Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

Derivation of the nonlinear bending-torsion theory for inextensible rods by Gamma-convergence

by
Maria Giovanna Mora and Stefan Müller

DERIVATION OF THE NONLINEAR BENDING-TORSION THEORY FOR INEXTENSIBLE RODS BY Γ-CONVERGENCE

Maria Giovanna Mora, Stefan MüLler
Max Planck Institute for Mathematics in the Sciences
Inselstr. 22-26, D-04103 Leipzig (Germany)
e-mail: mmora@mis.mpg.de, sm@mis.mpg.de

1 Introduction

A fundamental problem in nonlinear elasticity is to understand the relation between three-dimensional theory and lower dimensional theories for domains which are thin in one or more dimensions. The derivation of such theories has a long history with contributions from many authors (we refer to S.S. Antman [1, 2] for a survey about one-dimensional models and a discussion of the history of the subject; see also [7], [11]). The derivations are usually based on some a priori assumptions leading to a variety of lower dimensional theories which are often not consistent with each other.

The starting point of our rigorous approach is the elastic energy

$$
\begin{equation*}
E^{(h)}(v):=\int_{\Omega_{h}} W(\nabla v(z)) d z \tag{1.1}
\end{equation*}
$$

of a deformation $v \in W^{1,2}\left(\Omega_{h} ; \mathbb{R}^{3}\right)$, where $\Omega_{h}:=(0, L) \times h S$ and S is an open subset of \mathbb{R}^{2}. Heuristically one expects that energies $E^{(h)}$ of order h^{2} correspond to stretching and shearing deformations, leading to a string theory, while energies of order h^{4} correspond to bending flexures and torsions keeping the domain unextended, leading to a rod theory. The elastic theory for strings has been rigorously justified by E. Acerbi, G. Buttazzo, D. Percivale in [3] by means of Γ-convergence (see [5] for a comprehensive introduction to Γ-convergence). In this paper we rigorously derive the bending and torsion theory for rods through Γ-convergence. A very different approach to the rod equations, based on centre manifold theory, was pursued by A. Mielke (see [8]). He fixes the cross section and considers the limit $L \rightarrow \infty$. For $\Omega=\mathbb{R} \times S$ he shows that all solutions whose strain is uniformly sufficiently small must lie on a 12 -dimensional centre manifold and that the equation on the centre manifold is given by the Timoshenko beam equations. For related results in the context of linear elasticity see [4], [10].

To state our result it is convenient to introduce in (1.1) the following change of variables:

$$
z_{1}=x_{1}, \quad z_{2}=h x_{2}, \quad z_{3}=h x_{3}
$$

and to rescale deformations according to $y(x):=v(z(x))$, so that y belongs to $W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$, where $\Omega:=(0, L) \times S$. We will use the notation

$$
\nabla_{h} y:=\left(\begin{array}{l|l|l}
y, 1 & \frac{1}{h} y, 2 & \frac{1}{h} y, 3
\end{array}\right),
$$

so that

$$
\frac{1}{h^{2}} E^{(h)}(v)=I^{(h)}(y):=\int_{\Omega} W\left(\nabla_{h} y(x)\right) d x .
$$

We assume that the stored energy function $W: \mathbb{M}^{3 \times 3} \rightarrow[0,+\infty]$ satisfies the following assumptions:
i) $W \in C^{0}\left(\mathbb{M}^{3 \times 3}\right), W$ is of class C^{2} in a neighbourhood of $\mathrm{SO}(3)$;
ii) W is frame-indifferent, i.e., $W(F)=W(R F)$ for every $F \in \mathbb{M}^{3 \times 3}$ and $R \in \mathrm{SO}(3)$;
iii) $W(F) \geq C \operatorname{dist}^{2}(F, \mathrm{SO}(3)), W(F)=0$ if $F \in \mathrm{SO}(3)$.

In Theorem 2.1 we show that for any sequence $\left(y^{(h)}\right)$ such that

$$
\limsup _{h \rightarrow 0} \frac{1}{h^{2}} I^{(h)}\left(y^{(h)}\right)<+\infty,
$$

there exists a subsequence such that $\nabla_{h} y^{(h)} \rightarrow R$ strongly in $L^{2}(\Omega)$, where $R=\left(y_{1}\left|d_{2}\right| d_{3}\right)$ and $\left(y, d_{2}, d_{3}\right)$ belongs to the class

$$
\begin{aligned}
& \mathcal{A}:=\left\{\left(y, d_{2}, d_{3}\right) \in W^{2,2}\left(\Omega ; \mathbb{R}^{3}\right) \times W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right) \times W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right):\right. \\
& y, d_{2}, d_{3} \text { do not depend on } x_{2}, x_{3},|y, 1|=\left|d_{2}\right|=\left|d_{3}\right|=1 \\
&\left.y, 1 \cdot d_{2}=y, 1 \cdot d_{3}=d_{2} \cdot d_{3}=0\right\} .
\end{aligned}
$$

In our main theorem (Theorem 3.1) we identify the Γ-limit of the sequence of functionals $\left(\frac{1}{h^{2}} I^{(h)}\right)$ with respect to the weak (and strong) topology of $W^{1,2}$. The limiting one-dimensional energy depends on (y, d_{2}, d_{3}) and is of the form

$$
I\left(y, d_{2}, d_{3}\right):= \begin{cases}\frac{1}{2} \int_{0}^{L} Q_{2}\left(R^{T} R_{, 1}\right) d x_{1} & \text { if }\left(y, d_{2}, d_{3}\right) \in \mathcal{A} \\ +\infty & \text { otherwise }\end{cases}
$$

where, as above, $R:=\left(y_{1}\left|d_{2}\right| d_{3}\right)$, while Q_{2} is a quadratic form defined through a suitable minimization procedure involving the quadratic form of linearized elasticity $Q_{3}(G):=\frac{\partial^{2} W}{\partial F^{2}}(I d)(G, G)$ (see (3.1)). The limiting energy is thus finite only on isometric deformations of $(0, L)$ and is a quadratic form in the entries of the matrix $R^{T} R_{, 1}$. Note that, when $y \in \mathcal{A}, R^{T} R_{1,1}$ is skew-symmetric. For $k=2,3$
we have $\left(R^{T} R_{1}\right)_{1 k}=-\left(R^{T} R_{1}\right)_{k 1}=y_{, 1} \cdot d_{k, 1}$, and this is related to curvature (and therefore, to bending effects), while $\left(R^{T} R_{11}\right)_{23}=-\left(R^{T} R_{1}\right)_{32}=d_{2} \cdot d_{3,1}$ is related to torsion.

The key ingredient in the proofs is a geometric rigidity result, proved by G. Friesecke, R.D. James, and S. Müller in [6], which guarantees that low energy maps are close to a rigid motion (see Theorem 2.2) and provides the compactness result of Theorem 2.1.

In the last section of the paper we deal with a refined version of the Γ convergence result: we let the functional $I^{(h)}$ depend explicitly on some additional variables, as the averaged deformation gradient and the rescaled nonlinear strain. We obtain as Γ-limit a one-dimensional functional with a richer structure and an additional term related to stretching and shearing effects. This term may play a role if we consider for instance deformations of Ω_{h}, whose energy is of order h^{4}, but which are only approximately isometries on the boundary.

After this work was finished, we have learnt that similar results have been obtained independently by O. Pantz [9].

2 Compactness

In the sequel S is a bounded open subset of \mathbb{R}^{2} with Lipschitz boundary and $\Omega:=(0, L) \times S$. We denote the variables in S by x_{2}, x_{3} and we assume that $\mathcal{L}^{2}(S)=1$ and

$$
\begin{equation*}
\int_{S} x_{2} x_{3} d x_{2} d x_{3}=\int_{S} x_{2} d x_{2} d x_{3}=\int_{S} x_{3} d x_{2} d x_{3}=0 \tag{2.1}
\end{equation*}
$$

Theorem 2.1 Let $\left(y^{(h)}\right)$ be a sequence in $W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
\limsup _{h \rightarrow 0} \frac{1}{h^{2}} \int_{\Omega} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x<+\infty \tag{2.2}
\end{equation*}
$$

Then, there exists a subsequence (not relabelled) such that

$$
\begin{equation*}
\nabla_{h} y^{(h)} \rightarrow\left(y_{1}\left|d_{2}\right| d_{3}\right) \quad \text { in } L^{2}(\Omega) \tag{2.3}
\end{equation*}
$$

where $y \in W^{2,2}\left(\Omega ; \mathbb{R}^{3}\right), d_{2}, d_{3} \in W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$. Moreover, $\left(y_{1}\left|d_{2}\right| d_{3}\right) \in \mathrm{SO}(3)$ a.e. and is independent of x_{2}, x_{3}.

The key ingredient in the proof is the following rigidity result, proved by G. Friesecke, R.D. James, and S. Müller in [6].

Theorem 2.2 Let U be a bounded Lipschitz domain in $\mathbb{R}^{n}, n \geq 2$. Then there exists a constant $C(U)$ with the following property: for every $v \in W^{1,2}\left(U ; \mathbb{R}^{n}\right)$ there is an associated rotation $R \in \mathrm{SO}(n)$ such that

$$
\begin{equation*}
\|\nabla v-R\|_{L^{2}(U)} \leq C(U)\|\operatorname{dist}(\nabla v, \mathrm{SO}(n))\|_{L^{2}(U)} \tag{2.4}
\end{equation*}
$$

Proof of Theorem 2.1. - The argument follows closely the proof of Theorem 4.1 in [6]. We include the details for the convenience of the reader. For every $h>0$ let $k_{h} \in \mathbb{N}$ be such that $h \leq L / k_{h}<2 h$, and let

$$
\begin{equation*}
I_{a, k_{h}}:=\left(a, a+\frac{L}{k_{h}}\right), \quad a \in[0, L) \cap \frac{L}{k_{h}} \mathbb{N} . \tag{2.5}
\end{equation*}
$$

By applying Theorem 2.2 to the function $v^{(h)}(z):=y^{(h)}\left(z_{1}, \frac{z_{2}}{h}, \frac{z_{3}}{h}\right)$ restricted to the set $(a, a+2 h) \times S_{h}$ (when $a<L-L / k_{h}$; to the set $(L-2 h, L) \times S_{h}$, otherwise), we have that there exists a piecewise constant map $R^{(h)}:[0, L] \rightarrow \mathrm{SO}(3)$ such that

$$
\begin{equation*}
\int_{I_{a, k_{h}} \times S}\left|\nabla_{h} y^{(h)}-R^{(h)}\right|^{2} d x \leq C \int_{(a, a+2 h) \times S} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x, \tag{2.6}
\end{equation*}
$$

(when $a=L-L / k_{h}$ just replace the interval $(a, a+2 h)$ by $(L-2 h, L)$ in the second integral above). Summing over a, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla_{h} y^{(h)}-R^{(h)}\right|^{2} d x \leq C \int_{\Omega} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x \leq C h^{2} . \tag{2.7}
\end{equation*}
$$

Let now $a \in[0, L) \cap \frac{L}{k_{h}} \mathbb{N}$ be such that $(a, a+4 h) \subset(0, L)$ and let $b=a+L / k_{h}$. Then, using the fact that $I_{a, k_{h}}, I_{b, k_{h}}$ are contained in $(a, a+4 h)$, the estimate (2.7), and its analog for the set $(a, a+4 h) \times S$, we have

$$
\frac{L}{k_{h}}\left|R^{(h)}(a)-R^{(h)}(b)\right|^{2} \leq C \int_{(a, a+4 h) \times S} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x .
$$

Since $R^{(h)}$ is piecewise constant, the inequality above can be rewritten as

$$
\int_{I_{a, k_{h}}}\left|R^{(h)}\left(x_{1}\right)-R^{(h)}\left(x_{1}+L / k_{h}\right)\right|^{2} d x_{1} \leq C \int_{(a, a+4 h) \times S} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x .
$$

Hence for every $0 \leq \xi \leq L / k_{h}$,

$$
\begin{equation*}
\int_{I_{a, k_{h}}}\left|R^{(h)}\left(x_{1}+\xi\right)-R^{(h)}\left(x_{1}\right)\right|^{2} d x_{1} \leq C \int_{(a, a+4 h) \times S} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x \tag{2.8}
\end{equation*}
$$

In the same way one can show that for every a such that $(a-2 h, a+2 h) \subset(0, L)$ and for every $L / k_{h} \leq \xi \leq 0$,

$$
\begin{equation*}
\int_{I_{a, k_{h}}}\left|R^{(h)}\left(x_{1}+\xi\right)-R^{(h)}\left(x_{1}\right)\right|^{2} d x_{1} \leq C \int_{(a-2 h, a+2 h) \times S} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x \tag{2.9}
\end{equation*}
$$

Now let I^{\prime} be an open interval compactly contained in $(0, L)$ and let $\xi \in \mathbb{R}$ satisfy $|\xi| \leq \operatorname{dist}\left(I^{\prime},\{0, L\}\right)$. Then iterative applications of the estimates (2.8) and (2.9) yield

$$
\begin{align*}
\int_{I^{\prime}} \mid R^{(h)}\left(x_{1}\right. & +\xi)-\left.R^{(h)}\left(x_{1}\right)\right|^{2} d x_{1} \\
& \leq C\left(\frac{|\xi|}{h}+1\right)^{2} \int_{\Omega} \operatorname{dist}^{2}\left(\nabla_{h} y^{(h)}, \mathrm{SO}(3)\right) d x \leq C(|\xi|+h)^{2} . \tag{2.10}
\end{align*}
$$

Using the Fréchet-Kolmogorov criterion, one can deduce from this estimate that for any sequence $h_{j} \rightarrow 0$ there exists a subsequence of $\left(R^{\left(h_{j}\right)}\right)$ strongly converging in $L^{2}\left(I^{\prime}\right)$ to some $\bar{R} \in L^{2}\left(I^{\prime}\right)$ with $\bar{R}\left(x_{1}\right) \in \mathrm{SO}(3)$ for a.e. $x_{1} \in I^{\prime}$.

From the bound (2.2) it follows that, up to subsequences, $\left(\nabla_{h_{j}} y^{\left(h_{j}\right)}\right)$ converges weakly in $L^{2}(\Omega)$ to $\left(y_{, 1}\left|d_{2}\right| d_{3}\right)$. By (2.7) we have that $R^{\left(h_{j}\right)}-\nabla_{h_{j}} y^{\left(h_{j}\right)} \rightarrow$ 0 strongly in $L^{2}(\Omega)$, so that $\left(y_{1}\left|d_{2}\right| d_{3}\right)=\bar{R}$ a.e. on $I^{\prime} \times S$. In particular, $\left(y_{, 1}\left|d_{2}\right| d_{3}\right)$ depends only on x_{1} and belongs to $\mathrm{SO}(3)$ for a.e. $x_{1} \in I^{\prime}$. Since I^{\prime} is an arbitrary compact interval contained in $(0, L)$, the properties above hold in the whole $(0, L)$. Since $\operatorname{dist}\left(\nabla_{h_{j}} y^{\left(h_{j}\right)}, \mathrm{SO}(3)\right)$ tends to 0 in $L^{2}(\Omega)$, we have that $\left|\nabla_{h_{j}} y^{\left(h_{j}\right)}\right|^{2} \rightarrow 3=|\bar{R}|^{2}$ in $L^{1}(\Omega)$, so that $\left\|\nabla_{h_{j}} y^{\left(h_{j}\right)}\right\|_{L^{2}(\Omega)}$ converges to $\|\bar{R}\|_{L^{2}(\Omega)}$, which together with weak convergence in $L^{2}(\Omega)$ implies strong convergence in $L^{2}(\Omega)$. Hence, by (2.7) the sequence $\left(R^{(h)}\right)$ is in fact converging to \bar{R} strongly in $L^{2}(0, L)$.

Finally, passing to the limit in (2.10) as $h \rightarrow 0$, we obtain

$$
\int_{I^{\prime}} \frac{\left|\left(y_{, 1}\left|d_{2}\right| d_{3}\right)\left(x_{1}+\xi\right)-\left(y_{, 1}\left|d_{2}\right| d_{3}\right)\left(x_{1}\right)\right|^{2}}{|\xi|^{2}} d x_{1} \leq C
$$

which implies $\left(y_{, 1}\left|d_{2}\right| d_{3}\right) \in W^{1,2}\left(I^{\prime} ; \mathbb{M}^{3 \times 3}\right)$. Since C is independent of I^{\prime}, we actually have that $\left(y_{1}\left|d_{2}\right| d_{3}\right) \in W^{1,2}\left((0, L) ; \mathbb{M}^{3 \times 3}\right)$.

3 Г-convergence

Theorem 3.1 As $h \rightarrow 0$, the functionals $\frac{1}{h^{2}} I^{(h)}$ are Γ-convergent to the functional I given below, in the following sense:
(i) (liminf inequality) for every sequence of positive $\left(h_{j}\right)$ converging to 0 and for every sequence $\left(y^{\left(h_{j}\right)}\right) \subset W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ such that $y^{\left(h_{j}\right)} \rightarrow y$ in $W^{1,2}$ and $\left(\frac{1}{h_{j}} y_{, 2}^{\left(h_{j}\right)}, \frac{1}{h_{j}} y_{, 3}^{\left(h_{j}\right)}\right) \rightarrow\left(d_{2}, d_{3}\right)$ in L^{2},

$$
I\left(y, d_{2}, d_{3}\right) \leq \liminf _{j \rightarrow \infty} \frac{1}{h_{j}^{2}} I^{\left(h_{j}\right)}\left(y^{\left(h_{j}\right)}\right)
$$

(ii) (limsup inequality) for every sequence of positive $\left(h_{j}\right)$ converging to 0 and for every $y \in W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right), d_{2}, d_{3} \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ there exists a sequence $\left(y^{\left(h_{j}\right)}\right) \subset$
$W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ such that $y^{\left(h_{j}\right)} \rightarrow y$ in $W^{1,2},\left(\frac{1}{h_{j}} y_{, 2}^{\left(h_{j}\right)}, \frac{1}{h_{j}} y_{, 3}^{\left(h_{j}\right)}\right) \rightarrow\left(d_{2}, d_{3}\right)$ in L^{2}, and

$$
\limsup _{j \rightarrow \infty} \frac{1}{h_{j}^{2}} I^{\left(h_{j}\right)}\left(y^{\left(h_{j}\right)}\right)=I\left(y, d_{2}, d_{3}\right)
$$

The limit functional is defined as

$$
I\left(y, d_{2}, d_{3}\right):= \begin{cases}\frac{1}{2} \int_{0}^{L} Q_{2}\left(R^{T} R_{, 1}\right) d x_{1} & \text { if }\left(y, d_{2}, d_{3}\right) \in \mathcal{A} \\ +\infty & \text { otherwise }\end{cases}
$$

where $R:=\left(y_{, 1}\left|d_{2}\right| d_{3}\right)$, while the class \mathcal{A} is given by

$$
\begin{aligned}
& \mathcal{A}:=\left\{\left(y, d_{2}, d_{3}\right) \in W^{2,2}\left(\Omega ; \mathbb{R}^{3}\right) \times W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right) \times W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right):\right. \\
& y, d_{2}, d_{3} \text { do not depend on } x_{2}, x_{3}, \quad\left|y_{, 1}\right|=\left|d_{2}\right|=\left|d_{3}\right|=1 \\
&\left.y_{, 1} \cdot d_{2}=y_{, 1} \cdot d_{3}=d_{2} \cdot d_{3}=0\right\}
\end{aligned}
$$

The quadratic form $Q_{2}: \mathbb{M}_{\text {skew }}^{3 \times 3} \rightarrow[0,+\infty)$ is defined as

$$
Q_{2}(A):=\min _{\alpha \in W^{1,2}\left(S ; \mathbb{R}^{3}\right)} \int_{S} Q_{3}\left(A\left(\begin{array}{c}
0 \tag{3.1}\\
x_{2} \\
x_{3}
\end{array}\right)\left|\alpha_{, 2}\right| \alpha_{, 3}\right) d x_{2} d x_{3}
$$

while

$$
Q_{3}(G)=\frac{\partial^{2} W}{\partial F^{2}}(I d)(G, G)
$$

is twice the quadratic form of linearized elasticity.
Remark 3.2 The result of the theorem remains valid if we replace the strong convergence in $W^{1,2}$ and L^{2} of the sequences $\left(y^{(h)}\right)$ and $\left(\frac{1}{h} y_{, 2}^{(h)}, \frac{1}{h} y_{, 3}^{(h)}\right)$ by the weak convergence in the same spaces, as shown in the proof.

Remark 3.3 Notice that when $y \in \mathcal{A}$, the matrix R belongs to $\mathrm{SO}(3)$, so that $R^{T} R_{, 1}$ is skew-symmetric.

Remark 3.4 (Euler-Lagrange equations) By standard arguments one can prove that the minimum problem in (3.1) has a solution; indeed, it is easy to show that the minimum can be equivalently computed on the class of functions

$$
V:=\left\{\alpha \in W^{1,2}\left(S ; \mathbb{R}^{3}\right): \int_{S} \alpha d x_{2} d x_{3}=\int_{S} \nabla \alpha d x_{2} d x_{3}=0\right\}
$$

where the fact that Q_{3} is strictly positive definite on symmetric matrices is enough to guarantee compactness with respect to the the weak topology of $W^{1,2}$. Moreover, the functional to minimize is lower semicontinuous with respect to this topology. The strict convexity of Q_{3} on symmetric matrices ensures also that the minimizer is unique in V.

In order to derive the Euler-Lagrange equations associated to the minimum problem, it is convenient to introduce some notation. Given a matrix $G \in \mathbb{M}_{\text {sym }}^{3 \times 3}$, we denote its entries as follows:

$$
G=\left(\begin{array}{lll}
g_{1} & g_{2} & g_{3} \\
g_{2} & g_{4} & g_{5} \\
g_{3} & g_{5} & g_{6}
\end{array}\right)
$$

and we write the quadratic form Q_{3} in the following way:

$$
Q_{3}(G)=\sum_{i, j \in\{1,4,6\}} \frac{1}{2} q_{i j} g_{i} g_{j}+\sum_{i, j \in\{2,3,5\}} 2 q_{i j} g_{i} g_{j}+\sum_{i \in\{1,4,6\}} \sum_{j \in\{2,3,5\}} 2 q_{i j} g_{i} g_{j}
$$

Note that the matrix $Q:=\left(q_{i j}\right)_{i, j=1, \ldots, 6}$ is positive definite. If M is a matrix in $\mathbb{M}^{n \times m}$, we denote by $M_{i_{1} i_{2}}^{j_{1} j_{2}}$ the (2×2)-submatrix of M given by the i_{1}, i_{2}-th rows and the j_{1}, j_{2}-th columns of M. Using this notation one can show that the minimizer $\alpha \in V$ of the problem (3.1) must satisfy the following Euler-Lagrange equations:

$$
\left\{\begin{array}{l}
\operatorname{div}\left(Q_{23}^{23} \nabla \alpha_{1}+Q_{23}^{45} \nabla \alpha_{2}+Q_{23}^{56} \nabla \alpha_{3}\right)=-a_{12} q_{12}-a_{13} q_{13} \tag{3.2}\\
\operatorname{div}\left(Q_{45}^{23} \nabla \alpha_{1}+Q_{45}^{45} \nabla \alpha_{2}+Q_{45}^{56} \nabla \alpha_{3}\right)=-a_{12} q_{14}-a_{13} q_{15}+a_{23}\left(q_{34}-q_{25}\right) \text { in } S \\
\operatorname{div}\left(Q_{56}^{23} \nabla \alpha_{1}+Q_{56}^{45} \nabla \alpha_{2}+Q_{56}^{56} \nabla \alpha_{3}\right)=-a_{12} q_{15}-a_{13} q_{16}+a_{23}\left(q_{35}-q_{26}\right)
\end{array}\right.
$$

with the following boundary conditions:

$$
\left\{\begin{array}{l}
\left(Q_{23}^{23} \nabla \alpha_{1}+Q_{23}^{45} \nabla \alpha_{2}+Q_{23}^{56} \nabla \alpha_{3}\right) \cdot \nu=-n_{23} \cdot \nu \tag{3.3}\\
\left(Q_{45}^{23} \nabla \alpha_{1}+Q_{45}^{45} \nabla \alpha_{2}+Q_{45}^{56} \nabla \alpha_{3}\right) \cdot \nu=-n_{45} \cdot \nu \quad \text { on } \partial S \\
\left(Q_{56}^{23} \nabla \alpha_{1}+Q_{56}^{45} \nabla \alpha_{2}+Q_{56}^{56} \nabla \alpha_{3}\right) \cdot \nu=-n_{56} \cdot \nu
\end{array}\right.
$$

where we have set $n_{i j}\left(x_{2}, x_{3}\right):=\left(a_{12} x_{2}+a_{13} x_{3}\right)\left(q_{1 i}, q_{1 j}\right)+a_{23} Q_{i j}^{23}\left(x_{3},-x_{2}\right)$. It is clear that any solution α to (3.2)-(3.3) depends linearly on the entries $\left(a_{i j}\right)$ of A. Hence Q_{2} is in fact a quadratic form of A.

The formulae (3.2) and (3.3) simplify considerably if W is isotropic or if Ω has circular cross section (see Remarks 3.5 and 3.6 below).

Proof of Theorem 3.1. - (i) Let $\left(h_{j}\right)$ be a positive sequence converging to 0 and let $\left(y^{\left(h_{j}\right)}\right)$ be a sequence in $W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ such that $\left(y^{\left(h_{j}\right)}\right) \rightharpoonup y$ in $W^{1,2}$, $\left(\frac{1}{h_{j}} y_{, 2}^{\left(h_{j}\right)}, \frac{1}{h_{j}} y_{, 3}^{\left(h_{j}\right)}\right) \rightharpoonup\left(d_{2}, d_{3}\right)$ in L^{2}, and

$$
\liminf _{j \rightarrow \infty} \frac{1}{h_{j}^{2}} I^{\left(h_{j}\right)}\left(y^{\left(h_{j}\right)}\right)<+\infty
$$

Passing to a subsequence if needed, we can assume that $\lim _{j \rightarrow \infty} \frac{1}{h_{j}^{2}} I^{\left(h_{j}\right)}\left(y^{\left(h_{j}\right)}\right)$ exists and equals $\liminf _{j \rightarrow \infty} \frac{1}{h_{j}^{2}} I^{\left(h_{j}\right)}\left(y^{\left(h_{j}\right)}\right)$.

By the proof of Theorem 2.1 we can costruct a piecewise constant approximation $R^{\left(h_{j}\right)}:(0, L) \rightarrow \mathrm{SO}(3)$ satisfying (2.7). We consider the function $G^{\left(h_{j}\right)}: \Omega \rightarrow \mathbb{M}^{3 \times 3}$ defined as

$$
\begin{equation*}
G^{\left(h_{j}\right)}(x):=\frac{R^{\left(h_{j}\right)}\left(x_{1}\right)^{T} \nabla_{h_{j}} y^{\left(h_{j}\right)}(x)-I d}{h_{j}} \tag{3.4}
\end{equation*}
$$

It follows from (2.7) that the L^{2}-norm of $G^{\left(h_{j}\right)}$ in Ω is bounded; therefore, up to subsequences, there exists $G \in L^{2}\left(\Omega ; \mathbb{M}^{3 \times 3}\right)$ such that

$$
\begin{equation*}
G^{\left(h_{j}\right)} \rightharpoonup G \quad \text { in } L^{2}(\Omega) . \tag{3.5}
\end{equation*}
$$

By expanding W around the identity and by using the frame-indifference of W one can show that

$$
\begin{equation*}
\liminf _{j \rightarrow \infty} \frac{1}{h_{j}^{2}} \int_{\Omega} W\left(\nabla_{h_{j}} y^{\left(h_{j}\right)}\right) d x \geq \frac{1}{2} \int_{\Omega} Q_{3}(G) d x \tag{3.6}
\end{equation*}
$$

(see the analogous argument in the proof of Theorem 6.1-(i) in [6]).
Now the main point is to identify G in terms of y, d_{2}, d_{3}. Let $G_{1}^{\left(h_{j}\right)}$ and G_{1} denote the first column of $G^{\left(h_{j}\right)}$ and G, respectively, and consider the difference quotients in the x_{k}-direction with $k=2,3$:

$$
\begin{aligned}
H_{k}^{\left(h_{j}\right)}(x) & :=\frac{G_{1}^{\left(h_{j}\right)}\left(x+t e_{k}\right)-G_{1}^{\left(h_{j}\right)}(x)}{t} \\
& =R^{\left(h_{j}\right)}\left(x_{1}\right)^{T} \frac{y_{, 1}^{\left(h_{j}\right)}\left(x+t e_{k}\right)-y_{, 1}^{\left(h_{j}\right)}(x)}{t h_{j}}
\end{aligned}
$$

Let S^{\prime} be a compact subset of S, let t be such that $|t|<\operatorname{dist}\left(S^{\prime}, \partial S\right)$, and let $\Omega^{\prime}:=(0, L) \times S^{\prime}$. From (3.5) it follows that $H_{k}^{\left(h_{j}\right)} \rightharpoonup H_{k}$ in $L^{2}\left(\Omega^{\prime}\right)$, where

$$
H_{k}(x):=\frac{G_{1}\left(x+t e_{k}\right)-G_{1}(x)}{t}
$$

From the proof of Theorem 2.1 we know that $\left(R^{\left(h_{j}\right)}\right)$ converges in $L^{2}(\Omega)$ to $R=\left(y_{, 1}\left|d_{2}\right| d_{3}\right)$; therefore,

$$
\begin{equation*}
\frac{y_{, 1}^{\left(h_{j}\right)}\left(x+t e_{k}\right)-y_{, 1}^{\left(h_{j}\right)}(x)}{t h_{j}}=R^{\left(h_{j}\right)} H_{k}^{\left(h_{j}\right)} \rightharpoonup R H_{k} \quad \text { in } L^{2}\left(\Omega^{\prime}\right) \tag{3.7}
\end{equation*}
$$

Note that the left-hand side can be rewritten as follows:

$$
\begin{equation*}
\frac{y_{, 1}^{\left(h_{j}\right)}\left(x+t e_{k}\right)-y_{, 1}^{\left(h_{j}\right)}(x)}{t h_{j}}=\partial_{x_{1}}\left(\frac{1}{t} \int_{0}^{t} \frac{1}{h_{j}} y_{, k}^{\left(h_{j}\right)}\left(x+s e_{k}\right) d s\right) \tag{3.8}
\end{equation*}
$$

By Theorem 2.1 we have that $\frac{1}{h_{j}} y_{, k}^{\left(h_{j}\right)}$ converges strongly in $L^{2}(\Omega)$ to d_{k}, hence the average $\frac{1}{t} \int_{0}^{t} \frac{1}{h_{j}} y_{, k}^{\left(h_{j}\right)}\left(\cdot+s e_{k}\right) d s$ converges strongly in $L^{2}\left(\Omega^{\prime}\right)$ to $\frac{1}{t} \int_{0}^{t} d_{k}(\cdot+$ $\left.s e_{k}\right) d s$, which is equal to d_{k}, since d_{k} does not depend on x_{k}. By (3.8) we obtain

$$
\begin{equation*}
\frac{y_{, 1}^{\left(h_{j}\right)}\left(x+t e_{k}\right)-y_{, 1}^{\left(h_{j}\right)}(x)}{t h_{j}} \rightharpoonup d_{k, 1} \quad \text { in } W^{-1,2}\left(\Omega^{\prime}\right) \tag{3.9}
\end{equation*}
$$

Combining (3.7) and (3.9) we have $H_{k}=R^{T} d_{k, 1}$. In particular, H_{k} is independent of x_{2}, x_{3} and hence

$$
G_{1}(x)=G_{1}\left(x_{1}, x_{2}, 0\right)+x_{3} H_{3}\left(x_{1}\right)=G_{1}\left(x_{1}, 0,0\right)+x_{2} H_{2}\left(x_{1}\right)+x_{3} H_{3}\left(x_{1}\right)
$$

Setting $A\left(x_{1}\right):=R^{T} R_{, 1}$ we have found that

$$
G_{1}(x)=G_{1}\left(x_{1}, 0,0\right)+A\left(x_{1}\right)\left(\begin{array}{c}
0 \tag{3.10}\\
x_{2} \\
x_{3}
\end{array}\right)
$$

In order to identify the remaining columns of G, let us define

$$
\begin{equation*}
\alpha^{\left(h_{j}\right)}(x):=\frac{R^{\left(h_{j}\right)}\left(x_{1}\right)^{T} \frac{1}{h_{j}} y^{\left(h_{j}\right)}-x_{2} e_{2}-x_{3} e_{3}}{h_{j}} \tag{3.11}
\end{equation*}
$$

It is easy to check that

$$
\begin{equation*}
\alpha_{, k}^{\left(h_{j}\right)}=G_{k}^{\left(h_{j}\right)} \quad \text { for } k=2,3 \tag{3.12}
\end{equation*}
$$

where $G_{k}^{\left(h_{j}\right)}$ denotes the k-th column of $G^{\left(h_{j}\right)}$. If we set now $\alpha_{0}^{\left(h_{j}\right)}\left(x_{1}\right):=$ $\int_{S} \alpha^{\left(h_{j}\right)}(x) d x_{2} d x_{3}$, by Poincaré inequality we have that

$$
\int_{S}\left|\alpha^{\left(h_{j}\right)}(x)-\alpha_{0}^{\left(h_{j}\right)}\left(x_{1}\right)\right|^{2} d x_{2} d x_{3} \leq C \int_{S}\left(\left|\alpha_{, 2}^{\left(h_{j}\right)}(x)\right|^{2}+\left|\alpha_{, 3}^{\left(h_{j}\right)}(x)\right|^{2}\right) d x_{2} d x_{3}
$$

for a.e. $x_{1} \in(0, L)$. Integrating with respect to x_{1}, we deduce

$$
\left\|\alpha^{\left(h_{j}\right)}-\alpha_{0}^{\left(h_{j}\right)}\right\|_{L^{2}(\Omega)}^{2} \leq C\left(\left\|\alpha_{, 2}^{\left(h_{j}\right)}\right\|_{L^{2}(\Omega)}^{2}+\left\|\alpha_{, 3}^{\left(h_{j}\right)}\right\|_{L^{2}(\Omega)}^{2}\right)
$$

Since the right-hand side is bounded, we can conclude that $\alpha^{\left(h_{j}\right)}-\alpha_{0}^{\left(h_{j}\right)}$ weakly converges to some α in $L^{2}(\Omega)$. From (3.12) it follows that

$$
\begin{equation*}
\alpha_{, k}=G_{k} \quad \text { for } k=2,3 \tag{3.13}
\end{equation*}
$$

and therefore $\alpha_{, k} \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ for $k=2,3$. Combining (3.10) and (3.13), and setting

$$
\begin{equation*}
\tilde{\alpha}\left(x_{2}, x_{3}\right):=\alpha\left(x_{2}, x_{3}\right)-x_{2} \int_{S} \alpha_{, 2} d x_{2} d x_{3}-x_{3} \int_{S} \alpha_{, 3} d x_{2} d x_{3} \tag{3.14}
\end{equation*}
$$

we can write

$$
G=\left(G_{1}\left(x_{1}, 0,0\right)\left|\int_{S} \alpha, 2\right| \int_{S} \alpha, 3\right)+\left(A\left(\begin{array}{c}
0 \tag{3.15}\\
x_{2} \\
x_{3}
\end{array}\right)\left|\tilde{\alpha}_{, 2}\right| \tilde{\alpha}_{, 3}\right) .
$$

By expanding the quadratic form Q_{3} and by using the fact that the first matrix on the right-hand side of (3.15) is independent of x_{2}, x_{3} and that $\int_{S} \tilde{\alpha}_{, k} d x_{2} d x_{3}=0$ for $k=2,3$, we find in combination with (2.1) that

$$
\begin{align*}
& \int_{S} Q_{3}(G(x)) d x_{2} d x_{3}=\int_{S} Q_{3}\left(G_{1}\left(x_{1}, 0,0\right)\left|\int_{S} \alpha_{, 2}\right| \int_{S} \alpha_{, 3}\right) d x_{2} d x_{3} \\
&+\int_{S} Q_{3}\left(A\left(\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right)\left|\tilde{\alpha}_{, 2}\right| \tilde{\alpha}_{, 3}\right) d x_{2} d x_{3} \tag{3.16}
\end{align*}
$$

Dropping the first term on the right-hand side, which is nonnegative, and using the definition of Q_{2}, we have

$$
\int_{\Omega} Q_{3}(G(x)) d x \geq \int_{0}^{L} Q_{2}\left(A\left(x_{1}\right)\right) d x_{1}=\int_{0}^{L} Q_{2}\left(R^{T} R_{, 1}\right) d x_{1}
$$

where in the last equality we have simply applied the definition of the matrix A. This finishes the proof of the liminf estimate.
(ii) To prove the limsup estimate, let $\left(y, d_{2}, d_{3}\right) \in \mathcal{A}$. Assume in addition $y \in C^{2}\left([0, L] ; \mathbb{R}^{3}\right), d_{2}, d_{3} \in C^{1}\left([0, L] ; \mathbb{R}^{3}\right)$. For every $h>0$ let us consider the function

$$
\begin{equation*}
y^{(h)}(x):=y\left(x_{1}\right)+h x_{2} d_{2}\left(x_{1}\right)+h x_{3} d_{3}\left(x_{1}\right)+h^{2} \beta(x) \tag{3.17}
\end{equation*}
$$

with $\beta \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$. Then

$$
\nabla_{h} y^{(h)}=R+h\left(x_{2} d_{2,1}+x_{3} d_{3,1}\left|\beta_{, 2}\right| \beta_{, 3}\right)+h^{2}\left(\beta_{, 1}|0| 0\right) .
$$

If we set

$$
\begin{aligned}
B^{(h)} & :=\frac{R^{T} \nabla_{h} y^{(h)}-I d}{h} \\
& =R^{T}\left(x_{2} d_{2,1}+x_{3} d_{3,1}\left|\beta_{2}\right| \beta_{, 3}\right)+h R^{T}\left(\beta_{, 1}|0| 0\right),
\end{aligned}
$$

then for h sufficiently small (in such a way that, for a.e. $x \in \Omega$, the matrix $I d+h B^{(h)}(x)$ belongs to the neighbourhood of $I d$ where W is of class C^{2}) we have by Taylor expansion

$$
\frac{1}{h^{2}} W\left(I d+h B^{(h)}\right) \rightarrow \frac{1}{2} Q_{3}\left(R^{T}\left(x_{2} d_{2,1}+x_{3} d_{3,1}\left|\beta_{, 2}\right| \beta_{, 3}\right)\right) \quad \text { a.e. }
$$

and

$$
\frac{1}{h^{2}} W\left(I d+h B^{(h)}\right) \leq C\left|B^{(h)}\right|^{2} \leq C\left(\left|d_{2,1}\right|^{2}+\left|d_{3,1}\right|^{2}+|\nabla \beta|^{2}\right) \in L^{1}(\Omega) .
$$

By the dominated convergence theorem

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{1}{h^{2}} \int_{\Omega} W\left(\nabla_{h} y^{(h)}\right) d x & =\lim _{h \rightarrow 0} \frac{1}{h^{2}} \int_{\Omega} W\left(I d+h B^{(h)}\right) d x \\
& =\frac{1}{2} \int_{\Omega} Q_{3}\left(R^{T}\left(x_{2} d_{2,1}+x_{3} d_{3,1}\left|\beta_{, 2}\right| \beta, 3\right)\right) d x .(3.18)
\end{aligned}
$$

Consider now the general case: let $\left(y, d_{2}, d_{3}\right) \in \mathcal{A}$ and let $\alpha\left(x_{1}, \cdot\right) \in V$ be the solution of the minimum problem defining $Q_{2}\left(R^{T} R, 1\right)$. To conclude it remains to exhibit a sequence converging to (y, d_{2}, d_{3}) and whose energy converges to the right-hand side of (3.18) with $R^{T} \beta$ replaced by α. Since α and $\alpha_{, k}$ (for $k=$ $2,3)$ belong to $L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, we can construct by convolution a sequence $\left(\alpha^{(j)}\right) \subset$ $C^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$ such that $\alpha^{(j)} \rightarrow \alpha, \alpha_{, k}^{(j)} \rightarrow \alpha_{, k}$ (for $\left.k=2,3\right)$ in $L^{2}(\Omega)$. Moreover, we can find $\left(\tilde{R}^{(j)}\right) \subset C^{1}\left([0, L] ; \mathbb{M}^{3 \times 3}\right)$ such that $\tilde{R}^{(j)} \rightarrow R$ in $W^{1,2}(0, L)$; by Sobolev embedding theorem this implies that $\tilde{R}^{(j)} \rightarrow R$ uniformly on $[0, L]$. In order to obtain an approximating sequence of orthogonal matrices, we take $R^{(j)}:=\Pi \tilde{R}^{(j)}$, where $\Pi: \mathbb{M}^{3 \times 3} \rightarrow \mathbb{M}^{3 \times 3}$ is a smooth function defining a projection from a neighbourhood of $\mathrm{SO}(3)$ onto $\mathrm{SO}(3)$, and we set

$$
y^{(j)}\left(x_{1}\right):=\int_{0}^{x_{1}} R^{(j)}(s) e_{1} d s, \quad d_{k}^{(j)}\left(x_{1}\right):=R^{(j)}\left(x_{1}\right) e_{k} \text { for } k=2,3 .
$$

Then $\left(y^{(j)}, d_{2}^{(j)}, d_{3}^{(j)}\right) \in \mathcal{A}, y^{(j)} \in C^{2}\left([0, L] ; \mathbb{R}^{3}\right), d_{2}^{(j)}, d_{3}^{(j)} \in C^{1}\left([0, L] ; \mathbb{R}^{3}\right)$, and $\left(y_{1}^{(j)}\left|d_{2}^{(j)}\right| d_{3}^{(j)}\right)=R^{(j)}$ is converging to R strongly in $W^{1,2}(0, L)$ and uniformly on $[0, L]$. Finally, we can assume, up to subsequences, that

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} Q_{3}\left(x_{2}\left(R^{(j)}\right)^{T} d_{2,1}^{(j)}+x_{3}\left(R^{(j)}\right)^{T} d_{3,1}^{(j)}\left|\alpha_{, 2}^{(j)}\right| \alpha_{, 3}^{(j)}\right) d x \\
& \quad \leq \frac{1}{2} \int_{\Omega} Q_{3}\left(x_{2} R^{T} d_{2,1}+x_{3} R^{T} d_{3,1}\left|\alpha_{, 2}\right| \alpha_{, 3}\right) d x+\frac{1}{j} \\
& \quad=I\left(y, d_{2}, d_{3}\right)+\frac{1}{j}
\end{aligned}
$$

here we have used the fact that the functional on the left-hand side is continuous with respect to the kind of convergence we have shown for $\left(R^{(j)}\right)$ and $\left(\alpha^{(j)}\right)$.

Now, given any positive (h_{m}) converging to 0 , by (3.18) we can find a subsequence (that we denote by $\left(h_{j}\right)$ with an abuse of notation) such that the sequence (3.17) with $y=y^{(j)}, d_{k}=d_{k}^{(j)}, \beta=R^{(j)} \alpha^{(j)}$ and $h=h_{j}$ satisfies

$$
\frac{1}{h_{j}^{2}} I^{\left(h_{j}\right)}\left(y^{\left(h_{j}\right)}\right) \leq I\left(y, d_{2}, d_{3}\right)+\frac{2}{j},
$$

and $y^{\left(h_{j}\right)} \rightarrow y$ in $W^{1,2},\left(\frac{1}{h_{j}} y_{,}^{\left(h_{j}\right)}, \frac{1}{h_{j}} y_{, 3}^{\left(h_{j}\right)}\right) \rightarrow\left(d_{2}, d_{3}\right)$ in L^{2}, as required.

Remark 3.5 (Isotropic case) Assume that the stored energy function W in (1.1) is isotropic, that is, W satisfies the following condition:
iv) $W(F)=W(F R)$ for every $R \in \mathrm{SO}(3)$.

Then, the quadratic form Q_{3} is equal to

$$
Q_{3}(G)=2 \mu\left|\frac{G+G^{T}}{2}\right|^{2}+\lambda(\operatorname{trace} G)^{2}
$$

for some constants $\lambda, \mu \in \mathbb{R}$. In this case it is easy to find an explicit solution to the system (3.2)-(3.3) and therefore the explicit expression of Q_{2}.

Indeed the system of equations (3.2)-(3.3) splits in the two following systems:

$$
\begin{cases}\Delta \alpha_{1}=0 & \text { in } S \tag{3.19}\\ \partial_{\nu} \alpha_{1}=-a_{23}\left(x_{3},-x_{2}\right) \cdot \nu & \text { on } \partial S\end{cases}
$$

and

$$
\begin{cases}\operatorname{div}\left((2 \mu+\lambda) \alpha_{2,2}+\lambda \alpha_{3,3}, \mu \alpha_{2,3}+\mu \alpha_{3,2}\right)=-\lambda a_{12} & \text { in } S \tag{3.20}\\ \operatorname{div}\left(\mu \alpha_{2,3}+\mu \alpha_{3,2}, \lambda \alpha_{2,2}+(2 \mu+\lambda) \alpha_{3,3}\right)=-\lambda a_{13} & \text { in } S \\ \left((2 \mu+\lambda) \alpha_{2,2}+\lambda \alpha_{3,3}, \mu \alpha_{2,3}+\mu \alpha_{3,2}\right) \cdot \nu=-\lambda\left(a_{12} x_{2}+a_{13} x_{3}\right) \nu_{2} & \text { on } \partial S \\ \left(\mu \alpha_{2,3}+\mu \alpha_{3,2}, \lambda \alpha_{2,2}+(2 \mu+\lambda) \alpha_{3,3}\right) \cdot \nu=-\lambda\left(a_{12} x_{2}+a_{13} x_{3}\right) \nu_{3} & \text { on } \partial S\end{cases}
$$

If we denote by φ the torsion function, i.e., a function solving the Neumann problem

$$
\begin{cases}\Delta \varphi=0 & \text { in } S \\ \partial_{\nu} \varphi=-\left(x_{3},-x_{2}\right) \cdot \nu & \text { on } \partial S\end{cases}
$$

then it is straightforward to show that the solution to (3.19)-(3.20) belonging to the space V is provided by $\alpha_{1}\left(x_{2}, x_{3}\right)=a_{23} \varphi\left(x_{2}, x_{3}\right)$ and

$$
\begin{aligned}
\alpha_{2}\left(x_{2}, x_{3}\right) & =-\frac{1}{4} \frac{\lambda}{\lambda+\mu}\left(a_{12} x_{2}^{2}-a_{12} x_{3}^{2}+2 a_{13} x_{2} x_{3}\right) \\
\alpha_{3}\left(x_{2}, x_{3}\right) & =-\frac{1}{4} \frac{\lambda}{\lambda+\mu}\left(-a_{13} x_{2}^{2}+a_{13} x_{3}^{2}+2 a_{12} x_{2} x_{3}\right)
\end{aligned}
$$

Now, computing the value of the functional at the minimum point we have found, we obtain

$$
Q_{2}(A)=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}\left(a_{12}^{2} \int_{S} x_{2}^{2} d x_{2} d x_{3}+a_{13}^{2} \int_{S} x_{3}^{2} d x_{2} d x_{3}\right)+\mu \tau a_{23}^{2}
$$

where the constant τ is the so-called torsional rigidity, defined as

$$
\tau(S):=\int_{S}\left(x_{2}^{2}+x_{3}^{2}-x_{2} \varphi, 3+x_{3} \varphi, 2\right) d x_{2} d x_{3}
$$

If, in addition, S has circular cross section, i.e. $S=\left\{\left(x_{2}, x_{3}\right): x_{2}^{2}+x_{3}^{2}=\frac{1}{\pi}\right\}$, then $\varphi=0$ and $\int_{S} x_{2}^{2} d x_{2} d x_{3}=\frac{1}{4 \pi}$, so that

$$
Q_{2}(A)=\frac{1}{2 \pi} \frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}\left(a_{12}^{2}+a_{13}^{2}\right)+\frac{\mu}{2 \pi} a_{23}^{2} .
$$

Remark 3.6 (Rods with circular cross section) Assume S is a circle of radius $1 / \sqrt{\pi}$ centred at the origin. In this case the quadratic form Q_{2} can be computed by a pointwise minimization as follows:

$$
Q_{2}(A)=\frac{1}{4 \pi} \min _{u, v, w \in \mathbb{R}^{3}} Q_{3}\left(\begin{array}{ccc}
a_{12} & u_{1} & v_{1} \tag{3.21}\\
0 & u_{2} & v_{2} \\
-a_{23} & u_{3} & v_{3}
\end{array}\right)+Q_{3}\left(\begin{array}{ccc}
a_{13} & v_{1} & w_{1} \\
a_{23} & v_{2} & w_{2} \\
0 & v_{3} & w_{3}
\end{array}\right)
$$

Fix $A \in \mathbb{M}_{\text {skew }}^{3 \times 3}$ and let α be a function in V. For notation convenience we set

$$
H^{\alpha}\left(x_{2}, x_{3}\right):=\left(\begin{array}{ccc}
a_{12} x_{2}+a_{13} x_{3} & \alpha_{1,2} & \alpha_{1,3} \\
a_{23} x_{3} & \alpha_{2,2} & \alpha_{2,3} \\
-a_{23} x_{2} & \alpha_{3,2} & \alpha_{3,3}
\end{array}\right)
$$

Let us define the following vectors in \mathbb{R}^{3} :

$$
\begin{array}{rlrl}
B & :=4 \pi \int_{S} x_{2} \alpha_{, 2} d x_{2} d x_{3}, & C & :=4 \pi \int_{S} x_{2} \alpha_{, 3} d x_{2} d x_{3} \\
D & :=4 \pi \int_{S} x_{3} \alpha_{, 2} d x_{2} d x_{3}, & E:=4 \pi \int_{S} x_{3} \alpha_{, 3} d x_{2} d x_{3}
\end{array}
$$

A crucial remark is that, since S is a circle, the two vectors C and D are in fact equal; indeed, by Green's formula we have

$$
\int_{S}\left(-x_{3} \alpha_{, 2}+x_{2} \alpha_{, 3}\right) d x_{2} d x_{3}=\int_{\partial S} \alpha\left(-x_{3}, x_{2}\right) \cdot \nu d \sigma=0
$$

where in the last equality we have used the fact that the normal vector ν to ∂S at a point $\left(x_{2}, x_{3}\right)$ is given by $\sqrt{\pi}\left(x_{2}, x_{3}\right)$. We now consider the function

$$
\beta(x):=\frac{1}{2} B x_{2}^{2}+C x_{2} x_{3}+\frac{1}{2} E x_{3}^{2}
$$

and we want to prove that

$$
\begin{equation*}
\int_{S} Q_{3}\left(H^{\alpha}\right) d x_{2} d x_{3} \geq \int_{S} Q_{3}\left(H^{\beta}\right) d x_{2} d x_{3} \tag{3.22}
\end{equation*}
$$

If we write the quadratic form Q_{3} as

$$
Q_{3}(G)=\sum_{i, j, k, l=1}^{3} \tilde{q}_{i j k l} G_{i j} G_{k l} \quad \text { for every } G \in \mathbb{M}^{3 \times 3}
$$

then we can expand $Q_{3}\left(H^{\alpha}\right)$ as follows:

$$
\begin{equation*}
Q_{3}\left(H^{\alpha}\right)=Q_{3}\left(H^{\beta}\right)+Q_{3}\left(H^{\alpha}-H^{\beta}\right)+2 \sum_{i, j, k, l=1}^{3} \tilde{q}_{i j k l} H_{i j}^{\beta}\left(H_{k l}^{\alpha}-H_{k l}^{\beta}\right) \tag{3.23}
\end{equation*}
$$

We claim that for every i, j and k, l

$$
\begin{equation*}
\int_{S} \tilde{q}_{i j k l} H_{i j}^{\beta}\left(H_{k l}^{\alpha}-H_{k l}^{\beta}\right) d x_{2} d x_{3}=0 \tag{3.24}
\end{equation*}
$$

Indeed, since $H_{i j}^{\beta}$ is a linear combination of x_{2} and x_{3} for every i, j, it is enough to show that

$$
\begin{equation*}
\int_{S} x_{m}\left(H_{k l}^{\alpha}-H_{k l}^{\beta}\right) d x_{2} d x_{3}=0 \tag{3.25}
\end{equation*}
$$

for $m=2,3$ and for every k, l. For $l=1$ the assertion is trivial. For $l=2$ we have

$$
\begin{aligned}
& \int_{S} x_{m}\left(H_{k 2}^{\alpha}-H_{k 2}^{\beta}\right) d x_{2} d x_{3} \\
& \quad=\int_{S} x_{m} \alpha_{k, 2} d x_{2} d x_{3}-\int_{S} x_{m} B_{k} x_{2} d x_{2} d x_{3}-\int_{S} x_{m} C_{k} x_{3} d x_{2} d x_{3} \\
& \quad=\int_{S} x_{m} \alpha_{k, 2} d x_{2} d x_{3}-\frac{1}{4 \pi} B_{k} \delta_{m 2}-\frac{1}{4 \pi} C_{k} \delta_{m 3}=0
\end{aligned}
$$

since $\int_{S} x_{m} x_{l} d x_{2} d x_{3}=\frac{1}{4 \pi} \delta_{m l}$. Similarly,

$$
\begin{aligned}
& \int_{S} x_{m}\left(H_{k 3}^{\alpha}-H_{k 3}^{\beta}\right) d x_{2} d x_{3} \\
& \quad=\int_{S} x_{m} \alpha_{k, 3} d x_{2} d x_{3}-\int_{S} x_{m} C_{k} x_{2} d x_{2} d x_{3}-\int_{S} x_{m} E_{k} x_{3} d x_{2} d x_{3} \\
& \quad=\int_{S} x_{m} \alpha_{k, 3} d x_{2} d x_{3}-\frac{1}{4 \pi} C_{k} \delta_{m 2}-\frac{1}{4 \pi} E_{k} \delta_{m 3}=0
\end{aligned}
$$

Thus, the claim (3.25) is proved.
From (3.23) and (3.24) it follows that

$$
\begin{aligned}
\int_{S} Q_{3}\left(H^{\alpha}\right) d x_{2} d x_{3} & =\int_{S} Q_{3}\left(H^{\beta}\right) d x_{2} d x_{3}+\int_{S} Q_{3}\left(H^{\alpha}-H^{\beta}\right) d x_{2} d x_{3} \\
& \geq \int_{S} Q_{3}\left(H^{\beta}\right) d x_{2} d x_{3}
\end{aligned}
$$

since Q_{3} is nonnegative. So, (3.22) is shown. This proves that, when S is a circle, it is enough to compute the minimum in (3.1) on the class of polynomials of degree 2 in x_{2}, x_{3}.

Now, if α is any polynomial of degree 2 in x_{2}, x_{3}, i.e., $\alpha\left(x_{2}, x_{3}\right)=\frac{1}{2} u x_{2}^{2}+$ $v x_{2} x_{3}+\frac{1}{2} w x_{3}^{2}$ with $u, v, w \in \mathbb{R}^{3}$, then

$$
H^{\alpha}\left(x_{2}, x_{3}\right)=\left(\begin{array}{ccc}
a_{12} x_{2}+a_{13} x_{3} & u_{1} x_{2}+v_{1} x_{3} & v_{1} x_{2}+w_{1} x_{3} \\
a_{23} x_{3} & u_{2} x_{2}+v_{2} x_{3} & v_{2} x_{2}+w_{2} x_{3} \\
-a_{23} x_{2} & u_{3} x_{2}+v_{3} x_{3} & v_{3} x_{2}+w_{3} x_{3}
\end{array}\right)
$$

Expanding again Q_{3} and using the fact that $\int_{S} x_{2} x_{3} d x_{2} d x_{3}=0$ by (2.1), we obtain

$$
\begin{aligned}
& \int_{S} Q_{3}\left(H^{\alpha}\right) d x_{2} d x_{3} \\
& =\int_{S} x_{2}^{2} d x_{2} d x_{3} Q_{3}\left(\begin{array}{ccc}
a_{12} & u_{1} & v_{1} \\
0 & u_{2} & v_{2} \\
-a_{23} & u_{3} & v_{3}
\end{array}\right)+\int_{S} x_{3}^{2} d x_{2} d x_{3} Q_{3}\left(\begin{array}{ccc}
a_{13} & v_{1} & w_{1} \\
a_{23} & v_{2} & w_{2} \\
0 & v_{3} & w_{3}
\end{array}\right)
\end{aligned}
$$

and this yields (3.21) since $\int_{S} x_{2}^{2} d x_{2} d x_{3}=\int_{S} x_{3}^{2} d x_{2} d x_{3}=(4 \pi)^{-1}$.

4 Refined Γ-convergence and director theories

In this section we reformulate the theorem of the previous section as a Γ convergence result for a functional depending on more variables. We need to introduce some new definitions. Given a sequence $\left(y^{(h)}\right) \subset W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ we set

$$
\begin{gather*}
y_{0}^{(h)}\left(x_{1}\right):=\int_{S} y^{(h)}(x) d x_{2} d x_{3}, \quad F^{(h)}\left(x_{1}\right):=\int_{S} \nabla_{h} y^{(h)}(x) d x_{2} d x_{3} \\
\beta^{(h)}(x):=\frac{y^{(h)}(x)-y_{0}^{(h)}\left(x_{1}\right)}{h^{2}}-\frac{1}{h} F^{(h)}\left(x_{1}\right)\left(\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right) \tag{4.1}\\
S^{(h)}\left(x_{1}\right):=\frac{\left[F^{(h)}\left(x_{1}\right)^{T} F^{(h)}\left(x_{1}\right)\right]^{1 / 2}-I d}{h}
\end{gather*}
$$

Theorem 4.1 Let $\left(y^{(h)}\right)$ be a sequence in $W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
\limsup _{h \rightarrow 0} \frac{1}{h^{2}} \int_{\Omega} W\left(\nabla_{h} y^{(h)}\right) d x<+\infty \tag{4.2}
\end{equation*}
$$

Then there exists a subsequence (not relabelled) such that the following properties are satisfied:
(1) $y^{(h)} \rightarrow y$ in $W^{1,2}(\Omega), \quad y \in W^{2,2}\left(\Omega ; \mathbb{R}^{3}\right), y_{, 2}=y_{, 3}=0$;
(2) $F^{(h)} \rightarrow R$ in $L^{2}(0, L), \quad R \in W^{1,2}\left(\Omega ; \mathbb{M}^{3 \times 3}\right), R e_{1}=y_{1}, \quad R \in \mathrm{SO}(3)$ a.e.;
(3) $\beta^{(h)} \rightharpoonup \beta$ in $L^{2}(\Omega), \quad \int_{S} \beta d x_{2} d x_{3}=\int_{S} \beta_{, k} d x_{2} d x_{3}=0$ for $k=2,3$;
(4) $S^{(h)} \rightharpoonup \bar{G}$ in $L^{p}(0, L)$ for every $p<2, \quad \bar{G} \in \mathbb{M}_{\text {sym }}^{3 \times 3}$.

Moreover,

$$
\begin{align*}
& \liminf _{h \rightarrow 0} \frac{1}{h^{2}} \int_{\Omega} W\left(\nabla_{h} y^{(h)}\right) d x \\
& \quad \geq \frac{1}{2} \int_{0}^{L} Q_{3}(\bar{G}) d x_{1}+\frac{1}{2} \int_{\Omega} Q_{3}\left(R^{T} R_{, 1}\left(\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right)\left|R^{T} \beta_{, 2}\right| R^{T} \beta_{, 3}\right) d x \\
& \quad=: F(\bar{G}, R, \beta) \tag{4.3}
\end{align*}
$$

Remark 4.2 As before the matrix $R^{T} R_{, 1}$ describes bending and torsion effects, averaged over the cross section. Concerning the new additional variables \bar{G} and β, the quantity \bar{G}_{11} is related to the scaled stretch, while $\bar{G}_{21}, \bar{G}_{31}$ to the scaled shear; the remaining entries $G_{i j}, j \geq 2$, and the function β take into account the scaled cross sectional deformations.

Proof of Theorem 4.1. - Let $\left(y^{(h)}\right)$ be a sequence satisfying (4.2). From Theorem 2.1 it follows that $\nabla_{h} y^{(h)} \rightarrow R$ in $L^{2}(\Omega)$, where $R \in W^{1,2}\left(\Omega ; \mathbb{M}^{3 \times 3}\right)$, $R \in \mathrm{SO}(3)$ a.e., and R does not depend on x_{2}, x_{3}. So, properties (1) and (2) are proved.

Let $R^{(h)}, G^{(h)}, \alpha^{(h)}, \alpha_{0}^{(h)}$ be as in the proof of Theorem 3.1-(i). By the definition of $F^{(h)}$ we have that

$$
\begin{equation*}
\left(R^{(h)}\right)^{T} F^{(h)}=I d+h \int_{S} G^{(h)} d x_{2} d x_{3}=I d+h \tilde{G}^{(h)} \tag{4.4}
\end{equation*}
$$

where we have set $\tilde{G}^{(h)}\left(x_{1}\right):=\int_{S} G^{(h)}(x) d x_{2} d x_{3}$; using (4.4) and (3.11) we can write

$$
\left(R^{(h)}\right)^{T} \beta^{(h)}=\alpha^{(h)}-\alpha_{0}^{(h)}-\tilde{G}^{(h)}\left(\begin{array}{c}
0 \tag{4.5}\\
x_{2} \\
x_{3}
\end{array}\right)
$$

In particular, we have $\left(R^{(h)}\right)^{T} \beta_{, k}^{(h)}=\alpha_{, k}^{(h)}-\tilde{G}_{k}^{(h)}$ for $k=2,3$. Since $\alpha^{(h)}-\alpha_{0}^{(h)} \rightharpoonup$ α in $L^{2}(\Omega), G^{(h)} \rightharpoonup G$ in $L^{2}(\Omega)$, and $R^{(h)} \rightarrow R$ in $L^{2}(0, L)$, the equality (4.5) implies that

$$
\beta^{(h)} \rightharpoonup \beta:=R \alpha-R \tilde{G}\left(\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { in } L^{2}(\Omega)
$$

where $\tilde{G}\left(x_{1}\right):=\int_{S} G(x) d x_{2} d x_{3}$. Moreover, $\beta_{, k}^{(h)} \rightharpoonup \beta_{, k}$ in $L^{2}(\Omega)$ for $k=2,3$, since $\alpha_{, k}^{(h)} \rightharpoonup \alpha_{, k}$ in $L^{2}(\Omega)$ for $k=2,3$. It is easy to check that $\int_{S} \beta^{(h)} d x_{2} d x_{3}=$ $\int_{S} \beta_{, k}^{(h)} d x_{2} d x_{3}=0$ (for $k=2,3$) for every h; therefore, the same properties hold for β. Assertion (3) is proved. For further references we notice that $\beta=\tilde{\alpha}$ by (3.13), where $\tilde{\alpha}$ is the function defined in (3.14).

In order to show (4), let $\Phi: \mathbb{M}^{3 \times 3} \rightarrow \mathbb{M}^{3 \times 3}$ be the function defined by $\Phi(F):=\left(F^{T} F\right)^{1 / 2}-I d$. By (4.4) we have $S^{(h)}=\frac{1}{h} \Phi\left(I d+h \tilde{G}^{(h)}\right)$. Notice also
that Φ is C^{1} in a neighbourhood of $I d$ and globally Lipschitz continuous. Then, given any test function $\varphi \in L^{p^{\prime}}\left((0, L) ; \mathbb{M}^{3 \times 3}\right)$ with $p^{\prime}>2$, we have

$$
\begin{align*}
\int_{0}^{L} S^{(h)} \varphi d x_{1}= & \int_{0}^{L} \frac{1}{h} \Phi\left(I d+h \tilde{G}^{(h)}\right) \varphi d x_{1} \\
= & \int_{0}^{L} \frac{\Phi\left(I d+h \tilde{G}^{(h)}\right)-\Phi(I d)}{h} \varphi d x_{1} \\
= & \int_{0}^{L}\left(\frac{\Phi\left(I d+h \tilde{G}^{(h)}\right)-\Phi(I d)}{h}-\Phi^{\prime}(I d) \tilde{G}^{(h)}\right) \varphi d x_{1} \\
& +\int_{0}^{L} \Phi^{\prime}(I d) \tilde{G}^{(h)} \varphi d x_{1} \tag{4.6}
\end{align*}
$$

The first integral on the last right-hand side converges to 0 ; indeed, since Φ^{\prime} is continuous in a neighbourhood of the identity and globally bounded, for every $\varepsilon>0$ we have that for some $\delta=\delta(\varepsilon)$

$$
\begin{aligned}
& \left|\int_{0}^{L}\left(\frac{\Phi\left(I d+h \tilde{G}^{(h)}\right)-\Phi(I d)}{h}-\Phi^{\prime}(I d) \tilde{G}^{(h)}\right) \varphi d x_{1}\right| \\
& \quad \leq \varepsilon \int_{\left\{h\left|\tilde{G}^{(h)}\right|<\delta\right\}}\left|\tilde{G}^{(h)} \varphi\right| d x_{1}+C \int_{\left\{h\left|\tilde{G}^{(h)}\right| \geq \delta\right\}}\left|\tilde{G}^{(h)} \varphi\right| d x_{1} \\
& \quad \leq C\|\varphi\|_{L^{2}} \varepsilon+C^{\prime}\|\varphi\|_{L^{p^{\prime}}} \mathcal{L}^{1}\left(\left\{h\left|\tilde{G}^{(h)}\right| \geq \delta\right\}\right)^{\frac{2}{2-p}} .
\end{aligned}
$$

Passing to the limit as $h \rightarrow 0$ and using the fact that ε is arbitrary, we obtain the claim. As for the second integral in (4.6), since $\tilde{G}^{h}-\tilde{G}$ in $L^{2}(0, L)$ and $\Phi^{\prime}(I d) F=\operatorname{sym} F$, we have

$$
\lim _{h \rightarrow 0} \int_{0}^{L} \Phi^{\prime}(I d) \tilde{G}^{h} \varphi d x_{1}=\int_{0}^{L} \operatorname{sym} \tilde{G} \varphi d x_{1}
$$

Therefore, property (4) is proved with $\bar{G}=\operatorname{sim} \tilde{G}$.
To conclude it is enough to repeat the proof of Theorem 3.1-(i) up to the equality (3.16). From (3.15) it follows that

$$
\tilde{G}=\left(G_{1}\left(x_{1}, 0,0\right)\left|\int_{S} \alpha_{, 2}\right| \int_{S} \alpha_{, 3}\right) .
$$

Using this fact and the equalities $A=R^{T} R_{1}$ and $\tilde{\alpha}=R^{T} \beta$, (3.16) can be rewritten as

$$
\int_{\Omega} Q_{3}(G(x)) d x=\int_{0}^{L} Q_{3}(\tilde{G}) d x_{1}+\int_{\Omega} Q_{3}\left(R^{T} R_{, 1}\left(\begin{array}{c}
0 \\
x_{2} \\
x_{3}
\end{array}\right)\left|R^{T} \beta_{, 2}\right| R^{T} \beta_{, 3}\right) d x
$$

Since $Q_{3}(F)$ depends only on the symmetric part of F, we can replace \tilde{G} by \bar{G} in the equality above. The thesis follows now from (3.6).

Theorem 4.3 Let $y \in W^{2,2}\left((0, L) ; \mathbb{R}^{3}\right)$, let $R \in W^{1,2}\left((0, L) ; \mathbb{M}^{3 \times 3}\right)$ be such that $R e_{1}=y, 1$ and $R \in \mathrm{SO}(3)$ a.e., let $\beta \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ be such that $\int_{S} \beta d x_{2} d x_{3}=0$, $\beta_{, k} \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ and $\int_{S} \beta_{, k} d x_{2} d x_{3}=0$ for $k=2,3$, and let $\bar{G} \in L^{2}\left((0, L) ; \mathbb{M}^{3 \times 3}\right)$ be symmetric. Then there exists a sequence $\left(y^{(h)}\right) \subset W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ such that the properties (1)-(4) of Theorem 4.1 are satisfied, and

$$
\lim _{h \rightarrow 0} \frac{1}{h^{2}} \int_{\Omega} W\left(\nabla_{h} y^{(h)}\right) d x=F(\bar{G}, R, \beta),
$$

where F is the functional defined in (4.3).
Proof. - Let the functions y, β, R, \bar{G} be as in the statement. Assume in addition that $R, \bar{G} \in C^{1}\left([0, L] ; \mathbb{M}^{3 \times 3}\right)$ and $\beta \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$. Set

$$
\gamma\left(x_{1}\right)=\int_{0}^{x_{1}} R(s) \bar{G}_{1}(s) d s, \quad B_{k}\left(x_{1}\right)=R\left(x_{1}\right) \bar{G}_{k}\left(x_{1}\right) \text { for } k=2,3
$$

For every $h>0$ consider the functions
$y^{(h)}(x)=y\left(x_{1}\right)+h \gamma\left(x_{1}\right)+h R\left(x_{1}\right)\left(\begin{array}{c}0 \\ x_{2} \\ x_{3}\end{array}\right)+h^{2} \beta(x)+h^{2} B_{2}\left(x_{1}\right) x_{2}+h^{2} B_{3}\left(x_{1}\right) x_{3}$.
It is easy to see that $\left(y^{(h)}\right)$ satisfies all the properties (1)-(4). Moreover, using the Taylor expansion of W around the identity and the dominated convergence theorem, we obtain

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{1}{h^{2}} \int_{\Omega} & W\left(\nabla_{h} y^{(h)}\right) d x \\
& =\frac{1}{2} \int_{\Omega} Q_{3}\left(R^{T}\left(x_{2} R_{, 1} e_{2}+x_{3} R_{, 1} e_{3}+\gamma, 1\left|\beta_{, 2}+B_{2}\right| \beta_{, 3}+B_{3}\right)\right) d x
\end{aligned}
$$

If we expand the quadratic form Q_{3} and we use the fact that $\int_{S} \beta_{, k} d x_{2} d x_{3}=0$ for $k=2,3$, we have

$$
\begin{aligned}
& \int_{\Omega} Q_{3}\left(R^{T}\left(x_{2} R_{, 1} e_{2}+x_{3} R_{, 1} e_{3}+\gamma_{, 1}\left|\beta_{, 2}+B_{2}\right| \beta_{, 3}+B_{3}\right)\right) d x \\
& \quad=\int_{0}^{L} Q_{3}\left(R^{T}\left(\gamma, 1\left|B_{2}\right| B_{3}\right)\right) d x_{1}+\int_{\Omega} Q_{3}\left(R^{T}\left(x_{2} R_{, 1} e_{2}+x_{3} R_{, 1} e_{3}\left|\beta_{, 2}\right| \beta_{, 3}\right)\right) d x \\
& \quad=\int_{0}^{L} Q_{3}(\bar{G}) d x_{1}+\int_{\Omega} Q_{3}\left(R^{T}\left(x_{2} R_{, 1} e_{2}+x_{3} R_{, 1} e_{3}\left|\beta_{, 2}\right| \beta_{, 3}\right)\right) d x .
\end{aligned}
$$

In the general case it is enough to act by density, that is, to show that for any y, β, R, \bar{G} as in the statement, we can construct approximating sequences $\left(y^{(j)}\right),\left(\beta^{(j)}\right),\left(R^{(j)}\right),\left(\bar{G}^{(j)}\right)$ satisfying the extra assumption of C^{1} regularity and such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} F\left(\bar{G}^{(j)}, R^{(j)}, \beta^{(j)}\right)=F(\bar{G}, R, \beta) \tag{4.7}
\end{equation*}
$$

As in the proof of Theorem 3.1-(ii), we can construct $\left(y^{(j)}\right) \subset C^{2}\left([0, L] ; \mathbb{R}^{3}\right)$ and $\left(R^{(j)}\right) \subset C^{1}\left([0, L] ; \mathbb{M}^{3 \times 3}\right)$ such that $R^{(j)} e_{1}=y_{1}^{(j)}, R^{(j)} \in \mathrm{SO}(3)$ a.e., and $R^{(j)} \rightarrow R$ in $W^{1,2}(0, L)$. By mollification we can find $\left(G^{(j)}\right) \subset C^{1}\left([0, L] ; \mathbb{M}^{3 \times 3}\right)$ such that $G^{(j)} \rightarrow \bar{G}$ in $L^{2}(0, L)$, and $\left(\tilde{\beta}^{(j)}\right) \subset C^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$ such that $\tilde{\beta}^{(j)} \rightarrow \beta$, $\tilde{\beta}_{, k}^{(j)} \rightarrow \beta_{, k}$ (for $k=2,3$) in $L^{2}(\Omega)$. Then we define $\bar{G}^{(j)}:=\operatorname{sym} G^{(j)}$ and

$$
\beta^{(j)}:=\tilde{\beta}^{(j)}-\int_{S} \tilde{\beta}^{(j)} d x_{2} d x_{3}-x_{2} \int_{S} \tilde{\beta}_{, 2}^{(j)} d x_{2} d x_{3}-x_{3} \int_{S} \tilde{\beta}_{3}^{(j)} d x_{2} d x_{3} .
$$

Now it is easy to check that (4.7) is satisfied.

Acknowledgements

Both authors were supported by the TMR Network FMRX-CT98-0229.

References

[1] S.S. Antman: The Theory of Rods, in Handbuch der Physik, VIa. SpringerVerlag, 1972.
[2] S.S. Antman: Nonlinear Problems of Elasticity. Springer-Verlag, New York, 1995.
[3] E. Acerbi, G. Buttazzo, D. Percivale: A variational definition for the strain energy of an elastic string. J. Elasticity 25 (1991), 137-148.
[4] G. Anzellotti, S. Baldo, D. Percivale: Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity. Asympt. Anal. 1 (1994), 64-100.
[5] G. Dal Maso: An Introduction to Γ-convergence. Birkhäuser, Boston, 1993.
[6] G. Friesecke, R.D. James, S. Müller: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002), 1461-1506.
[7] G. Kirchhoff: Über das Gleichgewicht und die Bewegungen eines unendlich dünnen Stabes. J. Reine Angew. Math. (Crelle), 56 (1859), 285-313.
[8] A. Mielke: Saint-Venant's Problem and Semi-Inverse Solutions in Nonlinear Elasticity. Arch. Rational Mech. Anal. 102 (1988), 205-229.
[9] O. Pantz: Personal communication.
[10] D. Percivale: Thin elastic beams: The variational approach to St. Venant's problem. Asympt. Anal. 20 (1999), 39-59.
[11] P. Villaggio: Mathematical models for elastic structures. Cambridge University Press, 1997.

