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1 Introduction

A fundamental problem in nonlinear elasticity is to understand the relation be-
tween three-dimensional theory and lower dimensional theories for domains which
are thin in one or more dimensions. The derivation of such theories has a long
history with contributions from many authors (we refer to S.S. Antman [1, 2]
for a survey about one-dimensional models and a discussion of the history of the
subject; see also [7], [11]). The derivations are usually based on some a priori
assumptions leading to a variety of lower dimensional theories which are often
not consistent with each other.

The starting point of our rigorous approach is the elastic energy

E(h)(v) :=
∫

Ωh

W (∇v(z)) dz (1.1)

of a deformation v ∈ W 1,2(Ωh; R3), where Ωh := (0, L)×hS and S is an open
subset of R

2 . Heuristically one expects that energies E(h) of order h2 correspond
to stretching and shearing deformations, leading to a string theory, while energies
of order h4 correspond to bending flexures and torsions keeping the domain
unextended, leading to a rod theory. The elastic theory for strings has been
rigorously justified by E. Acerbi, G. Buttazzo, D. Percivale in [3] by means of
Γ-convergence (see [5] for a comprehensive introduction to Γ-convergence). In
this paper we rigorously derive the bending and torsion theory for rods through
Γ-convergence. A very different approach to the rod equations, based on centre
manifold theory, was pursued by A. Mielke (see [8]). He fixes the cross section
and considers the limit L → ∞ . For Ω = R×S he shows that all solutions whose
strain is uniformly sufficiently small must lie on a 12-dimensional centre manifold
and that the equation on the centre manifold is given by the Timoshenko beam
equations. For related results in the context of linear elasticity see [4], [10].
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To state our result it is convenient to introduce in (1.1) the following change
of variables:

z1 = x1, z2 = hx2, z3 = hx3,

and to rescale deformations according to y(x) := v(z(x)), so that y belongs to
W 1,2(Ω; R3), where Ω := (0, L)×S . We will use the notation

∇hy :=
(

y,1

∣∣∣∣ 1
h

y,2

∣∣∣∣ 1
h

y,3

)
,

so that
1
h2

E(h)(v) = I(h)(y) :=
∫

Ω
W (∇hy(x)) dx.

We assume that the stored energy function W : M
3×3 → [0,+∞] satisfies the

following assumptions:

i) W ∈ C0(M3×3), W is of class C2 in a neighbourhood of SO(3);

ii) W is frame-indifferent, i.e., W (F ) = W (RF ) for every F ∈ M
3×3 and

R ∈ SO(3);

iii) W (F ) ≥ C dist2(F,SO(3)), W (F ) = 0 if F ∈ SO(3).

In Theorem 2.1 we show that for any sequence (y(h)) such that

lim sup
h→0

1
h2

I(h)(y(h)) < +∞,

there exists a subsequence such that ∇hy(h) → R strongly in L2(Ω), where
R = (y,1 | d2 | d3) and (y, d2, d3) belongs to the class

A := {(y, d2, d3) ∈ W 2,2(Ω; R3)×W 1,2(Ω; R3)×W 1,2(Ω; R3) :
y, d2, d3 do not depend on x2, x3, |y,1| = |d2| = |d3| = 1,

y,1 · d2 = y,1 · d3 = d2 · d3 = 0}.

In our main theorem (Theorem 3.1) we identify the Γ-limit of the sequence of
functionals ( 1

h2 I(h)) with respect to the weak (and strong) topology of W 1,2 .
The limiting one-dimensional energy depends on (y, d2, d3) and is of the form

I(y, d2, d3) :=

{
1
2

∫ L
0 Q2(RT R,1) dx1 if (y, d2, d3) ∈ A,

+∞ otherwise,

where, as above, R := (y,1 | d2 | d3), while Q2 is a quadratic form defined through
a suitable minimization procedure involving the quadratic form of linearized elas-
ticity Q3(G) := ∂2W

∂F 2 (Id)(G,G) (see (3.1)). The limiting energy is thus finite only
on isometric deformations of (0, L) and is a quadratic form in the entries of the
matrix RTR,1 . Note that, when y ∈ A , RT R,1 is skew-symmetric. For k = 2, 3
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we have (RT R,1)1k = −(RT R,1)k1 = y,1 · dk,1 , and this is related to curvature
(and therefore, to bending effects), while (RT R,1)23 = −(RT R,1)32 = d2 · d3,1 is
related to torsion.

The key ingredient in the proofs is a geometric rigidity result, proved by
G. Friesecke, R.D. James, and S. Müller in [6], which guarantees that low energy
maps are close to a rigid motion (see Theorem 2.2) and provides the compactness
result of Theorem 2.1.

In the last section of the paper we deal with a refined version of the Γ-
convergence result: we let the functional I(h) depend explicitly on some addi-
tional variables, as the averaged deformation gradient and the rescaled nonlinear
strain. We obtain as Γ-limit a one-dimensional functional with a richer structure
and an additional term related to stretching and shearing effects. This term may
play a role if we consider for instance deformations of Ωh , whose energy is of
order h4 , but which are only approximately isometries on the boundary.

After this work was finished, we have learnt that similar results have been
obtained independently by O. Pantz [9].

2 Compactness

In the sequel S is a bounded open subset of R
2 with Lipschitz boundary and

Ω := (0, L)×S . We denote the variables in S by x2, x3 and we assume that
L2(S) = 1 and∫

S
x2x3 dx2dx3 =

∫
S

x2 dx2dx3 =
∫

S
x3 dx2dx3 = 0. (2.1)

Theorem 2.1 Let (y(h)) be a sequence in W 1,2(Ω; R3) such that

lim sup
h→0

1
h2

∫
Ω

dist2(∇hy(h),SO(3)) dx < +∞. (2.2)

Then, there exists a subsequence (not relabelled) such that

∇hy(h) → (y,1 | d2 | d3) in L2(Ω) , (2.3)

where y ∈ W 2,2(Ω; R3), d2, d3 ∈ W 1,2(Ω; R3). Moreover, (y,1 | d2 | d3) ∈ SO(3)
a.e. and is independent of x2, x3 .

The key ingredient in the proof is the following rigidity result, proved by
G. Friesecke, R.D. James, and S. Müller in [6].

Theorem 2.2 Let U be a bounded Lipschitz domain in R
n , n ≥ 2. Then there

exists a constant C(U) with the following property: for every v ∈ W 1,2(U ; Rn)
there is an associated rotation R ∈ SO(n) such that

‖∇v − R‖L2(U) ≤ C(U)‖dist(∇v,SO(n))‖L2(U). (2.4)
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Proof of Theorem 2.1. – The argument follows closely the proof of Theo-
rem 4.1 in [6]. We include the details for the convenience of the reader. For every
h > 0 let kh ∈ N be such that h ≤ L/kh < 2h , and let

Ia,kh
:=
(

a, a +
L

kh

)
, a ∈ [0, L) ∩ L

kh
N. (2.5)

By applying Theorem 2.2 to the function v(h)(z) := y(h)(z1,
z2
h , z3

h ) restricted to
the set (a, a+2h)×Sh (when a < L−L/kh ; to the set (L−2h,L)×Sh , otherwise),
we have that there exists a piecewise constant map R(h) : [0, L] → SO(3) such
that∫

Ia,kh
×S

|∇hy(h) − R(h)|2dx ≤ C

∫
(a,a+2h)×S

dist2(∇hy(h),SO(3)) dx, (2.6)

(when a = L − L/kh just replace the interval (a, a + 2h) by (L − 2h,L) in the
second integral above). Summing over a , we obtain∫

Ω
|∇hy(h) − R(h)|2dx ≤ C

∫
Ω

dist2(∇hy(h),SO(3)) dx ≤ Ch2. (2.7)

Let now a ∈ [0, L)∩ L
kh

N be such that (a, a + 4h) ⊂ (0, L) and let b = a + L/kh .
Then, using the fact that Ia,kh

, Ib,kh
are contained in (a, a + 4h), the estimate

(2.7), and its analog for the set (a, a + 4h)×S , we have

L

kh
|R(h)(a) − R(h)(b)|2 ≤ C

∫
(a,a+4h)×S

dist2(∇hy(h),SO(3)) dx.

Since R(h) is piecewise constant, the inequality above can be rewritten as∫
Ia,kh

|R(h)(x1) − R(h)(x1 + L/kh)|2dx1 ≤ C

∫
(a,a+4h)×S

dist2(∇hy(h),SO(3)) dx.

Hence for every 0 ≤ ξ ≤ L/kh ,∫
Ia,kh

|R(h)(x1+ξ)−R(h)(x1)|2dx1 ≤ C

∫
(a,a+4h)×S

dist2(∇hy(h),SO(3)) dx. (2.8)

In the same way one can show that for every a such that (a−2h, a+2h) ⊂ (0, L)
and for every L/kh ≤ ξ ≤ 0,∫

Ia,kh

|R(h)(x1 + ξ) − R(h)(x1)|2dx1 ≤ C

∫
(a−2h,a+2h)×S

dist2(∇hy(h),SO(3)) dx.

(2.9)
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Now let I ′ be an open interval compactly contained in (0, L) and let ξ ∈ R

satisfy |ξ| ≤ dist(I ′, {0, L}). Then iterative applications of the estimates (2.8)
and (2.9) yield

∫
I′
|R(h)(x1 + ξ) − R(h)(x1)|2dx1

≤ C

( |ξ|
h

+ 1
)2 ∫

Ω
dist2(∇hy(h),SO(3)) dx ≤ C(|ξ| + h)2. (2.10)

Using the Fréchet-Kolmogorov criterion, one can deduce from this estimate that
for any sequence hj → 0 there exists a subsequence of (R(hj)) strongly converging
in L2(I ′) to some R ∈ L2(I ′) with R(x1) ∈ SO(3) for a.e. x1 ∈ I ′ .

From the bound (2.2) it follows that, up to subsequences, (∇hj
y(hj)) converges

weakly in L2(Ω) to (y,1 | d2 | d3). By (2.7) we have that R(hj) − ∇hj
y(hj) →

0 strongly in L2(Ω), so that (y,1 | d2 | d3) = R a.e. on I ′×S . In particular,
(y,1 | d2 | d3) depends only on x1 and belongs to SO(3) for a.e. x1 ∈ I ′ . Since I ′

is an arbitrary compact interval contained in (0, L), the properties above hold in
the whole (0, L). Since dist(∇hj

y(hj),SO(3)) tends to 0 in L2(Ω), we have that
|∇hj

y(hj)|2 → 3 = |R|2 in L1(Ω), so that ‖∇hj
y(hj)‖L2(Ω) converges to ‖R‖L2(Ω) ,

which together with weak convergence in L2(Ω) implies strong convergence in
L2(Ω). Hence, by (2.7) the sequence (R(h)) is in fact converging to R strongly
in L2(0, L).

Finally, passing to the limit in (2.10) as h → 0, we obtain∫
I′

|(y,1 | d2 | d3)(x1 + ξ) − (y,1 | d2 | d3)(x1)|2
|ξ|2 dx1 ≤ C,

which implies (y,1 | d2 | d3) ∈ W 1,2(I ′; M3×3). Since C is independent of I ′ , we
actually have that (y,1 | d2 | d3) ∈ W 1,2((0, L); M3×3). �

3 Γ-convergence

Theorem 3.1 As h → 0, the functionals 1
h2 I(h) are Γ-convergent to the func-

tional I given below, in the following sense:
(i) (liminf inequality) for every sequence of positive (hj) converging to 0 and

for every sequence (y(hj)) ⊂ W 1,2(Ω; R3) such that y(hj) → y in W 1,2 and
( 1

hj
y

(hj)
,2 , 1

hj
y

(hj)
,3 ) → (d2, d3) in L2 ,

I(y, d2, d3) ≤ lim inf
j→∞

1
h2

j

I(hj)(y(hj));

(ii) (limsup inequality) for every sequence of positive (hj) converging to 0 and
for every y ∈ W 1,2(Ω; R3), d2, d3 ∈ L2(Ω; R3) there exists a sequence (y(hj)) ⊂
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W 1,2(Ω; R3) such that y(hj) → y in W 1,2 , ( 1
hj

y
(hj)
,2 , 1

hj
y

(hj)
,3 ) → (d2, d3) in L2 ,

and
lim sup

j→∞
1
h2

j

I(hj)(y(hj)) = I(y, d2, d3).

The limit functional is defined as

I(y, d2, d3) :=

⎧⎨
⎩

1
2

∫ L

0
Q2(RT R,1) dx1 if (y, d2, d3) ∈ A,

+∞ otherwise,

where R := (y,1 | d2 | d3), while the class A is given by

A := {(y, d2, d3) ∈ W 2,2(Ω; R3)×W 1,2(Ω; R3)×W 1,2(Ω; R3) :
y, d2, d3 do not depend on x2, x3, |y,1| = |d2| = |d3| = 1,

y,1 · d2 = y,1 · d3 = d2 · d3 = 0}.

The quadratic form Q2 : M
3×3
skew → [0,+∞) is defined as

Q2(A) := min
α∈W 1,2(S;R3)

∫
S

Q3

⎛
⎝A

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣α,2

∣∣∣∣ α,3

⎞
⎠ dx2dx3, (3.1)

while

Q3(G) =
∂2W

∂F 2
(Id)(G,G)

is twice the quadratic form of linearized elasticity.

Remark 3.2 The result of the theorem remains valid if we replace the strong
convergence in W 1,2 and L2 of the sequences (y(h)) and ( 1

hy
(h)
,2 , 1

hy
(h)
,3 ) by the

weak convergence in the same spaces, as shown in the proof.

Remark 3.3 Notice that when y ∈ A , the matrix R belongs to SO(3), so that
RT R,1 is skew-symmetric.

Remark 3.4 (Euler-Lagrange equations) By standard arguments one can
prove that the minimum problem in (3.1) has a solution; indeed, it is easy to
show that the minimum can be equivalently computed on the class of functions

V :=
{

α ∈ W 1,2(S; R3) :
∫

S
α dx2dx3 =

∫
S
∇αdx2dx3 = 0

}
,

where the fact that Q3 is strictly positive definite on symmetric matrices is
enough to guarantee compactness with respect to the the weak topology of W 1,2 .
Moreover, the functional to minimize is lower semicontinuous with respect to this
topology. The strict convexity of Q3 on symmetric matrices ensures also that
the minimizer is unique in V .
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In order to derive the Euler-Lagrange equations associated to the minimum
problem, it is convenient to introduce some notation. Given a matrix G ∈ M

3×3
sym ,

we denote its entries as follows:

G =

⎛
⎝ g1 g2 g3

g2 g4 g5

g3 g5 g6

⎞
⎠ ,

and we write the quadratic form Q3 in the following way:

Q3(G) =
∑

i,j∈{1,4,6}

1
2
qijgigj +

∑
i,j∈{2,3,5}

2qijgigj +
∑

i∈{1,4,6}

∑
j∈{2,3,5}

2qijgigj .

Note that the matrix Q := (qij)i,j=1,...,6 is positive definite. If M is a matrix in
M

n×m , we denote by M
j1j2

i1i2
the (2 × 2)-submatrix of M given by the i1, i2 -th

rows and the j1, j2 -th columns of M . Using this notation one can show that the
minimizer α ∈ V of the problem (3.1) must satisfy the following Euler-Lagrange
equations:⎧⎪⎪⎨
⎪⎪⎩

div (Q
23

23
∇α1 + Q

45

23
∇α2 + Q

56

23
∇α3) = −a12q12 − a13q13

div (Q
23

45
∇α1 + Q

45

45
∇α2 + Q

56

45
∇α3) = −a12q14 − a13q15 + a23(q34 − q25) in S,

div (Q
23

56
∇α1 + Q

45

56
∇α2 + Q

56

56
∇α3) = −a12q15 − a13q16 + a23(q35 − q26)

(3.2)
with the following boundary conditions:⎧⎪⎪⎨

⎪⎪⎩
(Q

23

23
∇α1 + Q

45

23
∇α2 + Q

56

23
∇α3) · ν = −n23 · ν

(Q
23

45
∇α1 + Q

45

45
∇α2 + Q

56

45
∇α3) · ν = −n45 · ν on ∂S,

(Q
23

56
∇α1 + Q

45

56
∇α2 + Q

56

56
∇α3) · ν = −n56 · ν

(3.3)

where we have set nij(x2, x3) := (a12x2 + a13x3)(q1i, q1j) + a23 Q
23

ij
(x3,−x2). It

is clear that any solution α to (3.2)-(3.3) depends linearly on the entries (aij) of
A . Hence Q2 is in fact a quadratic form of A .

The formulae (3.2) and (3.3) simplify considerably if W is isotropic or if Ω
has circular cross section (see Remarks 3.5 and 3.6 below).

Proof of Theorem 3.1. – (i) Let (hj) be a positive sequence converging to
0 and let (y(hj)) be a sequence in W 1,2(Ω; R3) such that (y(hj)) ⇀ y in W 1,2 ,
( 1

hj
y

(hj)
,2 , 1

hj
y

(hj)
,3 ) ⇀ (d2, d3) in L2 , and

lim inf
j→∞

1
h2

j

I(hj)(y(hj)) < +∞.

7



Passing to a subsequence if needed, we can assume that limj→∞ 1
h2

j
I(hj)(y(hj))

exists and equals lim infj→∞ 1
h2

j
I(hj)(y(hj)).

By the proof of Theorem 2.1 we can costruct a piecewise constant approx-
imation R(hj) : (0, L) → SO(3) satisfying (2.7). We consider the function
G(hj) : Ω → M

3×3 defined as

G(hj)(x) :=
R(hj)(x1)T∇hj

y(hj)(x) − Id

hj
. (3.4)

It follows from (2.7) that the L2 -norm of G(hj) in Ω is bounded; therefore, up
to subsequences, there exists G ∈ L2(Ω; M3×3) such that

G(hj) ⇀ G in L2(Ω). (3.5)

By expanding W around the identity and by using the frame-indifference of W
one can show that

lim inf
j→∞

1
h2

j

∫
Ω

W (∇hj
y(hj)) dx ≥ 1

2

∫
Ω

Q3(G) dx (3.6)

(see the analogous argument in the proof of Theorem 6.1-(i) in [6]).
Now the main point is to identify G in terms of y, d2, d3 . Let G

(hj)
1 and G1

denote the first column of G(hj) and G, respectively, and consider the difference
quotients in the xk -direction with k = 2, 3:

H
(hj)
k (x) :=

G
(hj )
1 (x + tek) − G

(hj)
1 (x)

t

= R(hj)(x1)T
y

(hj)
,1 (x + tek) − y

(hj)
,1 (x)

thj
.

Let S′ be a compact subset of S , let t be such that |t| < dist(S′, ∂S), and let
Ω′ := (0, L)×S′ . From (3.5) it follows that H

(hj)
k ⇀ Hk in L2(Ω′), where

Hk(x) :=
G1(x + tek) − G1(x)

t
.

From the proof of Theorem 2.1 we know that (R(hj)) converges in L2(Ω) to
R = (y,1 | d2 | d3); therefore,

y
(hj)
,1 (x + tek) − y

(hj)
,1 (x)

thj
= R(hj)H

(hj)
k ⇀ RHk in L2(Ω′). (3.7)

Note that the left-hand side can be rewritten as follows:

y
(hj)
,1 (x + tek) − y

(hj)
,1 (x)

thj
= ∂x1

(
1
t

∫ t

0

1
hj

y
(hj)
,k (x + sek) ds

)
. (3.8)
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By Theorem 2.1 we have that 1
hj

y
(hj)
,k converges strongly in L2(Ω) to dk , hence

the average 1
t

∫ t
0

1
hj

y
(hj)
,k (· + sek) ds converges strongly in L2(Ω′) to 1

t

∫ t
0 dk(· +

sek) ds , which is equal to dk , since dk does not depend on xk . By (3.8) we obtain

y
(hj)
,1 (x + tek) − y

(hj)
,1 (x)

thj
⇀ dk,1 in W−1,2(Ω′). (3.9)

Combining (3.7) and (3.9) we have Hk = RT dk,1 . In particular, Hk is indepen-
dent of x2, x3 and hence

G1(x) = G1(x1, x2, 0) + x3H3(x1) = G1(x1, 0, 0) + x2H2(x1) + x3H3(x1).

Setting A(x1) := RT R,1 we have found that

G1(x) = G1(x1, 0, 0) + A(x1)

⎛
⎝ 0

x2

x3

⎞
⎠ . (3.10)

In order to identify the remaining columns of G, let us define

α(hj )(x) :=
R(hj)(x1)T 1

hj
y(hj) − x2e2 − x3e3

hj
. (3.11)

It is easy to check that

α
(hj)
,k = G

(hj)
k for k = 2, 3, (3.12)

where G
(hj)
k denotes the k -th column of G(hj) . If we set now α

(hj)
0 (x1) :=∫

S α(hj)(x) dx2dx3 , by Poincaré inequality we have that∫
S
|α(hj )(x) − α

(hj)
0 (x1)|2dx2dx3 ≤ C

∫
S
(|α(hj )

,2 (x)|2 + |α(hj)
,3 (x)|2) dx2dx3

for a.e. x1 ∈ (0, L). Integrating with respect to x1 , we deduce

‖α(hj ) − α
(hj)
0 ‖2

L2(Ω) ≤ C(‖α(hj)
,2 ‖2

L2(Ω) + ‖α(hj)
,3 ‖2

L2(Ω)).

Since the right-hand side is bounded, we can conclude that α(hj) − α
(hj)
0 weakly

converges to some α in L2(Ω). From (3.12) it follows that

α,k = Gk for k = 2, 3 (3.13)

and therefore α,k ∈ L2(Ω; R3) for k = 2, 3. Combining (3.10) and (3.13), and
setting

α̃(x2, x3) := α(x2, x3) − x2

∫
S

α,2 dx2dx3 − x3

∫
S

α,3 dx2dx3, (3.14)
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we can write

G =
(

G1(x1, 0, 0)
∣∣∣∣
∫

S
α,2

∣∣∣∣
∫

S
α,3

)
+

⎛
⎝A

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣ α̃,2

∣∣∣∣ α̃,3

⎞
⎠ . (3.15)

By expanding the quadratic form Q3 and by using the fact that the first matrix on
the right-hand side of (3.15) is independent of x2, x3 and that

∫
S α̃,k dx2dx3 = 0

for k = 2, 3, we find in combination with (2.1) that∫
S

Q3(G(x)) dx2dx3 =
∫

S
Q3

(
G1(x1, 0, 0)

∣∣∣∣
∫

S
α,2

∣∣∣∣
∫

S
α,3

)
dx2dx3

+
∫

S
Q3

⎛
⎝A

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣ α̃,2

∣∣∣∣ α̃,3

⎞
⎠ dx2dx3. (3.16)

Dropping the first term on the right-hand side, which is nonnegative, and using
the definition of Q2 , we have∫

Ω
Q3(G(x)) dx ≥

∫ L

0
Q2(A(x1)) dx1 =

∫ L

0
Q2(RT R,1) dx1,

where in the last equality we have simply applied the definition of the matrix A .
This finishes the proof of the liminf estimate.

(ii) To prove the limsup estimate, let (y, d2, d3) ∈ A . Assume in addition
y ∈ C2([0, L]; R3), d2, d3 ∈ C1([0, L]; R3). For every h > 0 let us consider the
function

y(h)(x) := y(x1) + hx2d2(x1) + hx3d3(x1) + h2β(x) (3.17)

with β ∈ C1(Ω; R3). Then

∇hy(h) = R + h(x2d2,1 + x3d3,1 |β,2 |β,3) + h2(β,1 | 0 | 0).
If we set

B(h) :=
RT∇hy(h) − Id

h

= RT (x2d2,1 + x3d3,1 |β,2 |β,3) + hRT (β,1 | 0 | 0),
then for h sufficiently small (in such a way that, for a.e. x ∈ Ω, the matrix
Id + hB(h)(x) belongs to the neighbourhood of Id where W is of class C2 ) we
have by Taylor expansion

1
h2

W (Id + hB(h)) → 1
2
Q3(RT (x2d2,1 + x3d3,1 |β,2 |β,3)) a.e.,

and
1
h2

W (Id + hB(h)) ≤ C|B(h)|2 ≤ C(|d2,1|2 + |d3,1|2 + |∇β|2) ∈ L1(Ω).

10



By the dominated convergence theorem

lim
h→0

1
h2

∫
Ω

W (∇hy(h)) dx = lim
h→0

1
h2

∫
Ω

W (Id + hB(h)) dx

=
1
2

∫
Ω

Q3(RT (x2d2,1 + x3d3,1 |β,2 |β,3)) dx.(3.18)

Consider now the general case: let (y, d2, d3) ∈ A and let α(x1, ·) ∈ V be the
solution of the minimum problem defining Q2(RT R,1). To conclude it remains
to exhibit a sequence converging to (y, d2, d3) and whose energy converges to the
right-hand side of (3.18) with RT β replaced by α . Since α and α,k (for k =
2, 3) belong to L2(Ω; R3), we can construct by convolution a sequence (α(j)) ⊂
C1(Ω; R3) such that α(j) → α , α

(j)
,k → α,k (for k = 2, 3) in L2(Ω). Moreover, we

can find (R̃(j)) ⊂ C1([0, L]; M3×3) such that R̃(j) → R in W 1,2(0, L); by Sobolev
embedding theorem this implies that R̃(j) → R uniformly on [0, L] . In order to
obtain an approximating sequence of orthogonal matrices, we take R(j) := Π R̃(j) ,
where Π : M

3×3 → M
3×3 is a smooth function defining a projection from a

neighbourhood of SO(3) onto SO(3), and we set

y(j)(x1) :=
∫ x1

0
R(j)(s)e1 ds, d

(j)
k (x1) := R(j)(x1)ek for k = 2, 3.

Then (y(j), d
(j)
2 , d

(j)
3 ) ∈ A , y(j) ∈ C2([0, L]; R3), d

(j)
2 , d

(j)
3 ∈ C1([0, L]; R3), and

(y(j)
,1 | d(j)

2 | d(j)
3 ) = R(j) is converging to R strongly in W 1,2(0, L) and uniformly

on [0, L] . Finally, we can assume, up to subsequences, that

1
2

∫
Ω

Q3(x2(R(j))T d
(j)
2,1 + x3(R(j))T d

(j)
3,1 |α(j)

,2 |α(j)
,3 ) dx

≤ 1
2

∫
Ω

Q3(x2R
T d2,1 + x3R

T d3,1 |α,2 |α,3) dx +
1
j

= I(y, d2, d3) +
1
j
;

here we have used the fact that the functional on the left-hand side is continuous
with respect to the kind of convergence we have shown for (R(j)) and (α(j)).

Now, given any positive (hm) converging to 0, by (3.18) we can find a subse-
quence (that we denote by (hj) with an abuse of notation) such that the sequence
(3.17) with y = y(j) , dk = d

(j)
k , β = R(j)α(j) and h = hj satisfies

1
h2

j

I(hj)(y(hj)) ≤ I(y, d2, d3) +
2
j
,

and y(hj) → y in W 1,2 , ( 1
hj

y
(hj)
,2 , 1

hj
y

(hj)
,3 ) → (d2, d3) in L2 , as required. �
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Remark 3.5 (Isotropic case) Assume that the stored energy function W in
(1.1) is isotropic, that is, W satisfies the following condition:

iv) W (F ) = W (FR) for every R ∈ SO(3).

Then, the quadratic form Q3 is equal to

Q3(G) = 2µ
∣∣∣∣G + GT

2

∣∣∣∣
2

+ λ(trace G)2

for some constants λ, µ ∈ R . In this case it is easy to find an explicit solution to
the system (3.2)-(3.3) and therefore the explicit expression of Q2 .

Indeed the system of equations (3.2)-(3.3) splits in the two following systems:{
∆α1 = 0 in S,
∂να1 = −a23(x3,−x2) · ν on ∂S,

(3.19)

and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

div ((2µ + λ)α2,2 + λα3,3, µα2,3 + µα3,2) = −λa12 in S,

div (µα2,3 + µα3,2, λα2,2 + (2µ + λ)α3,3) = −λa13 in S,

((2µ + λ)α2,2 + λα3,3, µα2,3 + µα3,2) · ν = −λ(a12x2 + a13x3)ν2 on ∂S,

(µα2,3 + µα3,2, λα2,2 + (2µ + λ)α3,3) · ν = −λ(a12x2 + a13x3)ν3 on ∂S.
(3.20)

If we denote by ϕ the torsion function, i.e., a function solving the Neumann
problem {

∆ϕ = 0 in S,
∂νϕ = −(x3,−x2) · ν on ∂S,

then it is straightforward to show that the solution to (3.19)-(3.20) belonging to
the space V is provided by α1(x2, x3) = a23 ϕ(x2, x3) and

α2(x2, x3) = −1
4

λ

λ + µ
(a12x

2
2 − a12x

2
3 + 2a13x2x3),

α3(x2, x3) = −1
4

λ

λ + µ
(−a13x

2
2 + a13x

2
3 + 2a12x2x3).

Now, computing the value of the functional at the minimum point we have found,
we obtain

Q2(A) =
µ(3λ + 2µ)

λ + µ

(
a2

12

∫
S

x2
2 dx2dx3 + a2

13

∫
S

x2
3 dx2dx3

)
+ µτa2

23,

where the constant τ is the so-called torsional rigidity, defined as

τ(S) :=
∫

S
(x2

2 + x2
3 − x2ϕ,3 + x3ϕ,2) dx2dx3.

12



If, in addition, S has circular cross section, i.e. S = {(x2, x3) : x2
2 + x2

3 = 1
π},

then ϕ = 0 and
∫
S x2

2 dx2dx3 = 1
4π , so that

Q2(A) =
1
2π

µ(3λ + 2µ)
λ + µ

(a2
12 + a2

13) +
µ

2π
a2

23.

Remark 3.6 (Rods with circular cross section) Assume S is a circle of ra-
dius 1/

√
π centred at the origin. In this case the quadratic form Q2 can be

computed by a pointwise minimization as follows:

Q2(A) =
1
4π

min
u,v,w∈R3

Q3

⎛
⎝ a12 u1 v1

0 u2 v2

−a23 u3 v3

⎞
⎠+ Q3

⎛
⎝ a13 v1 w1

a23 v2 w2

0 v3 w3

⎞
⎠ . (3.21)

Fix A ∈ M
3×3
skew and let α be a function in V . For notation convenience we

set

Hα(x2, x3) :=

⎛
⎝ a12x2 + a13x3 α1,2 α1,3

a23x3 α2,2 α2,3

−a23x2 α3,2 α3,3

⎞
⎠ .

Let us define the following vectors in R
3 :

B := 4π
∫

S
x2α,2 dx2dx3, C := 4π

∫
S

x2α,3 dx2dx3,

D := 4π
∫

S
x3α,2 dx2dx3, E := 4π

∫
S

x3α,3 dx2dx3.

A crucial remark is that, since S is a circle, the two vectors C and D are in fact
equal; indeed, by Green’s formula we have∫

S
(−x3α,2 + x2α,3) dx2dx3 =

∫
∂S

α(−x3, x2) · ν dσ = 0,

where in the last equality we have used the fact that the normal vector ν to ∂S
at a point (x2, x3) is given by

√
π(x2, x3). We now consider the function

β(x) :=
1
2
Bx2

2 + Cx2x3 +
1
2
Ex2

3,

and we want to prove that∫
S

Q3(Hα) dx2dx3 ≥
∫

S
Q3(Hβ) dx2dx3. (3.22)

If we write the quadratic form Q3 as

Q3(G) =
3∑

i,j,k,l=1

q̃ijklGijGkl for every G ∈ M
3×3 ,

13



then we can expand Q3(Hα) as follows:

Q3(Hα) = Q3(Hβ) + Q3(Hα − Hβ) + 2
3∑

i,j,k,l=1

q̃ijklH
β
ij(H

α
kl − Hβ

kl). (3.23)

We claim that for every i, j and k, l∫
S

q̃ijklH
β
ij(H

α
kl − Hβ

kl) dx2dx3 = 0. (3.24)

Indeed, since Hβ
ij is a linear combination of x2 and x3 for every i, j , it is enough

to show that ∫
S

xm(Hα
kl − Hβ

kl) dx2dx3 = 0 (3.25)

for m = 2, 3 and for every k, l . For l = 1 the assertion is trivial. For l = 2 we
have ∫

S
xm(Hα

k2 − Hβ
k2) dx2dx3

=
∫

S
xmαk,2 dx2dx3 −

∫
S

xmBkx2 dx2dx3 −
∫

S
xmCkx3 dx2dx3

=
∫

S
xmαk,2dx2dx3 − 1

4π
Bkδm2 − 1

4π
Ckδm3 = 0

since
∫
S xmxldx2dx3 = 1

4π δml . Similarly,∫
S

xm(Hα
k3 − Hβ

k3) dx2dx3

=
∫

S
xmαk,3 dx2dx3 −

∫
S

xmCkx2 dx2dx3 −
∫

S
xmEkx3 dx2dx3

=
∫

S
xmαk,3dx2dx3 − 1

4π
Ckδm2 − 1

4π
Ekδm3 = 0.

Thus, the claim (3.25) is proved.
From (3.23) and (3.24) it follows that∫

S
Q3(Hα) dx2dx3 =

∫
S

Q3(Hβ) dx2dx3 +
∫

S
Q3(Hα − Hβ) dx2dx3

≥
∫

S
Q3(Hβ) dx2dx3,

since Q3 is nonnegative. So, (3.22) is shown. This proves that, when S is a
circle, it is enough to compute the minimum in (3.1) on the class of polynomials
of degree 2 in x2, x3 .
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Now, if α is any polynomial of degree 2 in x2, x3 , i.e., α(x2, x3) = 1
2ux2

2 +
v x2x3 + 1

2w x2
3 with u, v,w ∈ R

3 , then

Hα(x2, x3) =

⎛
⎝ a12x2 + a13x3 u1x2 + v1x3 v1x2 + w1x3

a23x3 u2x2 + v2x3 v2x2 + w2x3

−a23x2 u3x2 + v3x3 v3x2 + w3x3

⎞
⎠ .

Expanding again Q3 and using the fact that
∫
S x2x3 dx2dx3 = 0 by (2.1), we

obtain∫
S

Q3(Hα) dx2dx3

=
∫

S
x2

2 dx2dx3 Q3

⎛
⎝ a12 u1 v1

0 u2 v2

−a23 u3 v3

⎞
⎠+

∫
S

x2
3 dx2dx3 Q3

⎛
⎝ a13 v1 w1

a23 v2 w2

0 v3 w3

⎞
⎠ ,

and this yields (3.21) since
∫
S x2

2 dx2dx3 =
∫
S x2

3 dx2dx3 = (4π)−1 .

4 Refined Γ-convergence and director theories

In this section we reformulate the theorem of the previous section as a Γ-
convergence result for a functional depending on more variables. We need to
introduce some new definitions. Given a sequence (y(h)) ⊂ W 1,2(Ω; R3) we set

y
(h)
0 (x1) :=

∫
S

y(h)(x) dx2dx3, F (h)(x1) :=
∫

S
∇hy(h)(x) dx2dx3,

β(h)(x) :=
y(h)(x) − y

(h)
0 (x1)

h2
− 1

h
F (h)(x1)

⎛
⎝ 0

x2

x3

⎞
⎠ , (4.1)

S(h)(x1) :=
[F (h)(x1)T F (h)(x1)]1/2 − Id

h
.

Theorem 4.1 Let (y(h)) be a sequence in W 1,2(Ω; R3) such that

lim sup
h→0

1
h2

∫
Ω

W (∇hy(h)) dx < +∞. (4.2)

Then there exists a subsequence (not relabelled) such that the following properties
are satisfied:

(1) y(h) → y in W 1,2(Ω), y ∈ W 2,2(Ω; R3), y,2 = y,3 = 0;

(2) F (h) → R in L2(0, L), R ∈ W 1,2(Ω; M3×3), Re1 = y,1 , R ∈ SO(3) a.e.;

(3) β(h) ⇀ β in L2(Ω),
∫
S β dx2dx3 =

∫
S β,k dx2dx3 = 0 for k = 2, 3;

(4) S(h) ⇀ G in Lp(0, L) for every p < 2, G ∈ M
3×3
sym .
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Moreover,

lim inf
h→0

1
h2

∫
Ω

W (∇hy(h)) dx

≥ 1
2

∫ L

0
Q3(G) dx1 +

1
2

∫
Ω

Q3

⎛
⎝RT R,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣RT β,2

∣∣∣∣RT β,3

⎞
⎠ dx

=: F (G,R, β). (4.3)

Remark 4.2 As before the matrix RT R,1 describes bending and torsion effects,
averaged over the cross section. Concerning the new additional variables G and
β , the quantity G11 is related to the scaled stretch, while G21, G31 to the scaled
shear; the remaining entries Gij , j ≥ 2, and the function β take into account
the scaled cross sectional deformations.

Proof of Theorem 4.1. – Let (y(h)) be a sequence satisfying (4.2). From
Theorem 2.1 it follows that ∇hy(h) → R in L2(Ω), where R ∈ W 1,2(Ω; M3×3),
R ∈ SO(3) a.e., and R does not depend on x2, x3 . So, properties (1) and (2) are
proved.

Let R(h), G(h), α(h), α
(h)
0 be as in the proof of Theorem 3.1-(i). By the defini-

tion of F (h) we have that

(R(h))T F (h) = Id + h

∫
S

G(h)dx2dx3 = Id + hG̃(h), (4.4)

where we have set G̃(h)(x1) :=
∫
S G(h)(x)dx2dx3 ; using (4.4) and (3.11) we can

write

(R(h))T β(h) = α(h) − α
(h)
0 − G̃(h)

⎛
⎝ 0

x2

x3

⎞
⎠ . (4.5)

In particular, we have (R(h))T β
(h)
,k = α

(h)
,k −G̃

(h)
k for k = 2, 3. Since α(h)−α

(h)
0 ⇀

α in L2(Ω), G(h) ⇀ G in L2(Ω), and R(h) → R in L2(0, L), the equality (4.5)
implies that

β(h) ⇀ β := Rα − RG̃

⎛
⎝ 0

x2

x3

⎞
⎠ in L2(Ω),

where G̃(x1) :=
∫
S G(x) dx2dx3 . Moreover, β

(h)
,k ⇀ β,k in L2(Ω) for k = 2, 3,

since α
(h)
,k ⇀ α,k in L2(Ω) for k = 2, 3. It is easy to check that

∫
S β(h)dx2dx3 =∫

S β
(h)
,k dx2dx3 = 0 (for k = 2, 3) for every h ; therefore, the same properties hold

for β . Assertion (3) is proved. For further references we notice that β = α̃ by
(3.13), where α̃ is the function defined in (3.14).

In order to show (4), let Φ : M
3×3 → M

3×3 be the function defined by
Φ(F ) := (F T F )1/2 − Id . By (4.4) we have S(h) = 1

hΦ(Id + hG̃(h)). Notice also
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that Φ is C1 in a neighbourhood of Id and globally Lipschitz continuous. Then,
given any test function ϕ ∈ Lp′((0, L); M3×3) with p′ > 2, we have∫ L

0
S(h)ϕdx1 =

∫ L

0

1
h

Φ(Id + hG̃(h))ϕdx1

=
∫ L

0

Φ(Id + hG̃(h)) − Φ(Id)
h

ϕdx1

=
∫ L

0

(
Φ(Id + hG̃(h)) − Φ(Id)

h
− Φ′(Id)G̃(h)

)
ϕdx1

+
∫ L

0
Φ′(Id)G̃(h)ϕdx1. (4.6)

The first integral on the last right-hand side converges to 0; indeed, since Φ′ is
continuous in a neighbourhood of the identity and globally bounded, for every
ε > 0 we have that for some δ = δ(ε)∣∣∣∣∣

∫ L

0

(
Φ(Id + hG̃(h)) − Φ(Id)

h
− Φ′(Id)G̃(h)

)
ϕdx1

∣∣∣∣∣
≤ ε

∫
{h|G̃(h)|<δ}

∣∣∣G̃(h)ϕ
∣∣∣ dx1 + C

∫
{h|G̃(h)|≥δ}

∣∣∣G̃(h)ϕ
∣∣∣ dx1

≤ C‖ϕ‖L2ε + C ′‖ϕ‖Lp′L1({h
∣∣∣G̃(h)

∣∣∣ ≥ δ}) 2
2−p .

Passing to the limit as h → 0 and using the fact that ε is arbitrary, we obtain
the claim. As for the second integral in (4.6), since G̃h ⇀ G̃ in L2(0, L) and
Φ′(Id)F = sym F , we have

lim
h→0

∫ L

0
Φ′(Id)G̃hϕdx1 =

∫ L

0
sym G̃ ϕ dx1.

Therefore, property (4) is proved with G = sim G̃.
To conclude it is enough to repeat the proof of Theorem 3.1-(i) up to the

equality (3.16). From (3.15) it follows that

G̃ =
(

G1(x1, 0, 0)
∣∣∣∣
∫

S
α,2

∣∣∣∣
∫

S
α,3

)
.

Using this fact and the equalities A = RTR,1 and α̃ = RT β , (3.16) can be
rewritten as
∫

Ω
Q3(G(x)) dx =

∫ L

0
Q3(G̃) dx1 +

∫
Ω

Q3

⎛
⎝RT R,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣RT β,2

∣∣∣∣RT β,3

⎞
⎠ dx.

Since Q3(F ) depends only on the symmetric part of F , we can replace G̃ by G
in the equality above. The thesis follows now from (3.6). �
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Theorem 4.3 Let y ∈ W 2,2((0, L); R3), let R ∈ W 1,2((0, L); M3×3) be such that
Re1 = y,1 and R ∈ SO(3) a.e., let β ∈ L2(Ω; R3) be such that

∫
S β dx2dx3 = 0,

β,k ∈ L2(Ω; R3) and
∫
S β,k dx2dx3 = 0 for k = 2, 3, and let G ∈ L2((0, L); M3×3)

be symmetric. Then there exists a sequence (y(h)) ⊂ W 1,2(Ω; R3) such that the
properties (1)-(4) of Theorem 4.1 are satisfied, and

lim
h→0

1
h2

∫
Ω

W (∇hy(h)) dx = F (G,R, β),

where F is the functional defined in (4.3).

Proof. – Let the functions y, β,R,G be as in the statement. Assume in
addition that R,G ∈ C1([0, L]; M3×3) and β ∈ C1(Ω; R3). Set

γ(x1) =
∫ x1

0
R(s)G1(s) ds, Bk(x1) = R(x1)Gk(x1) for k = 2, 3.

For every h > 0 consider the functions

y(h)(x) = y(x1)+hγ(x1)+hR(x1)

⎛
⎝ 0

x2

x3

⎞
⎠+h2β(x)+h2B2(x1)x2 +h2B3(x1)x3.

It is easy to see that (y(h)) satisfies all the properties (1)-(4). Moreover, using
the Taylor expansion of W around the identity and the dominated convergence
theorem, we obtain

lim
h→0

1
h2

∫
Ω

W (∇hy(h)) dx

=
1
2

∫
Ω

Q3

(
RT (x2R,1e2 + x3R,1e3 + γ,1 |β,2 + B2 |β,3 + B3)

)
dx.

If we expand the quadratic form Q3 and we use the fact that
∫
S β,k dx2dx3 = 0

for k = 2, 3, we have∫
Ω

Q3

(
RT (x2R,1e2 + x3R,1e3 + γ,1 |β,2 + B2 |β,3 + B3)

)
dx

=
∫ L

0
Q3(RT (γ,1 |B2 |B3)) dx1 +

∫
Ω

Q3

(
RT (x2R,1e2 + x3R,1e3 |β,2 |β,3)

)
dx

=
∫ L

0
Q3(G) dx1 +

∫
Ω

Q3

(
RT (x2R,1e2 + x3R,1e3 |β,2 |β,3)

)
dx.

In the general case it is enough to act by density, that is, to show that for
any y, β,R,G as in the statement, we can construct approximating sequences
(y(j)), (β(j)), (R(j)), (G(j)) satisfying the extra assumption of C1 regularity and
such that

lim
j→∞

F (G(j)
, R(j), β(j)) = F (G,R, β). (4.7)
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As in the proof of Theorem 3.1-(ii), we can construct (y(j)) ⊂ C2([0, L]; R3)
and (R(j)) ⊂ C1([0, L]; M3×3) such that R(j)e1 = y

(j)
,1 , R(j) ∈ SO(3) a.e., and

R(j) → R in W 1,2(0, L). By mollification we can find (G(j)) ⊂ C1([0, L]; M3×3)
such that G(j) → G in L2(0, L), and (β̃(j)) ⊂ C1(Ω; R3) such that β̃(j) → β ,
β̃

(j)
,k → β,k (for k = 2, 3) in L2(Ω). Then we define G

(j) := sym G(j) and

β(j) := β̃(j) −
∫

S
β̃(j)dx2dx3 − x2

∫
S

β̃
(j)
,2 dx2dx3 − x3

∫
S

β̃
(j)
,3 dx2dx3.

Now it is easy to check that (4.7) is satisfied. �
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