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Abstract
In this note we study the moduli space of minimal Legendrian

submanifolds in the standard sphere S2n−1. We suggest to find new
examples of minimal Legendrian submanifolds by solving a certain
equation for a function on a nearby glued Legendrian submanifold,
or by using certain evolution equation on the space of immersed Leg-
endrian submanifolds . A new neccesary condition for a Lagrangian
embedding into CPn is given.
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1 Introduction

It is well-known that we can study singularities of special Lagrangian sub-
manifolds by considering the link of these singularities. The following obseva-
tion tells us that these links are precisely minimal Legendrian submanifolds
(or varieties, more generally) in the sphere with the standard contact struc-
ture.

1.1. Observation. (folklore) There is a 1-1 correspondence between
minimal Lagrangian cones in R2n = Cn and minimal Legendrian submani-
folds in the sphere S2n−1 with the standard contact metric structure.

Let us recall that the standard symplectic structure on R2n is the 2-form
ω =

∑n
i=1 dxi ∧ dyi. The standard contact structure on S2n−1 is defined

via the restriction of the 1-form α =
∑n

i=1 xidyi to S2n−1. The metric on
R2n is the Euclidean metric and the metric on S2n−1 is the induced metric.
The correspondence between Lagrangian cones and Legendrian submanifolds
follows from the fact that Cn \ {0} is the symplectization of S2n−1 (see also
[ Has2000]). The minimality correspondence is well-known in the theory of
minimal submanifolds (see also [Si1968] and (3.6)).

It was observed [Has2000, L-W 2001c, ect] that the equation of a Leg-
endrian and conformal harmonic mapping from a 2-dimensional simply con-
nected domain into S2n−1 is an intergable equation. Based on this observa-
tion Haskins has discovered many examples of minimal Legendrian tori in
the sphere S5. But it is still unclear whether minimal Legendrian surfaces of
higher genus in S5 exist. Our knowledge of minimal Legendrian submanifolds
in spheres of higher dimension is even poorer.

In this note we propose to find Legendrian minimal submanifolds by sev-
eral ways. 1 We denote by Leg a Legendrian submanifold in S2n−1. Since
any Legendrian submanifold in a neighborhood of Leg can be described by
a function f on Leg, so we shall search for a minimal Legendrian submani-
fold Legmin nearby Leg by solving a certain differential equation for f . This
equation is derived in Theorem 2.21.

In the section 3 we study the relation between Legendrian submanifolds
in the contactization over a Kähler symplectic manifold M and Lagrangian
submanifolds in M . This is motivated by the fact that the the standard

1Another approach based on a spectral characterization of minimal Legendrian sub-
manifolds is proposed in [L-W 2001a].
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contact sphere S2n−1 is the contactization of the Kähler symplectic manifolds
CP n−1.

We prove that there is no embedded orientable Lagrangian surface of
higher genus in CP 2 (Prop. 3.22).

In sections 4 and 5 we want to construct new minimal Legendrian subman-
ifolds by gluing the old ones. This could be done in two steps. First we glue 2
Legendrian submanifolds into one Legendrian submanifold (Proposition 4.2).
Then we try to deform the glued one to a new minimal Legendrian subman-
ifold. Since the linearization of of the equation (2.21.1) is self-adjoint, we
cannot use the implicit function theorem for our gluing. Instead we propose
an evolution equation for these submanifolds which is volume decreasing.
We prove the short time existence of our equation (Proposition 5.17). Our
evolution equation is a parabolic equation of 4-order.

Acknowledgement. I thank Kenji Fukaya, Thom Ilmanen, Yong-Geun Oh,
Mathias Schwarz, Knut Smoczyk for stimulating discussions. My thanks are
due to Guofang Wang for his longtime collaboration on minimal Legendrian
submanifolds. I thank Michal Marvan for his interests and for his invitation
to Opava where this project is conceived. I am indebted to Kaoru Ono for
his generous sharing of ideas which are important for this note. Lastly the
presentation of the revised version of this note is much improved thanks to
a helpful critic of a referee.

2 Moduli space of minimal Legendrian sub-

manifolds.

In this section we shall study the local manifold structure of the moduli space
of the minimal Legendrian submanifolds in the standard sphere. In a neig-
borhood of a Legendrian submanifold Leg we can describe any Legendrian
submanifold via a smooth function f on Leg. We derive a scalar differen-
tial equation (Propostion 2.17 and 2.18) for f whose associated Legendrian
submanifold is minimal.

2.1. Lemma. The set Λ(Leg) of all Legendrian submanifolds Leg′ nearby
a Legendrian submanifold Leg in a contact manifold (M2n−1, α) is a Banach
space which is modelled on the space of functions on Leg.
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Proof. This Lemma must be well-known for experts as a consequence
of the Darboux-Weinstein theorem on the neighborhood of a Legendrian
submanifold in a contact manifold. Here we provide another simple proof.
We recall that the Reeb field R on a contact manifold (M2n−1, α) is defined
uniquely by the following two conditions: R ∈ ker dα and α(R) = 1.

Now we choose a metric gα on Leg which is compatible with the contact
form α, i.e.
i) the Reeb field R has the constant unit length,
ii) the Reeb field R is orthogonal to the contact hyperplan kerα,
iii) the metric gα is compatible with the symplectic form ω = dα restricted
to the contact hyperplan, i.e. there exists an almost complex structure J ∈
End(ker α) such that

(2.1.1) ω(V, W ) = g(JV, W ) for all V, W ∈ ker α.

Clearly such a compatible metric exists. Further let us denote also by J the
unique tensor in End(TM2n−1) such that JR = 0 and J{ker α} = {ker α},
moreover the restriction of J to the contact hyperplan ker α is the almost
complex structure J which is defined in (2.1.1).

It is easy to see that the standard metric on the sphere S2n−1 is compatible
with the standard contact structure, and the associated complex structure
J on S2n−1 is the restriction (by the orthogonal projection) of the standard
complex structure J on R2n = Cn.

Any smooth submanfold L′ in a normal tubular neighborhood U(Leg) ⊂
M2n−1 can be identified with a normal vector field V (x) ∈ Γ(N(Leg)) on
Leg via the exponential map Exp : N(Leg) → (M2n−1, gα). We decompose
the normal bundle N(Leg) as

N(Leg) =< R > ⊕JT∗Leg.

So a normal vector field V (x) can be written as f(x)R + J(W (x)), where
f(x) ∈ C∞(Leg) and W (x) ∈ TxLeg.

With this identification we choose U0 ⊂ Γ(N(Leg)) to be a neighboorhood
of the zero normal vector field on Leg such that Exp(V ) ⊂ U(Leg) for all
V ∈ U0. So U0 can be considered as a neighborhood of Leg in the space of
all (n-1)-dimensional submanifolds in M2n−1. Then the set of all Legendrian
submanifolds in U0 is the zero set of the map

F : U0 → Ω1(Leg)
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(2.2) (F (V ))(x) = (ExpxV )∗(α).

We have
dF (V ) = LV (α) = d(α(V )) + (V �dα)

(2.3) = df + 2V �ω.

Thus V is an infinitesimal Legendrian deformation of Leg, if and only if

(2.4) V = Vf := f(x)R +
1

2
J∇Legf,

where ∇Lf denotes the gradient vector field on Leg. Hence the formal tan-
gent space of the moduli space of Legendrian submanifolds at Leg is the
space of functions f on Leg. Finally we note that dF (0) is surjective (by
letting e.g. f = 0.) This implies the manifold structure of Λ(Leg). �

2.5. Corollary. Each Legendrian normal vector field is defined uniquely
by it Reeb component via the formula (2.4).

We shall improve Lemma 2.1 in the case, when a contact manifold (M2n−1, α)
is the standard contact sphere. Namely we shall show in Corollary 2.15 an ex-
plicit expression for a normal vector field V ∈ Γ(N(Leg)) such that Exp(V )
is a Legendrian submanifold. The observation 1.1 indicates us to consider
in this case the associated Lagrangian cone CLeg in R2n. Let Lag denote a
Lagrangian submanifold in R2n. We shall now look at the following sequence
of mappings

T ∗Lag
i1→ T∗Lag

i2→ NLag
Exp→ R2n.

Here the bundle isomorphism i1 is induced from the Riemannian metric g
on Lag (which is induced from the standard metric on R2n), NLag is the
normal bundle of Lag in R2n, i2 is a bundle isomorphism with i2(v) = Jv,
and Exp(v, x) = x + v, where x and v are considered as vectors in R2n. The
composition (i2)

−1 ◦ (i1)
−1 sends the natural symplectic form Ω from T ∗Lag

to NLag which we also denote by Ω.

2.6. Proposition. Let Lag be a Lagrangian submanifold in R2n. Then
there is a neighboorhood NεLag of Lag in NLag such that the natural em-
bedding Exp : (NεLag, Ω) → (R2n, ω) is a symplectic embedding.

Proof. Let (xi) be a local coordinates around a point x ∈ Lag. We
denote by π the natural projection T ∗Lag → Lag. Then a point ξ ∈ T ∗Lag
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has coordinates ((x1, · · · , xn) = π(ξ), pi(ξ) = (ξ, ∂xi), i = 1, n). The Louiville
form α on T ∗L is defines as follows:

α(V )ξ = (ξ, π∗(V )) =
∑

i

pi(ξ)dxi(π∗(V )).

Thus we can write α = pidxi. The standard symplectic form Ω has the
following expression : Ω = dxi ∧ dpi.

Let g be a Riemannian metric on Lag. The dual coordinates (xi, qi)
on T∗Lag can be defined as follows. Without misunderstanding we denote
by the same π the natural projection from T∗Lag to Lag. Any point η on
T∗Lag has coordinates (x1, · · · , xn) = π(η), qi(η) =< η, ∂xi >g). Using these
coordinates we write explicitly the map i1 : T∗Lag → T ∗Lag as follows

(x1, · · · , xn, q1, · · · , qn)
i1	→ (x1, · · · , xn, pi = qi).

Thus in the coordinates (xi, qi) on T∗Lag we can write

(2.7) Ω = dxi ∧ dqi.

We define an almost complex structure on T∗Lag as follows. For each ξ ∈
T∗Lag with π(ξ) = x we decompose TξT∗Lag into the vertical part T v

ξ T∗Lag
and the horizontal part T h

ξ T∗Lag using the Levi-Civita connection on Lag.
The vertical part T v

ξ T∗Lag is the tangential space to the fiber Tξ(π
−1(ξ)),

and therefore can be identified with TxLag. We denote by Lh
ξ the horizontal

lift TxL → T h
ξ T∗Lag. Now for any vertical vector V ∈ T v

ξ T∗Lag = TxLag we
put

(2.8) Iξ(V ) := −Lh
ξ (V ).

Clearly the equation (2.8) defines a unique almost complex structure on
T∗Lag which for the sake of simplicity we also denote by I.

Let us choose a local corrdinate (xi) around x ∈ Lag such that this
coordinate is normal w.r.t. to g, that is gij(x) = δij and ∇∂xi

(∂xj)(x) = 0
for all i, j = 1, n. In this normal coordinate we have

(2.8.1) Iξ(∂xi) = ∂qi

for all ξ ∈ TxLag. Combining (2.8.1) and (2.7) we get the following identity

(2.9) Ωξ(V, W ) =< IV, W >g̃

6



for any V, W ∈ TξT∗Lag. Here g̃ is the unique metric on T∗L which is induced
from g. Since both LHS and RHS of (2.9) does not depend on the choice of
the origin of the normal coordinates, the identity (2.9) must be valid for all
ξ ∈ T∗Lag. In particular we get that g̃ is a compatible metric and J is its
associated almost complex structure on (T∗Lag, Ω).

Since J is a constant complex structure on R2n, we have

(2.10) < JY,∇Z(JX) >=< Y,∇ZX >

for all vector fields X, Y, Z on Lag. Here ∇ is the standard derivative on
R2n. The equality (2.10) means that the diffeomorphism i2 : T∗Lag → NLag
is a bundle isomorphism which preserves the natural (induced) Levi-Civita
connection ∇ on each bundle. Hence we have

(2.11) Lh
ξ (V ) = Lh

Jξ(JV )

for all vertical vector V ∈ T v
ξ T∗Lag = Tπ(ξ)Lag. The induced almost complex

structure i∗2(I) on NLag has then the following expression

(2.12). i∗2(I)JV = Lh
Jξ(JV ).

The identities (2.12) and (2.9) imply that the induced symplectic form Ω
on NLag takes the form

(2.13) ΩJξ(V, W ) = − < Lh
JξJV, W >

for any vertical vector V ∈ p−1(Jξ) = NxLag and for any horizontal vec-
tor W ∈ T h

JξNLag. From (2.9) it follows that the horizontal space and
the vertical spaces are Lagrangian, therefore the equation (2.13) defines the
symplectic form Ω on NLag uniquely.

Now we note that the natural embedding Exp : NεLag → R2n is an
isometric embedding for a small neighborhood NεLag of Lag in NLag. Thus
the horizontal lift Lh

JξJV on NLag is the parallel translation in R2n of the
vector JV ∈ TxLag ⊂ TxR

2n = R2n. Now we can rewrite (2.13) as follows

(2.13.1) ΩJξ(V, W ) =< JV, W > .

Clearly RHS of (2.13.1) is the symplectic structure Exp∗(ω) induced from
R2n and the LHS of (2.13.1) is the symplectic structure Ω. As a by-product
we also obtain that the induced almost complex structure i∗2(I) on NLag
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coincides with the natural complex structure J restricted to an open neigh-
borhood Exp(NLag). In particular an open neighborhood of T∗Lag has a
natural Kähler structure with the complex structure I. �

Now we shall apply Proposition 2.6 to Lagrangian cones in R2n. For
a normal vector field V over a cone CLeg we denote by ExpR2n(V ) the
exponential map Exp : CLeg → R2n : x 	→ Expx(V ).

2.14. Lemma. Let Leg be a Legendrian submanifold in S2n−1 and let
CLeg denote the cone over Leg. Suppose that V is a homegeneous normal
vector field on CLeg : V (r, x) = rV (1, x). We identify Leg with the subset
{(1, x)} ⊂ CLeg, x ∈ Leg. Then the cone C(Leg + V|Leg) = ExpR2n(V ) is
Lagrangian, if and only if

(2.14.1) V|Leg(x) = 2f · J∂r(x) + J∇Legf(x).

Proof. If the submanifold ExpR2nV is Lagrangian in R2n, then according
to Proposition 2.6 the normal vector field V is also a Lagrangian submanifold
in the normal bundle N(CLeg) provided with the symplectic form Ω. Thus
V = (i2 ◦ i1)(γ), where γ is a closed homogenous 1-form on CLeg. Using
the Poincare lemma for the cone, it is easy to see that any such homogenous
closed 1-form is in fact a differential of a function f(r, x) = r2f(x), here
x ∈ Leg. Now the equation (2.14.1) follows form the identity V = (i2 ◦ i1)df
immediately . �

We denote by ExpS2n+1 the exponential map in S2n+1. It is easy to see
that the Reeb field R on (S2n−1, α) is equal to J(∂r), where ∂r denote the
unit radial vector field on R2n.

2.15. Corollary. Let Leg be a Legendrian submanifold in S2n−1 of radius
1 and V be a normal vector field on Leg in S2n−1 such that |V | < π/4. Then
ExpS2n+1(V ) is a Legendrian submanifold, iff there is a function f on Leg
such that

(2.15.1) V := Ṽf = arcsin(
√

4f 2 + |∇Legf |2) · (2f · J∂r + J∇Legf).

Proof. It is easy to check that the cone C(ExpS2n+1(Ṽf)) coincides with
the cone C(Leg+Vf), where Vf has the same form as RHS of (2.14.1). Hence
Corollary 2.15 follows from Lemma 2.14. �
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For each θ ∈ S1 let us denote by φθ the special Lagrangian calibration
Re(eiθdz1 ∧ · · · ∧ dzn) on R2n = Cn. We denote by βθ the constant form
Im(eiθdz1 ∧ · · · ∧ dzn) on R2n.

It is known (see e.g. [HL1982]) that a submanifold Leg ⊂ S2n−1 is a
minimal Legendrian, if and only if there exists a constant θ ∈ S1 such that
the cone C(Leg) is φθ-calibrated submanifold in R2n (equivalently, the re-
striction of βθ to C(Leg) vanishes). If θ = 0, we shall call Leg a γ-minimal
submanifold. The following theorem is a generalization of a theorem of
Harvey and Lawson [Thm 2.3, Chapter III, HL1982] on the special Lagri-
angian minimality of a graph Γf = {(x,∇f(x))} ⊂ Rn ⊕ Rn = R2n. Our
formulation does not depend on a graph representation of a Legendrian sub-
manifold. It can be also considered as a (nonlinear) analog of the McLean
deformation theorem [McL1998], see also Remark 2.19.

2.16. Proposition. Let f be a C2 -function on a calibrated φ0- submani-
fold Lag in R2n such that ExpR2n(J∇Lagf) is also a Lagrangian submanifold
in R2n. Then the submanifold ExpR2n(J∇Lagf) is φ0-calibrated, if and only
if

(2.16.1) Im(det
C

(Id +
√−1∇Lag(∇Lagf)) = 0.

Here we consider ∇Lag(∇Lagf) as an element in End(TxLag) as follows

∇Lag(∇Lagf)(v) = ∇Lag
v (∇Lagf).

Proof. We consider V as a map from Lag to N(Lag). Then the im-
age V (Lag) is a submanifold in N(Lag). The tangent plan TV (x)V (Lag) ⊂
TV (x)N(Lag) is the image of the tangent plan TxLag under the differential
dV which sends v ∈ TxLag to the vector (Lh

V (x)v +∇N
v V ). Here ∇N denotes

the induced connection on the normal bundle N(Lag). By identifying TxLag
with the horizontal lift in TV (x)NLag we can write

dV (v) = v + ∇N
v V.

Furthermore ∇N
v V = ∇Lag

v (JV ), since the diffeomorphism i2 is a connection
preserving diffeomorphism of the vector bundles. Hence for a normal vector
field V (x) = J∇Lagf(x) we have

dV (v) = v + J∇Lag
v (∇Lagf).
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We identify TV (x)NLag with the complexification of TxLag, namely T v
V (x)NLag =

J(T h
V (x)NLag) =

√−1TxLag. So we can rewrite

dV = Id +
√−1∇Lag∇Lagf.

Now we remind that the image Exp(J∇Lagf) is a φ0-calibrated submanifold,
if and only if the form β0 vanishes on it. Thus our statement follows imme-
diately from Corollary 1.11, chapter III in [HL1982] which states that if A
is a complex linear map which sends the n-vector ξ0 = e1 ∧ · · · ∧ en into λξ,
where λ ∈ R and ξ is a unit n-vector, then λβ(ξ) = Im detC A. �

For any function f on Leg we denote by f̃ the function on CLeg defined
by f̃(r, x) = r2f(x).

From Proposition 2.16 we get immediately.

2.17. Proposition. Let Leg be a Legendrian γ-minimal submani-
fold in S2n−1. Then there is a 1-1 correspondence between Legendrian γ-
minimal submanifolds which is C1-close to Leg and the space of solutions
f ∈ C∞(Leg) to the differential equation

(2.17.1) Im det
C

(Id +
√−1(∇CLeg∇CLegf̃))(1, x) = 0.

In (RHS) of (2.17.1) we can replace (or extend) ∇CLegf̃(r, x) as r2∇Legf(x)+
2rf(x)∂r. Further we have

∇CLeg
∂x (r2∇Legf(x) + 2rf(x)∂r)(1, x) = ∇Leg

∂x (∇Lf(x))(1, x).

∇CLeg
∂r (r2∇Legf(x) + 2rf(x)∂r)(1, x) = ∇Legf(x) + 2f(x)∂r.

Computing the linearization of the equation (2.17.1) we get immediately

2.18. Corollary. A function f on a minimal Legendrian submanifold
Legn−1 ⊂ S2n−1 is a tangent vector to deformations of the link of a φ0-
calibrated cone in Cn, only if f is an eigenfunction of the Laplacian operator
on Legn−1 corresponding to the eigenvalue 2n.

2.19. Remark. This corollary shows that even after linearization our
deformation problem for Legendrian submanifolds is very different from the
deformation problem of special Lagrangian submanifolds [McL1998].
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Let us consider an example for Proposition 2.17 with n = 2. As we know
all minimal Legendrian spheres in the standard sphere S5 are geodesic ([Has
2000, L-W 2001c]). So non-trivial (orientable) examples have genus at least
1. Let us consider a γ-minimal torus T 2. One classical example of such a
torus is the Clifford torus

T 2 = {(exp iθ1, exp iθ2, exp iθ3) |
3∑

i=1

θi = 0},

with the induced flat metric. Any function f on T 2 can be considered as
a periodic function with two real variables (x, y). In this case the equation
(2.17.1) can be rewritten as follows

(2.17.2) �f(x)(1 + fxy) = −f(x)(2 + det(Hessf)) + 2fxfxyfy.

We shall generalize Proposition 2.17. For any oriented Legendrian sub-
manifold Leg ⊂ S2n−1 we denote by Uπ/4(Leg) the injective radius neighbor-
hood of Leg in S2n−1. Suppose that we have chosen a unitary basic in Cn.
Then we can define a function θLeg(x) on Leg as follows.

(2.20) θLeg(x) = det(TxCLeg(x)).

Here the RHS of (2.20) denotes the determinant of a unitary matrix which
transforms the chosen unitary basis to an oriented orthonormal basis in the
Lagrangian plan TxCLeg ⊂ R2n = Cn. Harvey and Lawson showed that this
“angle” function θLeg measures the mean curvature of the Lagrangian cone
CLeg in R2n, namely the Maslov 1-form dθCLeg is symplectically dual to the
mean curvature (see also (3.3).) Now using Corollary 2.15 and repeating the
argument in the proof of Proposition 2.16 we get

2.21. Theorem. Let Leg be an oriented Legendrian submanifold in
S2n−1 and L1 a minimal Legendrian submanifold in Uπ/4(Leg) such that Leg′

(geodesically) 1-1 projects on Leg. Then Leg′ = ExpS2n(Ṽf ), where the as-
sociated function f̃ satisfies the following equation

(2.21.1) Im det
C

[exp(iθLeg(x))(I +
√−1(∇CLeg∇CLegf̃))](1, x) = constant.

So we can search for a minimal Legendrian surface of higher genus in S5

by first gluing two Legendrian torus and then we have to solve the equation
(2.21.1) a for a function f on the glued Legendrian surface. A Legendrian
gluing construction is given in the section 4.
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3 Legendrian submanifolds in the contacti-

zation of a Kähler symplectic manifold.

In this section we shall study the relation between minimal Legendrian sub-
manifolds in the compact contactization Cont(M2n, ω) of a symplectic Kähler
manifold (M2n, ω, gω) and minimal Lagrangian submanifolds in (M2n, ω, gω).
We recall that the contactization Cont(M2n, ω) is a S1-principal bundle over
(M2n, ω) with the S1-connection form α whose curvature dα is π∗(ω). Here
π also denotes the projection Cont(M2n, ω) → (M2n, ω). This connection
form α is the canonical contact form α on Cont(M2n, ω).

For example the standard contact manifold (S2n+1, α) is the compact
contactization of the Kähler symplectic manifold (CP n, ω).

Now we shall consider the unique compatible Riemannian metric gα on
the contactization Cont(M2n, ω, gω) such that π is a Riemannian submersion.
We shall call this metric gα the canonical metric on Cont(M2n, ω, gω).

3.1. Lemma. The projection of the mean curvature field of a Leg-
endrian submanifold Leg in the contactization (Cont(M2n), α, gα) coincides
with the mean curvature of the projected (immersed) Lagrangian submani-
fold in (M2n, ω, gω). In particular the projection of a minimal Legendrian
submanifold in (Cont(M2n), α, gα) is an immersed minimal Lagrangian sub-
manifold in (M2n, ω, gω).

Proof. The fact that the projection of a Legendrian submanifold Leg
in (Cont(M2n), α) is a Lagrangian submanifold in (M2n, ω) follows from the
definition. Now let us compare the mean curvature of the projected manifold
π(Leg) with the one of Leg. The second fundamental form of a Riemannian
submanifold is defined by

ΦII(X, Y ) = (∇XY )N ,

where ZN denotes the normal component of the vector Z. Let X, Y be
tangent vectors in TxLeg. We extend these vectors a neighborhood of x
to commutative vector fields, which we also denote by X, Y . Clearly their
projections π∗(X), π∗(Y ) are also commutative.

Applying the formula

2 < ∇XY, Z >g= X < Y, Z >g +Y < X, Z >g −Z < X, Y >g

(3.2) + < [X, Y ], Z >g + < [X, Z], Y >g + < [Z, Y ], X >g
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we see immediately, that < ΦII(X, Y ), R >= 0, since the Reeb field R is a
Killing vector field on (Cont(M2n), α, gα).

Now applying (3.2) to X, Y, Z (and gα) and their projection π∗(X), π∗(Y ), π∗(Z)
(and gω) we get immediately that the mean curvature H((Leg)) = Tr(ΦII)
is equal to the projection π(H(Leg)) of the mean curvature H(Leg). �

It is known that the mean curvature field H(Lag) of a Lagrangian sub-
manifold Lag in a Calabi-Yau manifold X is symplectically dual to the angle
form dθ as follows ([H-L 1982]

(3.3) H = J(dθ#)

where # : Ω1(Lag) → V ect(Lag) is defined by

X(Y ) =< X#, Y >

and θ is the real part of the complex value of volhol(TxM). Here volhol denotes
the holomorphic complex volume form on X.

We shall prove formula (3.8.1) for the mean curvature of a Legendrian
submanifold, which is analog to (3.3).

Let us recall that a contact manifold M with a compatible matric gα is
called Sasaki, if the cone C(M) equipped with following extended metric ḡ

(3.4) (C(M), ḡ) = (R+ × M, dr2 + r2gα)

is Kähler w.r.t the following canonical almost complex structure J on
TC(M) = R⊕ < R > ⊕ ker α:

J(r∂r) = −R, J(R) = r∂r,

and the restriction of J to ker α coincides with the compatible almost complex
structure J , defined on M . For example, the standard contact sphere S2n−1

is a Sasaki contact manifold with the standard Riemannian metric.
If a Kähler manifold (M2n, ω, gω) is also Einstein, then its Ricci form ρ

satisfies the following equation

(3.5) ρ = λ · ω,

where λ is a constant (which is also called Einstein constant).
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We shall now prove

3.6. Lemma. The canonical metric gα on Cont(M2n, ω, gω) is Sasaki, if
(M2n, ω, gω) is Kähler, and gα is Einstein, if moreover gω is Kähler-Einstein.

Proof. To show that the metric gα is Sasaki, it suffices to show that
the complex structure J on the cone C(Cont(M2n, ω)) is integrable. Clearly
we can consider C(Cont(M2n)) as the C∗-bundle over (M2n, J, ω) associated
with the principal S1 contact bundle Cont(M2n, ω). It is easy to see that
the complex structure on the cone C(Cont(M2n)) is induced from that one
on the holomorphic line bundle associated with the curvature form ω. Thus
C(Cont(M2n)) is Kähler. The fact that the canonical metric on Cont(M2n)
is Einstein, if gω is Kähler-Einstein was proved by S. Kobayashi [Ko1963]
(see also [Be1987, Theorem 9.76]). �

3.7. Remark. A computation using the following formula for the Ricci
curvature on the cone C(M) in [L-W 2001b, Appendix] (see also [Be1987,
9.106]) tells us that this cone possesses a Calabi-Yau metric, if M is the
contactization of a symplectic Kähler-Einstein manifold with positive scalar
curvature. This Calabi-Yau metric can be obtained by formula (3.4) with
gα being some multiple of the canonical Einstein metric on M . For the
convenience of the reader we write down this formula here.

Proposition. [ L-W 2001 Appendix] The Ricci curvature Ric of the
cone CM2n+1 satisfies

Ric(∂r, ∂r) = −2n + 1

r

∂2(r)

(∂r)2
= 0,

Ric(∂r, X) = 0, if X ∈ T (M × {r}),

Ric(X, Y ) = RicM(π∗X, π∗Y )+ < X, Y > [(
∂2(r)

(∂r)2r
− (2n)

1

r2
) ◦ π]

= RicM(π∗X, π∗Y ) − (2n) < π∗X, π∗Y >, if X, Y ∈ T (M × {r}).
If Leg is a Legendrian submanifold in a Sasaki contact manifold (M, α, J),

we also have an analog of (3.4). More presicely we denote by det(M) the
determinant bundle of the contact plan bundle ker α over M and by Leg(M)
the bundle of oriented Legendrian plan in ker α. We also denote by det the
following bundle map

det : Leg(M) → det(M) : w 	→ w ∧ J(w).

14



3.8. Lemma. Let us denote by α̃ the canonical connection form on
the determinant bundle det(M) over a contact Sasaki manifold (M, α, g, J).
Then the mean curvature H(Leg) of an oriented Legendrian submanifold
Leg ⊂ M is symplecticcally dual to

(3.8.1) hLeg = (det ◦ρ)∗(α̃),

i.e. hLeg = J(H(Leg)#). Here ρ denotes the Gauss map Leg → Leg(M)
which sends each point x ∈ Leg to the plan TxLeg.

Proof. The canonical Kähler metric on the cone R+ × M is compatible
with the symplectic form ω = d(r2α) on the symplectization R × M (see
e.g. [L-W 2001b]). In other words the symplectic form ω is Kähler with
respect to ḡ. Next we note that at any point x in a Legendrian submanifold
Leg ⊂ M the mean curvature H(Leg)(x) coincides with the mean curvature
of the cone CLeg at (1, x):

(3.9) H(Leg)(x) = H(CLeg)(1, x).

We also define the Maslov form on CLeg by

(3.10) hCLeg(t, x) = J(H(CLeg)�).

On the other hand it is known that [Le1990] there exists a Maslov one form
µ on the Lagrangian Grassmanian bundle Lag(CM, ω) over CM 2 such that

(3.11) hCLeg = ρ∗
1(µ),

where ρ1 denotes the Gauss map CLeg → Lag(CM). We recall that [Le1990]
the pull back of the Maslov form µ to the unitary bundle U(CM) is the trace
of the canonical connection form on U(CM). Thus µ is the pull-back of the
canonical connection form α on the determinant bundle det M . Hence we
can rewrite (3.11) as follows

(3.12) hCLeg = (det ◦ρ1)
∗α,

here the map det : Lag(M) → det(M) is defined as follows: det(w) = w∧Jw.
Now we put

(3.13) h̄Leg := (det ◦ρ1 ◦ e)∗α,

2actually we have a statment for an almost Hermitian manifold CM
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where e denotes the embedding Leg → CLeg : x 	→ (1, x). Then we get
from (3.9), (3.10) and (3.12)

(3.14). h̄Leg = J(H(Leg)#).

We consider the natural embedding i from the Grassmannian Leg(M)
into Lag(CM):

i(l) = ∂r ∧ l,

which satisfies

(3.15) i ◦ ρ(L) = ρ1 ◦ e(L).

On the other hand we have the following commutative diagramm

Leg
ρ ��

e

��

Leg(M)

i
��

det �� det(M)

i1
��

CLeg
ρ1 �� Lag(CM)

det �� det(CM)

Clearly we have

(3.16) α̃ = i∗1(α).

From (3.10), (3.15) and (3.16) we get

(3.17) h̄Leg = (det ◦ρ1 ◦ e)∗(α) = det ◦ρ(α̃) = hLeg.

Now Lemma (3.8) follows from (3.14) and (3.17). �

If M is Kähler-Einstein (or more generally if the Ricci form ρ is non
degenerated) we can also consider (det M, α̃) as the contactization of (M, ρ).
We get immediately from Lemma 3.8 the following

3.18. Theorem. For any Lagrangian submanifold Lag in a Kähler-
Einstein manifold N there exists a canonical section h : Lag → det(N)L.
The section h(Lag) is a Legendrian submanifold in (det(N)L, α̃), if and only
if Lag is a minimal submanifold.

Indeed the canonical section h in (3.18) is defined as follows: h := det ◦ρ,
where ρ is the Gauss map from Lag to Lag(M).
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3.19. Corollary. Assume that M is a Kähler-Einstein manifold with
a rational Kähler constant p/q. Then any minimal Lagrangian submanifold
Lag can be lifted to a minimal Legendrian submanifold in Cont(M). The
holonomy group of the flat bundle Cont(M)|Lag is a subgroup of Zq.

This Corollary 3.19 was first proved by Oh in [Oh1994] for M = CP n.

3.20 Corollary. (see also [Br1987]) The mean curvature form hL of a
Lagrangian submanifold (Legendrian submanifold resp.) in a Kähler-Einstein
manifold (Sasaki-Einstein manifold resp.) is closed.

This corollary will be further studied in our Appendix.

3.21. Corollary. If a Legendrian submanifold Leg in a Sasaki contact
manifold M is contact isotopic to a minimal Legendrian submanifold, then
the restriction of the Chern class of the contact plan bundle over N to Leg
are trivial. If moreover M is Einstein Sasakian then its Maslov class (i.e.
the cohomology of the curvature form hLeg) is trivial.

Now let us consider the Kähler-Einstein manifold CP n. The following
results are obtained in a discussion with Kaoru Ono.

3.22. Proposition. Let Lag be an oriented Lagrangian submanifold in
a symplectic manifold (CP n, ω) (i.e. ω need not to be a Kähler symplectic
form). Then the Euler class of Lag is vanished.

Proof. Since Lag is an embedded oriented Langrangian submanifold, its
Euler number equals the self -intersection number [Lag] · [Lag] in CP n. Since
the cohomology ring H∗(CP n,R) is generated by the single symplectic class
[ω] then the interection number [Lag] · [Lag] is zero. �

In particular only torus T 2 admits a Lagrangian embedding into CP 2

among orientable connected surfaces. There are some more known obstruc-
tions to a Lagrangian embedding into CP n based on Floer homology, see e.g.
[Sei2000], [B-C2001].

We can also get an analogous neccesary condition for a Lagrangian embed-
ding of an unorientable submanifold Lag in CP n, but in this case an addition
information on the image of the fundamental class [Lag] in H∗(CP n,Z2) is
required. 3

3recently Nimerovski proved that there is no embedded Langrangian Klein bottle in
CP 2.
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4 Gluing Legendrian surfaces.

The following results are obtained in a discussion with Kaoru Ono.

In this section we shall show a glueing construction of two orientable em-
bedded connected Legendrian submanifolds in a contact manifold N such
that the result is also a connected orientable embedded Legendrian subman-
ifold in N . The technique we use here is an analog of the Lagrangian surgery
by Polterovich [Po1991], actually we can simplify some of his arguments.

4.1. Lemma. Suppose that two Legendrian submanifolds Leg1 and Leg2

have only finite number of isolated transversal intersection points. Then we
can perturb Leg2 in a small neighborhood of the intersection points such that
the perturbed Legendrian submanifold Leg′

2 has no intersection point with
Leg1.

Proof. We use a version of the Weinstein-Darboux theorem on a neighbor-
hood of a Legendrian submanifold (see e.g. Lemma. 2.1) to represent a small
neighborhood U2 ⊂ Leg2 at an isolated intersection point x ∈ Leg2 ∩Leg1 as
a graph (f, df) ⊂ J1(U1) of some function f over a small convex neighbor-
hood U1 ⊂ L1. Here J1(U) denotes the 1-jet-bundle over U1 with the natural
contact structure α = df − pidxi, where xi are local coordinates on Ui, and
pi are the fiber coordinates. There are two cases we have to consider. Case
1: f ≥ 0 or f ≤ 0, so the intersection point x is the minimum or maximum
of f , since f(x) = 0. Case 2: the intersection point x is not the maximum or
the minimum point of f .

In the case 1 we can perturb Leg2 by pertubing f inside the neighborhood
U1 ⊂ Leg1 so that the perturbed manifold Leg′

2 has no intersection point with
U1. This perturbation can be done by adding to f (resp. substracting from
f) a positive function which vanishes nearby the boundary ∂U1. The graph
(f̃ , df̃) of the perturbed function represent the required perturbation of U2,
since f̃ is stricly positive (negative resp.) on U1. In other words we get rid
of one intersection point of Leg1 and Leg2.

In the case 2 we also perturb Leg2 inside U2 by perturbing the func-
tion f in a neighborhood U1 ⊂ Leg1 such that the only critical point of the
perturbed function f̃ is the maximum (resp. minimum) point. This pertur-
bation of f can be done as follows. First we can assume that U1 is a disk
and therefore it can be considered as a cone with vertex in the maximum
(resp. minimum) point x0 of f on U1. Now we choose such a function f̃
such that f̃ has a negative (resp. positive) derivative along the radius vector
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on the domain outside the maximum (resp. minimum) point x0, moreover
f̃(x0) = f(x0) and f̃ coincides with f in a small neighborhood of of the
boundary ∂U1. Clearly the only critical point of f̃ is the maximum (mini-
mum resp.) point x0. Since f̃(x0) �= 0, the graph (f̃ , df̃) has no intersection
with the (zero section of) U1. Thus by using f̃ we can perturb Leg2 inside U2

so that the perturbed submanifold Leg2 has no intersection with U1. Thus
we also get rid of one intersection point. �

Next we note that if two Legendrian submanifolds Leg1 and Leg2 in a
contact manifold N has no intersection point, then we can perturb them in
a small domain which is a connected sum of two tubular neighborhoods of
Leg1 and Leg2 so that the perturbed Legendrian submanifold Leg′

1 intersects
transversally to Leg′

2 at exactly one point. If the contact manifold N is the
standard contact sphere S2n−1, then we can alternatively use the group U(n)
to move Leg1 to Leg′

1 so that Leg′
1 intersects Leg2 at a given point x ∈ Leg2.

4.2 Proposition. Suppose that Leg1 and Leg2 are two orientable con-
nected Legendrian submanifolds which intersects transversally at exactly one
point x in a contact manifold N2n+1. Then for any small neighborhood U � x
in N there exists an orientable connected Legendrian submanifold L1#L2

such that (L1#L2) \ (L1 ∪ L2) is a submanifold in U .

Proof . We can assume that U is so small such that U2 = L2∩U is a graph
(f, df) of a domain U1 = L1 ∩ U for some function f on U1. Furthermore,
using a contactomorphism we can assume that U1 and U2 are two domains in
Legendrian subspaces Rn(xi) and Rn(yi) in the contact space (R2n+1, dz −
xidyi), so the intersection point x is identified with the origin 0 ∈ R2n+1.
Now we consider a preliminary Legendrian handle L0 which is the graph
of the function f(r, θ) = ln r + ||θ||2/2 over U1 \ {0}. We also choose U1

to be a small disk Dn ⊂ Rn(xi). We observe that the ends of L0 project
injectively to Rn(xi) and to Rn(yi) respectively. Hence we can perturb L0

by first changing f in a small neighboorhood of the sphere ∂U1 so that the
new perturbed function f̃ equals zero on a smaller neighboorhood of ∂U1.
The new Legendrian handle L′

0 is then glued smoothly to L1 \ U1. In the
similar way we can perturb L′

0 at the other its end, so that the perturbed
Legendrian handle L′′

0 is smoothly glued to L2 \ U2. Clearly the connected
sum

L1#L2 := (L1 \ U1) ∪ (L2 \ U2) ∪ L′′
0

satisifies the required condition in Proposition 4.2. An expert will recognize
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that our technique is an analog of the Poltervich construction [Po1991] of
a Lagrangian surgery, and in fact here we have simplified some of his argu-
ments. �

In view of Corollary 3.21 it is important to know the Maslov class of a
glued Legendrian submanifold in a Sasakian Einstein contact manifold.

4.3. Proposition. The glued Legendrian submanifold has the trivial
Maslov class, if and only if each of the summands has the trivial Maslov
class.

Proof. If the dimension of a glued Legendrian submanifold is at least 3
then the Legendrian handle is simply connected. Thus the Maslov number of
the glued Legendrian submanifold in this case is the least common divisor of
the Maslov numbers of each summand. If the glued Legendrian submanifold
L has dimension 2, then the only new generator of H1(L,Z) is the base of the
Legendrian handle S1× [0, 1]. We remember that in this case our Legendrian
handle is constructed as a Legendrian deformation of the graph of a smooth
funtion over the annulus D2 \ {0}. Hence the evaluation of the Maslov class
on this generator is trivial. �

5 Deformations towards minimal Legendrian

submanifolds.

A straightforward computation shows that the mean curvature H(Leg) of a
Legendrian submanifold Leg in a contact manifold (M, α, gα, J) is orthogonal
to the Reeb field R. Hence (unlike the case of a Lagrangian submanifold in a
Kähler-Einstein manifold) H(Leg) cannot represent an infinitisemal Legen-
drian (or locally contact) transformation. There are two ways to deal with
this problem if we wish to deform a Legendrian submanifold into another one
of smaller volume.

The first natural idea is to use the gradient flow of the volume functional
restricted to the space of Legendrian submanifolds to deform a Legendrian
submanifold. 4

4A question of the existence of such a flow was posed by Gang Tian to Guofang Wang.
The evolution equation (5.4) was found in our discussion with Guofang Wang on this
question.
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The second one is to modify the mean curvature flow to get a Legendrian
deformation, namely we want to find a normal contact vector field V over
a Legendrian submanifold such that < V, HL >≥ 0. For a contact Sasaki
manifold which is a compact contactization of a Kähler-Einstein manifold
there is a candidate for such a deformation, namely it is the lifting of the
mean curvature flow from the base space [Smoc2002]. It can seen as gen-
erated by the projection of the mean curvature vector filed on the space of
(Hamiltonian) contact deformations.

Let us now to consider the first idea. Here we shall use a special metric
on the space of Legendrian deformations, so our gradient flow is not like the
mean curvature flow. On the other hand, its form is quite simple.

An immersed Legendrian submanifold Leg is called L-minimal if it is
a critical point of the volume functional restricted to the space ΛLeg of all
Legendrian submanifolds. On ΛLeg we define a L2 metric as follows. Let X ,
Y ∈ TLegΛLeg. By (2.4) we have

X = f1 · R − J(∇Legf1) and Y = f2 · R − J(∇Legf2),

for some functions f1 and f2 on L. We set

(5.1) < X ,Y >=
∫

Leg
f1f2 dvol(Leg).

This L2 metric does not coincide with the usual L2-metric induced by gα

on the space of sections of the normal bundle of L in M , since we take into
account only the Reeb field component.

Let us recall that the mean curvature form hLeg of a Legendrian subman-
ifold Leg in a metric contact manifold (M2n+1, α, g, J) is defined as follows

hLeg = (J(H(Leg))#.

5.2. Lemma. An immersed Legendrian submanifold Leg is a critical
point of the volume functional A on the space ΛLeg if and only if, the curva-
ture form hL is co-closed, i.e.,

d∗hLeg = 0,

where d∗ : Ω1(Leg) → Ω0(Leg) is the adjoint operator of the exterior differ-
ential d w.r.t the induced metric on Leg.
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This Lemma is an immediate consequence of the following Proposition.

5.3. Proposition. The L2-gradient vector field ∇A of the volume func-
tional A on ΛLeg is

(5.3.1) ∇A := fLegR − J(∇LegfLeg),

where fLeg is defined by
fLeg = d∗hLeg.

Proof of Proposition 5.3. For a given function f on Leg let us consider a
family Legt of Legendrian submanifolds with

Leg0 = Leg, &
∂Legt

∂t |t=0
= X = fR − J(∇Legf).

The L2 gradient vector field ∇A of the volume functional A, by definition,
satisfies

< ∇A,X > :=
∂A(Legt)

∂t |t=0
=

∫
Leg

< H, fR − J(∇Legf) >

= −
∫

Leg
< H, J(∇Legf) >=

∫
Leg

< JH,∇Legf >

=
∫

Leg
fLegf =< fLegR − J(∇LegfLeg),X > .

Hence ∇A coincides with the RHS of (5.3.1). �

Now we introduce a Legendrian submanifold diffusion flow as follows

(5.4)
∂

∂t
Legt = −∇A(Legt).

5.5. Proposition. The volume functional A is decreasing along the
flow (5.4), except at the stationary points.

Proof. From the proof of Proposition 5.3, we have

∂A(Legt)

∂t |t=0
= −

∫
Leg

< H, fLegR − J(∇LegfLeg) >= −
∫

Leg
|fLeg|2.

Hence follows Proposition 5.5. �
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According to Lemma 2.1 any Legendrian submanifold Legt in a contact
manifold (M, α) corresponds to a function ft on Leg0, if Legt lies in a small
(Weinstein-Darboux) neighborhood of Leg0. More precisely let us denote
by φ is a contactomorphism from an open neighboorhood U ⊃ Leg0 in
the standard contact manifold J1(Leg0) to a small tubular neighborhood
Nε(Leg0) ⊂ M . Then Legt = φ(ft, dft) for some function ft on Leg0. Using
this notation we shall prove

5.6. Lemma. The equation (5.4) locally (i.e. there exists T > 0 such
that for all t ∈ [0, T )) is equivalent to the equation

(5.6.1)
d ft

dt
= d∗

t (hφ(ft,dft)),

where d∗
t denotes the operator d∗ on submanifold φ(ft, dft).

Proof. Clearly there exists a positive number T such that Lt belongs to
this neighborhood, if t ≤ T .

First we show that the flow equation (5.4) implies the equation (5.6.1).
We observe that the Reeb field R in the standard contact manifold J1(Leg)
coincides with ∂z and the fiber T ∗

x Leg is always Legendrian. We also assume
that the neighboorhood U ⊂ J1(Leg0) has the induced metric φ∗(gα). Thus
in these coordinates and using (5.3) we can rewrite (5.4) as

(5.4.1)
d

dt
φ(ft, dft) = φ∗[d∗

t h(ft,dft)∂z − J∇t(d∗
th(ft,dft))].

The LHS of (5.4.1) the sum of the Reeb component φ∗(( d
dt

ft)∂z) and the
“fiber” component φ∗( d

dt
(dft)). The fiber component d

dt
dft lies in the contact

hyperplan in J1(Leg), so it is orthogonal to the Reeb field ∂z w.r.t to the
compatible induced metric φ∗(gα). Hence, by comparing the Reeb compo-
nent (in the orthogonal decomposition) of LHS and RHS of (5.4.1) we get
immediately

φ∗(
dft

dt
ft) = d∗

t (hφ(ft,dft)),

what is (5.6.1).
Now suppose that (5.6.1) holds. Then the Reeb component (in the orthog-

onal decomposition w.r.t. φ∗(gα)) of the Legendrian deformation d
dt

(ft, dft) is
d
dt

ft, as the fiber component (d/dt)dft lies in the contact hyperplan. Accord-
ing to Corollary (2.5) this component defines the infinitesimal Legendrian
deformation uniquely. Hence (5.4) is a consequence of (5.6.1). �
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Next we shall show that (5.6.1) is a quasilinear parabolic equation for a
function ft on Leg0. Then applying the short time existence theorem, due
to Huisken and Polden, for such scalar parabolic equation ([H-P1999, Thm
7.15]), we shall get the short time unique existence of a solution (5.6.1).

To see that (5.6.1) is a quasilinear equation we can either directly com-
pute (5.6.1) in local coordinates, or we can use Lemma 3.8 in the following
argument. We denote by Legt the image φ(ft, dft), and by Pt the Hodge
operator T ∗Legt → T ∗Legt w.r.t. the induced metric on Legt. Clearly Pt

depends linearly on the induced metric g(t) on Legt which in turn depends
on the first and second derivative (in x) of ft(x). Using Lemma 3.8, we write
(5.6.1) as follows

(5.14)
d

dt
f(t, x) = Pt ◦ d ◦ Pt(ρ

∗
t ◦ (det)∗α̃)

On the other hand in the local coordinates (xi) on Legt we have

(5.15) [ρ∗
t (θ)(x)]i =

∂ρj

∂xi
θj(ρt(x)),

(5.16) ρt(x) = (ft(x), dft(x),∧n
i=1(∂xi, ∂ft/∂xi, ∂(dft)/∂xi)).

Here for abbreviation we put θ = det∗(α̃).
From (5.14), (5.15), (5.16) it follows that the RHS of (5.14) is a differential

equation of 4th order and the coefficent of 4th order operator depends on
derivative of maximal 3th order of f . Thus (5.6.1) is a quasilinear differential
operator.

5.17. Theorem. Let (M2n−1, α, gα) be an Einstein Sasakian contact
manifold with a non-negative scalar curvature. Then the flow (5.4) is well-
posed, i.e., for any smooth orientable Legendrian submanifold Leg0, there
exists a T > 0 and a unique family of Legendrian submanifolds Legt for
t ∈ [0, T ) such that Legt satisfies (5.4) with the initial condition Leg0.

Proof. Clearly it suffices to prove the short time existence for the solution
to (4.6.1). We shall use here the following theorem due to Huisken and Polden
[H-P1999].

5.18 Theorem ([H-P1999, Theorem 7.15] Suppose that for a smooth
initial data u0 the operators of 2p order

A(u) = Ai1j1···ipjp(x, u,∇u, · · · ,∇2p−1u)Di1j1···ipjpu
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is smooth and strongly elliptic in a neigborhood of u0. Then the evolution
equation

(5.18.a) Dtu = A(u) + b

where b = b(x, u,∇u, · · · ,∇2p−1u) is smooth, has a unique smooth solution
on some interval [0, T ).

Continuation of the proof of Theorem 5.17. Since the evolution equation
(5.6.1) is a scalar quasilinear, in views of the Huisken -Polden theorem it
suffices to show that (5.6.1) is parabolic. Namely it suffices to show that the
symbol of the RHS of (5.6.1) is the square of a positive definite matrix. Since
the differential operator in RHS of (5.6.1) depends only on local coordinates
on Leg = φ(ft, dft), we shall compute this symbol in an open simply con-
nected domain on Leg. For the simplicity we shall denote this domain also
by Leg.

Recall from Lemma 3.8 that we have for a Legendrian submanifold Leg
in a Sasakian manifold M

(5.18) hLeg = (det ◦ρ)∗(α̃).

Since M is weakly Einstein Sasakian, the form hLeg is closed, therefore the
restriction of det M to Leg is a flat S1-bundle. Since Leg is simply connected
we can choose a trivialization

Π : det M|Leg → S1

which is compatible with this connection, i.e. i∗(α̃) = Π∗(dθ) = dΠ. Here
i denotes the embedding of det M|Leg into det M , and dθ is the canonical
1-form in the circle S1 with coordinate θ. Thus we can rewrite (5.18) as
follows

(5.19) hLeg = d(Π ◦ det ◦ρ).

So we can rewrite the equation (5.6.1) as follows

(5.20)
dft

dt
= d∗

t ◦ d(Π ◦ det ◦ρt).

As we have observed above, the operator d∗
t depends at most on the

second derivative of f . Thus it suffices to use the following Lemma 5.21 to
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compute the symbol of the RHS of (5.20). 5

5.21. Lemma. The symbol of the linearization of Π ◦ det ◦ρ ◦ φ(f) is a
positive multiple of the identity matrix.

Proof. The argument in Remark 3.7 tells us that the cone C(M) has a
natural Calabi-Yau metric gC−Y , namely it is obtained by multiplying the
Sasaki-Einstein metric on M with a positive constant σ. Clearly σ·gα remains
a Sasakian Eistein metric, and our “new” flow equation (5.4) ( and (5.6.1))
for a Legendrian submanifold Leg in the new metric σ · g is the rescaling
by factor σ of the “old” flow equation in the metric gα. Thus it suffices to
prove Lemma 5.21 in the case that the associated metric ḡα is the Calabi-Yau
metric gC−Y .

Let us denote by Π0 : det M → S1 the canonical trivialization of det M2n−1

on the Calabi-Yau. Let us denotes by Π̄ the trivialization det(CM)|CLeg

which is induced from Π : det MLeg → S1. Since two trivialization are com-
patible with the canonical connection form α on det CM , so they are the
same. Our computation in section 3 shows that the curvature forms on Leg
and on CLeg are related by

hLeg = i∗(hCLeg).

Therefore the linearization D(Π ◦ det ◦ρ ◦ φ) is equal to the restriction of
the linearization D(Π0 ◦ i ◦ ρ1 ◦C(φ)) to homogeneous functions, i.e. the set
of functions f(r, x) on CLeg with f(r, x) = r2f(x).

The same argument as in our proof of Proposition 2.16 yields

(5.22) D(Π ◦ i ◦ ρ ◦ C(φ))(f, df) = 2n f(x) + �f.

There is a second simple argument to get (5.22). For a giiven function f
on Leg let us denote by f̃ the homogeneous function of the cone CLeg such
that f(r, x) = r2f(x). Then f̃ is the infinitesimal deformation of the cone
CLeg in the Calabi-Yau manifold (C(M), gC−Y ) which coresponds to (the

5We can think that Lemma 5.21 is a an analog of Theorem 2.13 in [H-L1982, Chapter
III], where Harvey and Lawson computed the linearization of the function sin ◦ det(f,∇f)
at the minimal Lagrangian submanifolds (f,∇f) in R2n with the standard Kähler struc-
ture.
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cone) of the deformation of Leg by f . Hence taking into account the known
fact [McL1998]

(5.23) D(Π0 ◦ i ◦ ρ ◦ C(φ))(df̃) = 2n f̃(x) + �f̃ .

We rewrite this expression (5.23) in coordinates on Leg we get the RHS of
(5.22). �

Now Theorem 5.17 follows immediately from Lemma 5.21 and the fact
that d∗d = d∗d + dd∗ is the standard Laplacian. �

6 Appendix. A characterization of Kähler-

Einstein manifolds and Sasaki-Einstein man-

ifolds.

We say that a Sasakian contact manifold is weakly Einstein, if the restriction
of the Ricci form to each contact plan is proportional to the metric g.

Proposition A.1. A Kähler manifold M is Einstein, if and only for
each Lagrangian submanifold Lag ⊂ M , the 1-form hLag associated with the
mean curvature of Lag is closed.

Proposition A.2. A contact Sasakian manifold N is weakly Einstein,
if and only if for each Legendrian submanifold Leg ⊂ N , the 1-form hLeg

associated with the mean curvature of Leg is closed.

The definition of hLag and hLeg can be found e.g. in section 3.

Proof of Proposition A.2. First we remind that the 1-form hLag on a
Lagrangian submanifold Lag in a Kähler manifold M is related to the Ricci
form (or the Chern form) ρ of M as follows

dhLag = ρ|Lag.

Applying this to our Langrangian cone we have

dhCLeg = ρC
|CLeg

where ρC denotes the Ricci form on the Kähler cone CN . Clearly we have

dLeg(hLeg) = dCLeg(hCLeg)|Leg.
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Thus we get
dLeg(hLeg) = ρC

|Leg.

Now Proposition in [L-W 2001, Appendix] yields that the Ricci form ρN is
a linear combination of the Ricci form ρC on the cone and the symplectic form
on CN . Here we consider N as a subspace (1, x) in the cone CN = (r, x).
Since L is Legendrian we get

dLeg(hLeg) = (ρN )|Leg.

Thus if N is a Sasakian weakly Einstein manifold, then hL is closed.

Next we assume that that the form hLeg is closed for all Legendrian sub-
manifold Leg ⊂ N . This means that the Ricci form ρC vanishes on all
Legendrian submanifolds in N . In particular for any k ∈ R we have the form

ρk = ρC + kω

also vanishes on any Legendrian plan in N . We choose k big enough such
that ρk is nondegenerated in order to apply the following Lemma.

A.3. Lemma. If on Cn there are two symplectic forms ω1 and ω2 which
are compatible with J and has the the same Lagrangian Grassmannian then
they are propotional.

Proof . We prove by induction. Suppose that the Lemma is correct for
Cn we shall now prove for the case Cn+1. It suffices to show that there is
constant λ such that for any v ∈ R2n+2 = Cn+1 we have

ω1(V, JV ) = λω2(V, JV ).

Clearly if n ≥ 3, then the induction statement is trivial, because the restric-
tion of ωi to any complex hyperplan is a symplectic form. Now we proceed
to consider the case n = 2. First we choose a Lagrangian plan v1 ∧ v2. We
can assume that vi is an orthonormal basis in this plan w.r.t. the metric g1

which is compatible to ω1. We claim that v1 is also orthogonal to v2 w.r.t.
the second compatible metric g2. To see it we notice that the set of al La-
grangian plan containing v1 is generated by the second vector lying in the
plan v2 ∧ Jv1.

To complete the proof of Lemma A.3 for n = 2 we normalize ω2 such that
ω2(v1, Jv1) = 1. It remains to show that vi, Jvi is a unitary basis w.r.t. the
second metric g2. We observe that

ω1(Jv1 + v2, v1 + Jv2) = 0.
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Clearly
ω2(Jv1 + v2, v1 + Jv2) = 0,

if and only the norms of vi w.r. to g2 are equal. This completes the proof of
our Lemma. �

Continuation of the the proof of Proposition A.2. Our Proposition follows
immediately from the Lemma A.3 and the relation between the Ricci form
and the Chern form on a metric contact manifold. �

In the same way we prove Proposition A.1. The only new argument here
is that a Kähler weakly Einstein manifold is Kähler-Einstein. �

A.4. Remark. Using Proposition A.2 we can obtain many example of
weakly Einstein-Sasaki manifolds but not Einstein. We begin with a contact
Sasakian-Einstein manifold (M, α, gα). Then using Proposition A.2 we can
see that the contact manifold (M, σ · dα) has a compatible metric which is
Sasakian weakly Einstein but not Einstein.
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