε = e−λt/3 in (8.11) for the case m = 1, and ε = t−1/3(m−1), when m > 1.
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