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AFFINE DIFFEOMORPHISMS OF TRANSLATION SURFACES:
PERIODIC POINTS, FUCHSIAN GROUPS, AND

ARITHMETICITY

EUGENE GUTKIN, PASCAL HUBERT, AND THOMAS A. SCHMIDT

Abstract. We study translation surfaces with rich groups of affine diffeomor-
phisms. We introduce the notion of “prelattice” translation surfaces. They
include the lattice translation surfaces studied by W. Veech. Our results char-
acterize arithmetic surfaces among prelattice translation surfaces by the infinity
of the set of periodic points under the action of this group. We show that there
are prelattice but nonlattice translation surfaces, negatively answering a ques-
tion of Veech.

We study periodic points of hyperelliptic translation surfaces. In particular,
we give explicit examples of translation surfaces whose sets of periodic points
and Weierstrass points coincide.

1. Introduction

INTRODUCTION
A translation surface is a two dimensional real manifold with an atlas whose

transition functions are translations. The simplest example is produced by identi-
fying by translations the opposite sides of a parallelogram. This yields a flat torus,
T . The four vertices of the parallelogram are glued together into the “origin”,
o ∈ T . The total angle at o is 2π, thus o is a regular point. A closed translation
surface, S, of genus greater than one necessarily has points where the angle is a
multiple of 2π. These are the singular points, or the cone points of S. Let C(S)
be the finite set of these points. The abovementioned atlas covers the comple-
ment S \ C(S), i.e., the regular points of S. Translation surfaces (and closely
related half-translation surfaces [GJ00]) arise in several contexts: mathematical
billiards, Riemann surfaces and their moduli, classification of surface diffeomor-
phisms and measured foliations, etc. The present paper studies them from the
viewpoint of geometry and arithmetic. In the body of the Introduction we expose
the background and the motivation of the study, and formulate our main results.
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1991 Mathematics Subject Classification. 30F35, 11J70.
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1.1. Motivation and Background. In W. Thurston’s classification of surface
diffeomorphisms [Th88], he studied flat Riemannian metrics with conical singu-
larities. In a particular setting, these give rise to translation surfaces. See the
survey [MT01] for more material on this aspect of translation surfaces and [Tr86]
for the metrics with general cone singularities.

From the classical complex analysis perspective, translation surfaces arise from
Riemann surfaces. Integrating a holomorphic 1-form on a Riemann surface, we
obtain local coordinates whose transition functions are translations. Zeros of
the form yield the cone points of the translation structure. Namely, a zero of
multiplicity m − 1 yields a cone point with angle 2mπ. See, e.g., [MT01, Tr86],
and [Wrd98] for details.

In the subject of mathematical billiards there is a well known construction that
replaces a rational polygon, P , by an associated translation surface, S = S(P ).
The relation between P and S is such that the billiard ball orbits in P unfold into
the geodesics in S, reducing the billiard flow in P to the geodesic flow in S. A.
Katok and A. Zemlyakov [KZ75] used this construction to obtain new results on
billiards in polygons. For this reason, S(P ) is often called “the Katok-Zemlyakov
surface”. In fact, it is a classical geometric construct. For instance, when P is
a square, S is the square translation torus, obtained from four copies of P . See
[Gut84] and the references there on the geometry of this classical construct.

Classifying surface diffeomorphisms, Thurston focused upon affine diffeomor-
phisms of (half-)translation surfaces. The differential of a general diffeomorphism
of any surface S is a linear operator on the tangent space at each regular point of
S. Using the atlas of a translation surface S, the differential of an area preserving
diffeomorphism at each point, s ∈ S \ C(S), can be expressed as an element of
SL(2,R).

The affine diffeomorphisms preserve the translation structure. They form a
group, Aff(S). Any affine diffeomorphism has constant differential. Assigning to
g ∈ Aff(S) its differential, we obtain the differential homomorphism D : Aff(S) →
SL(2,R). We denote the range of this homomorphism by Γ(S) ⊂ SL(2,R).
W. Veech was the first to relate Γ(S) to the geometry and dynamics of the geo-
desic flow of S. See [Vch89]. It is thus customary to call Γ(S) the Veech group
of a translation surface. In [Vch89] Veech proved, in particular, that the differ-
ential homomorphism has a finite kernel, and that Γ(S) is a discrete subgroup of
SL(2,R). That is, Γ(S) is a Fuchsian group. 1

1More precisely, the flat structures considered by Veech and many other authors correspond to
half-translation surfaces [GJ00]. These are induced by the quadratic differentials on a Riemann
surface; the translation surfaces which we treat here are induced by those quadratic differentials
which are squares of holomorphic 1-forms. All of our results extend mutatis mutandis to the half-
translation surfaces. This follows, for example, from the construction in [GJ00] that associates
with a half-translation surface a 2-sheeted covering by a translation surface. See also [HM79]
and [Vch84].
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A Fuchsian group, Γ, is a lattice if the quotient SL(2,R)/Γ has finite Haar
volume. We say that S has the lattice property, or, for brevity, that S is a lattice
surface if Γ(S) is a lattice. It is necessarily nonuniform [Vch89] (equivalently:
SL(2,R)/Γ is noncompact). For instance, the standard square torus has the lattice
property — its Veech group is SL(2,Z). Recall that nonuniform lattices have
many parabolic elements. We say that a diffeomorphism g ∈ Aff(S) is parabolic
if Dg ∈ SL(2,R) is parabolic.

A nonuniform Fuchsian group, Γ, is arithmetic if it is commensurable (in the
wide sense) to SL(2,Z). That is, Γ is arithmetic if it admits a finite index subgroup
which is SL(2,R)-conjugate to a finite index subgroup of SL(2,Z). A translation
surface is arithmetic if its Veech group is arithmetic. An arithmetic group is a lat-
tice, thus arithmetic surfaces satisfy the lattice property. They were investigated
already in [Gut84]. In [Vch89, Vch92] Veech gave the first examples of nonarith-
metic lattice surfaces. He also showed that the geodesics on lattice surfaces, just
as the geodesics of a flat torus, have especially simple properties. Every geodesic is
either closed (i.e., is a periodic geodesic or a saddle connection), or it is uniformly
distributed on the surface. This is known as the Veech dichotomy. Veech’s results
led to further investigations of lattice translation surfaces. See [GJ96], [Vo96],
[EG97], [Wrd98], [KS00], [GJ00], [HS00], [HS01].

1.2. The Setting and Main Results. There are two major branches to the
study of translation surfaces. One is the study of the general or, at least, the
generic translation surface. See, for instance, [EM01, KMS86] and the survey
[MT01]. The other major branch is the study of special translation surfaces, e.g.,
those satisfying the Veech dichotomy. This approach naturally subdivides into
two: The purely geometric one [Vo96, Gut00, GM01] and the algebro-geometric
one [Wrd98, GJ96, KS00, GJ00, HS00, HS01]. The present work is of the latter
type. We elaborate on this below. See the body of the paper for the definitions
and explanations of those concepts which we only briefly mention here.

Recall the standard classification of elements of SL(2,R) \ {±I} as parabolic,
elliptic, or hyperbolic. See, for instance, [B83]. By convention, we consider the
trivial elements ±I ∈ SL(2,R) elliptic. Let φ ∈ Aff(S) be arbitrary. We say
that φ is a parabolic, elliptic, or a hyperbolic diffeomorphism, if its differential,
Dφ ∈ SL(2,R), is parabolic, elliptic, or hyperbolic respectively.

A typical translation surface has no nontrivial affine symmetries. Our transla-
tion surfaces, S, are exceptional in the sense that they have large groups of affine
diffeomorphisms. We will concentrate on subgroups “generated” by the parabolic
directions. A direction, θ, is parabolic for S if

(i) Every geodesic in this direction is either periodic or a saddle connection;
(ii) The moduli of the cylinders in S, formed by the geodesics in this direction

are commensurate.
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With any parabolic direction, we associate a parabolic diffeomorphism, φθ ∈
Aff(S). See § 2.1 for elaboration of this and what follows. The restriction of
φθ to a cylinder in the direction θ is a power of the Dehn twist of that cylinder.
This allows one to identify φθ with its differential, a parabolic element of Γ(S).
Slightly abusing notation, we will regard φθ as an element in Aff(S) and in Γ(S).
If g ∈ Aff(S) is parabolic, then there exist m,n ∈ N, and a parabolic direction θ
such that gm = φn

θ . We say that θ is the direction of the parabolic diffeomorphism
g. If α, β are distinct arbitrary directions, then either α = −β or α and β are
transversal. We will say that α, β is a pair of (transversal) parabolic directions to
mean that α and β are parabolic for S, and α �= ±β.

Definition 1. A translation surface S is a prelattice surface if it has a pair of
parabolic directions. Equivalently, S is a prelattice surface if the Veech group Γ(S)
contains non-commuting parabolic elements. Equivalently, S is a prelattice surface
if the group Aff(S) contains parabolic diffeomorphisms with distinct directions.

In the seminal work [Vch89] Veech briefly considered surfaces satisfying Defini-
tion 1. See §9 of [Vch89]. He asked if any such surface is, in fact, a lattice surface.
The class of prelattice surfaces is one of the principal subjects of this work. In
particular, we answer Veech’s question in the negative — see Corollary 4 below.

The periodic points, with respect to various subgroups of affine diffeomorphisms,
play a major role in our paper. Let S be a translation surface and let G ⊂
Aff(S) be an infinite subgroup. A point of S is G-periodic if its G-orbit is finite.
When G = Aff(S), we simply speak of the periodic points of S. This concept
is especially meaningful when S is a prelattice surface. Several characterizations
of arithmetic translation surfaces [GJ96, GJ00] imply that the set of periodic
points of an arithmetic surface is countable and dense. For instance, periodic
points of the standard square torus R2/Z2 are its rational points, i.e., the set
Q2/Z2. We extend the concept of rational points to prelattice surfaces. We prove
that the sets of periodic and rational points of S coincide if and only if S is an
arithmetic surface. Otherwise, the set of periodic points is finite. See Theorem 4
and Corollary 2 below. For the moment we formulate a result in this direction
that does not use the concept of rational points.

Theorem 1. Let S be a prelattice translation surface. Then the following di-
chotomy holds:

(i) The surface S is arithmetic and its periodic points form a dense countable
subset;

(ii) The surface S is nonarithmetic and its set of periodic points is finite.

We will need the following notation and terminology. If α, β is a pair of parabolic
directions on S, we denote by Affα,β(S) ⊂ Aff(S) the subgroup generated by the
parabolic affine diffeomorphisms φα and φβ. We will denote by Γα,β(S) ⊂ Γ(S)
its (isomorphic) image in the Veech group. Subgroups of this form will be called
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basic. More generally, any subgroup of affine diffeomorphisms will be called basic
if it is commensurable with Affα,β(S) for some pair of parabolic directions. We
apply the term basic to subgroups of Veech groups in the corresponding manner.
A group which contains a basic subgroup, is a prelattice group. Thus, S is a
prelattice translation surface if Aff(S), or equivalently Γ(S), is a prelattice group.
The following result is an extension of Theorem 1.

Theorem 2. Let S be a translation surface, and let G ⊂ Aff(S) be a prelattice
subgroup. If the set of G-periodic points of S is infinite, then S is an arithmetic
translation surface.

Theorems 1 and 2, and further related results will follow from the quantitative
Theorem 11 in § 3. Theorem 11 gives an upper bound on the number of periodic
points that a nonarithmetic translation surface can have.

Recall that an action of a group on a compact is minimal if there are no non-
trivial closed invariant subsets. As a byproduct of our analysis of diffeomorphisms
of a prelattice surface, we show that the action of its affine group on the surface
is “nearly” minimal.

Theorem 3. Let S be a prelattice translation surface. Then the only closed infi-
nite subset of S invariant under Aff(S) is S itself.

To formulate our next result, we recall the notion of a punctured translation
surface.

Definition 2. Let S be a translation surface. Let C(S) ⊂ S be its set of cone
points. Let s1, . . . , sp ∈ S \C(S) be any regular points. Puncturing S at s1, . . . , sp

we create a formally new translation surface (S; s1, . . . , sp). Its set of cone points
is C(S) ∪ {s1, . . . , sp}. The group of affine diffeomorphisms of (S; s1, . . . , sp) is
the subgroup of Aff(S) consisting of the diffeomorphisms that preserve C(S) ∪
{s1, . . . , sp}. The Veech group of (S; s1, . . . , sp) is the corresponding subgroup of
Γ(S). We denote it by Γ(S; s1, . . . , sp). We will say that (S; s1, . . . , sp) is the
surface S punctured at the points s1, . . . , sp.

The operation of puncturing a translation surface naturally arises in the context
of affine coverings. See [GJ00, Gut00, HS00, HS01]. Note that the puncturing
of a surface does not change the dynamics of its geodesic flow. However, it may
drastically change the Veech group, and the counting functions associated with
the translation surface. See [Gut00] and [HS00]. Our next result characterizes
nonarithmetic lattice surfaces in terms of their puncturings. In order to formu-
late the result, we need to introduce the notion of rational points of a prelattice
translation surface. We do this briefly, postponing a formal definition until § 5.
See Definition 5 there.

Let S be any translation surface, let γ be a periodic oriented geodesic in S, and
let α be the direction of γ. Then γ is contained in a unique maximal flat cylinder,



TRANSLATION SURFACES AND FUCHSIAN GROUPS 6

C ⊂ S. This cylinder is a disjoint union of closed geodesics, γt, parallel to γ.
The Dehn twist TC induces a rotation by t on γt, where 0 ≤ t < 1. Let γ = γρ.
It might seem natural to call ρ = ρ(γ) the rotation number of the geodesic γ.
However, our rotation number is slightly different, and we will define it under the
additional assumption that α is a parabolic direction for S. Then S decomposes
as a union of the cylinders Ci, 1 ≤ i ≤ k(α). The Dehn twists Ti of the cylinders
Ci define, after raising them to appropriate powers, a parabolic diffeomorphism
φα of S. The mapping φα induces a rotation on every geodesic in direction α, in
particular on γ. The amount, 0 ≤ r(γ) < 1, of this rotation is the rotation number
of γ. See § 2.1 for an elaboration of this discussion and for further details.

If θ is a parabolic direction, then every geodesic γ in direction θ is either pe-
riodic or a saddle connection. In both cases, we say that γ is a closed geodesic.
Furthermore, we say that a geodesic is parabolic to mean that it belongs to a par-
abolic direction. Note that on lattice translation surfaces every closed geodesic is
parabolic. See [Vch89] and [GJ00]. Thus, our rotation number, 0 ≤ r(γ) < 1, is
defined for parabolic geodesics in S. Such a geodesic is rational if r(γ) ∈ Q.

Now let S be a prelattice surface. We say that s ∈ S is a rational point of S if
it is an intersection point of two transversal rational geodesics.

Theorem 4. Let S be a prelattice translation surface. Let SQ ⊂ S be the set of
rational points and let P (S) be the set of periodic points.

(a) We have the inclusion P (S) ⊂ SQ, and the set SQ is countable and dense.
(b) The equality P (S) = SQ holds if and only if S is arithmetic.
(c) Let s ∈ S be arbitrary. Then the marked surface (S; s) is a prelattice surface

if and only if s ∈ SQ.

Applying this result to lattice translation surfaces, we obtain a classification of
their points.

Corollary 1. Let S be a lattice translation surface. Then the points of S satisfy
the following trichotomy.

(i) We have s ∈ P (S) if and only if (S; s) is a lattice surface.
(ii) We have s ∈ SQ \ P (S) if and only if (S; s) is prelattice, but not a lattice

surface.
(iii) We have s ∈ S \SQ if and only if the Veech group of (S; s) is not a prelattice.

In addition, Theorem 4 yields two new characterizations of arithmetic transla-
tion surfaces.

Corollary 2. Let S be a prelattice translation surface. Then S is an arithmetic
translation surface if and only if its set of rational points coincides with its set of
periodic points.

Corollary 3. Let S be a lattice translation surface. Then S is arithmetic if and
only if the following dichotomy holds:
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For any s ∈ S the marked surface (S; s) is either a (necessarily arithmetic) lattice
surface, or the Veech group of (S; s) is is not a prelattice.

Remark 1. Fuchsian groups can be classified in terms of their action on the ex-
tended (i. e., including the absolute) hyperbolic plane. A Fuchsian group, Γ, is
elementary if one of its orbits in the extended hyperbolic plane is finite. If Γ is a
prelattice, then it has at least two distinct cyclic subgroups of parabolic elements.
Hence, elementary groups are not prelattices.

Any nonelementary Fuchsian group contains a hyperbolic element. See say
[B83]. Recall further that a hyperbolic and a parabolic element of a Fuchsian
group cannot fix the same point of the absolute. Thus, the conjugate of the
parabolic by the hyperbolic element has a distinct fixed point from that of the
original parabolic. We conclude that a nonelementary Fuchsian group which is
not a prelattice has no parabolic elements.

Let S be the Katok–Zemlyakov translation surface of a rational polygon. R.
Kenyon and J. Smillie pointed out in [KS00] that if Γ(S) has a parabolic element,
then it also has a hyperbolic element. Hence, if Γ(S) contains any parabolic
element, then S is a prelattice translation surface.

Our further results deal with the mappings of translation surfaces that are
compatible with their structures. These are the (branched) affine coverings. See
[GJ00] and § 2.2 for the background on this material. Those coverings which
are compatible with the respective cone sets are the so-called balanced coverings
[Gut00]. See Definition 4. Balanced coverings are particularly interesting because
the groups of affine diffeomorphisms (and hence the Veech groups) behave natu-
rally under them. In particular, the lattice property is preserved under balanced
coverings. See [GJ00, HS00, HS01]. Let p : R → S be an affine covering. Its
differential, Dp, is a matrix, Dp ∈ GL(2,R). Translation coverings are the affine
coverings such that Dp = 1. The group GL(2,R) acts on translation surfaces, by
way of composition with coordinate functions. Let S → g · S denote the action.
Two translation surfaces S,S ′ are equivalent if S ′ = g · S, with g ∈ SL(2,R).
Should g instead be in GL(2,R), then we say that S and S ′ are equivalent in the
extended sense.

Again let p : R → S be an affine covering. Replacing either surface by an
equivalent one (possibly in the extended sense), we obtain a translation covering
p′ : R′ → S ′. If p is balanced, then p′ is balanced, as well. This observation is very
useful in studying the affine coverings of translation surfaces [GJ96, Vo96, GJ00].

Recall that two Fuchsian groups Γ,Γ′ are commensurable if Γ∩Γ′ is of finite index
in both. They are commensurable in the wide sense if there is some g ∈ SL(2,R)
for which Γ ∩ gΓ′g−1 is of finite index in both Γ and gΓ′g−1. See § 2.2 and the
references there for more on this material. Now we can state our next result.
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When we speak of coverings, we always mean that they are nontrivial, i.e. the
covering surface is connected, and the degree of the covering is greater than one.

Theorem 5. A. Let S be a prelattice translation surface, and let s ∈ S. Let
p : R → (S; s) be a balanced affine covering. Then the following trichotomy holds.

(i) The surface R satisfies the prelattice condition, and the groups Γ(R),Γ(S)
are commensurable in the wide sense if and only if s ∈ P (S).

(ii) The surface R does satisfy the prelattice condition, but the group Γ(R) is
commensurable in the wide sense to a prelattice subgroup of infinite index in
Γ(S) if and only if s ∈ SQ \ P (S).

(iii) The surface R does not satisfy the prelattice condition if and only if s ∈
S \ SQ.

B. Let the assumptions be as above, except that now p is a balanced translation
covering. Then the conclusions are also as above, but now the groups in question
are commensurable (in the “narrow” sense).

In order to turn Theorem 5 into a source of examples of translation surfaces
whose Veech groups have desired properties, we need a theorem that guarantees
the existence of balanced translation coverings with prescribed branch points.
This is our next result.

Theorem 6. Let S be any translation surface. Let s ∈ S \ C(S). Then there
exist balanced translation coverings p : R → (S; s).

Combining Theorem 6 with Theorem 5, we obtain in § 5 several corollaries
about Veech groups, as well as specific examples. For the moment we formulate
two immediate consequences.

Corollary 4. There exist prelattice, nonlattice translation surfaces.

Corollary 5. Let S be a nonarithmetic lattice translation surface. Let α, β be
a pair of parabolic directions for S. Then there exists a nonlattice, prelattice
translation surface R, and a translation covering p : R → S such that α and β
are parabolic directions for S.

In order to formulate our next result, we introduce a definition.

Definition 3. Let Γ ⊂ SL(2,R) be a Fuchsian group. We say that Γ is realizable
as a Veech group, if there exists a translation surface S such that Γ = Γ(S).
Similarly, Γ is nearly realizable if it is commensurable with some Γ(S).

Note that if Γ is a lattice (resp. prelattice, but not a lattice), realizable as Veech
group, then the translation surface “realizing” Γ is a lattice (resp. prelattice, but
nonlattice) surface. See [HS00, HS01] for more material on the realization of
Fuchsian groups.
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Theorem 7. Let S be a lattice translation surface. Then S is nonarithmetic if
and only if Γ = Γ(S) has a subgroup, Γ′, of infinite index, such that Γ′ is a
prelattice and Γ′ is nearly realizable as a Veech group.

Theorem 7 yields, in particular, the following “non-realization” result.

Corollary 6. Let Γ ⊂ SL(2,R) be a Fuchsian group. Suppose that Γ is commen-
surable in the wide sense to a prelattice in SL(2,Z). Then Γ is nearly realizable
as a Veech group if and only if it is a lattice.

Recall that a Riemann surface is hyperelliptic if the Riemann sphere is the
quotient of this surface by a holomorphic involution. This involution is called
the hyperelliptic involution. The Weierstrass points of a hyperelliptic Riemann
surface are exactly the fixed points of the hyperelliptic involution. A holomorphic
1-form is hyperelliptic if it is anti-invariant under the hyperelliptic involution.

Since a translation surface is given by a Riemann surface with a holomorphic
1-form, we can speak of hyperelliptic translation surfaces. See § 5.3 and Defini-
tion 7 below. The notion of Weierstrass points of a translation surface is also well
defined. As Veech [Vch89] showed, his initial examples of nonarithmetic lattice
surfaces are hyperelliptic translation surfaces. Their Veech groups are either gen-
erated by elliptic elements or else can be generated by a elliptic element and a
parabolic element, [Vch89]. The following theorems indicate that there are simple
relations between the periodic points and the Weierstrass points of a hyperelliptic
translation surface.

Theorem 8. Let S be a hyperelliptic translation surface. Suppose that the group
Aff(S) is generated by elliptic elements. Then the set of Weierstrass points is a
subset of the set of periodic points of S.

For the general hyperelliptic translation surface S the two sets do not coincide.
For instance, if S is arithmetic, then the set of its periodic points is infinite, while
the set of Weierstrass points is always finite. However, the two sets are equal for
some translation surfaces.

Theorem 9. There exist hyperelliptic translation surfaces whose sets of Weier-
strass points and of periodic points coincide.

1.3. Organization of Paper. The exposition in the body of the paper is or-
ganized as follows. In § 2 we treat background material and miscellaneous pre-
liminaries. We recommend that the reader consult the corresponding sections of
[GJ96, GJ00, HS00, HS01] for further details. Section 3 is the backbone of the
paper. There we formulate and prove several technical results about the structure
of translation surfaces and their parabolic diffeomorphisms. Some of these results
are of independent interest. However, the main purpose of § 3 is to formulate and
to prepare a proof of Theorem 11. This is a quantitative result, which implies the
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qualitative Theorems 1 and 2. Section 4 contains a few more auxiliary proposi-
tions (see § 4.1) and a proof of Theorem 11. See § 4.2 for the proof. Theorem 1
and Theorem 2 follow immediately. The proof of Theorem 3 is more involved, and
we give it in the final subsection of § 4. See § 4.3. In § 5 we prove a few more of
our claims and present explicit examples. In § 5.1 we expand the material on the
rational points of prelattice surfaces. In §§ 5.2 and 5.3 we prove the remaining
claims of § 1.2, except for Theorems 8 and 9. § 5.4 contains a few applications
and examples, illustrating our results. In § 6 we prove the remaining claims of
§ 1.2 and give more examples concerning the material of Theorems 8 and 9.

2. Background and Preliminaries

2.1. Parabolic Diffeomorphisms of a Translation Surface. We recall some
of the main concepts of the subject. We refer the reader to [GJ00] and to the
survey [MT01] for elaborations on this material. A closed translation surface, S,
has a finite set, C(S), of cone points. The points in S \ C(S) are called regular.
Every nonzero tangent vector to S, based at a regular point, has a direction.
For any direction, θ ∈ [0, 2π), the unit tangent vectors in direction θ form a
vector field, Vθ, with singularities at the cone points. Integral curves of Vθ are the
geodesics on S in direction θ. We parametrize the geodesics by arclength. If γ(t)
is a geodesic, defined for −∞ < t < ∞, and γ(t + �) = γ(t), γ(t + �/n) �= γ(t)
for n ∈ N, then γ is a (prime) periodic geodesic of length �. If γ(t) is a geodesic,
defined for 0 ≤ t ≤ �, where γ(0), γ(�) ∈ C(S), and the interior points of γ are
regular, then γ is a saddle connection of length �. We use the name closed geodesic
to designate both periodic geodesics and saddle connections.

The only closed translation surfaces without cone points are the flat tori. To
unify our treatment, we make a convention that the origin of a flat torus is a cone
point. See [GJ00]. Moving any periodic geodesic parallel to itself, we obtain a
maximal flat cylinder, C ⊂ S. These are the elementary building blocks of S.
The flat cylinder, C(�, w), of length � and width w, is obtained by identifying the
two vertical sides of the rectangle R(�, w) = {(x, y), 0 ≤ x ≤ �, 0 ≤ y ≤ w}.
All C(�, w) are affinely equivalent. However, the modulus µ = w/� = µ(C) is the
conformal invariant. Vice versa, the interior of any (maximal) cylinder C in S
is isometric to Int(C(�, w)), where � = �(C) and w = w(C) are respectively the
length and the width of C. The curves Ly, y = const., for 0 ≤ y ≤ w, are the
closed geodesics in C(�, w). If C ⊂ S is a cylinder of length � and width w, then
Ly, 0 < y < w are the periodic geodesics in S of length � and direction θ = θ(C).
The curves L0 and Lw in S are the unions of saddle connections in the same
direction.

The group of affine diffeomorphisms of C = C(�, w) is generated by the Dehn
twist T = TC. In the coordinates above we have TC : (s, t) 	→ (s+t�/w mod �Z, t).
The points in the boundary, ∂C(�, w), are fixed under T . Hence the formula
above defines the Dehn twist for any cylinder, C ⊂ S, of length � and width
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w. A direction θ is periodic for S, if every geodesic in direction θ is closed.
A periodic direction defines a decomposition of S as a finite union of cylinders
Ci, 1 ≤ i ≤ k(θ). Let wi, �i, µi be the respective parameters, and let Ti : Ci → Ci

be the respective Dehn twists. Then there exist Ni ∈ N such that the powers
TNi

i , 1 ≤ i ≤ k(θ) fit together, yielding an affine diffeomorphism φθ : S → S if
and only if the moduli µi are commensurable. Then θ is a parabolic direction. The
smallest positive µ = µ(θ) such that µ = Niµi, 1 ≤ i ≤ k(θ), is the modulus of the
parabolic direction θ. The corresponding diffeomorphism φθ ∈ Aff(S) is uniquely
defined. We call φθ the principal parabolic diffeomorphism corresponding to θ. We
use the same notation for its differential, which belongs to the group Γ(S). In
appropriate coordinates φθ is given by the parabolic upper triangular 2×2 matrix
with µ(θ) in the corner.

As opposed to the generic translation surface, lattice surfaces have many para-
bolic directions. See [Vch89].

2.2. Affine Equivalence and Coverings. There is a natural action of SL(2,R)
on the space of translation surfaces. It is especially easy to describe in terms of
the coordinate charts, see [Vch84], [Vch86], [GJ00]. If S is a translation surface,
and g ∈ SL(2,R), we denote by g · S the new translation surface. The translation
surfaces S and g ·S are affinely equivalent; one has Γ(g ·S) = gΓ(S)g−1. Therefore,
this action preserves properties such as arithmeticity, the prelattice property and
the lattice property. In particular, if α, β is a pair of parabolic directions for S,
and g ∈ SL(2,R), then g ·α, g · β is the corresponding pair of parabolic directions
for g · S. In view of these remarks, the statements formulated in § 1.2 are either
invariant or equivariant under the affine equivalence of translation surfaces. The
preceding remarks apply as well if g ∈ GL(2,R), i.e., the two translation surfaces
are equivalent in the extended sense.

We use this observation for two purposes: 1) To normalize a pair of parabolic
directions; 2) To replace an affine covering by a translation covering. The former
is immediate from one of the preceding remarks. Namely, let S be a translation
surface, and let α, β be a pair of parabolic directions for S. Replacing S by an
affinely equivalent surface, if need be, we assume without loss of generality that
α and β are the coordinate directions. Since the change of sign of a direction
does not interfere with our considerations, we can assume that α is the positive
x-direction and β the positive y-direction.

Affine coverings form a natural class of mappings of translation surfaces. They
are easy to define in terms of the coordinate charts of the two surfaces, see
say [GJ00] for this. We list a few relevant properties of affine coverings. Let
p : X → Y be one such cover. Then p defines a (surjective) branched cover-
ing of the corresponding closed topological surfaces. Furthermore, p is an affine
mapping outside of the cone sets C(X ), C(Y). Hence, its differential Dp(x) is
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a constant matrix, g ∈ GL(2,R). Translation coverings are the affine cover-
ings whose differential is the identity matrix. Replacing either X or Y by an
affinely equivalent surface (in general, in the extended sense), we can assume that
p : X → Y is a translation covering. This device has been widely used in the liter-
ature [GJ96, Vo96, GJ00, HS01]. We freely apply it here, again as the statements
on coverings in § 1.2 are either invariant or equivariant under the extended affine
equivalence. We elaborate on this as needed in the relevant proofs.

Definition 4. Let p : X → Y be an affine covering of translation surfaces. Then
p is balanced if p(C(X )) = C(Y) and p−1(C(Y)) = C(X ).

We need the following result. It was proved independently by E. Gutkin and
C. Judge [GJ96, GJ00] and by Ya. Vorobets [Vo96].

Theorem 10. Let p : X → Y be a balanced affine covering of translation surfaces.
Then the groups Γ(X ) and Γ(Y) are commensurable in the wide sense. If, besides,
p is a translation covering, then Γ(X ) and Γ(Y) are commensurable.

3. Periodic Points of Translation Surfaces

Let C be a flat cylinder, and let T : C → C be the Dehn twist. A point z ∈ C is
periodic if T nz = z, for some n > 0. The smallest such n is the period of z.

Since affine equivalence respects sets of periodic points, we restrict the com-
putations below to the standard cylinder C = C(1, 1). It is straightforward to
extend our formulas to the arbitrary C(�, w). Thus consider T : (x, y) 	→ (x + y
mod 1, y). The circles Ly = {y = const} ⊂ C are the closed geodesics of C. The
restriction of T to Ly is the rotation by y. Hence, a point z ∈ C is periodic if and
only if z ∈ Ly, where y is rational. Moreover, the set of points of period n is the
union of Lk/n, with k and n relatively prime. Thus, we have φ(n) closed geodesics
consisting of the points of period n, where φ is Euler’s totient function.

The number of geodesics in C, consisting of the points of period at most n is
Φ(n) :=

∑n
m=1 φ(m). As n tends to infinity, Φ(n) = (3/π2) · n2 +O(n logn). See

say Theorem 330 of [HW38].
We consider the subgroups of affine diffeomorphisms of C, generated by powers

of T . For n ∈ N let Fn be the set of rational rotation numbers with denominator
at most n. Thus, Fn := { (k, l) ∈ N2 | gcd(k, l) = 1, k < l ≤ n }, and |Fn| =
Φ(n) ≤ n2. The map of the unit interval to itself, x 	→ {Nx}, is N -to-1 and sends
Fn to itself. In particular, the points of period at most n under TN lie on NΦ(n)
closed geodesics in C.

We now apply the material above to an affine torus, as a model case. Again for
simplicity, we give the computations for the standard torus T, leaving the general
case to the reader. The group of affine diffeomorphisms of T is SL(2,Z). It is
generated by the horizontal and the vertical Dehn twists, Th and Tv respectively.
We have Th : (x, y) 	→ (x + y mod 1, y) and Tv : (x, y) 	→ (x, y + x mod 1).
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The points (x, y) ∈ T which are periodic with respect to SL(2,Z) are the rational
points (x, y) ∈ Q2/Z2. The set of points which are periodic of period at most n
under Tv and of period at most m under Th is the intersection of the horizontal
and vertical closed geodesics that we have just considered. The cardinality of this
set is asymptotic to (9/π4) ·m2n2, as m,n→ ∞.

Let θ be a parabolic direction on a translation surface S. We use the preceding
material and the terminology of § 1.2.

In particular, we speak of rational closed geodesics, their periods and their ro-
tation numbers.

Note that the periodic points of period n under the restriction of φθ to the
cylinder Ci lie on Niφ(n) rational geodesics of Ci. The set of rotation numbers of
these geodesics is Fn.

We now state our crucial quantitative result.

Theorem 11. Let S be a translation surface. Suppose that S has a pair of para-
bolic directions, α and β. Let Affα,β(S) ⊂ Aff(S) be the group generated by the
parabolic affine diffeomorphisms φα and φβ. Then there exist positive integers M
and N , depending only on the ratios of the parameters of the two decompositions,
so that the following statements hold.

(i) If S has more than M periodic points with respect to Affα,β(S), then S is
arithmetic.

(ii) If S has an Affα,β(S)-periodic point of period greater than N , then S is
arithmetic.

Theorem 11 follows from several technical lemmas and propositions — some
of these being of independent interest — about translation surfaces which satisfy
the assumptions of Theorem 11. Note that these are the prelattice surfaces. By
the remarks in § 2.2, we assume without loss of generality that the two parabolic
directions are the coordinate directions. We use notational labels v and h referring
to the vertical and the horizontal directions respectively. From now until further
notice the standing assumption is that both coordinate directions are parabolic
for our translation surface. A rectangle in S is a connected component of the
intersection Ch

i ∩ Cv
j . The interior of any rectangle is isometric to the Euclidean

rectangle (0, wv
j ) × (0, wh

i ). Let µi,j be the number of rectangles formed by this

intersection. We denote the rectangles by Rl
i,j, 1 ≤ l ≤ µi,j. The (essentially

disjoint) decomposition

S = ∪k(h)
i=1 ∪k(v)

j=1 ∪µi,j

l=1 Rl
i,j(1)

implies
k(h)∑
i=1

k(v)∑
j=1

µi,jw
h
i w

v
j = Area(S) .



TRANSLATION SURFACES AND FUCHSIAN GROUPS 14

Lemma 1. For 1 ≤ i ≤ k(h) (resp. 1 ≤ j ≤ k(v)) let Hi (resp. Vj) be a finite
set of closed geodesics in Ch

i (resp. Cv
j ). Then

|(∪k(h)
i=1 Hi) ∩ (∪k(v)

j=1Vj)| =

k(h)∑
i=1

k(v)∑
j=1

µi,j|Hi||Vj|.(2)

Proof. The intersection of a longitude in Ch
i with a longitude in Cv

j consists of
µi,j points.

To simplify notation, we denote the subgroups of Aff(S) generated by the dif-
feomorphisms φh and φv by A and B, respectively. We denote by 〈A,B〉 the
subgroup generated by A and B. Later on, while dealing with any pair of para-
bolic directions on S, say α and β, we will use the same conventions. We will call
〈A,B〉 the basic subgroups of Aff(S).

If f and g are functions of natural argument, we use the notation f ≤∼ g to
indicate that f(n) ≤ g(n) for n sufficiently large. As usual, f ∼ g means that the
ratio f(n)/g(n) converges to one as n goes to infinity.

The proposition below is immediate from Lemma 1 and the preceding remarks
about periodic points.

Proposition 1. For any subgroup G ⊂ Aff(S) let PG ⊂ S be the set of G-periodic
points. Denote by PG

n ⊂ PG the subset of points of periods at most n. Then

(i) For any m and n we have

|PA
m ∩ PB

n | = Φ(m)Φ(n)

k(h)∑
i=1

k(v)∑
j=1

µi,jN
h
i N

v
j .(3)

(ii) We have

|PA
m ∩ PB

n | ∼ 9

π4

⎛
⎝k(h)∑

i=1

k(v)∑
j=1

µi,jN
h
i N

v
j

⎞
⎠ m2n2.(4)

Corollary 7. We have the asymptotic inequality

|P 〈A,B〉
n | ≤∼ 9

π4

⎛
⎝ k(h)∑

i=1

k(v)∑
j=1

mi,jN
h
i N

v
j

⎞
⎠ n4 .(5)

Proof. Use equation (4) and the inclusion P
〈A,B〉
n ⊂ PA

n ∩ PB
n .

We now formulate a few immediate consequences of the propositions above.

Corollary 8. Let S be a prelattice translation surface. Let G ⊂ Aff(S) be any
prelattice subgroup. Then
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(i) The sets PG
n are finite.

(ii) The cardinality |PG
n | grows at most quartically in n, as n tends to infinity.

(iii) The set PG is infinite if and only if it contains periodic points of arbitrarily
large periods.

We will need a few technical lemmas.

Lemma 2. There exist constants c0 and n0, depending only on the parameters of
the pair of parabolic decompositions of S, such that the following holds:

Any finite orbit of 〈A,B〉 of cardinality n > n0 contains points of periods at
least c0 4

√
n with respect to each of A and B.

Proof. We choose c0 > 0 so that

c40 = (
3

π2
+ 1)−2

⎛
⎝k(h)∑

i=1

k(v)∑
j=1

µi,jN
h
i N

v
j

⎞
⎠

−1

.

By equations (4) and (5), there exists m0 ∈ N such that for m > m0 one has

|P 〈A,B〉
m | < c−1

0 m4.(6)

Rewriting this inequality as m4 > c40 |P
〈A,B〉
m | and setting n0 = c0m

4
0, we obtain

the claim.

If xα
i , 1 ≤ i ≤ k(α) are any relevant parameters of the cylinders of a parabolic

direction α, we use the notation xα
min and xα

max for the smallest and the biggest
among them.

Lemma 3. There is m0 ∈ N, depending only on the parameters of the horizontal
and vertical decompositions of S, such that the following holds:

If any finite 〈A,B〉-orbit contains a point of A-period m > m0, then the A-orbit
of this point contains a point of B-period at least√√√√2(m

wv
min

�h
max

− 1)

Nv
max

.

Proof. Suppose that O is a finite 〈A,B〉-orbit, and s ∈ O is of A-period m.
We assume, without loss of generality, that s ∈ Ch

1 , and let L ⊂ Ch
1 be the closed

geodesic containing s. It intersects at least one vertical cylinder. Again, we can
assume that L intersects Cv

1 . Let R ⊂ Ch
1 ∩ Cv

1 be one of the rectangles.
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The distance between consecutive points of A · s is �h1/m. Hence the number of
points of the orbit A·s in the interval L∩R is at least �wv

1/(�
h
1/m)� ≥ (mwv

1/�
h
1)−1.

The interval L ∩ R intersects each closed geodesic of Cv
1 exactly once. Hence

{A · s} ∩ R intersects at least (mwv
1/�

h
1) − 1 distinct closed geodesics of Cv

1 .
Let X ⊂ [0, 1]∩Q be the set of rotation numbers of these geodesics with respect

to the basic Dehn twist of Cv
1 . Recall that the closed geodesics in a cylinder are

parametrized by their rotation numbers. Set N := Nv
1 and Y := { {Nx} | x ∈

X }. Then Y is the set of rotation numbers of these geodesics with respect to
the diffeomorphism φv of S. Let n be the smallest positive integer such that
Y ⊂ Fn. Then n is the largest B-period of the geodesics in question. Using that
|Y | ≥ |X|/N and the obvious upper bound for |Fn|, we have

m
wv

min

lhmax
− 1

Nv
max

<
n2

2
.(7)

Suppose that m > m0 = lhmax/w
v
min. Then the left hand side of equation (7) is

positive, and we obtain the claim.

The following two lemmas put the statements obtained in the course of the
proofs of Lemma 2 and Lemma 3 into a more suitable form. The proofs are
straightforward, and we leave them to the reader.

Lemma 4. There exist c1 > 0 and n0 ∈ N depending only on the parameters of
the two decompositions of S, and such that the following holds:

Let n > n0, and let O ⊂ S be an 〈A,B〉-periodic orbit of cardinality at least
c1n

8. Then O contains a point, s, enjoying the following properties:

(i) The A-period of s is at least n;
(ii) Every vertical cylinder which intersects nontrivially the horizontal cylinder

containing s contains a point of B · {A · s}, whose B-period is at least n.

These statements remain true under interchange of A and B.

Lemma 5. There exist c2, c3 > 0 and n0 ∈ N so that the following holds:

(i) Let n ≥ n0, and let O ⊂ S be a finite 〈A,B〉-orbit of cardinality greater than
c2n

4. Then O contains a point of A-period at least n, and a point of B-period
at least n.

(ii) Suppose that an 〈A,B〉-periodic orbit O contains an A-periodic point, s, of
period at least c3n

2 with n ≥ n0. Then every vertical cylinder which intersects
nontrivially the horizontal cylinder containing s contains a point of A · s,
whose B-period is greater than or equal to n.
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These statements remain true under the interchange of A and B.

The proposition below is the main technical result about the prelattice surfaces.

Proposition 2. There exist c4 > 0, n0 ∈ N and d ∈ N, depending only on the
parameters of the two decompositions, so that the following holds:

Let O ⊂ S be a finite 〈A,B〉-orbit of cardinality greater than c4n
2d+2

with n ≥ n0.
Then in every horizontal (resp. vertical) cylinder there is a point of O whose
A-period (resp. B-period) is at least n.

Proof. We only sketch the proof, leaving the details to the reader. In partic-
ular, we will pretend that in the lemmas above the constants ci are equal to one
and that all the thresholds n0 are the same. The latter can always be achieved
by taking the biggest threshold of them all. The former can be arranged by (for
instance) increasing the exponents in the lemmas by an arbitrarily small, but pos-
itive amount, and raising the threshold. By the first claim of Lemma 5, there is a
horizontal cylinder, Ch

1 , such that O ∩ Ch
1 contains a finite A-orbit of cardinality

at least n2d
. Then every vertical cylinder intersecting Ch

1 contains a B-periodic

point of O, whose period is greater than or equal to n2d−1
. See the second claim of

Lemma 5. If the union of these vertical cylinders with Ch
1 covers S, we are done.

Otherwise, we continue the inductive argument. On each consecutive step of the
argument we lose a factor of 2 in the exponent 2k. Since S is connected, after a
finite number of steps we exhaust the surface. Thus, we take d to be the number
of steps in this process.

4. Large Periodic Orbits Imply Arithmeticity

We continue with our standing assumption, as well as the preceding conventions.
We begin this section with a few more technical propositions.

4.1. Commensurability of Parameters.

Lemma 6. Let Cv
i and Ch

j be two cylinders such that Ch
i ∩Cv

j �= ∅. Let R ⊂ Cv
i ∩Ch

j

be one of the rectangles in the intersection. Suppose that two distinct points of R
lie in the same A-orbit and in a finite 〈A,B〉-orbit. Then wv

j/�
h
i ∈ Q.

Proof. We denote by (x, y) the natural coordinates in R. Then 0 ≤ x ≤
wv

j , 0 ≤ y ≤ wh
i . Let s = (x, y) and s′ = (x′, y′) be the two points in question. By

assumption, there is 0 �= n ∈ Z so that

x′ = x+ n
y

wh
i

�hi , y′ = y .(8)

Since s is A-periodic, y
wh

i
∈ Q. On the other hand, since s and s′ are both B-

periodic, they belong to rational closed geodesics in Cv
j . Thus, both x/wv

j and
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x′/wv
j are rational numbers. Hence

x′ − x

wv
j

= n
y

wh
i

�hi
wv

j

∈ Q.(9)

Since, as we already noted, y
wh

i
∈ Q, we obtain the claim.

Remark 2. Interchange of A and B in assumptions of the preceding Lemma yields
the conclusion wh

i /�
v
j ∈ Q.

The following technical proposition is crucial. It is also of independent interest.

Proposition 3. Let the notation be as in Proposition 2. Set

m = m(A,B) = max{ �
h
max

wv
min

,
�vmax

wh
min

}.(10)

Suppose that S has an 〈A,B〉-periodic point of period greater than or equal to

c4m
2d+2

. Then

(i) All numbers wv
j/�

h
i and wh

i /�
v
j are rational;

(ii) The lengths �hi , 1 ≤ i ≤ k(h), are commensurate, and the lengths �vj , 1 ≤ j ≤
k(v), are commensurate, as well.

(iii) The widths wh
i , 1 ≤ i ≤ k(h), are commensurate, and the widths wv

j , 1 ≤
j ≤ k(v), are commensurate, as well.

Proof. Let O be the 〈A,B〉-orbit in question. By Proposition 2, every hori-
zontal (resp. vertical) cylinder contains a point of O of A-period (resp. B-period)
greater than m. In view of equation (10), every rectangle R ⊂ Ch

i ∩Cv
j contains (at

least) two points, s and s′ of O, such that s′ = φh · s (resp. s′ = φv · s). Lemma 6
and Remark 2 imply our first claim.

Suppose that Ch
i and Ch

i′ intersect the same vertical cylinder, Cv
j . We have already

proved that wv
j /�

h
i and wv

j/�
h
i′ are rational. Thus �hi and �hi′ are commensurate. In

view of the connectedness of S, for any pair C, C′ of horizontal cylinders, there
is a sequence C1, . . . , Ck of horizontal cylinders such that C = Ch

1 , C′ = Ch
k , and

every two consecutive cylinders of the sequence intersect some common vertical
cylinder. Thus �(C)/�(C′) is rational. The same argument works for vertical
cylinders, proving our second claim. The proof of the last claim is essentially
identical, and we leave it to the reader.

At this point we drop our standing assumption. Until further notice, we will
explicitly formulate all of our assumptions. The following proposition is of inde-
pendent interest.
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Proposition 4. Let S be a translation surface. Let α and β be two transversal
parabolic directions. Let wα

i , 1 ≤ i ≤ k(α), and wβ
j , 1 ≤ j ≤ k(β), be the widths of

the respective cylinders. Suppose that the numbers wα
i are all commensurate, and

the numbers wβ
j are commensurate, as well. Then S is an arithmetic translation

surface.

Proof. Replacing S by an affinely equivalent surface, we assume without loss
of generality that α and β are the coordinate directions. In what follows we use
h for α and v for β.

Changing the translation structure S by a diagonal transformation, if need be,
we ensure that all the widths wh

i and wv
i are rational. Applying a homothety, we

make them integral. Now we use the relations

�vj =

k(h)∑
i=1

µi,jw
h
i , �hi =

k(v)∑
j=1

µi,jw
v
j .(11)

Thus, all the lengths �hi , �
v
j are integral. Since of the parameters of the coordinate

decompositions of S are integral, by Theorem 5.5 of [GJ00], the translation surface
is arithmetic.

In some sense, Proposition 4 is a special case of a more general statement: A
translation surface whose parameters are commensurate is arithmetic. See, e.g.,
[GJ00].

4.2. Proofs of Theorems 1, 2, 11. Now we are almost ready to prove the
claims formulated in § 1.2. First, we prove the main quantitative theorem.

Proof of Theorem 11. We prove the second claim first. Let m = m(α, β), as
given by equation (10). By Proposition 3, if N ≥ m(α, β), then the assumptions
of Proposition 4 are satisfied. Hence, S is arithmetic.

To prove the first claim, we note that, by Corollary 7, the existence of M
periodic points implies the existence of a periodic point of period at least N =
const 4

√
M . This holds only for M greater than a certain threshold, depending on

the data, which also determines the constant in question. Therefore, if S satisfies
the assumption of claim (i), then it satisfies the assumption of claim (ii), as well.
Since that claim is already proven, we are done.

Note that the hypothesis of the second claim of Theorem 11 implies the hypoth-
esis of the first claim, with M = N . This observation and the preceding argument
allow us to reformulate Theorem 11 as follows.
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Corollary 9. Let S be a prelattice translation surface. Then there exists n ∈ N,
determined from the parameters of any pair of transversal parabolic directions in
S, so that the following holds:

If S either has at least n periodic points, or has a periodic point of period at
least n, then S is arithmetic.

Proof of Theorem 2. If H ⊂ G ⊂ Aff(S) is a tower of subgroups, then
P ⊂ PG ⊂ PH for the respective sets of periodic points. The claim hence follows
directly from Theorem 11.

Proof of Theorem 1. We have already proved that a nonarithmetic (pre)lattice
translation surface necessarily has a finite number of periodic points. Now let S
be an arithmetic translation surface. Replacing S by an equivalent translation
surface, if need be, we can assume that we have p : S → T, a balanced translation
covering of the standard torus, T = R2/Z2. We have Aff(T) = SL(2,Z), and the
group Aff(S) is commensurable with this. See [GJ96, GJ00].

The set Q2/Z2 := TQ ⊂ T of rational points is dense in T. But TQ is the
set of SL(2,Z)-periodic points in T. The set of periodic points in S satisfies
P (S) = p−1(TQ). As the preimage of a dense set, P (S) is dense in S.

4.3. Proof of Theorem 3. The claim is invariant under the affine equivalence
of translation surfaces. Hence, it suffices to prove the claim under the convention
introduced in § 3: The coordinate directions are parabolic. We use the pertinent
notation as well.

Let X ⊂ S be an infinite closed 〈A,B〉-invariant subset. Suppose that X contains
a coordinate closed geodesic, L. We can assume without loss of generality that L
is vertical. Let R be one of the rectangles intersecting L. The set of φh-rotation
numbers of the points in the vertical interval R∩L ⊂ X is the interval (0, 1). For
every point z ∈ R∩L of irrational rotation number, the φh-orbit of z is dense in the
horizontal geodesic containing z. Since X is closed, all of this geodesic belongs to
X. Since the set of irrational numbers is dense in (0, 1), we conclude that all of the
horizontal cylinder containing R∩L belongs to X. Since R was chosen arbitrarily,
we see that X contains the union, X1, of the horizontal cylinders intersecting L.
Replacing L by a horizontal closed geodesic in X1, we conclude that X contains
the union, X2, of the vertical cylinders intersecting X1. This inductive process
produces an increasing tower L ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X. By construction, either
Xi+1 \Xi contains at least one coordinate cylinder, or Xi = S. Since the number
of these cylinders is finite, we have X = S.

It remains to prove that X contains a coordinate closed geodesic. Let R be
a coordinate rectangle, and let z = (x, y) ∈ R be an arbitrary point. Denote
by rh(z) and rv(z) the φh and φv rotation numbers respectively. Note that rh is
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(essentially) a linear function of y alone; similarly for rv with respect to x. Since
X is infinite, there is at least one R such that the set X ∩ R is infinite. Denote
by Rh(X) and Rv(X) the sets of horizontal and vertical rotation numbers of the
points in X ∩R. Since X ∩R is closed, both Rh(X) and Rv(X) are closed subsets
of [0, 1].

If Rh(X)∪Rv(X) contains an irrational number, then there exists a closed (ver-
tical, without loss of generality) geodesic, L, with an irrational rotation number,
containing a point of X. Then, by minimality of irrational rotations, L ⊂ X.
Assume from now, and until the end of the proof, that Rh(X) ∪ Rv(X) ⊂ Q.
There are two possibilities: the set Rh(X) ∪ Rv(X) is either infinite or finite.

Suppose first that both sets of rotation numbers are finite. Then there is a
closed (horizontal, without loss of generality) geodesic, L, with a rational rotation
number which contains infinitely many points of X. Since X ∩ L ∩ R is infinite,
we have infinitely many vertical rotation numbers, contrary to the assumption.

It remains to consider the possibility when Rh(X)∪Rv(X) is infinite. Assume,
without loss of generality, that |Rh(X)| = ∞. Let r ∈ Q be an accumulation point
of Rh(X). Then there is an infinite sequence of points zn ∈ X ∩R converging to
z ∈ X ∩R, and r = rh(z). Set rh(zn) = pn/qn. Since pn/qn → r, as n → ∞, the
sequence of the denominators qn is unbounded. Let Ln (resp. L) be the horizon-
tal closed geodesic containing zn (resp. z). The distance between the consecutive
points of the orbit A · zn ⊂ Ln is of the order of q−1

n . Since Ln converges to L,
we conclude that L consists of accumulation points of X. But X is closed. Thus,
L ⊂ X, which concludes our proof.

5. Prelattice Surfaces

5.1. Rational Points. Let S be a prelattice translation surface, and let α, β
be a pair of parabolic directions. We assume without loss of generality that α, β
correspond to the positive orientation on S. In the discussion that follows we work
with an arbitrary pair α, β and use an explicit affine equivalence to reduce it to
the coordinate pair x, y. Let R ⊂ Ch

i ∩ Cv
j be one of the parallelograms Rl

i,j of the
associated decomposition. See equation (1). We change the affine structure of S
by the unique g ∈ SL(2,R) which sends α and β to the coordinate directions. Let
x, y be the Euclidean coordinates such that the interior of R is parametrized by
(0 < x < wv, 0 < y < wh). In view of possible identifications on the boundary, R
itself may not be isometric to the Euclidean rectangle [0, wv] × [0, wh]. However,
there is a unique mapping fR : [0, wv] × [0, wh] → R, inducing an isometry of
(0, wv) × (0, wh) onto Int(R).

Reversing the affine equivalence above, we return to the original directions
α, β. This construction yields a unique affine mapping fR : [0, wv] × [0, wh] → R,
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which is onto, preserves orientation and area, and is an affine isomorphism of
(0, wv) × (0, wh) and Int(R).

Definition 5. Let S be a translation surface, and let α, β be a pair of parabolic
directions. Let z ∈ S be an arbitrary point, let R be a parallelogram of the
decomposition equation (1), containing z, and let fR : [0, wv] × [0, wh] → R be
the corresponding affine mapping. Then z is rational with respect to the pair α, β
if z = fR(x, y), where x/wv, y/wh ∈ Q. A point z ∈ S is rational, if there is a pair
of parabolic directions such that z is rational with respect to it.

We use the name irrational for all points that are not rational in the sense of
Definition 5. If R is a parallelogram of the decomposition equation (1), we denote

by RQ the set of its rational points. We use the notation Sα,β
Q for the set of rational

points with respect to the pair α, β, and SQ for the set of rational points of S.
Note that the concepts of rational and irrational points applies only to prelattice
surfaces. The following proposition justifies it. Its proof is straightforward, and
we leave it to the reader.

Proposition 5. Let S be a prelattice translation surface, and let α, β be a pair
of parabolic directions for S. Let s ∈ S \ C(S) be an arbitrary point. Then the
following statements are equivalent.

(i) The point s is rational with respect to α, β.
(ii) The directions α, β are parabolic for the punctured surface (S; s).
(iii) The point s is periodic with respect to each of φα and φβ.
(iv) The point s is an intersection point of two rational geodesics, with directions

α and β respectively.

If S is a lattice translation surface, then the qualifier “parabolic” in Definition 5
and in Proposition 5 may be replaced with the formally weaker “periodic”.

5.2. Proofs of Theorems 4, 5, and Corollaries 1, 2, and 3. Now we turn
to the proofs of the relevant claims of § 1.2.

Proof of part (a) of Theorem 4. We first show that the set of rational points

of S is countable and dense. It is the union of Sα,β
Q over all pairs of parabolic

directions. Each set Sα,β
Q is countable and dense in S. It remains to show that the

set of parabolic directions of S is (at most) countable. A parabolic direction is, in
particular, periodic. It is known since [KZ75] that the set of periodic directions of
a translation surface is at most countable. See [Gut96] for further developments.

Let s ∈ P (S). Then s is periodic with respect to every Affα,β(S) ⊂ Aff(S),
hence

s ∈ ∩α,βSα,β
Q ⊂ ∪α,βSα,β

Q = SQ.

This proves the inclusion P (S) ⊂ SQ.
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Proofs of part (b) of Theorem 4 and Corollary 2 . If S is arithmetic, then

SQ = Sα,β
Q for every pair α, β. See the proof of Theorem 1. But, P (S) = Sα,β

Q

for every α, β. Hence P (S) = SQ. On the other hand, if P (S) = SQ holds,
then in particular, the set P (S) is infinite. By Theorem 1 or by Theorem 2, S is
arithmetic. This proves Corollary 2 and part (b) of Theorem 4.

Proof of part (c) of Theorem 4 . Proposition 5 immediately gives that (S, s)
is a prelattice surface for s ∈ SQ

The Veech group of a translation surface is not a prelattice if and only if the
surface does not have a pair of parabolic directions. The set of parabolic directions
for (S; s) is a subset of the set of parabolic directions for S. By Proposition 5,

Γ(S; s) is not a prelattice if and only if s ∈ S \ Sα,β
Q for all parabolic pairs α, β.

But, this is equivalent to the statement that s ∈ S \ SQ.

Proof of Corollary 1 . The first claim of Corollary 1 is in the literature
[GJ96, GJ00, HS00]. The second claim follows from the first and Theorem 4. The
third claim is a special case of the part (c) in Theorem 4.

Proof of Corollary 3. By Corollary 1, S is arithmetic if and only if the
second option in the trichotomy of Corollary 1 is empty. Thus, Corollary 1 implies
Corollary 3.

Proof of Theorem 5. If p : R → (S; s) is a balanced affine covering, we replace
R by an equivalent surface to make it a balanced translation covering. Thus, it
suffices to prove the theorem under this assumption. By [GJ00], the groups Γ(R)
and Γ((S; s)) are commensurable. This reduces all but one claim of Theorem 5
to the statements of Theorem 4. It remains to analyze the group Γ((S; s)) when
s ∈ SQ \ P (S).

Let α, β be a pair of parabolic directions for S such that s ∈ Sα,β
Q . Then the

“local isotropy group” Γα,β
s ⊂ Γ((S; s)) is a prelattice. Therefore Γ((S; s)) ⊂ Γ(S)

is a prelattice as well. But, since the orbit Aff(S) · s is infinite, Γ((S; s)) has
infinite index in Γ(S). This completes the analysis of possible cases.

5.3. Proofs of Theorems 6, 7, and Corollaries 4, 5, and 6. A translation
surface, S, can be viewed as a Riemann surface, S, with a holomorphic 1-form,
ω. The cone points, s ∈ C(S), are the zeros of ω. See [Vch84], [HM79], [GJ00],
[Gut96] or [MT01] for details. Let p : R → S be a branched covering of Riemann
surfaces, and let α be the pull-back of ω. Then the pair (R,α) determines a
translation surface, R, and p gives a translation covering, p : R → S. The cone
set C(R) is the union of p−1(C(S)) and the set of the ramification points of the
covering p : R → S.
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Proof of Theorem 6. Suppose now that S is a translation surface, and let s ∈
S \ C(S). Let (S, ω) be the corresponding Riemann surface and the holomorphic
1-form. By the remark above, we have a one-to-one correspondence between the
balanced translation coverings p : R → (S; s) and the coverings of Riemann
surfaces p : R → S, satisfying the following conditions: 1) The points in S \
{C(S)∪{s}} do not belong to the branch locus of p; 2) Every point in p−1(s) ⊂ R
is a ramification point of p. For instance, if s is the only branch point of p in
S \C(S), and |p−1(s)| = 1, the conditions above are satisfied. There are coverings
of arbitrarily high degree which satisfy the two conditions [FK80].

Proofs of Corollaries 4, 5. Now let S be a nonarithmetic lattice surface. See
[Vch89] for simple examples. By Theorems 1 and 4, the set SQ \P (S) is countable
and dense, hence nonempty. Let s ∈ SQ \ P (S) be any point. Let p : R → (S; s)
be any balanced translation covering. By Theorem 5, R is a prelattice, nonlattice
translation surface. This proves Corollary 4. To obtain Corollary 5, we use the
preceding argument, but choose any point s ∈ Sα,β

Q \ P (S).

Proofs of Theorem 7 and Corollary 6. Let S be a nonarithmetic lattice
surface. Let α, β be a pair of parabolic directions. Let s be as in the proof
of Corollary 5. Set Γ′ = Γ((S; s)). By Theorem 5, the prelattice group Γ′ is of
infinite index in Γ(S). Thus, Γ′ is not a lattice. Let p : R → (S; s) be as in
Theorem 6. By Theorem 10, the groups Γ(R) and Γ′ are commensurable. Thus,
R provides a near realization of Γ′.

Let now S be arithmetic, and let Γ′ ⊂ Γ(S) be a prelattice subgroup of infinite
index. Suppose that Γ′ is nearly realizable as a Veech group. Then there exists
a translation surface R and a finite index subgroup Γ′′ ⊂ Γ′, such that Γ′′ is of
finite index in Γ(R). Let g ∈ Γ′′ be a hyperbolic element. Since Γ is arithmetic,
the trace of g is a rational number. Therefore, by [KS00] (Theorem 28), the
holonomy field of R is Q. (See [KS00] for the notion of the holonomy field of a
translation surface.) Then, by Theorem 5.5 of [GJ00], R is arithmetic. On the
other hand, Γ(R) has infinite covolume. This contradiction yields Theorem 7.
Finally, Corollary 6 is a special case of Theorem 7.

5.4. Examples and Applications. In this subsection we illustrate and augment
the preceding material. We also give an application to polygonal billiards. The
example below provides a family of prelattice subgroups of SL(2,Z), none of which
can be (even nearly) realized as Veech groups.

Example 1. For m,n ∈ N, let Gm,n ⊂ SL(2,Z) be the group generated by the

parabolic matrices µ =

(
1 m
0 1

)
and ν =

(
1 0
n 1

)
. Our family consists of Gm,n

for which mn > 4.
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Note that each Gm,n satisfies the following condition: For each hyperbolic el-
ement g ∈ Gm,n the fields Q(|tr(g2)|) and Q(|tr(g)|) coincide. This condition is
necessary for the realizability of a Fuchsian group as a Veech group, see [HS01].

For anym,n withmn > 4, let Ωm,n be the domain in the upper half-plane, which
is bounded by the two vertical lines x = ±m/2 and by the two half-circles with
the endpoints at x = −2/n, x = 0 and x = 0, x = 2/n respectively. Then Ωm,n is
a fundamental domain for Gm,n, see say [B83]. But Ωm,n is of infinite hyperbolic
area. By Corollary 6, Gm,n is not realizable as a Veech group if mn > 4. Moreover,
since any group commensurable to Gm,n will also be of infinite covolume, Gm,n is
not nearly realizable as a Veech group.

For mn ≤ 4 the group Gm,n is of finite index in SL(2,Z), and hence is nearly
realizable.

There is a well known connection between rational polygons and translation
surfaces. For the reader’s convenience, we outline it here. See the surveys [Gut96]
and [MT01] for more information. A Euclidean polygon, P , is rational if the
angles between its sides are of the form mπ/n. Let N = N(P ) be the common
denominator of these rational numbers. There is a canonical translation surface,
S = S(P ). Combinatorially, S is made from 2N copies of P glued along their
boundaries in a canonical fashion. The relation between P and S is such that
the billiard ball orbits in P unfold into the geodesics in S, reducing the billiard
flow in P to the geodesic flow in S. This observation was used by A. Katok and
A. Zemlyakov in [KZ75] to prove the topological transitivity of the billiard in the
typical (i.e. , irrational) polygon. For this reason, the translation surface S(P ) is
often called “the Katok-Zemlyakov surface” of a rational polygon. In fact, it is a
classical geometric construct. See [Gut84] and the references there.

Definition 6. Let P be a rational polygon, and let S be the corresponding trans-
lation surface. We say that P is a lattice polygon (resp. a prelattice polygon) if S
is a lattice (resp. a prelattice) translation surface.

The simplest lattice polygon is the square. Its translation surface is the standard
torus. Gutkin [Gut84] introduced and investigated a class of rational polygons
P that naturally generalize this example: The surface S(P ) is arithmetic. We
call these the arithmetic polygons. Veech in [Vch89] gave the first examples of
nonarithmetic lattice polygons. These are the right triangles whose smallest angle
is π/n, if n �= 4, 6.

Let p, q, r ∈ N be relatively prime. We denote by T (p, q, r) the Euclidean
triangle with angles pπ/(p+q+r), qπ/(p+q+r), rπ/(p+q+r). In this notation,
the right triangle above is T (2, n− 2, n) if n is odd and T (1, m− 1, m) if n = 2m.

One of the remarkable properties of lattice polygons concerns the asymptotics
of the number of periodic billiard orbits. These occur in bands of parallel orbits
of the same (physical) length. Let fP (x) be the number of the periodic bands of
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length at most x in P . Veech proved in [Vch89] that if P is a lattice polygon,
then

fP (x) ∼ c(P )x2, asx→ ∞.(12)

We denote by Γ(P ) the Veech group of the lattice translation surface S(P ).
We call it the Veech group of the polygon P . Using harmonic analysis and ex-
plicit computations, Veech calculated the quadratic constants c(T (2, n − 2, n))
and c(T (1, m − 1, m)). See [GJ00] for an elementary approach to the quadratic
asymptotics for the number of periodic billiard orbits expressed in equation (12).

There are several other papers concerning lattice polygons in the literature
[Vch92, Vo96, Wrd98, KS00]. They provide, in particular, many examples of
rational polygons that satisfy or do not satisfy the lattice condition. The results
of [KS00] and [Pu01] yield a complete description of lattice acute triangles. Below
we give an explicit example of a prelattice but nonlattice triangle.

Example 2. Set T1 = T (2, 3, 5) and T2 = T (3, 3, 4). Let S1 and S2 be the
corresponding translation surfaces, and let Γ1 and Γ2 be the respective Veech
groups. We prove that T2 is a nonlattice, prelattice triangle.

The triangle T1 has angles π/2, π/5, 3π/10. It belongs to the family of lattice
triangles treated in [Vch89]. The surface S1 is obtained by glueing along the sides
two copies of the regular pentagon. Their vertices are glued into a single point,
the cone set C(S1). The isosceles triangle T2 has angles 2π/5, 3π/10, 3π/10. It
is the “doubling” of T1 along one of its sides. Accordingly, there is a canonical
two-to-one translation covering p : S2 → S1.

Let o1, o2 be the centers of the two pentagons. The covering above is not
balanced, but it defines a balanced covering p : S2 → (S1; o1, o2). Hence, Γ2 is
commensurable with Γ((S1; o1, o2)). See Proposition 4 and related material in
[HS00].

By Proposition 3 of [HS00], the group Γ2 is not a lattice. Thus, T2 is not a
lattice triangle. Therefore, the points o1, o2 are not periodic points of the lattice
surface S1. Choose any two diagonals of the regular pentagon. Their directions,
α and β, are parabolic [Vch89]. Since o1, o2 are intersection points of the saddle
connections of a pair of parabolic directions, they are rational points of S1. Hence,
Γ((S1; o1, o2)) ⊂ Γ1 is a prelattice.

The group Γ2, being commensurable with Γ((S1; o1, o2)), is a prelattice as well.
Thus, T2 is a prelattice triangle.

6. Weierstrass Points versus Periodic Points

Definition 7. Let S be a translation surface. Let (S, ω) be the corresponding
Riemann surface with a holomorphic 1-form. We say that S is a hyperelliptic
translation surface if S is a hyperelliptic Riemann surface, and ω is anti-invariant
under the hyperelliptic involution of S.
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6.1. Proof of Theorem 8. We begin with a general Lemma which will be useful
later on.

Lemma 7. Let S be an arbitrary translation surface. Let φ ∈ Aff(S) be an elliptic
element. Then there is an affinely equivalent translation surface T such that the
induced diffeomorphism ψ ∈ Aff(T ) is an isometry.

Proof. Let α be the 1-form on S giving the translation structure and the
metric. By assumption, either Dφ = ±1, or Dφ is an elliptic element of SL(2,R).
In the former case, φ itself is an isometry. Suppose now that Dφ is elliptic. Then
Dφ fixes a unique point in the upper half-plane. Let g ∈ SL(2,R) be an element
that sends that point to i. Set T = g · S, and let β be the corresponding 1-form
on T . The induced diffeomorphism ψ ∈ Aff(T ) satisfies Dψ = g ·Dφ · g−1. Since
Dψ(i) = i, it belongs to the group SO(2). Let θ be the rotation angle of Dψ.
Then ψ(β) = eiθβ. Thus, ψ is an isometry of T .

Proof of Theorem 8. Let S be a translation surface and let T = g · S
be an equivalent translation surface. Denote by S and T the corresponding Rie-

mann surfaces, and let W (S),W (T ) be the respective sets of Weierstrass points.
We regard W (S) and W (T ) as subsets of the underlying “physical surface”, M .
In general there is no relation between the sets W (S),W (T ) ⊂M .

Let now S be a hyperelliptic translation surface. Then S is obtained by identi-
fying the opposite sides of a centrally symmetric polygon, P , whose centerpoint is
the origin o. The points of W (S) are represented by o, the midpoints of the sides
of P , and (possibly) its vertices. In particular, W (S) contains the cone points of
S, which, if any, come from the vertices. All of this is indicated in [Vch93b].

Let T = g · S be an equivalent translation surface. Set Q = g ·P . The polygon
Q is centrally symmetric. But T is obtained by identifying the opposite sides of
Q. Thus, T is a hyperelliptic translation surface, as well. In view of the preceding
remarks, g ∈ SL(2,R) induces a bijection of W (S) and W (T ).

Let now φ ∈ Aff(S) be an elliptic diffeomorphism. Let T = g · S be such that
the diffeomorphism ψ = g ·φ · g−1 ∈ Aff(T ) is an isometry. It exists, by Lemma 7.
Since ψ is a conformal automorphism of the Riemann surface T , it preserves the
set W (T ). See say [FK80]. By remarks above, φ preserves W (S).

We have now shown that Aff(S) preserves the set of Weierstrass points of S.
Since this set is finite, we obtain the claim.

The following result is an immediate corollary of the preceding argument. In
combination with Theorem 8, it shows that the Weierstrass points of the surfaces
studied by Veech [Vch89] are, in fact, periodic.
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Corollary 10. Let S be a hyperelliptic translation surface. Suppose that the group
Aff(S) admits a generating set consisting of elliptic elements, and of parabolic
elements which preserve the set W (S). Then the Weierstrass points of S are
periodic.

6.2. Examples that prove Theorem 9. Below we discuss a few examples that
led to the present work. In particular, we show that these hyperelliptic translation
surfaces admit their Weierstrass points as periodic points, thus proving Theorem 9.

Example 3: A Gnomon. Let P be the cross of translation λ = (1 +
√

5)/2,
discussed in Lemma 2 of [HS01]. See also Figure 1 there. It yields a hyperelliptic
translation surface S, of genus 2. The six Weierstrass points of S come from the
center, the exterior corners of the cross — these are identified to a single cone
point — and from the midpoints of the opposite sides (identified in pairs). We
will show that S has the property stated in Theorem 9.

By a cut-translate-and-paste operation, we put P into the form of an “L”. The
L-shaped polygons are often called “gnomons”. In Figure 1 below the Weierstrass
points of P are marked. The cone point is black, the remaining five points are
marked by open circles: O, A, . . . , D. The invariants of the vertical cylinders are:
wv

1 = 1, �v1 = λ, wv
2 = λ−1 and �v2 = 1. We use two coordinate systems in the unit

square U inside P : The standard x, y-coordinates with the origin at the center of
the square and the x′, y′-coordinates, obtained by the rotation of these by −π/4.
Note that any periodic point which is in U must have rational x, y-coordinates.

y

x

y’

x’
C

1 1− λ

1

B A

D

O

Figure 1. The gnomon, λ = (1 +
√

5)/2.

The two cylinders in the direction π/4 have the following parameters: w
π/4
1 =

(λ − 1)/
√

2, �
π/4
1 = (λ + 1)

√
2 and w

π/4
2 = (2 − λ)/

√
2, �

π/4
2 = λ

√
2. The two

cylinders in the direction 3π/4 have the same parameters. See Figure 2 below.
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λλλ −1−12−

λ

1

Figure 2. Cylinders for θ = 3π/4.

Intersecting U with the cylinders of width w = (λ− 1)/
√

2 for both directions
deletes from U the four corners. They are the images of the bottom left hand
corner shaded in gray in Figure 2 under the standard symmetries of the square.
Denote the intersection by I. Let s = (x, y) ∈ I be a periodic point. We have
(x, y) = ( (x′ + y′)/

√
2, (−x′ + y′)/

√
2 ), hence

√
2y′ = x − y ∈ Q. Since s is

periodic, y′ is a rational multiple of the width of the cylinders meeting this region.
Thus,

√
2y′ ∈ Q ∩ (λ− 1)Q, implying y′ = 0. Analogous argument yields x′ = 0.

Suppose now that s = (x, y) ∈ U \ I. By symmetry, it suffices to assume that
s belongs to the bottom left corner of U . As before, x′ is a rational multiple of
the cylinder width, implying x′ = 0. Analogous rationality considerations imply
that y′ ∈

√
2Q ∩ 2−λ√

2
Q, yielding y′ = 0. Hence, the set U \ I contains no periodic

points. The only periodic point in U is its center point.
We will use the horizontal and vertical parabolic diffeomorphisms to push any

periodic point s into U . Suppose that s is in the interior of the vertical cylinder
of width 1 and length λ. Since the intersection of U with each closed geodesic
is longer than half of its length, the orbit of s meets the unit square. Therefore,
the only periodic points in the interior of this cylinder are the center of U and its
image under the vertical parabolic. The horizontal Dehn twist maps the boundary
of the vertical cylinder into the interior of the horizontal cylinder. By symmetry,
we obtain the claim.

Example 4: An Octagon. Let P be the regular octagon, inscribed in the
unit circle. Identifying the opposite sides of P by translations, we obtain a trans-
lation surface, S. It is hyperelliptic, and has genus 2. By results of Veech [Vch89],
S is a nonarithmetic lattice surface. See also [AH00] for more on this and related
surfaces. As for the gnomon of the preceding example, the six Weierstrass points
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of S come from the center of P , the midpoints of the edges, and the vertices. We
will show that S has the property stated in Theorem 9.

The coordinate directions form a parabolic pair. Each of them yields two cylin-
ders. Rotating coordinates by π/8, we obtain another pair of parabolic directions,
with two cylinders in each. In the notation of Figure 3, we have w1 =

√
2/2,

w2 = (2 −
√

2)/2, and w1′ = 2 sin π/8, w2′ = cosπ/8 − sin π/8.

I

II

II

I

1
12 2

2’

II’

1’

2’
I’

II’

C
B

A

Figure 3. Cylinders for several directions; induced partition of triangle.

We will show that a periodic point in P is either its center, a midpoint of an
edge, or a vertex. By symmetry, it suffices to show this for points of the triangle
with vertices 0, eiπ/4, i. Denote by A, B and C the parts of this triangle, obtained
by intersecting it with the cylinders above. See Figure 3. The triangle A contains
points in the cylinders labeled 1, I, 1′ and I ′. The quadrangle B contains points
in the cylinders 1, I, 1′ and II ′. The triangle C contains points in the cylinders
1, II, 1′ and II ′.

We denote by x, y the standard coordinates centered at z = 0, and by x′, y′ for
the same coordinates rotated by −π/8.

Let s = (x, y) = (x′, y′) ∈ A be a periodic point. Then x, y ∈
√

2Q and
x′, y′ ∈ (sin π/8)Q. The relation between the two coordinate systems yields

x = x′ cosπ/8 + y′ sin π/8, y = −x′ sin π/8 + y′ cosπ/8.(13)

From x′ = p
q
sin π/8 and the double angle equation, we obtain x′ cosπ/8 ∈

√
2Q.

Hence y′ sin π/8 ∈
√

2Q. But y′ = u
v

sin π/8, yielding x′ = y′ = 0. Thus, s is the
center of P .

Suppose now that s = (x, y) = (x′, y′) ∈ B ∪ C is a periodic point. Then
x ∈

√
2Q, x′ ∈ (sin π/8)Q, and y′ ∈ sin π/8 + (cosπ/8 − sin π/8)Q. (Here,
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λ+ µQ denotes the set of reals of the form λ+ µa/b with rational a/b. ) Exactly
as above, we obtain x′ cosπ/8 ∈

√
2Q. Therefore, equation (13) allows us to

conclude that y′ sin π/8 ∈
√

2Q. Let y′ = sin π/8 + (cosπ/8− sin π/8)u
v
. We have

(2−
√

2)/4+ [
√

2/2− (2−
√

2)/4]u
v
∈
√

2Q. It is easily seen that this membership
implies that u

v
must equal 1. Therefore, we find y′ = cosπ/8. Hence, s belongs to

the edge of P . See Figure 3. The Dehn twist of the cylinder 1′ sends the midpoint
of the edge to the center and fixes the vertices. Other points of the edge go to the
interior points of P . Those points are not periodic, by our preceding argument.

We have shown that the periodic points of S belong to the set of Weierstrass
points. By the results of [Vch93b] or [AH00], the group Aff(S) satisfies the as-
sumptions of Corollary 10. Thus, the opposite inclusion holds, as well. This
proves our claim.
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