Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

The eta invariant and the real connective K-theory of the classifying space for quaternion groups
by

Egidio Barrera-Yanez and Peter B. Gilkey

THE ETA INVARIANT AND THE REAL CONNECTIVE K-THEORY OF THE CLASSIFYING SPACE FOR QUATERNION GROUPS

EGIDIO BARRERA-YANEZ AND PETER B. GILKEY

Abstract

We express the real connective K theory groups $\tilde{k} o_{4 k-1}\left(B Q_{\ell}\right)$ of the quaternion group Q_{ℓ} of order $\ell=2^{j} \geq 8$ in terms of the representation theory of Q_{ℓ} by showing $\tilde{k} o_{4 k-1}\left(B Q_{\ell}\right)=\tilde{K} S p\left(S^{4 k+3} / \tau Q_{\ell}\right)$ where τ is any fixed point free representation of Q_{ℓ} in $U(2 k+2)$. Subject Classification: 58G25.

1. Introduction

A compact Riemannian manifold (M, g) is said to be a spherical space form if (M, g) has constant sectional curvature +1 . A finite group G is said to be a spherical space form group if there exists a representation $\tau: G \rightarrow U(k)$ for $k \geq 2$ which is fixed point free - i.e. $\operatorname{det}(I-\tau(\xi)) \neq 0 \forall \xi \in G-\{1\}$. Let

$$
M^{2 k-1}(G, \tau):=S^{2 k-1} / \tau(G)
$$

be the associated spherical space form; G is then the fundamental group of the manifold $M^{2 k-1}(G, \tau)$. Every odd dimensional spherical space form arises in this manner; the only even dimensional spherical space forms are the sphere $S^{2 k}$ and real projective space $\mathbb{R P}^{2 k}$. The spherical space form groups all have periodic cohomology; conversely, any group with periodic cohomology acts without fixed points on some sphere, although not necessarily orthogonally. We refer to [18] for further details concerning spherical space form groups.

Any cyclic group is a spherical space form group since the group of $\ell^{\text {th }}$ roots of unity acts without fixed points by complex multiplication on the unit sphere $S^{2 k-1}$ in \mathbb{C}^{k}. Let $\mathbb{H}=\operatorname{span}_{\mathbb{R}}\{1, \mathcal{I}, \mathcal{J}, \mathcal{K}\}$ be the quaternions, let $\ell=2^{j} \geq 8$, and let $\xi:=e^{4 \pi \mathcal{I} / \ell} \in \mathbb{H}$ be a primitive $\left(\frac{\ell}{2}\right)^{t h}$ root of unity. The quaternion group Q_{ℓ} is the subgroup of \mathbb{H} of order ℓ generated by ξ and \mathcal{J} :

$$
\begin{equation*}
Q_{\ell}:=\left\{1, \xi, \ldots, \xi^{\ell / 2-1}, \mathcal{J}, \xi \mathcal{J}, \ldots, \xi^{\ell / 2-1} \mathcal{J}\right\} \tag{1.1}
\end{equation*}
$$

Let $B G$ be the classifying space of a finite group and let $k o_{*}(B G)$ be the associated real connective K theory groups; we refer to $[2,3,7,9,14]$ for a further discussion of connective K theory and related matters.

The p Sylow subgroup of a spherical space form group G is cyclic if p is odd and either cyclic or a quaternion group Q_{ℓ} for $\ell=2^{j} \geq 8$ if $p=2$. This focuses attention on these two groups. We showed previously in [4] that:

Theorem 1.1. Let \mathbb{Z}_{ℓ} be the cyclic group of order $\ell=2^{j}>1$. Let $k \geq 1$. Let $\tau: \mathbb{Z}_{\ell} \rightarrow U(2 k+2)$ be a fixed point free representation. Then

$$
\tilde{k} o_{4 k-1}\left(B \mathbb{Z}_{\ell}\right)=\tilde{K} S p\left(M^{4 k+3}\left(\mathbb{Z}_{\ell}, \tau\right)\right)
$$

In this paper, we generalize Theorem 1.1 to the quaternion group:

[^0]Theorem 1.2. Let Q_{ℓ} be the quaternion group of order $\ell=2^{j} \geq 3$. Let $k \geq 1$. Let $\tau: Q_{\ell} \rightarrow U(2 k+2)$ be a fixed point free representation. Then

$$
\tilde{k}_{o_{4 k-1}}\left(B Q_{\ell}\right)=\tilde{K} S p\left(M^{4 k+3}\left(Q_{\ell}, \tau\right)\right)
$$

The quaternion (symplectic) K theory groups $\tilde{K} S p\left(M^{4 k+3}\left(Q_{\ell}, \tau\right)\right)$ are expressible in terms of the representation theory - see Theorem 4.1. Thus Theorem 1.2 expresses $\tilde{k} o_{4 k-1}\left(B Q_{\ell}\right)$ in terms of representation theory. If $\ell=8$, then these groups were determined previously $[3,5]$.

Here is a brief outline to this paper. In Section 2, we review some facts concerning the representation theory of Q_{ℓ} which we shall need. In Section 3, we review some results concerning the eta invariant. In Section 4, we use the eta invariant to study $\tilde{K} S p\left(M^{4 k+3}\left(Q_{\ell}, \tau\right)\right)$. In Section 5, we use the eta invariant to study $\tilde{k} o\left(B Q_{\ell}\right)$ and complete the proof of Theorem 1.2.

The proof of Theorem 1.2 is quite a bit different from the proof of Theorem 1.1 given previously; the extension is not straightforward. This arises from the fact that unlike the classifying space $B \mathbb{Z}_{\ell}$, the 2 localization of $B Q_{\ell}$ is not irreducible. Let $S L_{2}\left(\mathbb{F}_{q}\right)$ be the group of 2×2 matrices of determinant 1 over the field \mathbb{F}_{q} with q elements where q is odd. Then the 2-Sylow subgroup of $S L_{2}\left(\mathbb{F}_{q}\right)$ is Q_{ℓ} for $\ell=2^{j}$ where j is the power of 2 dividing $q^{2}-1$. There is a stable 2-local splitting of the classifying space $B Q_{\ell}$ in the form

$$
\begin{equation*}
B Q_{\ell}=B S L_{2}\left(\mathbb{F}_{q}\right) \vee \Sigma^{-1} B S^{3} / B N \vee \Sigma^{-1} B S^{3} / B N \tag{1.2}
\end{equation*}
$$

where N is the normalizer of a maximal torus in $S^{3}[16,15]$. It is necessary to find a corresponding splitting of $\tilde{K} S p\left(M^{4 k+3}\left(Q_{\ell}, \tau\right)\right)$ that mirrors this decomposition; see Remark 5.2.

2. The Representation Theory of Q_{ℓ}

We say that $f: Q_{\ell} \rightarrow \mathbb{C}$ is a class function if $f\left(x g x^{-1}\right)=f(g)$ for all $x, g \in Q_{\ell}$; let Class $\left(Q_{\ell}\right)$ be the Hilbert space of all class functions with the L^{2} inner product

$$
\left\langle f_{1}, f_{2}\right\rangle=\ell^{-1} \sum_{g \in Q_{\ell}} f_{1}(g) \bar{f}_{2}(g)
$$

Let $\operatorname{Irr}\left(Q_{\ell}\right)$ be a set of representatives for the equivalence classes of irreducible unitary representations of Q_{ℓ}. The orthogonality relations show that $\{\operatorname{Tr}(\sigma)\}_{\sigma \in \operatorname{Irr}}\left(Q_{\ell}\right)$ is an orthonormal basis for Class $\left(Q_{\ell}\right)$, i.e. we may expand any class function:

$$
f=\sum_{\sigma \in \operatorname{Irr}\left(Q_{\ell}\right)}\langle f, \operatorname{Tr}(\sigma)\rangle \operatorname{Tr}(\sigma) .
$$

The unitary group representation ring $R U\left(Q_{\ell}\right)$ and the augmentation ideal $R U_{0}\left(Q_{\ell}\right)$ are defined by:

$$
\begin{aligned}
R U\left(Q_{\ell}\right) & =\operatorname{Span}_{\mathbb{Z}}\{\sigma\}_{\sigma \in \operatorname{Irr}\left(Q_{\ell}\right)}, \text { and } \\
R U_{0}\left(Q_{\ell}\right) & =\left\{\sigma \in R U\left(Q_{\ell}\right): \operatorname{dim} \sigma=0\right\}
\end{aligned}
$$

We shall identify a representation with the class function defined by its trace henceforth; a class function f has the form $f=\operatorname{Tr}(\tau)$ for some $\tau \in R U\left(Q_{\ell}\right)$ if and only if $\langle f, \sigma\rangle \in \mathbb{Z}$ for all $\sigma \in \operatorname{Irr}\left(Q_{\ell}\right)$.

Let $R S p\left(Q_{\ell}\right)$ and $R O\left(Q_{\ell}\right)$ be the \mathbb{Z} vector spaces generated by equivalence classes of irreducible quaternion and real representations, respectively. Forgetting the symplectic structure and complexification of a real structure define natural inclusions $R S p\left(Q_{\ell}\right) \subset R U\left(Q_{\ell}\right)$ and $R O\left(Q_{\ell}\right) \subset R U\left(Q_{\ell}\right)$. We have:

$$
\begin{align*}
& R O\left(Q_{\ell}\right) \cdot R O\left(Q_{\ell}\right) \subset R O\left(Q_{\ell}\right) \\
& R S p\left(Q_{\ell}\right) \cdot R S p\left(Q_{\ell}\right) \subset R O\left(Q_{\ell}\right) \tag{2.1}\\
& R O\left(Q_{\ell}\right) \cdot R S p\left(Q_{\ell}\right) \subset R S p\left(Q_{\ell}\right)
\end{align*}
$$

The $\frac{\ell}{4}+3$ conjugacy classes of Q_{ℓ} have representatives:

$$
\left\{1, \xi, \ldots, \xi^{\ell / 4}=-1, \mathcal{J}, \xi \mathcal{J}\right\}
$$

There are $\frac{\ell}{4}+3$ irreducible inequivalent complex representations of Q_{ℓ}. Four of these representations are the 1 dimensional representations defined by:

$$
\begin{array}{lll}
\rho_{0}(\xi)=1, & \kappa_{1}(\xi)=-1, & \kappa_{2}(\xi)=1,
\end{array} \kappa_{3}(\xi)=-1, ~ 子, ~ \kappa_{3}(\mathcal{J})=-1
$$

We define representations $\gamma_{u}: Q_{\ell} \rightarrow U(2)$ by setting:

$$
\gamma_{u}(\xi)=\left(\begin{array}{rr}
\xi^{u} & 0 \\
0 & \xi^{-u}
\end{array}\right), \quad \gamma_{u}(\mathcal{J})=\left(\begin{array}{rr}
0 & (-1)^{u} \\
1 & 0
\end{array}\right) .
$$

The representations γ_{u}, γ_{-u}, and $\gamma_{u+\frac{\ell}{2}}$ are all equivalent. The representations γ_{u} are irreducible and inequivalent for $1 \leq u \leq \frac{\ell}{4}-1 ; \gamma_{0}$ is equivalent to $\rho_{0}+\kappa_{2}$ and $\gamma_{\frac{\ell}{4}}$ is equivalent to $\kappa_{1}+\kappa_{3}$. We have:

$$
\operatorname{Irr}\left(Q_{\ell}\right)=\left\{\rho_{0}, \kappa_{1}, \kappa_{2}, \kappa_{3}, \gamma_{1}, \ldots, \gamma_{\frac{\ell}{4}-1}\right\}
$$

If $\vec{s}=\left(s_{1}, \ldots, s_{k}\right)$ is a k tuple of odd integers, then

$$
\gamma_{\vec{s}}:=\gamma_{s_{1}} \oplus \ldots \oplus \gamma_{s_{k}}
$$

is a fixed point free representation from Q_{ℓ} to $U(2 k)$; conversely, every fixed point free representation of Q_{ℓ} is conjugate to such a representation. The associated spherical space forms are the quaternion spherical space forms.

The representations $\left\{\rho_{0}, \kappa_{1}, \kappa_{2}, \kappa_{3}\right\}$ are real, the representations $\gamma_{2 i}$ are real, and the representations $\gamma_{2 i+1}$ are quaternion. We have:

$$
\begin{aligned}
& R O\left(Q_{\ell}\right)=\operatorname{span}_{\mathbb{Z}}\left\{\rho_{0}, \kappa_{1}, \kappa_{2}, \kappa_{3}, 2 \gamma_{1}, \gamma_{2}, \ldots, 2 \gamma_{\ell / 4-1}\right\} \\
& R S p\left(Q_{\ell}\right)=\operatorname{span}_{\mathbb{Z}}\left\{2 \rho_{0}, 2 \kappa_{1}, 2 \kappa_{2}, 2 \kappa_{3}, \gamma_{1}, 2 \gamma_{2}, \ldots, \gamma_{\ell / 4-1}\right\} .
\end{aligned}
$$

We define:

$$
\begin{align*}
& \Theta_{1}(g):= \begin{cases}\frac{\ell}{4} & \text { if } g= \pm \mathcal{I} \\
-2 & \text { if } g=\xi^{2 i} \mathcal{J} \\
0 & \text { otherwise }\end{cases} \tag{2.2}\\
& \Theta_{2}(g):= \begin{cases}\frac{\ell}{4} & \text { if } g= \pm \mathcal{I} \\
-2 & \text { if } g=\xi^{2 i+1} \mathcal{J} \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

The two class functions Θ_{i} will be used to mirror in $R U\left(Q_{\ell}\right)$ the splitting of $B Q_{\ell}$ given in equation (1.2).

We identify virtual representations with the class functions they define henceforth. Let

$$
\Delta:=2 \rho_{0}-\gamma_{1} ; \quad \operatorname{Tr}(\Delta)=\operatorname{det}\left(I-\gamma_{1}\right) .
$$

Lemma 2.1.

(1) We have $\Theta_{1} \in R O_{0}\left(Q_{\ell}\right)$ and $\Theta_{2} \in R O_{0}\left(Q_{\ell}\right)$.
(2) Let $c_{i}:=\ell^{-1} \sum_{g \in Q_{\ell}-\{1\}} \Delta(g)^{i}$. We have $c_{0}=\frac{\ell-1}{\ell}$. If $i>0$, then $c_{2 i} \in \mathbb{Z}$ and $c_{2 i-1} \in 2 \mathbb{Z}$.

Proof: We use equation (2.2) to compute:

$$
\begin{array}{llll}
\text { for any } \ell & \left\langle\Theta_{1}, \rho_{0}\right\rangle=0, & \left\langle\Theta_{1}, \gamma_{2 i+1}\right\rangle=0, & \left\langle\Theta_{1}, \gamma_{2 i}\right\rangle=(-1)^{i}, \\
& \left\langle\Theta_{2}, \rho_{0}\right\rangle=0, & \left\langle\Theta_{2}, \gamma_{2 i+1}\right\rangle=0, & \left\langle\Theta_{2}, \gamma_{2 i}\right\rangle=(-1)^{i}, \\
\text { for } \ell=8 & \left\langle\Theta_{1}, \kappa_{1}\right\rangle=-1, & \left\langle\Theta_{1}, \kappa_{2}\right\rangle=1, & \left\langle\Theta_{1}, \kappa_{3}\right\rangle=0, \\
& \left\langle\Theta_{2}, \kappa_{1}\right\rangle=0, & \left\langle\Theta_{2}, \kappa_{2}\right\rangle=1, & \left\langle\Theta_{2}, \kappa_{3}\right\rangle=-1, \\
\text { for } \ell>8 & \left\langle\Theta_{1}, \kappa_{1}\right\rangle=0, & \left\langle\Theta_{1}, \kappa_{2}\right\rangle=1, & \left\langle\Theta_{1}, \kappa_{3}\right\rangle=1, \\
& \left\langle\Theta_{2}, \kappa_{1}\right\rangle=1, & \left\langle\Theta_{2}, \kappa_{2}\right\rangle=1, & \left\langle\Theta_{2}, \kappa_{3}\right\rangle=0
\end{array}
$$

We use equation (2.1) to complete the proof of assertion (1):

$$
\begin{aligned}
& \Theta_{1}= \begin{cases}\operatorname{Tr}\left\{\kappa_{2}-\kappa_{1}\right\} & \text { if } \ell=8, \\
\operatorname{Tr}\left\{\kappa_{2}+\kappa_{3}+\sum_{1 \leq i<\ell / 8}(-1)^{i} \gamma_{2 i}\right\} & \text { if } \ell \geq 16,\end{cases} \\
& \Theta_{2}= \begin{cases}\operatorname{Tr}\left\{\kappa_{2}-\kappa_{3}\right\} & \text { if } \ell=8, \\
\operatorname{Tr}\left\{\kappa_{2}+\kappa_{1}+\sum_{1 \leq i<\ell / 8}(-1)^{i} \gamma_{2 i}\right\} & \text { if } \ell \geq 16 .\end{cases}
\end{aligned}
$$

The first identity of assertion (2) is immediate. Let $r>0$. As $\operatorname{Tr}\left(\Delta^{r}\right)(1)=0$,

$$
c_{r}=\ell^{-1} \sum_{g \in Q_{\ell}-\{1\}} \operatorname{Tr}\left(\Delta^{r}\right)(g)=\left\langle\Delta^{r}, \rho_{0}\right\rangle \in \mathbb{Z}
$$

If r is odd, then γ_{1}^{r} is quaternion so $\left\langle\gamma_{1}^{r}, \rho_{0}\right\rangle \in 2 \mathbb{Z}$. Since $\Delta^{r} \equiv \gamma_{1}^{r} \bmod 2 R U\left(Q_{\ell}\right)$, $\left\langle\Delta^{r}, \rho_{0}\right\rangle \in 2 \mathbb{Z}$ if r is odd.

3. The eta invariant, K theory, and bordism

Let V be a smooth complex vector bundle over a compact Riemannian manifold M. Let V be equipped with a unitary (Hermitian) inner product. Let

$$
P: C^{\infty}(V) \rightarrow C^{\infty}(V)
$$

be a self-adjoint elliptic first order partial differential operator. Let $\left\{\lambda_{i}\right\}$ denote the eigenvalues of P repeated according to multiplicity. Let

$$
\eta(s, P):=\sum_{i} \operatorname{sign}\left(\lambda_{i}\right)\left|\lambda_{i}\right|^{-s} .
$$

The series defining η converges absolutely for $\Re(s) \gg 0$ to define a holomorphic function of s. This function has a meromorphic extension to the entire complex plane with isolated simple poles. The value $s=0$ is regular and one defines

$$
\eta(P):=\left.\frac{1}{2}\{\eta(s, P)+\operatorname{dim}(\operatorname{ker} P)\}\right|_{s=0}
$$

as a measure of the spectral asymmetry of P; we refer to [11] for further details concerning this invariant which was first introduced by [1] and which plays an important role in the index theorem for manifolds with boundary.

We say that P is quaternion if V has a quaternion structure and if the action of P commutes with this structure. We say that P is real if V is the complexification of an underlying real vector bundle and if P is the complexification of an underlying real operator.

Lemma 3.1. Let M be a spin manifold of dimension m.
(1) If $m \equiv 3,4 \bmod 8$, then the Dirac operator is quaternion.
(2) If $m \equiv 7,8 \bmod 8$, then the Dirac operator is real.

Proof: Let Clif (m) be the real Clifford algebra on \mathbb{R}^{m}. We have:

$$
\begin{aligned}
& \operatorname{Clif}(3)=\mathbb{H} \oplus \mathbb{H}, \\
& \operatorname{Clif}(4)=M_{2}(\mathbb{H}), \\
& \operatorname{Clif}(7)=M_{8}(\mathbb{R}) \oplus M_{8}(\mathbb{R}), \\
& \operatorname{Clif}(8)=M_{16}(\mathbb{R}), \text { and } \\
& \operatorname{Clif}(m+8)=\operatorname{Clif}(m) \otimes_{\mathbb{R}} M_{16}(\mathbb{R}) .
\end{aligned}
$$

Therefore, the fundamental spinor representation of Clif (m) is quaternion if we have $m \equiv 3,4 \bmod 8$ and real if we have $m \equiv 7,8 \bmod 8$. The Lemma now follows.

The following deformation result will be crucial to our investigations:
Lemma 3.2. Let P_{u} be a smooth 1 parameter family of self-adjoint first order elliptic partial differential operators on a compact manifold M.
(1) The reduction $\bmod \mathbb{Z}$ of $\eta\left(P_{u}\right)$ is a smooth \mathbb{R} / \mathbb{Z} valued function.
(2) The variation $\partial_{u} \eta\left(P_{u}\right)$ is locally computable.
(3) If the operators P_{u} are quaternion, then the reduction $\bmod 2 \mathbb{Z}$ of $\eta\left(P_{u}\right)$ is a smooth $R / 2 \mathbb{Z}$ valued function.

Proof: We sketch the proof briefly and refer to [11] Theorem 1.13 .2 for further details. Since $\frac{1}{2} \operatorname{sign}(u)$ has an integer jump when $u=0, \eta\left(P_{u}\right)$ can have integer valued jumps at values of u where $\operatorname{dim}\left(\operatorname{ker}\left(P_{u}\right)\right)>0$. However, in \mathbb{R} / \mathbb{Z}, the jump disapears so the $\bmod \mathbb{Z}$ reduction of $\eta\left(P_{u}\right)$ is a smooth \mathbb{R} / \mathbb{Z} valued function of u; one uses the pseudo-differential calculus to construct an approximate resolvant and to show that the variation $\partial_{u} \eta\left(P_{u}\right)$ is locally computable. Assertions (1) and (2) then follow. If P_{u} is quaternion, then the eigenspaces of P_{u} inherit quaternion structures. Thus $\operatorname{dim}\left(\operatorname{ker} P_{u}\right)$ is even so $\eta\left(P_{u}\right)$ has twice integer jumps as eigenvalues cross the origin. Consequently the reduction $\bmod 2 \mathbb{Z}$ of $\eta\left(P_{u}\right)$ is smooth and assertion (3) follows.

Let \tilde{M} be the universal cover of a connected manifold M and let σ be a representation of $\pi_{1}(M)$ in $U(k)$. The associated vector bundle is defined by:

$$
\begin{aligned}
& V^{\sigma}:=\tilde{M} \times \mathbb{C}^{k} / \sim \text { where we identify } \\
& (\tilde{x}, z) \sim(g \cdot \tilde{x}, \sigma(g) \cdot z) \text { for } g \in \pi_{1}(M), \tilde{x} \in \tilde{M}, \text { and } z \in \mathbb{C}^{k} .
\end{aligned}
$$

The trivial connection on $\tilde{M} \times \mathbb{C}^{k}$ descends to define a flat connection on V^{σ}. The transition functions of V^{σ} are locally constant; they are given by the representation σ. Thus the bundle V^{σ} is said to be locally flat. Let $P: C^{\infty}(V) \rightarrow C^{\infty}(V)$ be a self-adjoint elliptic first order operator on M;

$$
P^{\sigma}: C^{\infty}\left(V \otimes V^{\sigma}\right) \rightarrow C^{\infty}\left(V \otimes V^{\sigma}\right)
$$

is a well defined operator which is locally isomorphic to k copies of P. Define $\eta^{\sigma}(P):=\eta\left(P^{\sigma}\right)$; we extend by linearity to $\sigma \in R U\left(\pi_{1}(M)\right)$.

This invariant is a homotopy invariant.
Lemma 3.3. Let P_{u} be a smooth 1 parameter family of elliptic first order selfadjoint partial differential operators over M.
(1) If $\sigma \in R U_{0}\left(\pi_{1}(M)\right)$, then the mod \mathbb{Z} reduction of $\eta^{\sigma}\left(P_{u}\right)$ is independent of the parameter u.
(2) If all the operators P_{u} are quaternion and $\sigma \in R O_{0}\left(\pi_{1}(M)\right)$ or if all the operators P_{u} are real and $\sigma \in R S p_{0}\left(\pi_{1}(M)\right)$, then the $\bmod 2 \mathbb{Z}$ reduction of $\eta\left(P_{u}, \sigma\right)$ is independent of the parameter u.

Proof: If σ is a representation of $\pi_{1}(M)$, then the $\bmod \mathbb{Z}$ reduction of $\eta^{\sigma}\left(P_{u}\right)$ is smooth a smooth function of u by Lemma 3.2. Since P_{u}^{σ} is locally isomorphic to $\operatorname{dim} \sigma$ copies of P_{u} and since the variation is locally computable,

$$
\partial_{u} \eta^{\sigma}\left(P_{u}\right)=\operatorname{dim} \sigma \cdot \partial_{u} \eta\left(P_{u}\right) .
$$

This formula continues to hold for virtual representations. In particular, if we have that $\sigma \in R U_{0}\left(\pi_{1}(M)\right)$, then $\operatorname{dim} \sigma=0$ so $\partial_{u} \eta^{\sigma}\left(P_{u}\right)=0$; (1) follows.

If P_{u} is quaternion and σ is real or if P_{u} is real and if σ is quaternion, then P_{u}^{σ} is quaternion and $\eta^{\sigma}\left(P_{u}\right)$ is a smooth $\mathbb{R} / 2 \mathbb{Z}$ valued function of u. The same argument shows that $\partial_{u} \eta^{\sigma}\left(P_{u}\right)=0$.

We can use the eta invariant to construct invariants of K theory. Let P : $C^{\infty}(V) \rightarrow C^{\infty}(V)$ be a first order self-adjoint elliptic partial differential operator with leading symbol p. Let W be a unitary vector bundle over M. We use a partition of unity to construct a self-adjoint elliptic first order operator P^{W} on $C^{\infty}(V \otimes W)$ with leading symbol $p \otimes \mathrm{id}$; this operator is not, of course, cannonically defined.

We can extend the invariant η^{σ} to the the reduced unitary unitary and quaternion (symplectic) K theory groups $\tilde{K} U$ and $\tilde{K} S p$:

Theorem 3.4. Let P be an elliptic self-adjoint first order partial differential operator. Let $\sigma \in R U_{0}\left(\pi_{1}(M)\right)$.
(1) The map $W \rightarrow \eta^{\sigma}\left(P^{W}\right)$ extends to a map $\eta_{P}^{\sigma}: \tilde{K} U(M) \rightarrow \mathbb{R} / \mathbb{Z}$.
(2) Suppose that P and σ are both real or that P and σ are both quaternion. The map $W \rightarrow \eta^{\sigma}\left(P^{W}\right)$ extends to a map

$$
\eta_{P}^{\sigma}: \tilde{K} S p(M) \rightarrow \mathbb{R} / 2 \mathbb{Z}
$$

Proof: Let P^{W} and \tilde{P}^{W} be two first order self-adjoint partial differential operators on $C^{\infty}(V \otimes W)$ with leading symbol $p \otimes \mathrm{id}$. Set:

$$
P_{u}:=u P^{W}+(1-u) \tilde{P}^{W}
$$

This is a smooth 1 parameter family of first order self-adjoint partial differential operators. As the leading symbol of P_{u} is $p \otimes \mathrm{id}$, the operators P_{u} are elliptic. By Lemma 3.3, $\eta^{\sigma}\left(P_{u}\right) \in \mathbb{R} / \mathbb{Z}$ is independent of u. Consequently $\eta_{P}^{\sigma}(W):=\eta^{\sigma}\left(P^{W}\right) \in$ \mathbb{R} / \mathbb{Z} only depends on the isomorphism class of the bundle W. As the eta invariant is additive with respect to direct sums, we may extend η_{P}^{σ} to $\tilde{K} U(M)$ as an \mathbb{R} / \mathbb{Z} valued invariant. Let W be quaternion. By Lemma $3.3, \eta^{\sigma}\left(P_{u}\right) \in \mathbb{R} / 2 \mathbb{Z}$ is independent of u if both P and σ are real or if both P and σ are quaternion and thus η^{σ} extends to $\tilde{K} S p$ as an $\mathbb{R} / 2 \mathbb{Z}$ valued invariant in this instance.

We can use the Atyiah-Patodi-Singer index theorem [1] to see that the eta invariant also defines bordism invariants. Let G be a finite group. A G structure f on a connected manifold M is a representation f from $\pi_{1}(M)$ to G. Equivalently, f can also be regarded as a map from M to the classifying space $B G$. We consider tuples (M, g, s, f) where (M, g) is a compact Riemannian manifold with a spin structure s and a G structure f. We introduce the bordism relation $[(M, g, s, f)]=0$ if there exists a compact manifold N with boundary M so that the structures (g, s, f) extend over N; this induces an equivalence relation and the equivariant bordism groups $\mathrm{MSpin}_{m}(B G)$ consists of bordism classes of these triples. Disjoint union defines the group structure.

Let MSpin ${ }_{*}:=\operatorname{MSpin}_{*}(B\{1\})$ be defined by the trivial group. Cartesian product makes $\operatorname{MSpin}_{*}(B G)$ into an MSpin ${ }_{*}$ module. Let \mathcal{F} be the forgetful homomorphism which forgets the G structure f. The reduced bordism groups are then defined by:

$$
\tilde{M} \operatorname{Spin}_{*}(B G):=\operatorname{ker}(\mathcal{F}): \operatorname{MSpin}_{*}(B G) \rightarrow \operatorname{MSpin}_{*}
$$

Since the eta invariant vanishes on MSpin_{*}, we restrict henceforth to the reduced groups.

If s is a spin structure on (M, g), let $P_{(M, g, s)}$ be the associated Dirac operator. If $\sigma \in R U_{0}(G)$, then $f^{*} \sigma \in R U_{0}\left(\pi_{1}(M)\right)$ and we may define:

$$
\eta^{\sigma}(M, g, s, f):=\eta^{f^{*} \sigma}\left(P_{(M, g, s)}\right)
$$

Theorem 3.5. Let G be a finite group. Assume either that $m \equiv 3 \bmod 8$ and that $\sigma \in R O_{0}(G)$ or that $m \equiv 7 \bmod 8$ and that $\sigma \in R S p_{0}(G)$. Then the map $(M, g, s, f) \rightarrow \eta^{\sigma}(M, s, f)$ extends to a map

$$
\eta^{\sigma}: \tilde{M} \operatorname{Spin}_{m}(B G) \rightarrow \mathbb{R} / 2 \mathbb{Z}
$$

Proof: We sketch the proof and refer to [6] for further details. Suppose that $m \equiv 3$ $\bmod 4$ and that $[(M, g, s, f)]=0$ in $\operatorname{MSpin}_{m}(B G)$. Then $M=d N$ where the spin and G structures on M extend over N. We may also extend the given Riemannian metric on M to a Riemannian metric on N which is product near the boundary.

Let $\sigma \in R U_{0}(G)$. The Dirac operator $P_{(M, g, s)}$ on M is the tangential operator of the spin complex $Q_{(N, g, s)}$ on N. We twist these operators by taking coefficients in the locally flat virtual bundle $V^{f^{*} \sigma}$.

Let $\hat{A}(N, g, s)$ be the A-roof genus and let $\operatorname{ch}\left(V^{f^{*} \sigma}\right)$ be the Chern character. By the Atiyah-Patodi-Singer index theorem [1]:

$$
\operatorname{index}\left(Q_{(N, g, s)}^{f^{*} \sigma}\right)=\int_{N} \hat{A}(N, g, s) \wedge c h\left(V^{f^{*} \sigma}\right)+\eta\left(P_{(M, g, s)}^{\sigma}\right)
$$

Since $V^{f^{*} \sigma}$ is a virtual bundle of virtual dimension 0 which admits a flat connection, the Chern character of V^{σ} vanishes. Consequently:

$$
\eta^{\sigma}(M, g, s, f)=\eta\left(P_{(M, g, s)}^{f^{*} \sigma}\right)=\operatorname{index}\left(Q_{N, g, s}^{f^{*} \sigma}\right) .
$$

The dimension of N is $m+1$. We apply Lemma 3.1 to see that if $m \equiv 3 \bmod 8$ and if σ is real or if $m \equiv 7 \bmod 8$ and if σ is quaternion, then $Q_{(N, s, f)}^{f^{*} \sigma}$ is quaternion. Thus index $\left(Q_{(N, s, f)}^{f^{*} \sigma}\right) \in 2 \mathbb{Z}$ so $\eta^{\sigma}(M, g, s)$ vanishes as an $\mathbb{R} / 2 \mathbb{Z}$ valued invariant if $[(M, g, s, f)]=0$ in MSpin ${ }_{m}(B G)$.

There is a geometric description of the real connective K theory groups $\tilde{k} o_{m}(B G)$ in terms of the spin bordism groups. Let \mathbb{H}^{2} be the quaternionic projective plane. Let $\tilde{T}_{m}(B G)$ be the subgroup of $\tilde{M} \operatorname{Spin}_{m}(B G)$ consisting of bordism classes $[(E, g, s, f)]$ where E is the total space of a geometrical \mathbb{H}^{2} spin fibration and where the G structure on E is induced from a corresponding G structure on the base. The following theorem is a special case of a more general result [17]:
Theorem 3.6. Let G be a finite group. There is a 2 local isomorphism between $\tilde{k} o_{m}(B G)$ and $\tilde{M} \operatorname{Spin}_{m}(B G) / \tilde{T}_{m}(B G)$.

We use Theorem 3.6 to draw the following consequence:
Corollary 3.7. Assume either that $m \equiv 3 \bmod 8$ and $\sigma \in R O_{0}\left(Q_{\ell}\right)$ or that $m \equiv 7$ $\bmod 8$ and $\sigma \in R S p_{0}\left(Q_{\ell}\right)$. Then η^{σ} extends to a map from $\tilde{k} o_{m}\left(B Q_{\ell}\right)$ to $\mathbb{Q} / 2 \mathbb{Z}$.

Proof: If $[(E, s, f)] \in T_{m}\left(B Q_{\ell}\right)$, then $\eta^{\sigma}\left(P_{(E, g, s)}\right)=0$; see [6] Lemma 4.3 or [13] Lemma 2.7.10 for details. Thus by Theorems 3.5 and Theorem 3.6, the eta invariant extends to $\tilde{k} o\left(B Q_{\ell}\right)$. By [6] Theorem 2.4, $\tilde{k} o_{4 k-1}\left(B Q_{\ell}\right)$ is a finite 2 group. Thus it is not necessary to localize at the prime 2 and the eta invariant takes values in $\mathbb{Q} / 2 \mathbb{Z}$.

The eta invariant is combinatorially computable for spherical space forms. The following theorem follows from [8].
Theorem 3.8. Let $\tau: G \rightarrow S U(2 k)$ be fixed point free, let P be the Dirac operator on $M^{4 k-1}(G, \tau)$, and let $\sigma \in R U_{0}(G)$. Then

$$
\eta^{\sigma}(P)=\ell^{-1} \sum_{g \in G-\{1\}} \operatorname{Tr}(\sigma(g)) \operatorname{det}(I-\tau(g))^{-1} .
$$

4. The groups $\tilde{K} S p\left(M^{4 \nu-1}\left(Q_{\ell}, \nu \cdot \gamma_{1}\right)\right)$

Let $\Delta=\operatorname{det}\left(I-\gamma_{1}\right) \in R S p_{0}\left(Q_{\ell}\right)$. By equation (2.1):

$$
\begin{array}{ll}
\Delta^{\nu} R S p\left(Q_{\ell}\right) \subset R S p_{0}\left(Q_{\ell}\right) & \text { if } \nu \text { is even } \\
\Delta^{\nu} R O\left(Q_{\ell}\right) \subset R S p_{0}\left(Q_{\ell}\right) & \text { if } \nu \text { is odd }
\end{array}
$$

The following Theorem is well known - see, for example [10, 12]:
Theorem 4.1. Let $\tau: Q_{\ell} \rightarrow U(2 \nu)$ be fixed point free. Then

$$
\tilde{K} S p\left(M^{4 \nu-1}\left(Q_{\ell}, \tau\right)\right)= \begin{cases}R S p_{0}\left(Q_{\ell}\right) / \Delta^{\nu} R S p\left(Q_{\ell}\right) & \text { if } \nu \text { is even }, \\ R S p_{0}\left(Q_{\ell}\right) / \Delta^{\nu} R O\left(Q_{\ell}\right) & \text { if } \nu \text { is odd } .\end{cases}
$$

By Theorem 4.1, the particular representation τ plays no role and we therefore set $\tau=\nu \cdot \gamma_{1}$. We use the eta invariant to study these groups. Let $\eta_{\nu}^{\sigma}(W)$ be the invariant described in Theorem 3.4 for the Dirac operator P on $M^{4 \nu-1}\left(Q_{\ell}, \nu \cdot \gamma_{1}\right)$. We define:

$$
\vec{\eta}_{\nu}(W):= \begin{cases}\left(\eta_{\nu}^{\Theta_{1}}, \eta_{\nu}^{\Theta_{2}}, \eta_{\nu}^{2 \Delta}, \eta_{\nu}^{\Delta^{2}}, \ldots, \eta_{\nu}^{\Delta^{\nu-2}}, \eta_{\nu}^{2 \Delta^{\nu-1}}\right)(W) & \text { if } \nu \text { is even } \\ \left(\eta_{\nu}^{2 \Theta_{1}}, \eta_{\nu}^{2 \Theta_{2}}, \eta_{\nu}^{\Delta}, \eta_{\nu}^{2 \Delta^{2}}, \ldots, \eta_{\nu}^{\Delta^{\nu-2}}, \eta_{\nu}^{2 \Delta^{\nu-1}}\right)(W) & \text { if } \nu \text { is odd. }\end{cases}
$$

Lemma 4.2. Let $M:=M^{4 \nu-1}\left(Q_{\ell}, \nu \cdot \gamma_{1}\right)$. Then

$$
\vec{\eta}_{\nu}: \tilde{K} S p(M) \rightarrow(\mathbb{Q} / 2 \mathbb{Z})^{\nu+1}
$$

Proof: We apply Lemma 3.1 and Theorem 3.4. We distinguish two cases:
(1) If ν is even, then P is real. Thus $\eta_{\nu}^{\sigma}: \tilde{K} S p(M) \rightarrow \mathbb{Q} / 2 \mathbb{Z}$ for real σ and the Lemma follows as we have used the real representations $\left\{\Theta_{1}, \Theta_{2}, 2 \Delta, \Delta^{2}, \ldots, \Delta^{\nu-2}, 2 \Delta^{\nu-1}\right\}$ to define $\vec{\eta}_{\nu}$.
(2) If ν is is odd, then P is quaternion. Thus $\eta_{\nu}^{\sigma}: \tilde{K} S p(M) \rightarrow \mathbb{Q} / 2 \mathbb{Z}$ if σ is quaternion and the Lemma follows as we have used the quaternion representations $\left\{2 \Theta_{1}, 2 \Theta_{2}, \Delta, 2 \Delta^{2}, \ldots, \Delta^{\nu-2}, 2 \Delta^{\nu-1}\right\}$ to define $\vec{\eta}_{\nu}$.

Let $\varepsilon_{2 i}=2$ and $\varepsilon_{2 i-1}=1 ;\left\{2 \Theta_{1}, 2 \Theta_{2}, \Delta, 2 \Delta^{2}, \ldots, \varepsilon_{\nu-1} \Delta^{\nu-1}\right\}$ are quaternion. In Lemma 2.1, we defined constants

$$
c_{i}:=\ell^{-1} \sum_{g \in Q_{\ell}-\{1\}} \operatorname{det}\left(I-\gamma_{1}(g)\right)^{i} .
$$

Since $\Delta(g)=\operatorname{det}\left(I-\gamma_{1}(g)\right)$, we use Theorem 3.8 to compute:

$$
\begin{equation*}
\eta_{\nu}^{\Delta^{r}}\left(\Delta^{s}\right)=\ell^{-1} \sum_{g \in Q_{\ell}-\{1\}} \Delta(g)^{r+s} \Delta(g)^{-\nu}=c_{r+s-\nu} . \tag{4.1}
\end{equation*}
$$

Since Θ_{1} and Θ_{2} are supported on the elements of order 4 in Q_{ℓ} and since $\Delta(g)=2$ for such an element, we may use Theorem 3.8 and equation (2.2) to see:

$$
\begin{align*}
\eta_{\nu}^{\Delta^{r}}\left(\Theta_{i}\right) & =\eta_{\nu}^{\Theta_{i}}\left(\Delta^{r}\right)=\ell^{-1} \sum_{g \in Q_{\ell}-\{1\}} 2^{r} \operatorname{Tr}\left(\Theta_{i}(g)\right) 2^{-\nu} \\
& =\ell^{-1} 2^{r-\nu} \sum_{g \in Q_{\ell}-\{1\}} \operatorname{Tr}\left(\Theta_{i}(g)\right)=0 \\
\eta_{\nu}^{\Theta_{1}}\left(\Theta_{1}\right) & =\eta_{\nu}^{\Theta_{2}}\left(\Theta_{2}\right)=\ell^{-1} 2^{-\nu} \sum_{g \in Q_{\ell}-\{1\}} \operatorname{Tr}\left(\Theta_{1}(g)\right)^{2} \\
& =\ell^{-1} 2^{-\nu}\left\{2 \cdot \frac{\ell^{2}}{16}+4 \cdot \frac{\ell}{4}\right\}, \tag{4.2}\\
\eta_{\nu}^{\Theta_{1}}\left(\Theta_{2}\right) & =\eta_{\nu}^{\Theta_{2}}\left(\Theta_{1}\right)=\ell^{-1} 2^{-\nu} \sum_{g \in Q_{\ell}-\{1\}} \operatorname{Tr}\left(\Theta_{1}(g)\right) \operatorname{Tr}\left(\Theta_{2}(g)\right) \\
& =\ell^{-1} 2^{-\nu}\left\{2 \cdot \frac{\ell^{2}}{16}\right\} .
\end{align*}
$$

We have $\ell=2^{j}$. We use equation (4.1), equation (4.2), and Lemma 2.1 to see:

$$
\vec{\eta}_{\nu}\left(\begin{array}{c}
2 \Theta_{1} \\
2 \Theta_{2} \\
\Delta \\
2 \Delta^{2} \\
\cdots \\
\varepsilon_{\nu-1} \Delta^{\nu-1}
\end{array}\right)=\left(\begin{array}{ll}
A_{\nu} & 0 \\
0 & B_{\nu}
\end{array}\right) \in M_{\nu+1}(\mathbb{Q} / 2 \mathbb{Z})
$$

where A is the 2×2 matrix given by

$$
\begin{aligned}
& A_{\nu}=2^{1-\nu}\left(\begin{array}{cc}
2^{j-3}+1 & 2^{j-3} \\
2^{j-3} & 2^{j-3}+1
\end{array}\right) \text { if } \nu \text { is even } \\
& A_{\nu}=2^{2-\nu}\left(\begin{array}{cc}
2^{j-3}+1 & 2^{j-3} \\
2^{j-3} & 2^{j-3}+1
\end{array}\right) \text { if } \nu \text { is odd }
\end{aligned}
$$

and where B is the $\nu-1 \times \nu-1$ matrix given by:

$$
B_{\nu}=\left(\begin{array}{rrrrrrr}
2 c_{2-\nu} & c_{3-\nu} & 2 c_{4-\nu} & \ldots & 2 c_{-2} & c_{-1} & 2 c_{0} \\
4 c_{3-\nu} & 2 c_{4-\nu} & 4 c_{5-\nu} & \ldots & 4 c_{-1} & 2 c_{0} & 0 \\
2 c_{4-\nu} & c_{5-\nu} & 2 c_{6-\nu} & \ldots & 2 c_{0} & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
2 c_{-2} & c_{-1} & 2 c_{0} & \ldots & 0 & 0 & 0 \\
4 c_{-1} & 2 c_{0} & 0 & \ldots & 0 & 0 & 0 \\
2 c_{0} & 0 & 0 & \ldots & 0 & 0 & 0
\end{array}\right) \text { if } \nu \text { is even }
$$

$$
B_{\nu}=\left(\begin{array}{llrlrrr}
c_{2-\nu} & 2 c_{3-\nu} & c_{4-\nu} & \ldots & 2 c_{-2} & c_{-1} & 2 c_{0} \\
2 c_{3-\nu} & 4 c_{4-\nu} & 2 c_{5-\nu} & \ldots & 4 c_{-1} & 2 c_{0} & 0 \\
c_{4-\nu} & 2 c_{5-\nu} & c_{6-\nu} & \ldots & 2 c_{0} & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
2 c_{-2} & 4 c_{-1} & 2 c_{0} & \ldots & 0 & 0 & 0 \\
c_{-1} & 2 c_{0} & 0 & \ldots & 0 & 0 & 0 \\
2 c_{0} & 0 & 0 & \ldots & 0 & 0 & 0
\end{array}\right) \text { if } \nu \text { is odd. }
$$

Theorem 4.3. Let \mathcal{B}_{ν} be the subgroup of $(\mathbb{Q} / 2 \mathbb{Z})^{\nu-1}$ spanned by the rows of the matrix B_{ν} defined above. Let $M=M^{4 \nu-1}\left(Q_{\ell}, \nu \cdot \gamma_{1}\right)$. Then

$$
\tilde{K} S p(M)= \begin{cases}\mathbb{Z}_{2^{\nu}} \oplus \mathbb{Z}_{2^{\nu}} \oplus \mathcal{B}_{\nu} & \text { if } \nu \text { is even } \\ \mathbb{Z}_{2^{\nu-1}} \oplus \mathbb{Z}_{2^{\nu-1}} \oplus \mathcal{B}_{\nu} & \text { if } \nu \text { is odd } .\end{cases}
$$

Proof: Let \mathcal{K}_{ν} be the subspace of $\tilde{K} S p(M)$ spanned by the virtual vector bundles defined by $\left\{2 \Theta_{1}, 2 \Theta_{2}, \Delta, 2 \Delta^{2}, \ldots, \varepsilon_{\nu-1} \Delta^{\nu-1}\right\}$. It is then immediate from the definition and from the form of the matrix A_{ν} that

$$
\vec{\eta}_{\nu}\left(\mathcal{K}_{\nu}\right)= \begin{cases}\mathbb{Z}_{2^{\nu}} \oplus \mathbb{Z}_{2^{\nu}} \oplus \mathcal{B}_{\nu} & \text { if } \nu \text { is even } \tag{4.3}\\ \mathbb{Z}_{2^{\nu-1}} \oplus \mathbb{Z}_{2^{\nu-1}} \oplus \mathcal{B}_{\nu} & \text { if } \nu \text { is odd }\end{cases}
$$

We use Lemma 2.1 to see $c_{0}=\frac{\ell-1}{\ell}$. Thus $2 c_{0}$ is an element of order ℓ in $\mathbb{Q} / 2 \mathbb{Z}$. We use the diagonal nature of matrix B_{ν} to see that:

$$
\left|\vec{\eta}_{\nu}\left(\mathcal{K}_{\nu}\right)\right| \geq \begin{cases}4^{\nu} \ell^{\nu-1} & \text { if } \nu \text { is even } \tag{4.4}\\ 4^{\nu-1} \ell^{\nu-1} & \text { if } \nu \text { is odd }\end{cases}
$$

The E_{2} term in the Atiyah-Hirezbruch spectral sequence for the K theory groups $\tilde{K} S p^{*}(M)$ is

$$
\oplus_{u+v=w} \tilde{H}^{u}\left(M ; \operatorname{KSp}^{v}(p t)\right)
$$

We take $w=0$ and study the reduced groups to obtain the estimate:

$$
\begin{equation*}
|\tilde{K} S p(M)| \leq\left|\oplus_{u+v=0} \tilde{H}^{u}\left(M ; \operatorname{KSp}^{v}(p t)\right)\right| . \tag{4.5}
\end{equation*}
$$

We have that:

$$
\begin{array}{llrl}
\mathrm{KSp}^{v}(p t) & = & \mathbb{Z} & \text { if } v \equiv 0,4 \bmod 8, \\
\mathrm{KSp}^{v}(p t) & = & \mathbb{Z}_{2} & \text { if } v \equiv-5,-6 \bmod 8, \\
\mathrm{KSp}^{v}(p t) & = & 0 & \text { otherwise }, \tag{4.6}\\
\tilde{H}^{u}(M ; \mathbb{Z}) & = & \mathbb{Z}_{\ell} & \text { if } u \equiv 0,4 \bmod 8, u<4 \nu-1, \\
\tilde{H}^{u}\left(M ; \mathbb{Z}_{2}\right) & = & \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { if } u \equiv 1,2,5,6 \bmod 8, u \leq 4 \nu-1 .
\end{array}
$$

Equations (4.5) and (4.6) then imply:

$$
|\tilde{K} S p(M)| \leq \begin{cases}4^{\nu} \ell^{\nu-1} & \text { if } \nu \text { is even } \tag{4.7}\\ 4^{\nu-1} \ell^{\nu-1} & \text { if } \nu \text { is odd }\end{cases}
$$

Thus equations (4.4) and (4.7) show $|\tilde{K} S p(M)| \leq\left|\vec{\eta}_{\nu}\left(\mathcal{K}_{\nu}\right)\right|$. As the opposite inequality is immediate, we have

$$
\vec{\eta}_{\nu}\left(\mathcal{K}_{\nu}\right)=\mathcal{K}_{\nu}=\tilde{K} S p(M)
$$

The Theorem now follows from equation (4.3).

$$
\text { 5. The groups } \tilde{k} o_{4 k-1}\left(B Q_{\ell}\right)
$$

Let $x=(M, g, s, f)$ where s is a spin structure and f is a G structure on a compact Riemannian manifold (M, g) of dimension $4 k-1$. Let $\eta^{\sigma}(x)$ be the eta invariant of the associated Dirac operator with coefficients in $f^{*} \sigma$. We reverse the parities of the invariant defined in the previous section to define:

$$
\vec{\eta}_{k}(x):= \begin{cases}\left(\eta^{2 \Theta_{1}}(x), \eta^{2 \Theta_{2}}(x), \eta^{\Delta}(x), \eta^{2 \Delta^{2}}(x) \ldots, \eta^{2 \Delta^{k}}(x)\right) & (k \text { even }) \\ \left(\eta^{\Theta_{1}}(x), \eta^{\Theta_{2}}(x), \eta^{2 \Delta}(x), \eta^{\Delta^{2}}(x) \ldots, \eta^{\Delta^{k}}(x)\right) & (k \text { odd }) .\end{cases}
$$

We have used real representations if k is odd and quaternion representations if k is even. Therefore, by Corollary 3.7, $\vec{\eta}_{k}$ extends to:

$$
\vec{\eta}_{k}: \tilde{k} o_{4 k-1}(B G) \rightarrow(\mathbb{Q} / 2 \mathbb{Z})^{k+2}
$$

The group Q_{ℓ} has 3 non-conjugate elements of order 4: $\{\mathcal{I}, \mathcal{J}, \xi \mathcal{J}\}$ which generate the 3 non-conjugate subgroups $\{\langle\mathcal{I}\rangle,\langle\mathcal{J}\rangle,\langle\xi \mathcal{J}\rangle\}$ of order 4 . The representation γ_{1} restricts to a fixed point free representation of any subgroup of Q_{ℓ}. We define the following spherical space forms:

$$
\begin{array}{lll}
M_{Q}^{4 k-1}:=M^{4 k-1}\left(Q_{\ell}, k \gamma_{1}\right), & M_{\mathcal{I}}^{4 k-1}:=M^{4 k-1}\left(\langle\mathcal{I}\rangle, k \gamma_{1}\right) \\
M_{\mathcal{J}}^{4 k-1}:=M^{4 k-1}\left(\langle\mathcal{J}\rangle, k \gamma_{1}\right), & M_{\xi \mathcal{J}}^{4 k-1}:=M^{4 k-1}\left(\langle\xi \mathcal{J}\rangle, k \gamma_{1}\right) .
\end{array}
$$

Give the lens spaces $M_{g}^{4 k-1}$ the Q_{ℓ} structure induced by the natural inclusion $\langle g\rangle \subset Q_{\ell}$. We project into the reduced group $\tilde{M} \operatorname{Spin}_{4 k-1}\left(Q_{\ell}\right)$; this does not affect the eta invariant as $\eta^{\sigma}\left(\operatorname{MSpin}_{*}(p t)\right)=0$. Let $i>0$. By Theorem 3.8:

$$
\begin{aligned}
\left(\eta^{\Theta_{1}}, \eta^{\Theta_{2}}, \eta^{\Delta^{i}}\right)\left(M_{\mathcal{I}}^{4 k-1}-M_{\mathcal{J}}^{4 k-1}\right) & =\left\{\begin{array}{lll}
2^{-k}(2, & 1, & 0) \\
2^{-k}(1, & 0, & 0)
\end{array} \text { if } \ell=8\right.
\end{aligned}, \begin{array}{ll}
\left(\eta^{\Theta_{1}}, \eta^{\Theta_{2}}, \eta^{\Delta^{i}}\right)\left(M_{\mathcal{I}}^{4 k-1}-M_{\xi \mathcal{J}}^{4 k-1}\right) & =\left\{\begin{array}{lll}
2^{-k}(1, & 2, & 0) \\
2^{-k}(0, & 1, & 0) \\
\text { if } \ell=8
\end{array}\right. \\
\left(\eta^{\Theta_{1}}, \eta^{\Theta_{2}}, \eta^{\Delta^{i}}\right)\left(M_{Q}^{4 k-1}\right) & =\left(\begin{array}{lll}
0, & \left.c_{i-k}\right) & \text { any } \ell
\end{array}\right.
\end{array}
$$

Let K^{4} be a spin manifold with $\hat{A}\left(K^{4}\right)=2$ and let B^{8} be a spin manifold with $\hat{A}\left(B^{8}\right)=1$. Let $Z^{8 k-4}:=K^{4} \times B^{8 k-8}$ and $Z^{8 k}=\left(B^{8}\right)^{k}$. Standard product formulas [10] then show

$$
\eta^{\sigma}\left(M^{4 k-1} \times Z^{4 j}\right)=\eta^{\sigma}\left(M^{4 k-1}\right) \hat{A}\left(Z^{4 j}\right)=\left\{\begin{aligned}
2 \eta^{\sigma}\left(M^{4 k-1}\right) & \text { if } j \text { is odd } \\
\eta^{\sigma}\left(M^{4 k-1}\right) & \text { if } j \text { is even. }
\end{aligned}\right.
$$

Let B_{ν} and \mathcal{B}_{ν} be as defined in Section 4. There is a dimension shift involved as we must set $\nu=k+1$. We use the same arguments as those given previously to see

$$
\vec{\eta}_{k}\left(\begin{array}{l}
M_{\mathcal{I}}^{4 k-1}-M_{\mathcal{J}}^{4 k-1} \\
M_{\mathcal{I}}^{4 k-1}-M_{\xi \mathcal{J}}^{4 k-1} \\
M_{Q}^{4 k-1} \\
M_{Q}^{4 k-5} \times Z^{4} \\
\cdots \\
M_{Q}^{3} \times Z^{4 k-4}
\end{array}\right)=\left(\begin{array}{ll}
C_{k} & 0 \\
0 & B_{k+1}
\end{array}\right) \in M_{k+2}(\mathbb{Q} / 2 \mathbb{Z})
$$

where C_{k} is the 2×2 matrix given by

$$
C_{k}= \begin{cases}2^{1-k}\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right) & \text { if } \ell=8 \text { and } k \text { is even } \\
2^{1-k}\left(\begin{array}{ll}
\text { if } \ell>8 \text { and } k \text { is even } \\
2^{-k}\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right) & \text { if } \ell=8 \text { and } k \text { is odd } \\
2^{-k} & \text { if } \ell>8 \text { and } k \text { is odd }
\end{array}\right. \text {. }\end{cases}
$$

Theorem 1.2 will follow from Theorem 4.3 and from the following:
Theorem 5.1. We have

$$
\tilde{k} o_{4 k-1}\left(B Q_{\ell}\right)= \begin{cases}\mathbb{Z}_{2^{k}} \oplus \mathbb{Z}_{2^{k}} \oplus \mathcal{B}_{k+1} & \text { if } k \text { is even } \\ \mathbb{Z}_{2^{k+1}} \oplus \mathbb{Z}_{2^{k+1}} \oplus \mathcal{B}_{k+1} & \text { if } k \text { is odd }\end{cases}
$$

Proof: We use the same argument used to prove Theorem 4.3. Let

$$
\begin{aligned}
\mathcal{L}_{k}:=\operatorname{Span}_{\mathbb{Z}}\{ & M_{\mathcal{I}}^{4 k-1}-M_{\mathcal{J}}^{4 k-1}, M_{\mathcal{I}}^{4 k-1}-M_{\xi \mathcal{J}}^{4 k-1}, M_{Q}^{4 k-1}, \\
& \left.M_{Q}^{4 k-5} \times Z^{4}, \ldots, M_{Q}^{3} \times Z^{4 k-4}\right\} \subset \tilde{k} o_{4 k-1}\left(B Q_{\ell}\right) .
\end{aligned}
$$

We then have that

$$
\vec{\eta}_{k}\left(\mathcal{L}_{k}\right)= \begin{cases}\mathbb{Z}_{2^{k}} \oplus \mathbb{Z}_{2^{k}} \oplus \mathcal{B}_{k+1} & \text { if } k \text { is even } \\ \mathbb{Z}_{2^{k+1}} \oplus \mathbb{Z}_{2^{k+1}} \oplus \mathcal{B}_{k+1} & \text { if } k \text { is odd }\end{cases}
$$

By Lemma 2.1 we have $c_{0}=\frac{\ell-1}{\ell}$ and thus $2 c_{0}$ is an element of order ℓ in $\mathbb{Q} / 2 \mathbb{Z}$. We use the diagonal nature of the matrix B_{k+1} to see that:

$$
\left|\vec{\eta}_{k}\left(\mathcal{L}_{k}\right)\right| \geq \begin{cases}4^{k} \ell^{k} & \text { if } k \text { is even } \\ 4^{k+1} \ell^{k} & \text { if } k \text { is odd }\end{cases}
$$

We use [6] Theorem 2.4 see:

$$
\left|\tilde{k} o_{4 k-1}\left(B Q_{\ell}\right)\right|= \begin{cases}4^{k} \ell^{k} & \text { if } k \text { is even. } \\ 4^{k+1} \ell^{k} & \text { if } k \text { is odd } .\end{cases}
$$

Remark 5.2. Let $n \geq 0$. One has [3] that:

$$
\tilde{k} o_{8 n+\varepsilon}\left(\Sigma^{-1} B S^{3} / B N\right)= \begin{cases}\mathbb{Z}_{2} & \text { if } \varepsilon=1,2 \\ \mathbb{Z}_{2^{2 n+2}} & \text { if } \varepsilon=3,7, \\ 0 & \text { if } \varepsilon=4,5,6,8\end{cases}
$$

We may use equation (1.2) to decompose:

$$
\begin{aligned}
\tilde{k} o_{*}\left(B Q_{\ell}\right) & =\tilde{k} o_{*}\left(\Sigma^{-1} B S^{3} / B N\right) \oplus \tilde{k} o_{*}\left(\Sigma^{-1} B S^{3} / B N\right) \\
& \oplus \tilde{k} o_{*}\left(B S L_{2}\left(\mathbb{F}_{q}\right)\right) .
\end{aligned}
$$

This is the decomposition given in Theorems 4.3 and 5.1:

$$
\begin{aligned}
\mathcal{A}_{k} & =\tilde{k} o_{4 k-1}\left(\Sigma^{-1} B S^{3} / B N\right) \oplus \tilde{k} o_{4 k-1}\left(\Sigma^{-1} B S^{3} / B N\right) \\
& =\operatorname{Span}\left\{\left[V^{\Theta_{1}}\right],\left[V^{\Theta_{2}}\right]\right\} \subset \tilde{K} S p\left(M^{4 k+3}\left(Q_{\ell}, \tau\right)\right) \\
& =\operatorname{Span}\left\{\left[M_{\mathcal{I}}^{4 k-1}-M_{\mathcal{J}}^{4 k-1}\right],\left[M_{\mathcal{I}}^{4 k-1}-M_{\xi \mathcal{J}}^{4 k-1}\right]\right\} \subset \tilde{k} o_{4 k-1}\left(B Q_{\ell}\right), \\
\mathcal{B}_{k} & =\tilde{k} o_{4 k-1}\left(B S L_{2}\left(\mathbb{F}_{q}\right)\right) \\
& =\operatorname{Span}_{\mathbb{Z}}\left\{\left[V^{\varepsilon_{j} \Delta^{j}}\right]\right\} \subset \tilde{K} S p\left(M^{4 k+3}\left(Q_{\ell}, \tau\right)\right) \\
& =\operatorname{Span}_{\mathbb{Z}}\left\{\left[M_{Q}^{4 k-1-4 \mu} \times Z^{4 \mu}\right]\right\} \subset \tilde{k} o_{4 k-1}\left(B Q_{\ell}\right) .
\end{aligned}
$$

Acknowledgements

Research of P. Gilkey partially supported by the NSF (USA) and the MPI (Leipzig, Germany).

References

[1] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry I, II, III, Math. Proc. Camb. Phil. Soc. 77 (1975) 43-69; 78 (1975) 405-432; 9 (1976) 71-99.
[2] A. Bahri and M. Bendersky, The KO theory of toric manifolds, TAMS 352 (2000), 1191-1202.
[3] D. Bayen and R. Bruner, Real connective K-theory and the quaterion group, TAMS 348 (1996), 2201-2216.
[4] E. Barrera-Yanez and P. Gilkey, The eta invariant and the connective K theory of the classifying space for cyclic 2 groups, Ann. of Global Analysis and Geometry 17 (1999), 289-299.
[5] B. Botvinnik and P. Gilkey, An analytic computation of $k_{4 \nu-1}\left(B Q_{8}\right)$, Topl. Methods in Nonlinear Anal. 6 (1995), 127-135.
[6] B. Botvinnik, P. Gilkey, and S. Stolz, The Gromov-Lawason-Rosenberg conjecture for groups with periodic cohomology, J. Diff. Geo 46 (1997), 344-405.
[7] R. Bruner and J. Greenlees, The connective K theory of finite groups, preprint.
[8] H. Donnelly, Eta invariants for G-spaces, Indiana Univ. Math. J. 27 (1978), 889-918.
[9] H. Geiges and CB Thomas, Contact structures, equivariant spin bordism, and periodic fundamental groups, Math. AN. 320 (2001), 585-708.
[10] P. Gilkey, The geometry of spherical space form groups, World Scientific Press ISBN 99781-50-927-X (1989).
[11] -, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, CRC Press ISBN 0-8493-7874-04 (1995).
[12] P. Gilkey and M. Karoubi, K theory for spherical space forms, Topology and its Applications 25 (1987), 179-184.
[13] P. Gilkey, J. Leahy, and JH. Park, Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture Champan \& Hall CRC ISBN 0-8493-8277-7 (1999).
[14] J. Greenlees, Equivariant forms of connective K theory, Topology 38 (1999), 1075-1092.
[15] J. Martino and S. B. Priddy, Classification of $B G$ for groups with dihedral or quaternion Sylow 2 subgroup, J. Pure. Appl. Alg. 73 (1991), 13-21.
[16] S. Mitchell and S. Priddy, Symmetric product spectra and splitting of classifying spaces, Amer. J. of Math. 106 (1984), 291-232.
[17] S. Stolz, Splitting certain MSpin-module spectra, Topology 33 (1994), 159-180.
[18] J. A. Wolf, Spaces of constant sectional curvature, Publish or Perish Press (1985).
Instituto de Matemáticas UNAM U. Cuernavaca, Av. Universidad s/n, Col. Lomas de Chamilpa C.P. 62210, Cuernavaca, Mor. MEXICO
Email: EbARRERA@MATCUER.UNAM.MX
Mathematics Dept., University of Oregon, Eugene, Oregon 97403, USA and
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26, 04103 Leipzig, Germany. email: gilkey@math.uoregon.edu

[^0]: Key words and phrases. quaternion spherical space form, eta invariant, symplectic K theory, real connective K theory.

