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Abstract

The purpose of this paper is to show that the joint numerical range
of a m-tuple of n×n hermitian matrices is convex whenever the largest
eigenvalue of an associated family of hermitian matrices parameterized
by the (m − 1)-dimensional sphere has constant multiplicity and, as
a more technical condition, the union over the sphere of the largest
eigenvalue eigenspaces does not fill the full n-dimensional complex
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vector space. It is this global, as opposed to local, behavior of the
eigenvalues that makes the problem essentially topological. For m ≤ 3,
it is shown that the set of hermitian matrices with simple eigenvalues
is open and dense in the space of all hermitian matrices, from which
it already follows that the numerical range is generically convex for
m ≤ 3. From there on, an additional argument shows that convexity
always holds when m ≤ 3 and n ≥ 3. Furthermore, our sufficient
condition for convexity is in fact a criterion for stable convexity, in the
sense that should the sufficient condition fails while convexity holds,
the latter can be destroyed by an arbitrarily small perturbation of the
data.

1 Introduction

In the beautiful paper, “Das algebraische Analogon zu einem Satze von Fejér”
(Math. Zeitschrift 2 (1918), 187–197), O. Töplitz introduced and studied the
numerical range of a complex matrix. If C is a n × n matrix, its numerical
range F(C) is the set of complex numbers of the form z∗Cz, where z is a
n-tuple of unit norm. Töplitz proved, among other things, that the outer
boundary of the compactum F(C) is a convex curve. He conjectured that
the numerical range itself was convex, and shortly after, in another beautiful
paper, F. Hausdorff proved it. (See F. Hausdorff, “Der Wertvorrat einer
Bilinearform”, Math. Zeitschrift 3 (1919), 314–316.) This result, which
carries the name of Töplitz-Hausdorff theorem [12, 9], launched the thriving
subject of numerical range. Its vitality is due, in particular, to the many
extensions of Töplitz’ original setting.

An especially natural extension is the joint numerical range of a collection
of hermitian matrices. Let A = (A1, . . . , Am)∗ be hermitian n × n matrices.
Their joint numerical range, F(A), is the set of vectors in Rm of the form
v = (z∗A1z, . . . , z

∗Amz)∗, where z is a unit vector in the complex space of n
dimensions. In view of the representation C = A1 + j A2, the set F(C) is the
joint numerical range of (A1, A2)

∗. Already in 1918, Töplitz and Hausdorff
knew that the joint numerical range is not, in general, convex. Töplitz in
his paper pointed out that the convexity fails if A1, . . . , An2 is a basis of the
vector space H(n) of hermitian n × n matrices. Hausdorff observed that
Töplitz’ idea and the result of his own paper combine to prove the convexity
of the outer boundary of the joint numerical range of any triple of hermitian
matrices.

Applications of the subject of numerical range to robust control the-
ory [7, 6, 9, 26, 31] gave a powerful impetus to the mathematical investigation
of the joint numerical range for arbitrarym-tuples of hermitian matrices. The
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robust stability of a feedback system consisting of n loops and m block un-
certainties involves the joint numerical range of an associated collection of m
hermitian n× n matrices [7]. There is a vast mathematical literature on the
subject of convexity, or the lack thereof, of the joint numerical range. Below
we will briefly survey the main points.

The discussion in Töplitz’ and Hausdorff’s papers implies that: a) The
joint numerical range, F , of a triple (A1, A2, A3)

∗ of hermitian 2×2 matrices
is typically not convex; b) For any triple of hermitian n × n matrices, the
outer boundary of F is convex. Let now n > 2. Binding [1] and Fan and
Tits [8] proved the convexity of F(A1, A2, A3). (See § 2.2 below where the
methods of these papers are recast in our setup. In § 5.1, we will re-establish
this result as a byproduct of our approach; see Theorem 5.4.) The situation
becomes drastically different as we move on to the 4-tuples of hermitian ma-
trices, and more generally, to the joint ranges F(A1, . . . , Am), where m ≥ 4.
In this case, the joint numerical range F(A1, A2, A3, . . . , Am) is, typically,
not convex. (See Examples 3, 4, and Proposition 2.10 in § 2.2.) In view
of these counterexamples, the emphasis in the study of the joint numerical
range of m-tuples, m > 3, of hermitian matrices was redirected towards: a)
The study of conditions ensuring that F(A1, . . . , Am) is convex; b) The study
of the outer boundary and the convex hull of F(A1, . . . , Am). We refer to
[27, 28] and the references cited therein for more recent trends and develop-
ments.

The major result of this paper is that the joint numerical range of m her-
mitian matrices is convex if the largest eigenvalue of the family of hermitian
matrices, A(η) :=

∑
i ηiAi, η ∈ Sm−1, parameterized by the unit sphere in

dimension m−1 has constant multiplicity (along with another more technical
condition) and that the property of simple eigenvalue for the entire family
is open and dense if m ≤ 3. The global, as opposed to local (see [6, Sec.
5]), multiplicity behavior of the eigenvalues is clearly a differential/algebraic
topological issue. Thus, from the first standpoint, we continue and consid-
erably extend the material of the publication [19], which introduced the dif-
ferential topological approach in the special case of the numerical range of a
complex matrix. Alongside the differential topology, we widely use algebraic
topological methods, in particular the theory of fiber bundles to describe
the relationship between a constant dimensional eigenspace of A(η) and η.
The topological approach to the convexity of the joint numerical range goes
back to [1]. The genericity issue, which is here strengthened to openess and
density, goes back to [24].
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We will now discuss the contents of the paper in some detail. In § 2,
we establish the setting and the basic properties of the numerical range. In
particular, in § 2.1, we introduce our approach to the joint numerical range
as the range of a real analytic map defined on a complex projective space. In
§ 2.2, we motivate our approach with simple, but essential, examples. Also,
we prove a few propositions that will be crucially used in the body of the
paper; see, in particular, Proposition 2.11 and Corollary 2.12.

§ 3 consists of two subsections. In § 3.1, we study the convex hull of a
compactum in the euclidean space from the viewpoint of support functions.
This material is still preliminary; see, for instance, [14]. The differentiability
of a support function plays an important role in our approach.

The body of the paper starts in § 3.2. From there on, we specialize our
analysis to the joint numerical range, F(A), of a m-tuple A of hermitian
matrices. It is in this part that the family A(η) is introduced. We show that
the support function of F(A) is the highest eigenvalue of A(η). Thus, our
investigation of convexity and the related properties of the joint numerical
range hinges on the study of eigenvalues of certain families of hermitian
matrices. Under the crucial assumption that the family in question has a
block of eigenvalues of constant multiplicity (see Proposition 3.10), we carry
over this study to § 4. Let A(η) satisfy the assumption, and let µ be the
multiplicity. In § 4.2 we associate with the numerical range F(A) a fiber
bundle over the unit sphere of m − 1 dimensions whose fiber is the unit
sphere in the complex µ-dimensional eigenspace. See Theorem 4.5. In order
to use the results of § 4.2 to study the convexity of numerical ranges, we
investigate in § 4.3 the issue of the multiplicity of eigenvalues of a linear
family of hermitian matrices. It turns out that, for m < 4, all eigenvalues of
A(η), η ∈ Sm−1, are simple, generically. See Proposition 4.10.

Theorem 5.1 in § 5 is the main result of the paper. It says, essentially,
that if the highest eigenvalue of A(η), η ∈ Sm−1, has constant multiplicity,
then the numerical range F(A) is convex. The additional technical assump-
tion of Theorem 5.1 is automatically satisfied unless m = n + 1, and the
highest eigenvalue has multiplicity n/2. From the latter and the essentially
topological fact of genericity, we recover as a particular case the known result
that the numerical range of any triple of n×n, n ≥ 3, matrices is convex. See
Theorem 5.4. In § 5.2 we show that Theorem 5.1 actually yields a criterion
of stable convexity. Namely, if A does not satisfy the constant multiplic-
ity assumption, but F(A) is nevertheless convex, then the convexity can be
destroyed by an arbitrarily small perturbation of A. See Theorem 5.6.

The remaining two sections are the Appendices. There we prove two
important technical theorems that we have crucially used in the body of the
paper. See especially the proof of Theorem 3.7 in § 7.
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2 Preliminaries and the setting

The notation is standard. By N, R and C we denote the set of natural num-
bers, real numbers and complex numbers respectively. By Fn×m we denote
the space of n×m-matrices with entries in F ∈ {R,C}. If A ∈ Fn×m, then
AT (resp. A∗) denotes its (resp. conjugate) transpose, and A† stands for its
generalized inverse in the sense of Moore-Penrose [30]. We denote by ‖ ·‖ the
Euclidean vector norm in Cn unless otherwise stated. By Sm−1 we denote
the unit sphere in Rm. If U is a subspace of Cn or Rn then U⊥ denotes its or-
thogonal complement with respect to the standard inner product. By CP

n−1

we denote the projective space of Cn. We use the notation [z] ∈ CP
n−1 for

the element defined by z ∈ Cn\{0}.
By H(n) we denote the real vector space of hermitian n × n-matrices,

dimH(n) = n2. If A ∈ H(n) then λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) are its
eigenvalues, and Ek(A), 1 ≤ k ≤ n, are the corresponding eigenspaces. Note
that Ei(A) = Ej(A) if λi(A) = λj(A).

We will use the terms Cr-manifold, Cr-mapping, etc for any r ∈ N ∪
{∞, ω}. Let M,N be Cr-manifolds, and let f : M → N be a Cr- map. Let
x∈M . Then TxM denotes the tangent space of M at x, and dxf : TxM →
Tf(x)N is the differential. We will denote by d2

xg : TxM × TxM → R the
second differential, whenever it is defined. Note that d2

xg is a symmetric
bilinear form.

2.1 Basic properties of the joint numerical range

We introduce the main object of study.

Definition 2.1 Let A = (A1, . . . , Am)∗∈H(n)m be an m-tuple of hermitian
matrices. Set

F(A) = F(A1, . . . , Am) =
{

(z∗A1z, . . . , z
∗Amz)

T
∣∣∣ z∈C

n, ‖z‖ = 1
}
.

Then F(A) ⊂ Rn is the joint numerical range of matrices A1, . . . , Am .

We will also say that F(A) is the numerical range of A. Note that for any
unitary matrix U ∈Cn×n we have

F(A1, . . . , Am) = F(U∗A1U, . . . , U
∗AmU). (1)

The formula

FA([z]) =

(
z∗A1z

‖z‖2
, . . . ,

z∗Amz
‖z‖2

)T

.
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defines a real analytic mapping FA : CP
n−1 → Rm, and the compact, con-

nected set F(A) is the range of FA. If m = 1 then F(A) is a classical object.

Proposition 2.2 Let A∈H(n). Then F(A) = [λn(A), λ1(A)].

We will recall the basic general properties of F(A) and FA. To this end
we introduce the following notation. Let M = [µik] ∈ Rp×m and A =
(A1, . . . , Am)∗∈H(n)m. Set

MA =

⎡⎢⎣µ11 . . . µ1m
...

...
µp1 . . . µpm

⎤⎥⎦
⎡⎢⎣A1

...
Am

⎤⎥⎦ =

⎡⎢⎣
∑m

k=1 µ1kAk
...∑m

k=1 µpkAk

⎤⎥⎦ ∈ H(n)p.

Lemma 2.3 Let A∈H(n)m. Let M ∈Rp×m be an arbitrary matrix viewed as
a mapping, M : Rm → Rp. Then M ◦ FA = FMA.

Despite its simplicity, Lemma 2.3 yields important consequences.

Corollary 2.4 1. Let A∈H(n)m and M ∈Rp×m. Then F(MA) = MF(A).

2. Let A∈H(n)m, B∈H(n)r be such that span(A1, . . . , Am) = span(B1, . . . , Br).

Then there exist linear maps Rm φ→ Rr ψ→ Rm such that φ(F(A)) = F(B),
ψ(F(B)) = F(A), and (ψ ◦ φ)|F(A) = (φ ◦ ψ)|F(B) = id.

Proof: Claim 1 is immediate from Lemma 2.3. Under the assumptions of
claim 2, there exist matrices φ, ψ such that B = φA and A = ψB. They
satisfy the requirements. �

Remark 1. Let A,B satisfy the assumptions of claim 2 above. Then F(A)
and F(B) are affinely equivalent. In particular, one of them is convex if and
only if the other one is.

Corollary 2.5 Let A∈H(n)m, let η∈Rm be a nonzero vector, and let c∈R.
Set H = { y ∈ Rm | ηTy = c}. Then: 1. We have ηT ◦ FA = FηTA; 2. We
have {ηTy | y∈F(A) } = [λn(η

T A), λ1(η
T A)]; 3. The inclusion F(A) ⊂ H

holds if and only if ηTA = cIn.

Proof: The first claim is a special case of Lemma 2.3. Combining it with
Proposition 2.2, we obtain the second. It implies the third. �

If K ⊆ Rm, we denote by aff(K) its affine hull.
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Proposition 2.6 Let A∈H(n)m. Denote by VA ⊂ Rm the subspace defined
by VA =

{
η∈Rm | ηTA ∈ RIn

}
. Then:

1. The set F(A) is a singleton if and only if VA = R
m;

2. We have VA = {0} if and only if In, A1, . . . , Am are linearly independent
if and only if aff (F(A)) = Rm.
3.Let � = codimVA. Suppose that � �= 0, m. Let Q = (η1, . . . , ηm) be an
orthonormal basis of Rm such that (η�+1, . . . , ηm) is a basis of VA. Then
ηTj A = cjIn for � + 1 ≤ j ≤ m. Set Bj = ηTj A for 1 ≤ j ≤ �, and let
B = (B1, . . . , B�)

∗. Define the affine mapping α : R� → Rm by α(x) =
Q(xT , c�+1, . . . , cm)T . Then In, B1, . . . , B� are linearly independent, F(A) =
α(F(B) ) and

aff(F(A)) = α(R�) = {y ∈ R
m | ηTj y = cj , �+ 1 ≤ j ≤ m}.

4. We have dim(aff (F(A))) = �.

Proof: Claim 1 is obvious, as well as the former equivalence in claim 2,
while the latter is immediate from Corollary 2.5. Since VB = {0}, by claim
2, In, B1, . . .B� are linearly independent. The definition of Q implies that
QTA = (B1, . . . , B�, c�+1In, . . . , cmIn)

T . Hence, for any unit vector z ∈ Cn

we have QTFA([z]) = FQTA([z]) = (z∗B1z, . . . , z
∗B�z, c�+1, . . . , cm)T , imply-

ing QTF(A) = α(F(B)). We leave the rest to the reader. �

Let Km be the metric space of nonempty compact subsets of Rm, endowed
with the Hausdorff metric. The formula A 
→ F(A) defines a mapping F :
H(n)m → Km. Recall that a mapping f : X → Y of metric spaces is Lipshitz
if there exists c ≥ 0 such that for any x, x′ ∈ X we have d(f(x), f(x′)) ≤
c d(x, x′). This notion depends only on the equivalence classes of the metrics.
Any norm on the vector space H(n)m induces a metric on it. All these metrics
are equivalent.

Proposition 2.7 The mapping F : H(n)m → Km is Lipshitz with respect to
the natural metrics.

Proof: Let B = (B1, . . . , Bn2)∗ be a basis of H(n). Then for each A ∈
H(n)m there is a unique matrix MA ∈ Rm×n2

such that A = MAB. The
map A 
→ MA is linear. Define a norm, ν, on H(n)m by ν(A) = ‖MA‖. Set
c = maxy∈F(B) ‖y‖. Then for all A,A′∈H(n)m and all [z]∈CP

n−1,

‖FA([z]) − FA′([z])‖ = ‖MA−A′ FB([z])‖ ≤ c ν(A−A′).

The claim follows. �
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For A = (A1, . . . , Am)∗ ∈ H(n1)
m and B = (B1, . . . , Bm)∗ ∈ H(n2)

m let
A⊕ B = (A1 ⊕ B1, . . . , Am ⊕ Bm)∗∈H(n1 + n2)

m. For X, Y ⊆ Rm we set

co(X, Y ) = { α1x+ α2y | x∈X, y∈Y, αk ≥ 0, α1 + α2 = 1 } .
The set co(X, Y ) is not convex, in general. If X and Y are convex, then
co(X, Y ) = co(X ∪ Y ), where co(·) denotes the convex hull of a set.

Proposition 2.8 Let A ∈ H(n1)
m and B ∈ H(n2)

m. Then F(A ⊕ B) =
co(F(A),F(B)).

Proof: A unit vector z∈Cn1+n2 can be written in the form z = [
√
α1z

T
1 ,

√
α2z

T
2 ]T ,

where zk ∈ C
nk are unit vectors and αk ≥ 0, α1 + α2 = 1. We have

FA⊕B([z]) = α1FA([z1]) + α2FB([z2]). �

The following is an immediate consequence of Proposition 2.8.

Corollary 2.9 Let A∈H(n1)
m, B∈H(n2)

m. Then
a) If F(A) and F(B) are convex, then F(A⊕B) is convex;
b) If F(A) = F(B), then F(A⊕ B) is convex.

2.2 Basic examples

In this subsection we present a few examples of the (joint) numerical ranges.
They demonstrate the difficulties and the pitfalls of the subject. In what
follows, the meaning of the parameters n,m comes from the notation H(n)m.

Let A = (A1, A2)
∗ ∈H(n)2. Introducing A = A1 + j A2, we identify F(A)

with the classical numerical range of A. The celebrated Töplitz-Hausdorff
theorem [12] yields, in particular, that the joint numerical range of any two
hermitian matrices is convex. See [19, 13] for the differential geometry of the
map FA in this case.

Let m be arbitrary. Suppose that A1, . . . , Am∈H(n) commute. Simulta-
neously diagonalizing A1, . . . , Am by a unitary matrix, we obtain that F(A)
is a convex polytope. The converse also holds: If F(A) is a polytope then
the matrices A1, . . . , Am commute [2].

Example 1. We will now consider a specific example with m = 3. Let

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −j
j 0

]
, σ3 =

[
1 0
0 −1

]
be the Pauli spin-matrices. They form an orthonormal basis in the space of
traceless matrices in H(2). Let µ ≥ 1. For 1 ≤ k ≤ 3 set Ak = σk ⊗ Id.
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Let A = (A1, A2, A3)
∗ ∈ H(2µ)3. Let z = (z1, z2) ∈ C2µ, where ‖z‖2 =

‖z1‖2 + ‖z2‖2. Let S2 ⊂ B3 ⊂ R3 be the unit sphere and the unit ball. Since

FA([z]) =

⎡⎣z∗A1z
z∗A2z
z∗A3z

⎤⎦ =

⎡⎣ 2�(z∗1z2)
2�(z∗1z2)

‖z1‖2 − ‖z2‖2

⎤⎦
we have ‖FA([z])‖2 = 4|z∗1z2|2 + (‖z1‖2 − ‖z2‖2)2 ≤ ‖z‖4 = 1. We will show
that F(A) = S2 if µ = 1, and F(A) = B3 if µ ≥ 2. Set FA([z]) =
( ρ cosφ, ρ sin φ, r)T . It suffices to find a solution z = (z1, z2) ∈ C

2µ of this
equation for any r ∈ [−1, 1], φ ∈ R, ρ =

√
1 − r2 if µ = 1, and 0 ≤ ρ ≤√

1 − r2 if µ > 1. For µ = 1 set z1 =
√

(1 + r)/2, z2 =
√

(1 − r)/2ejφ. For

µ > 1 set z1 =
√

(1 + r)/2v1, z2 =
√

(1 − r)/2ejφv2, where v1, v2 ∈ Cµ are
unit vectors, such that v∗1v2 = 0, if |r| = 1, and v∗1v2 = ρ/

√
1 − r2 otherwise.

Example 2 [1, 8, 6]. Let now n = 2, andm arbitrary. Let A = (A1, . . . , Am)∗∈
H(2)m. For 1 ≤ k ≤ m set Ak =

[
ak wk
wk bk

]
, where ak, bk∈R, wk = xk + jyk∈

C. Define

M =

⎡⎢⎣x1 y1
a1−b1

2
...

...
...

xm ym
am−bm

2

⎤⎥⎦ ∈ R
m×3, p =

1

2

⎡⎢⎣ a1 + b1
...

am + bm

⎤⎥⎦ ∈ R
m. (2)

Let σ = (σ1, σ2, σ3)
∗ be as in Example 1. Then

A =
[
M p

] [σ
I2

]
= M σ + pI2.

Let α : R
3 → R

m be the affine mapping given by α(ξ) = Mξ + p. Then, by
Corollary 2.4 and the preceding example

F(A) = MF(σ) + p = α(F(σ)) = α(S2). (3)

In what follows we do not distinguish between an ellipsoid in R3 (resp. ellipse
in R2) and its image under an isometry i : R3 → Rm (resp. i : R2 → Rm). Let
M = U diag(s1, s2, s3)V be a singular value decomposition. Since U ∈Rm×3

and V ∈R3×3 are isometries, we obtain the following classification.
a) If rankM = 3, then F(A) is an ellipsoid with semi-axes s1 ≥ s2 ≥ s3.
b) If rankM = 2, then F(A) is a solid ellipse with semi -axes s1, s2.
c) If rankM = 1, then F(A) is a segment of length s1 .
d) If M = 0, then F(A) is a point.
In particular, F(A) is convex if and only if rankM < 3. If m ≥ 3, then
rankM = 3, generically, and F(A) is nonconvex.
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Example 3. In this example n = m = 4. For k = 1, 2, 3 set Ak = σk ⊕ σk,
and let A4 = I2 ⊕ (−I2). By Proposition 2.8 and Example 1

F(A) = co(S2 × {1}, S2 × {−1} ) ⊂ R
4.

Let c ∈ R. The hyperplanes Hc = {(y, c) | y ∈ R3} are parallel in R4. Then
F(A) ∩Hc = {(y, c) | |c| ≤ ‖y‖ ≤ 1}. In particular, F(A) is not convex.
Example 4. Let now n be arbitrary, and m ≥ 4. Set

Ak =

⎧⎪⎨⎪⎩
σk ⊕ 0(n−2)×(n−2) 1 ≤ k ≤ 3,

02×2 ⊕ In−2 k = 4,

0n×n 4 < k ≤ m.
Proposition 2.8 and Example 1 yield

F(A) = co

(
S2 × {0},

{[
03×1

1

]})
× {0(m−4)×1}.

Since

co

(
S2 × {0},

{[
03×1

1

]})
=

{ [
rx

1 − r

] ∣∣∣∣ x∈S2, r∈ [0, 1]

}
,

the set F(A) is a nonconvex cone. Hence, we obtain the following.

Proposition 2.10 For any m ≥ 4, there exist A∈H(n)m such that F(A) is
not convex.

Example 5.
Let n be arbitrary, and let e1, . . . , en be the standard basis of Cn. We

define σ(n) = (σ
(n)
1 , . . . , σ

(n)
2n−1)

∗ ∈ H(n)2n−1 by σ
(n)
k = eke

T
n + ene

T
k , σ

(n)
n−1+k =

j(ene
T
k − eke

T
n ) for 1 ≤ k ≤ n− 1, and

σ
(n)
2n−1 =

[
In−1 0

0 −1

]
.

If n = 2 we recover the Pauli spin matrices. Let z = (z1, . . . , zn)
T ∈Cn. For

1 ≤ k ≤ n− 1 we have

z∗σ(n)
k z = 2�(zkzn), z

∗σ(n)
n−1+kz = 2�(zkzn); z

∗σ(n)
2n−1z =

(
n−1∑
k=1

|zk|2
)

− |zn|2.

Since ‖z‖ = 1, we have

‖Fσ(n)([z])‖2 =

2n−1∑
j=1

(z∗σ(n)
j z)2 = 4

n−1∑
k=1

|zkzn|2 +

(
n−1∑
k=1

|zk|2 − |zn|2
)2

= 1.
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Let y = (y1, . . . , y2n−1)
T ∈S2(n−1). Let y2n−1 = r, and for 1 ≤ k ≤ n− 1 set

yk = 
k cos(φk), yn−1+k = 
k sin(φk).

The parameters thus introduced are constrained only by r∈ [−1, 1], φk ∈R,

k ≥ 0,

∑n−1
k=1 


2
k = 1 − r2. For 1 ≤ k ≤ n − 1 set zk = 0 if r = −1, zk =√

1/(2(1 − r))ρk if r �= −1, and let zn =
√

(1 − r)/2ejφk . Then Fσ(n)([z]) =
y. Since F(σ(n)) ⊂ S2(n−1), we obtain F(σ(n)) = S2(n−1).

Let w∈Cn−1 and a, b∈R. Extending the calculations of Example 2, we
obtain [

(�w)T (�w)T
a− b

2

a+ b

2

] [
σ(n)

In

]
=

[
aIn−1 w
wT b

]
. (4)

Combining this and Examples 2 and 5, we obtain the following.

Proposition 2.11 Let n and m be arbitrary. For 1 ≤ k ≤ m let ak, bk∈R,

wk = xk + jyk∈Cn−1, Ak =

[
akIn−1 wk
wTk bk

]
, and let A = (A1, . . . , Am)∗. Set

M =

⎡⎢⎣x
T
1 yT1

a1−b1
2

...
...

...
xTm yTm

am−bm
2

⎤⎥⎦ ∈ R
m×(2n−1), p =

1

2

⎡⎢⎣ a1 + b1
...

am + bm

⎤⎥⎦ ∈ R
m.

Define α : R2n−1 → Rm by α(ξ) = Mξ+ p. Then A = M

[
σ(n)

In

]
+ pIn and,

finally, F(A) = α(S2n−2).

Proposition 2.11 serves as a source of examples of numerical ranges. We
give a simple criterion of convexity for these examples.

Corollary 2.12 Let n and m be arbitrary. Let A = (A1, . . . , Am)∗ and
M ∈ Rm×(2n−1) be as in Proposition 2.11. Then F(A) is convex if and only
if rankM < 2n− 1. In particular, if m < 2n− 1, then F(A) is convex.

Proof: In view of Proposition 2.11, F(A) is a translation of the image of
the unit sphere under the linear mapping M : R2n−1 → Rm. We use the
singular value decomposition of M , and extend the argument of Example 2.
If rankM ≥ 2n − 1, then F(A) ⊂ Rm is an isometric image of a (2n − 2)-
dimensional ellipsoid. If rankM < 2n− 1, then F(A) ⊂ Rm is an isometric
image of a solid ellipsoid of dimension rankM . We leave the details to the
reader. �
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3 Convex hull of the joint numerical range

In this section, we derive results relevant to the convex hull of F(A). Besides
being of interest in their own rights, these results will be used in § 5. In § 3.1,
we review those propositions from differentiable convex analysis that will be
used later. In § 3.2, we specialize these results to the joint numerical range.

3.1 Differentiability of support functions

We work in the space Rm. For η ∈ Rm, η �= 0, and c ∈ R set H(η, c) = {y ∈
Rm | ηTy = c}, H−(η, c) = {y ∈ Rm | ηTy ≤ c}. Let Cm ⊂ Km be the set of
convex subsets, and let Sm denote the set of convex functions s : Rm → R

satisfying s(αη) = αs(η) for α ≥ 0. The latter are called support functions.
In what follows, we review basic facts about compact (convex) sets in R

m

and their support functions. We refer the reader to [14] for details.

Let K ∈ Km, and set s(η) = maxy∈K ηTy. Then s ∈ Sm is the support
function of K. For η ∈ Sm−1 the halfspace (resp. hyperplane) H−(η, s(η))
(resp. H(η, s(η))) is the supporting halfspace (resp. supporting hyperplane)
of K in direction η. We have [14, Theorem 2.2.2]

co(K) =
⋂

η∈Sm−1

H−(η, s(η)) =
{
y∈R

m | ηTy ≤ s(η) : η∈R
m

}
.

For η∈Sm−1 we set Φη(K) = K∩H(η, s(η)). By ∂K we denote the boundary
of K and by ∂0K the outer boundary. The latter is the boundary between
K and the unbounded component of Rm \K. Obviously, Φη(K) ⊆ ∂0K. Let
C ∈Cm. Then the convex sets Φη(C) are called the exposed faces of C. We
have [14, Proposition 3.1.15]

∂C =
⋃
η∈Sm−1 Φη(C). (5)

The set C ∈ Cm is said to be strictly convex if Φη(C) is a singleton for any
η∈Sm−1.

Proposition 3.1 Let K∈Km. Then the following claims hold.
i) For any η∈Sm−1, we have Φη(co(K)) = co(Φη(K)).
ii) The set co(K) is strictly convex if and only if Φη(K) is a singleton for all
η∈Sm−1.
iii) We have ∂co(K) =

⋃
η∈Sm−1 co(Φη(K)).

iv) The inclusion ∂ co(K) ⊂ ∂K holds if and only if ∂ co(K) = ∂0K if and
only if Φη(K) is convex for any η∈Sm−1.

12



Proof: The claims ii)− iv) follow from claim i) and relation (5). We prove
the first claim. Let s be the support function of K and let y ∈Φη(co(K)).
Then ηTy = s(η) and y =

∑p
k=1 αjyj , where yj ∈K, αj > 0, and

∑
αj = 1.

Therefore for all indices ηTyj ≤ s(η). Suppose that ηTyk < s(η) for at
least one index. Then s(η) = ηTy =

∑
αjη

Tyj <
∑
αjs(η) = s(η). Thus,

ηTyj = s(η) for all j, and hence y∈ co(Φη(K)), implying that Φη(co(K)) ⊆
co(Φη(K)). The opposite inclusion follows from Φη(K) ⊆ Φη(co(K)). �

In the rest of this subsection we study the gradient and the Hessian of
support functions. We will use the notation ∇f(x) for the gradient at x ∈ Rm.

Proposition 3.2 Let K ∈ Km, and let s be its support function. Suppose
that s is continuously differentiable on an open set, U ⊂ Rm. Then for
η∈U ∩ Sm−1 the set Φη(K) is a singleton: Φη(K) = {∇s(η)}.
Proof: Let η∈U . For any y∈Φη(K), we have ηTy = s(η). For any such y,
set f(ξ) = s(ξ)− yT ξ. Then the function f ≥ 0 is continuously differentiable
on U , and f(η) = 0. Hence ∇s(η) = y. Since the latter holds ∀y ∈ Φη(K),
the claim follows. �

Now, we consider the case when the support function is at least twice
differentiable.

Proposition 3.3 Let K ∈ Km, and let s be its support function. Let r ≥ 2,
and assume that s is a Cr-function on Rm\{0}. Suppose that d2

ηs is positive
definite on η⊥ for any η. Then
i) The map η 
→ ∇s(η) is a Cr−1-embedding of Sm−1 into Rm.
ii) The set co(K) is strictly convex. The range of the above map is ∂co(K).
We have ∂co(K) = ∂0K.

The proof is based on the following lemma.

Lemma 3.4 Let s be the support function of K∈Km. Assume that s is a C2-
function on Rm\{0}. Let η1, η2∈Sm−1 and suppose that ∇s(η1)∈H(η2, s(η2)).
Then the differential of ∇s at η1 satisfies (dη1∇s)(η⊥1 ) ⊆ η⊥2 .

Proof: Let ξ∈Tη1Sm−1 = η⊥1 and let γ : (−ε, ε) → Sm−1 be a differentiable
curve satisfying γ(0) = η1 and γ′(0) = ξ. By assumption we have ∇s(γ(0))∈
H(η2, s(η2)), and Proposition 3.2 yields that ∇s(γ(t))∈K ⊆ H−(η2, s(η2)) for
all t ∈ (−ε, ε). Thus the function t 
→ ηT2 ∇s(γ(t)) attains its maximum, s(η2),
at t = 0. Thus 0 = d

dt
(ηT2 ∇s(γ(t))|t=0 = ηT2 (dγ(0)∇s)(γ′(0)) = ηT2 (dη1∇s)(ξ). �
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Proof of Propostion 3.3: The second claim is a consequence of Propo-
sitions 3.1 and 3.2. We will prove the first. By Proposition 3.2 we have
∇s(η)∈H(η, s(η)). Thus, by the lemma, (dη∇s) (η⊥) ⊆ η⊥. Now, the positive
definiteness of the quadratic form η⊥�ξ 
→ d2

ηs(ξ, ξ) = ξT (dη∇s)(ξ) yields

(dη∇s) (η⊥) = η⊥. (6)

Thus, the map η 
→ ∇s(η), η ∈ Sm−1, is an immersion. We now prove that
it is injective. Let η̃∈Sm−1, η̃ �= η, and suppose that ∇s(η) = ∇s(η̃). Then
∇s(η)∈H(η̃, s(η̃)). Thus, by the lemma, (dη∇s)(η⊥) ⊆ η̃⊥. If η̃ �= −η this
contradicts equation (6). If η̃ = −η, then K is contained in the hyperplane
H(η, s(η)). Then, by Proposition 3.2, K is a singleton, which contradicts
equation (6) again. Thus, we have shown that the map ∇s(η) is an injective
immersion, and since it applies to a closed manifold it is an embedding. �

3.2 Support function of a joint numerical range

Let A = (A1, . . . , Am)∗∈H(n)m. We will apply the material of the preceding
section to F(A). If V ⊂ Cn is a subspace, we denote by F(A;V ) the numer-
ical range of the restriction of A to V , i.e. F(A;V ) = {FA([z]) | 0 �= z∈V }.
The following result is basic.

Proposition 3.5 Let A∈H(n)m, let F(A) be its numerical range, and let
s ∈ Sm be the support function of F(A). Then

s(η) = λ1(η
TA). (7)

Let η∈Sm−1. Then

F(A) ∩H(η, λ1(η
TA)) = F(A; E1(η

TA) ). (8)

Proof: Let z ∈ C
n, ‖z‖ = 1, and let η∈R

m. Then ηTFA([z]) = z∗(ηTA)z ≤
λ1(η

TA). Equality holds if and only if z∈E1(η
TA). �

Specializing Proposition 3.1 to the numerical range with the help of
Proposition 3.5 yields the following useful claim.

Corollary 3.6 Let A∈H(n)m. Then the following claims hold.
i) Let T ⊆ Rm be a proper subset. Then T is an exposed face of co(F(A)) if
and only if there exists η∈Rm such that T = co

(F(A; E1(η
TA) )

)
.
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ii) The set co(F(A)) is strictly convex if and only if F(A; E1(η
TA) ) is a

singleton for any η∈Sm−1.
iii) We have ∂co(F(A)) =

⋃
η∈Sm−1 co(F(A; E1(η

TA) )).
iv) The inclusion ∂ co(F(A)) ⊂ ∂F(A) holds if and only if ∂ co(F(A)) =
∂0F(A) if and only if F(A; E1(η

TA) ) is convex for any η∈Sm−1 .

In order to apply Propositions 3.2 and 3.3, we need a technical, but useful,
theorem. For positive integers k, µ, n such that k − 1 + µ ≤ n, let Hk,µ(n)
denote the set of hermitian n×n-matrices A such that λj(A) = λk(A) if and
only if k ≤ j ≤ k+µ−1. ForA∈Hk,µ(n), the eigenvalue λk(A) = ... = λk+µ−1

has multiplicity µ, while all other eigenvalues have arbitrary multiplicity.

Theorem 3.7 Let M be a Cr-manifold and let H : M → H(n) be a Cr-map
such that H(M) ⊂ Hk,µ(n). Then the following claims hold.
1. Let x0 ∈M and let (z01, . . . , z0µ) be an orthonormal basis of Ek(H(x0)).
Then there exists an open neighbourhood U0 of x0 and Cr-maps zj : U0 →
Cn, 1 ≤ j ≤ µ, such that for any x ∈ U0 the set (z1(x), . . . , zµ(x)) is an
orthonormal basis of Ek(H(x)), (z1(x0), . . . , zµ(x0)) = (z01, . . . , z0µ), and if
ξ ∈ Tx0M , then

(dx0zj)(ξ) = (λk(H(x0))In −H(x0))
† (dx0H(ξ)) z0j.

2. The composition λk ◦ H is a Cr-function on M . Let x ∈ M, ξ ∈ TxM ,
and let z, w ∈ Ek(H(x)). Then

dx(λk ◦H)(ξ)w∗z = w∗dxH(ξ)z. (9)

In particular, if ‖z‖ = 1 then

dx(λk ◦H)(ξ) = z∗dxH(ξ)z.

3. Let r ≥ 2, and suppose that the second differentials below are defined at
x ∈M . Let ξ1, ξ2 ∈ TxM . Then for any unit vector z ∈ Ek(H(x)), we have

(d2
x(λk ◦H))(ξ1, ξ2) = 2z∗(dxH(ξ1) (λk(H(x))In −H(x))† dxH(ξ2))z

+z∗(d2
xH(ξ1, ξ2))z.

In order not to interrupt the flow of exposition, we defer the proof of The-
orem 3.7 to Appendix A. Specializing Proposion 3.2 and the above Theorem
to the numerical range, and using Proposition 3.5, we obtain the following
result.
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Theorem 3.8 Let A∈H(n)m. Suppose that λ1(η
TA) has constant multiplic-

ity for η ∈ U ⊂ Rm, an open set. Then the support function of F(A) is real
analytic on U . Let z∈E1(η

TA) be any unit vector. Then, in the notation of
equation (7), for any η∈U , we have

dηs(ξ) = z∗(ξTA)z (10)

d2
ηs(ξ1, ξ2) = 2z∗(ξT1 A)(s(η)In − ηTA)†(ξT2 A)z. (11)

If η ∈ U ∩ Sm−1, then the intersection of co(F(A)) with H(η, s(η)) is a
singleton, and

F(A; E1(η
TA) ) = {∇s(η)} = {(z∗A1z, . . . , z

∗Amz)T} = {FA([z])}.

Now, we consider the situation where λ1(η
TA), η∈Sm−1, has constant multi-

plicity µ. Since λn(η
TA) = −λ1(−ηTA), its multiplicity is µ as well. If µ > n

2
,

then all matrices Aj are scalar, and F(A) is a point. Hence, we assume in
what follows that µ ≤ n

2
. The proposition below is the main result of this

section. We use the notation of equation (7) in its formulation.

Theorem 3.9 Let A ∈ H(n)m. Let µ ≤ n
2

be the multiplicity of λ1(η
TA).

Then the map η 
→ ∇s(η) is a real analytic embedding of Sm−1 into Rm.
The range of the map is the boundary of the strictly convex set co(F(A)).
The latter coincides with the outer boundary of F(A).

Proof: In view of Proposition 3.3 and Theorem 3.8, it suffices to show that,
for any η∈Sm−1 and ξ∈η⊥\{0}, there exists a unit vector z∈E1(η

TA) such
that

0 < d2
ηs(ξ, ξ) = 2(ξTAz)∗ (λ1(η

TA)In − ηTA)† (ξTAz). (12)

Since the operator (λ1(η
TA)In− ηTA)† is positive semidefinite, the preceding

inequality is equivalent to (ξTA)z �∈ E1(η
TA). This follows from the third

claim in the proposition below. �

Proposition 3.10 Let A ∈ H(n)m. Suppose that there are 1 ≤ k, µ ≤ n,
k + µ − 1 ≤ n/2, such that ηTA ∈ Hk,µ(n) for any η ∈ Rm \ {0}. Let
η1, η2 ∈ Sm−1 be linearly independent vectors and let 1 ≤ j ≤ n. Then the
following claims hold.
i) We have Ek(η

T
1A) ∩Ej(−ηT1A) �= {0} if and only if Ek(η

T
1A) = Ej(−ηT1A).

The latter holds if and only if n− k − µ+ 2 ≤ j ≤ n− k + 1.
ii) We have Ek(η

T
1A) ∩Ej(ηT2A) = {0}.

iii) We have Ek(η
T
1A) ∩ (ηT2A)Ek(η

T
1A) = {0}.
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Proof: The first claim is immediate from the definition of Hk,µ(n) and the
fact that Ej(−η1

TA) = En+1−j(η1
TA). Let 0 �= z∈Ek(ηT1A).

Suppose that z is also an eigenvector of ηT2 A. Then z is an eigenvector of
ηTA for all η∈ span{η1, η2}. For each η �= 0 the eigenvalue λk(η

TA) belongs
to an isolated group of µ identical eigenvalues. Thus z ∈ Ek(η

TA) for all
η ∈ span{η1, η2}. In particular, z ∈ Ek(−ηT1A). This contradicts the first
claim.

Suppose now that (ηT2A)z ∈ Ek(η
T
1A). Set f(η) = λk(η

TA). Since z ∈
Ek(η

T
1A), the relation (9) in Theorem 3.7 implies thatw∗(ηT2A)z = dη1f(η2)w

∗z
for all w ∈ Ek(ηT1A). We conclude that (ηT2A)z = dη1f(η2)z. Thus z is an
eigenvector of ηT2A, a contradiction to the second claim. �

4 The viewpoint of differential topology

4.1 The boundary of a joint numerical range

In this section we study the critical points and the critical values of the
numerical range map FA, and obtain information about the boundary of
F(A), which will be written ∂F(A). We begin with necessary preliminaries.
Let M,N be smooth manifolds without boundary, and let f : M → N be a
differentiable map. Then x ∈M is a critical point if dxf : TxM → TxN is
not surjective. The set of critical points will be written C(f) ⊂ M . A point
y∈N is a critical value if f−1(y) contains a critical point. The following fact
is basic.

Theorem 4.1 Let the setting be as above. Then f−1( ∂f(M) ) ⊂ C(f).

Let z ∈ Cn be a unit vector. The differential at δ = 0 of the map
δ 
→ [z + δ], δ∈ [z]⊥, induces a linear isomorphism of [z]⊥ = {w∈Cn |w∗z =
0} onto the tangent space T[z]CP

n−1. Replacing z by ejθz changes the iso-
morphism in question by the factor e−jθ. We will use these isomorphisms to
identify T[z]CP

n−1 with [z]⊥.

Proposition 4.2 Let A = (A1, . . . , Am)∗ ∈ H(n)m. Let z ∈ C
n be a unit

vector, and let [z] ∈ CP
n−1 be the corresponding point. Identify T[z]CP

n−1

with [z]⊥ via the linear isomorphism determined by z. Let δ∈ [z]⊥. Then

d[z]FA(δ) = 2 (�(z∗A1δ), . . . ,�(z∗Amδ) )T . (13)

The space (range d[z]FA)⊥ consists of η∈Rm such that z is an eigenvector of
ηTA.

17



Proof: Equation (13) is immediate from the special case m = 1 and the
relation FA([z]) = (FA1([z]), . . . , FAm([z]))T . The following chain of equiv-
alences yields the other claim: η ∈ (range d[z]FA)⊥ iff ∀δ ∈ [z]⊥ we have
ηTd[z]FA(δ) = 0 iff ∀δ∈ [z]⊥ we have d[z]FηTA(δ) = 0 iff [z] is a critical point
of FηTA iff z is an eigenvector of ηTA. The second equivalence in the chain
holds by Corollary 2.5. The last equivalence was proved in [19]. �

The corollary below follows directly from Theorem 4.1 and Proposition 4.2.

Corollary 4.3 Let A∈H(n)m and let FA : CP
n−1 → Rm be the correspond-

ing mapping. Then the set of critical points of FA is

C(FA) =
{

[z]∈CP
n−1

∣∣ ∃ η∈Sm−1 : z is an eigenvector of ηTA
}
.

Let y∈∂F(A). Then for each [z]∈F−1
A (y) there exists η∈Sm−1 such that z

is an eigenvector of ηTA.

The case m = 2 of Corollary 4.3 is contained in [19].

4.2 Eigenvalues of constant multiplicity

If X is a vector space, we denote by P(X) the corresponding projective space.
If X ⊂ Y is a subspace, then P(X) ⊂ P(Y ). The following Theorem is the
main result of this subsection.

Theorem 4.4 Let A∈H(n)m. Suppose that there are 1 ≤ k, µ ≤ n, k+ µ−
1 ≤ n/2, such that ηTA∈Hk,µ(n) for any η∈Rm \ {0}. Then the following
claims hold.
i) Let η1, η2∈Sm−1 be linearly independent vectors and let 1 ≤ j ≤ n. Then
the projective spaces P

(
Ek(η

T
1A)

)
and P

(
Ej(η

T
2A)

)
are disjoint. Furthermore,

P
(
Ek(η

T
1A)

) ∩ P
(
Ej(−ηT1A)

) �= ∅ if and only if P
(
Ek(η

T
1A)

)
= P

(
Ej(−ηT1A)

)
.

The latter holds if and only if n− k − µ+ 2 ≤ j ≤ n− k + 1.
ii) The disjoint union P =

⋃
η∈Sm−1 P

(
Ek(η

TA)
)

is a closed real analytic

submanifold of CP
n−1.

iii) Define p : P → Sm−1 by p([z]) = η if z ∈ Ek(η
TA). Then the triple

(P, p, Sm−1) is a real analytic, locally trivial fiber bundle with fiber CPµ−1.

Theorem 4.4 has a reformulation in terms of sphere bundles. We will use
it in § 5. For convenience of the reader, we formulate the theorem below.

Theorem 4.5 Let A∈H(n)m, and let the assumptions be as in Theorem 4.4.
Then the spheres S(Ek(η

TA)) =
{
z∈Ek(ηTA)

∣∣ ‖z‖ = 1
}
, η ∈ Sm−1, are
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pairwise disjoint. Their union S =
⋃
η∈Sm−1 S(Ek(η

TA)) is a compact sub-

manifold of Cn. The map q : S → Sm−1, where q(z) = η if z∈S(Ek(η
TA)), is

well defined, and (S, q, Sm−1) is a real analytic, locally trivial sphere bundle.

Proof of Theorem 4.4: The first claim i) is immediate from Proposi-
tion 3.10. It implies that the subsets P

(
Ek(η

TA)
) ⊂ CP

n−1, η ∈ Sm−1, are
pairwise disjoint. Therefore the projection p : P → Sm−1 is well defined.

Regarding claims ii) and iii), we first establish the purely topological
properties of P and p. Let [zj ], j ≥ 1, be a sequence in P converging to
[z] ∈ CP

n−1. Multiplying the vectors zj by suitable scalars, we can assume
that lim zj = z. Set ηj = p([zj ]) ∈ Sm−1. Then

(ηTjA)zj = λk(η
T
jA)zj. (14)

By compactness of Sm−1, the sequence ηj has a converging subsequence, ηj�.
Let η be its limit. By equation (14) and by continuity, (ηTA)z = λk(η

TA)z.
Hence, z ∈ P and p([z]) = η = lim p([zj� ]). Thus, P ⊂ CP

n−1 is a closed
subset. Now, suppose that the sequence ηj does not converge to η. Then
there exists an open set U � η and a subsequence of ηj, contained in Sm−1\U
and converging to η̃ �= η. By equation (14), (η̃TA)z = λk(η̃

TA)z. Thus
z∈Ek(ηTA) ∩ Ek(η̃TA), a contradiction. Hence, p is continuous.

Next, we address the submanifold properties of P. For any open subset
V ⊂ Sm−1 set PV = p−1(V ). We show that for any [z]∈PV there exists an
open set U ⊂ CP

n−1 containing [z], such that U ∩ P = U ∩ PV . Assume the
opposite. Then there exists a sequence [zj ] ⊂ P \ PV converging to [z] and
such that p([zj]) �∈ V for all j. But, by continuity of p, lim p([zj]) = p([z])∈V ,
a contradiction. Thus, in order to prove that P is a submanifold [21, 2.7], it
suffices to show that for each η ∈Sm−1 there exists an open neighbourhood
V ⊂ Sm−1 of η such that PV is a submanifold. However, by the construction
below there is an open neighborhood V (η) of η and a real analytic embedding
Ψη : V (η) × CP

µ−1 → CP
n−1 such that PV (η) = Ψη(V (η) × CP

µ−1). Thus
PV (η) is a real analytic submanifold of CP

n−1.
We are now going to construct the embedding Ψη. According to The-

orem 3.7, there is an open neighborhood V ⊂ Sm−1 of η ∈ Sm−1 and real
analytic functions z1, . . . , zµ : V → Cn such that z1(η̃), . . . , zµ(η̃) is an or-
thonormal basis of Ek(η̃

TA) for all η̃∈V . Moreover, the differentials of the
zj satisfy dηzj(ξ) = Gη(zj(η), ξ), where

Gη : Ek(η
TA) × η⊥ → Ek(η

TA)⊥, Gη(z, ξ) := (λk(η
TA)In − ηTA)† (ξTA)z.

Note that for each z∈Ek(ηTA)\{0} the linear map Gη(z, ·) : η⊥ → Ek(η
TA)⊥

is injective since Gη(z, ξ) = 0 with ξ ∈ η⊥ \ {0} implies that (ξTA)z ∈

19



Ek(η
TA). The latter fails by Proposition 3.10 iii) because (ξTA)z∈Ek(ηTA)

and (ξTA)z∈(ξTA)Ek(η
TA). Let Z(η̃) = [z1(η̃), . . . , zµ(η̃)]∈Cn×µ. Then Z(η̃)

is unitary and range(Z(η̃)) = Ek(η̃
TA). Now define the real analytic map

Ψ : V × CP
µ−1 → CP

n−1, Ψ(η̃, [w]) := [Z(η̃)w] .

Then Ψ({η̃} × CPµ−1) = P(Ek(η̃
TA)) for every η̃ ∈ V . Thus Ψ is injective.

Its inverse Ψ−1 : PV → V × CPµ−1 has the form

Ψ−1([z]) = ( p([z]) , [Z(p([z]))∗z] ), ‖z‖ = 1.

Thus Ψ−1 is continuous, and Ψ is a homeomorphism onto its image.
We now show that an appropriate restriction of Ψ is an immersion. A

direct computation of the differential of Ψ at (η, [w]) yields

d(η,[w])Ψ(ξ, δ) = Gη (Z(η)w, ξ )︸ ︷︷ ︸
∈Ek(ηTA)⊥

+ Z(η)δ︸ ︷︷ ︸
∈Ek(ηTA)

,

where ξ ∈ η⊥, δ ∈ T[w]CP
µ−1 ∼= w⊥. The relation d(η,[w])Ψ(ξ, δ) = 0 implies

(ξ, δ) = 0. Thus, d(η,[w])Ψ is injective. Therefore, for every [w] ∈ CP
µ−1,

there exist open neighborhoods Vw ⊂ V ⊂ Sm−1 and Uw ⊂ CP
µ−1 of η

and [w], respectively, such that Ψ|Vw×Uw is an immersion. By compact-
ness, there are w1, . . . , wr ∈ CP

µ−1 such that
⋃

1≤j≤r Uwj
= CP

µ−1. Set

V (η) :=
⋂

1≤j≤r Vwj
. Then V (η) × CP

µ−1 ⊆ ⋃
1≤j≤r(Vwj

× Uwj
), and hence

the map Ψη := Ψ|V (η)×CPµ−1 is a real analytic immersion. But, Ψη is also a
homeomorphism onto its image, PV (η). Thus, Ψη is a real analytic embed-
ding.

The maps Ψη, η∈Sm−1, are local parametrizations of P. Their inverses
Ψ−1
η : PV (η) → V (η) × CP

µ−1, η ∈ Sm−1, are bundle charts which endow
the triple (P, p, Sm−1) with the structure of a real analytic projective fiber
bundle [21]. To see this first note that for each η̃ ∈ V (η) the restriction
Ψ−1
η |Ek(eηTA) : P(Ek(η̃

TA)) → {η̃} × CPµ−1 is the projectivization of a linear
isomorphism. Consider now two parametrizations

Ψηi
: V (ηi) × CP

µ−1 → PV (ηi), Ψηi
(η̃, [w]) := [Zi(η̃)w] , i = 1, 2,

where Zi(η̃) is unitary. Suppose the sets V (η1) and V (η2) overlap. Then
the change of charts satisfies Ψ−1

η2 ◦Ψη1(η̃, [w]) = (η̃, [T (η̃)w]), where T (η̃) :=
Z2(η̃)

∗Z1(η̃) is unitary, so that the transition function depends analytically
on η̃. (See [21, Remark 2.5.7, Section 6.4].) �

The special case of Theorem 4.4, when µ = 1 is especially useful.
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Corollary 4.6 Let A∈H(n)m. Suppose that for an index k �= n+1
2

and all
η ∈ Sm−1 the eigenvalue λk(η

TA) is simple. Let φ(η) = Ek(η
TA) ∈ CP

n−1,
ψ(η) = En+1−k(ηTA). Then φ, ψ : Sm−1 → CP

n−1 are real analytic embed-
dings. They satisfy the identity φ(−η) = ψ(η). If j �= k, n + 1 − k then
φ(Sm−1) ∩ P(Ej(η

TA)) = ∅ for all η∈Sm−1.

We conclude this section with a few remarks and examples. The following
example illustrates the fact that the condition k �= n+1

2
in Corollary 4.6 is

necessary.
Example 6. Let σk be the Pauli spin-matrices, and set

A =

([
σ1 0
0 0

]
,

[
σ2 0
0 0

]
,

[
σ3 0
0 0

])
∈ H(3)3.

Then λ1(η
TA) = 1, λ2(η

TA) = 0, λ3(η
TA) = −1 for all η ∈ S2. Thus, all

eigenvalues are simple. However, for all η ∈ S2 we have φ(η) = E2(η
TA) =

C (0, 0, 1)T .
Let A ∈H(n)m. Suppose that A has a block of eigenvalues of constant

multiplicity, µ. The following proposition imposes some restrictions on the
parameters.

Proposition 4.7 Let the notation be as in Theorem 4.4, and let A∈H(n)m

satisfy the assumptions of the Theorem. Suppose that (k,m, µ) �= (1, n+1, n
2
).

Then

m ≤ 2(n− µ). (15)

Proof: We use the notation of Theorem 4.4. Denote by dim the real
dimension. Then

2(n−1) = dim CP
n−1 ≥ dimP = dimSm−1 +dim CP

µ−1 = m−1+2(µ−1).

Suppose that dim CP
n−1 = dimP. Then P ⊂ CP

n−1 is open. Since P is
closed, and CP

n−1 is connected, P = CP
n−1. By Theorem 4.4, this is possi-

ble only if k = 1, µ = n/2. But then m = n+ 1. �

Proposition 4.7 is proved in [10] by a different method. The following example
shows that if the eigenvalue in Proposition 4.7 is simple, then the bound in
equation (15) is sharp.
Example 7. (Compare with [10], page 395.) Set

Xn =

{ [
0n−1 x
x∗ 0

] ∣∣∣∣ x∈C
n−1

}
⊂ H(n).
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For all x, y∈Cn−1 with x∗y = 0 we have[
0n−1 x
x∗ 0

] [
x

±‖x‖
]

= ±‖x‖
[

x
±‖x‖

]
,

[
0n−1 x
x∗ 0

] [
y
0

]
= 0.

Hence, if A = (A1, . . . , A2(n−1))
∗ is a basis of Xn over R, the largest and the

smallest eigenvalues of any ηTA are simple.
Examples of A∈H(n)m with a block of eigenvalues of arbitrarily high con-

stant multiplicity can be constructed via tensor products. The proposition
below does this for an important special case.

Proposition 4.8 Let B ∈ H(n)m. Suppose that λ1(η
TB) is simple for all

η ∈Sm−1. Let r > µ ≥ 1 be arbitrary, and let C ∈H(r) be a positive semi-
definite matrix such that λ1(C) = λµ(C) > λµ+1(C). Set Aj = Bj ⊗ C
for 1 ≤ j ≤ m, and let A = (A1, . . . , Am)∗ ∈ H(rn)m. Then λ1(η

TA) has
multiplicity µ for all η∈Sm−1.

Proof: The eigenvalues of ηTA are λi(η
TB)λj(C). �

For completeness we mention the method given in [11] to construct linear
families of hermitian matrices with eigenvalues of constant multiplicities.
Let m = ρ(n,C), where ρ(n,C) is defined as in [11]. Then there exists
a m-tuple U = (U1, . . . , Um)∗ of unitary n × n-matrices such that ηTU is
unitary for all η ∈ Sm−1. Let A0 ∈H(n) and set A = (A1, . . . , Am)∗ where

Ak =

[
0 A0U

∗
k

UkA0 0

]
. Then all matrices ηTA, η ∈ Sm−1, have the same

eigenvalues: let x∈Cn be an eigenvector of A0 such that A0x = λ0x. Then we
have for all η∈Sm−1, (ηTA) [xT , ±((ηTU)x)T ]T = (±λ0) [xT , ±((ηTU)x)T ]T .

4.3 Genericity of simple eigenvalues

This subsection deals with the likelihood of having eigenvalue crossing in
a linear m-parameters family of hermitian matrices, a problem initiated by
von Neumann and Wigner [24]. They correctly pointed out that, for m ≤ 3,
eigenvalue crossing does not “in general” occur; here, we further prove the
openness and density of the noncrossing property in Proposition 4.10. The
dimension formula of Theorem 4.12 for a specific crossing pattern is available
in [24]; here, we further investigate the topological properties of the set of
matrices exhibiting the crossing pattern.

Let H0(n,m) ⊂ H(n)m be the set of A∈H(n)m such that for any η∈Rm\{0}
all eigenvalues of ηTA are simple. The following statement is an immediate
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consequence of Corollary 4.3 and Corollary 4.6. We denote a disjoint union
by � .

Corollary 4.9 Let A ∈ H0(n,m). For 1 ≤ k ≤ n and η ∈ Rm \{0} set
φk(η) = Ek(η

TA). For k �= (n + 1)/2 the maps φk : Sm−1 → CP
n−1 are real

analytic embeddings. We have C(FA) =
⊎�(n+1)/2�
k=1 φk(S

m−1).

Corollary 4.9 is subordinate to the simplicity condition of all eigenvalues,
which as we show here below is generically satisfied when m ≤ 3.

Proposition 4.10 Let m ≤ 3. Then H0(n,m) is open and dense in H(n)m.

Our proof of Proposition 4.10 relies on the Lemma and the Theorem below.
Let M be a differentiable manifold. A subset, N ⊂ M , has measure 0 if for
any coordinate chart U ⊂ M the Lebesgue measure of U ∩ N is 0. If f :
M1 → M2 is a smooth map of diffentiable manifolds, and dimM1 < dimM2

then f(M1) ⊂ M2 is a set of measure 0. See, e. g., [3, 23]. A submanifold
M ⊂ R

n is R
∗-homogeneous if R

∗M = M , where R
∗ := R\{0}.

Lemma 4.11 Let X be a finite dimensional real vector space, and let M ⊂
X be a R∗-homogeneous submanifold. Let Nj be the set of j-tuples (x1, . . . , xj)∈
Xj such that span{x1, . . . , xj}∩M �= ∅. If 1 ≤ j ≤ codimM , then Nj ⊂ Xj

has measure zero.

Proof: The projectivization ofM is a proper submanifold (and hence a sub-
set of measure 0) of the projective space P(X). Thus the claim holds for j =
1. Now, let j be arbitrary. For ξ = (x1, . . . , xj)∈Xj , let Xc

ξ be a subspace of
X such that X = Xc

ξ ⊕ span(ξ) and let P c
ξ : X → Xc

ξ be the linear projection
onto Xc

ξ along span(ξ). Furthermore, let Qj(ξ) = P c
ξ (M) + span(ξ) ⊆ X. If

j < codimM , then dimM < dimXc
ξ , and hence P c

ξ (M) is a subset of measure
0 of Xc

ξ . Then, by Fubini’s Theorem, Qj(ξ) is a subset of measure 0 of X. Let
x, x̃∈X and suppose that x̃ �∈ span(ξ). Then Rx̃ ⊂ span(ξ, x) iff P c

ξ (Rx̃) =
P c
ξ (Rx) iff x ∈ P c

ξ (Rx̃) + span(ξ). Using these equivalences with x̃ ∈ M , it
is straightforward to verify that the sets Nj = { ξ ∈Xj | M ∩ span(ξ) �= ∅ }
satisfy Nj+1 = (Nj ×X) ∪ { (ξ, x) | ξ∈Xj\Nj, x∈Qj(ξ) }. Thus, we obtain
the following statement: If Nj has measure 0 and j < codimM , then Nj+1

as measure 0. But N1 has measure 0. �

For n1, . . . , nr∈N such that
∑r

j=1 nj = n, let H(n;n1, . . . , nr) denote the set
of A∈H(n) such that λ1(A) = λn1(A) > λn1+1(A), λn1+1(A) = λn1+n2(A) >
λn1+n2+1(A), etc.
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Theorem 4.12 Any H(n;n1, . . . , nr) is a real analytic R∗-homogenous sub-
manifold of H(n). Furthermore,

codimH(n;n1, . . . , nr) =
(∑r

j=1 n
2
j

)
− r.

We defer the proof of this Theorem to Appendix B. Note that, if nj > 1
for at least one j, then codimH(n;n1, . . . , nr) ≥ 3. Equality holds if there
is an index j0 such that nj0 = 2 and nj = 1 for all j �= j0. The union of
the H(n;n1, . . . , nr)’s over all sequences except 1, . . . , 1 is the real algebraic
variety, Vn, of hermitian n × n matrices with multiple eigenvalues. The
following corollary is immediate from Theorem 4.12.

Corollary 4.13 The variety Vn has codimension 3 in H(n).

Proof of Proposition 4.10: The set H0(n,m) is open for arbitrary values
of n and m. Thus, it suffices to show that for m ≤ 3 and n ≥ 2 the set
C0(n,m) := H(n)m \H0(n,m) has an empty interior. By definition, C0(n,m)
is the set of A ∈H(n)m such that span{A1, . . . , Am} ∩ Vn �= ∅. By Corol-
lary 4.13 and Lemma 4.11, C0(n, 1), C0(n, 2), and C0(n, 3) are sets of measure
zero in H(n)m for m = 1, 2, 3, respectively. �

5 Convexity of numerical range

5.1 The highest eigenvalue and the convexity

The following theorem is the main result of this paper.

Theorem 5.1 Let A∈H(n)m be such that λ1(η
TA), η∈Sm−1, has constant

multiplicity. Suppose, in addition, that
⋃
η∈Sm−1 E1(η

TA) �= Cn. Then F(A)
is convex.

Remark 2. If the dimensional parameters of A∈H(n)m satisfy the inequal-
ity (15), then, by the proof of Proposition 4.7, dimP < dim CPn−1 and the
extra assumption in the above theorem is fulfilled. Thus, by Proposition 4.7,
the additional assumption is redundant, unless m = n+1 and the multiplicity
of the highest eigenvalue is n/2.

We will need the propositions below for the proof of Theorem 5.1.

Proposition 5.2 Let A ∈ H(n)m. Suppose that the largest eigenvalue of
ηTA, η∈Sm−1, has constant multiplicity. Then ∂0F(A) ⊂ Rm is a real ana-
lytic submanifold diffeomorphic to Sm−1. Let s be as in Proposition 3.5, let
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S and q be as in Theorem 4.5, and define π := (∇s)◦ q : S → ∂0F(A). Then
(S, π, ∂0F(A)) is a real analytic, locally trivial sphere bundle.

Proof: The claims follow from Theorems 3.8, 3.9, and 4.5. �

We will need the following basic fact. For convenience of the reader, we
will sketch a proof.

Proposition 5.3 Let C ∈ Cm, and suppose that int(C) �= ∅. Let x0 ∈
int(C). For x ∈ Rm, x �= x0, let R(x) denote the ray from x0 containing x.
Then R(x)∩∂C consists of a unique point, r(x). The map r : Rm\{x0} → ∂C
is a continuous retraction.

Proof: We assume, without loss of generality, that x0 = 0. Set f(x) =
inf{ t > 0 | x/t∈C }. Then r(x) = x/f(x). The function f > 0 is convex,
hence continuous. See, e. g., [16, Theorem 2.1.23]. �

Proof of Theorem 5.1: Let S and π : S → ∂co(F(A)) be as in Propo-
sition 5.2. Assume that the claim fails. Then there exists a point y0 ∈
int(co(F(A))) \ F(A). For y ∈ Rm \ {y0}, let r(y) be the point of inter-
section of the ray R(y) = { y0 + t(y − y0) | t ≥ 0 } with ∂co(F(A)). By
Proposition 5.3, the map r : Rm\{y0} → ∂co(F(A)) is a continuous retrac-
tion. By the additional assumption of Theorem 5.1, there exists a unit vector
z0 ∈ Cn\S. Then (1 − t)z + tz0 �= 0 and FA([(1 − t)z + tz0]) �= y0, for all
t∈ [0, 1] and any z∈S. Thus, we have constructed the homotopy:

h : [0, 1] × S → ∂co(F(A)), h(t, z) = r ◦ FA([(1 − t)z + tz0]).

Since h(0, ·) = π and h(1, ·) is a constant map, it follows that π is homotopi-
cally trivial. Since π : S → ∂co(F(A)) is a sphere bundle over a sphere, the
latter is impossible. 1 �

Remark 3. The examples of § 2.2 show that we cannot suppress the addi-
tional assumption in Theorem 5.1. Set A = (σ1, σ2, σ3)

∗. Then the highest
eigenvalue of ηTA is simple for all η, but

⋃
η∈S2 E1(η

TA) = C 2. Thus, the ad-

ditional assumption of the Theorem does not hold. And, indeed, F(A) = S2.

1We sketch a proof: The homotopy h : [0, 1] × S → ∂co(F(A)) has a continuous lift
g : [0, 1]×S → S such that h = π ◦g and g(0, ·) = idS [33, Theorem 7.13]. The map g(1, ·)
has degree 1 and is therefore surjective [15]. The latter implies that h(1, ·) is surjective
and hence non constant.
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As an application of the preceding results, we will provide a new proof of
the following known theorem [1, 8]:

Theorem 5.4 Let A ∈H(n)m, where 1 ≤ m ≤ 3 and where n is arbitrary
unless m = 3, in which case n ≥ 3. Then F(A) is convex.

We need some preliminaries. For any n,m let C(n,m) be the set of A ∈
H(n)m such that F(A) is convex.

Proposition 5.5 The set C(n,m) is closed in H(n)m.

Proof: By Proposition 2.7, the mapping A 
→ F(A) from H(n)m to Km is
continuous. But C(n,m) is the preimage of the closed set Cn ⊂ Km. �

Proof of Theorem 5.4: The case m = 1 is trivial. For m = 2, this is
the celebrated Töplitz- Hausdorff theorem. See, e. g., [12]. We will prove
the claim for 2 ≤ m ≤ 3. The inequality m ≤ 2(n − 1) makes the extra
assumption of Theorem 5.1 redundant. Thus, H0(n,m) ⊂ C(n,m). Since
m ≤ 3, Proposition 4.10 applies. Hence, C(n,m) is dense in H(n)m. But, by
Proposition 5.5, C(n,m) is closed. �

5.2 Stable convexity

Let ‖·‖S and ‖·‖F be the spectral norm and the Frobenius norm on the space
of n × n matrices, respectively. Let dS, dF denote the translation invariant
distance functions on H(n)m defined by d•(A, 0) = maxη∈Sm−1 ‖ηTA‖•, where
• = S, F . The following theorem is the main result of this Section.

Theorem 5.6 Let m ≥ 4. Then

int C(n,m) =
{
A∈H(n)m | λ1(η

TA)is simple for all η∈Sm−1
}
.

Let A∈C(n,m). Then
√

2dF (A, ∂C(n,m)) = 2dS(A, ∂C(n,m)) = min
η∈Sm−1

(λ1(η
TA) − λ2(η

TA)).

We will need a few auxilliary results.

Lemma 5.7 Let m ≥ 4. Let A1∈H(n) be such that dimE1(A1) = 2. Set

N (A1) =
{

(A2, . . . , Am)∗∈H(n)m−1
∣∣ F(A1, A2, . . . , Am) is not convex

}
.

Then N (A1) is open and dense in H(n)m−1.
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Proof: Set A = (A1, A2, . . . , Am)∗. Let (z1, z2) be an orthonormal basis
of E1(A1). For 1 ≤ j ≤ m, let Bj be the Gram matrix of Aj with respect
to (z1, z2). Then B1 = λ1(A1)I2. Set B = (B2, . . . , Bm)∗. By Example 2,
B = Mσ + pI2, p∈Rm−1, where

M =

⎡⎢⎣�(z∗2A2z1) �(z∗2A2z1)
1
2
(z∗1A2z1 − z∗2A2z2)

...
...

...
�(z∗2Amz1) �(z∗2Amz1)

1
2
(z∗1Amz1 − z∗2Amz2)

⎤⎥⎦ ∈ R
(m−1)×3.

By Proposition 3.5 and Example 2, F(A)∩H(e1, λ1(A1)) = F(A,E1(A1)) =
F(B1, . . . , Bm) = {λ1(A1)} × (M(S2) + p). If this intersection is not convex
(that is, rank(M) = 3 by Example 2), then F(A) is not convex. It follows
that N (A1) contains those (A2, . . . , Am)∗∈H(n)m−1 such that rankM = 3.
Hence, the complement of N (A1) is contained in a closed subvariety of
H(n)m−1. �

Proposition 5.8 Let m ≥ 4. Let A∈H(n)m be such that dimE1(η
TA) > 1

for some η∈Sm−1. Then either F(A) is nonconvex, or A ∈ ∂C(n,m).

Proof: We can assume that A1 is diagonal and dimE1(A1) > 1. Suppose
that A ∈ C(n,m). Let A′

1 be a diagonal matrix such that dimE1(A
′
1) =

2. By Lemma 5.7, arbitrarily close to (A′
1, A2 . . . , Am)∗, there are A′ =

(A′
1, A

′
2 . . . , A

′
m)∗ ∈ H(n)m \ C(n,m). Since A′

1 can be chosen arbitrarily
close to A1, we obtain a sequence A(k) ∈ H(n)m \C(n,m) converging to A. �

Let M ⊂ H(n) be the set of M such that λ1(M) is a multiple eigenvalue.

Lemma 5.9 Let A0∈H(n). Then

√
2dF (A0,M) = 2dS(A0,M) = λ1(A0) − λ2(A0). (16)

Proof: Let A,B ∈H(n) be arbitrary. Then ‖A − B‖S ≥ |λk(A) − λk(B)|
for any 1 ≤ k ≤ n, and ‖A− B‖2

F ≥ ∑n
k=1(λk(B) − λk(A))2. See, e. g., [30,

Cor. 4.10, Cor. 4.13]. Applying this to a pair A0,M , where M ∈ M, we
obtain 2dS(A0,M) ≥ |λ1(A0) − λ2(A0)|, 2dF (A0,M)2 ≥ (λ1(A0) − λ2(A0))

2.
This yields lower bounds on the distances in equation (16).

The distance functions are invariant under the conjugation by unitary
matrices. The set M is also invariant. Hence, we can assume that A0 is
diagonal. Letting M vary over the set of diagonal matrices in M, we attain
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the bounds. �

Proof of Theorem 5.6: Let S(n,m) ⊂ H(n)m be the open subset of A’s
such that λ1(η

TA) is simple for all η ∈ Sm−1. By Theorem 5.1, S(n,m) ⊂
C(n,m). By Proposition 5.8, C(n,m) \ S(n,m) ⊂ ∂C(n,m). This proves the
first claim. The second is immediate from Lemma 5.9. �

6 Conclusion

The main point of this paper is that, in view of the no crossing criterion
for the largest eigenvalue of a family of matrices parameterized by a sphere,
convexity of the joint numerical range is essentially a topological issue. This
“noncrossing” issue is in fact very general and appears in a variety of other
problems–e.g., system balancing [32], quantum mechanics [24], etc.

7 Appendix A

We will derive Theorem 3.7 from the following result.

Theorem 7.1 Let A0 ∈Hk,µ(n), and let λ0 = λk(A0). Let (v01, . . . , v0µ) be
an orthonormal basis of Ek(A0). Then there exists an open neighbourhood
U ⊂ H(n) of A0 and real analytic functions vj : U → Cn, 1 ≤ j ≤ µ,
such that for any A∈U the vectors v1(A), . . . , vµ(A) form an orthonormal

basis of
∑k+µ−1

j=k Ej(A) satisfying (v1(A0), . . . , vµ(A0)) = (v01, . . . , v0µ). The
differential of vj at A0 satisfies

dA0vj(∆) = (λ0In −A0)
†∆v0j , ∆∈H(n). (17)

Proof: Let V0 := [v01, . . . , v0µ]∈Cn×µ and

h : C
n×µ → H(µ), h(V ) := j(V ∗

0 V − V ∗V0).

Note that h is onto since h(− j
2
V0X) = X for all X∈H(µ). Therefore

dimRker h = 2nµ− µ2. (18)

Let

f : H(n)× (ker h×C
µ×µ) → C

n×µ×H(µ), f(A, (V, L)) :=

[
AV − V L
V ∗V − Iµ

]
.
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We are going to prove the theorem by applying the implicit function theorem
to the equation f(A, (V, L)) = 0. By our assumptions on V0, we already have
f(A0, (V0, λ0Iµ)) = 0. The differential of f at (A, (V, L)) is

d(A,(V,L))f(∆1,∆2,∆3) =

[
∆1V + A∆2 − ∆2L− V∆3

∆∗
2V + V ∗∆2

]
,

where (∆1,∆2,∆3)∈H(n) × (ker h× Cµ×µ). In particular

d(A0,(V0,λ0Iµ))f(0,∆2,∆3) =

[
(A0 − λ0In)∆2 − V0∆3

∆∗
2V0 + V ∗

0 ∆2

]
.

The columns of V0 form an orthonormal basis of ker(A0 − λ0In). Thus In −
V0V

∗
0 is the orthogonal projector onto (ker(A0 − λ0In))

⊥. Hence

(A0 − λ0In)
†(A0 − λ0In) = (A0 − λ0In)(A0 − λ0In)

† = In − V0V
∗
0 .

Using this fact, it is easily verified that

d(A0,(V0,λ0Iµ))f

(
0,

1

2
V0Y + (A0 − λ0In)

†X, −V ∗
0 X

)
=

[
X
Y

]
for all X∈C

n×µ, Y ∈H(µ). Thus the map

d(A0,(V0,λ0Iµ))f (0, ·, ·) : ker h× C
µ×µ → C

n×µ ×H(µ)

is onto. However, from (18), it follows that ker h × Cµ×µ and Cn×µ × H(µ)
have the same real dimension. Thus d(A0,(V0,λ0Iµ))f (0, ·, ·) is bijective and(

d(A0,(V0,λ0Iµ))f (0, ·, ·)−1)([
X
Y

])
=

[
1
2
V0Y + (A0 − λ0In)

†X
−V ∗

0 X

]
.

Now, the implicit function theorem for real analytic functions [4, Theorem
10.2.4] yields existence of a neighbourhood U ′ ⊂ H(n) of A0 and a real
analytic map (V, L) : U ′ → C

n×µ ×H(µ) such that

(V (A0), L(A0)) = (V0, λ0Iµ) (19)

and [
0
0

]
= f(A, (V (A), L(A)) ) =

[
AV (A) − V (A)L(A)
V (A)∗V (A) − Iµ

]
(20)

for all A∈U ′. The differential of the map (V, L) at A0 is given by[
dA0V (∆)
dA0L(∆)

]
= − (

d(A0,(V0,λ0Iµ))f(0, ·, ·))−1
d(A0,(V0,λ0Iµ))f(∆, 0, 0)

=

[−(A0 − λ0In)
†∆V0

V ∗
0 ∆V0

]
, ∆∈H(n). (21)
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Let (x1(A), . . . , xµ(A)) be an orthonormal basis of eigenvectors of L(A) such
that

L(A)xj(A) = λj(L(A)) xj(A), j = 1, . . . , µ.

Then it follows from (20) that (V (A)x1(A), . . . , V (A)xµ(A)) is an orthonor-
mal system of eigenvectors of A corresponding to the same eigenvalues. Thus

{λ1(L(A)), . . . , λµ(L(A))} ⊆ {λ1(A), . . . , λn(A)}. (22)

By (19) we have

λ1(L(A0)) = . . . = λµ(L(A0)) = λ0 = λk(A0) = . . . = λk+µ−1(A0). (23)

The eigenvalue functions A 
→ λj(A) are continuous . Hence (22), (23) and
the fact that λ0 �= λ�(A0) for � �∈ {k, . . . , k + µ− 1} imply that

λj(L(A)) = λk+j−1(A), j = 1, . . . , µ, (24)

λj(L(A)) �= λ�(A), � �∈ {k, . . . , k + µ− 1} (25)

for all A in a neighbourhood U ⊂ U ′ ⊂ H(n) of A0. Therefore

rangeV (A) = span{V (A)x1(A), . . . , V (A)xµ(A)} =

k+µ−1∑
j=k

Ej(A). (26)

Finally, let vj(A) denote the jth column of V (A). Then by (19), (21) and
(26), the functions vj : U → Cn have the properties required in the theo-
rem. �

Proof of Theorem 3.7: Using charts, the proof of Theorem 3.7 can be
reduced to the case where the manifold M is an open subset of a real Banach
space X and H : M → Hk,µ(n) is a Cr-map, r∈N

∗ ∪ {∞, ω}.
Let x0∈M and let (z01, . . . , z0µ) be an orthonormal basis of the eigenspace

Ek(H(x0)). As in Theorem 7.1, choose an open neighbourhood U ⊂ H(n) of
H(x0) and functions vj : U → Cn, j = 1, . . . , µ, such that

(v1(H(x0)), . . . , vµ(H(x0))) = (z01, . . . , z0µ).

Set zj = vj ◦H|U0, where U0 = H−1(U ∩ Hk,µ(n)). Then (z1(x), . . . , zµ(x))
is an orthonormal basis of Ek(H(x)) for all x∈U0. Applying the chain rule
to (17), we obtain

dx0zj(ξ) = (λk(H(x0))In −H(x0))
†dx0H(ξ)z0j, ξ∈Tx0M = X. (27)
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Now set w(x) =
∑µ

j=1 αjzj(x) and z(x) =
∑µ

j=1 βjzj(x), where αj, βj ∈ C.
Then, for all x∈U0,

(λk ◦H)(x)w(x)∗z(x) = w(x)∗H(x)z(x). (28)

Moreover, the function x 
→ w(x)∗z(x) =
∑µ

j=1 ᾱjβj is constant. Differenti-
ating the relation (28), we obtain

dx(λk ◦H)(ξ)w(x)∗z(x) = w(x)∗dxH(ξ)z(x)

+dxw(ξ)∗H(x)z(x) + w(x)∗H(x)dxz(ξ)

= w(x)∗dxH(ξ)z(x)

+λk(H(x)) (dxw(ξ)∗z(x) + w(x)∗dxz(ξ))︸ ︷︷ ︸
=dx(w(·)∗z(·))(ξ)=0

= w(x)∗dxH(ξ)z(x).

In the special case z(x) = w(x), ‖z(x)‖ = 1, we have

dx(λk ◦H)(ξ) = z(x)∗dxH(ξ)z(x).

Suppose now that H is twice differentiable. Set g(x) = z(x)∗dxH(ξ1)z(x) for
a fixed ξ1∈TxM . Differentiating g, we obtain the second derivative of λk ◦H
as

d2
x(λk ◦H)(ξ1, ξ2) = dxg(ξ2) = z(x)∗d2

xH(ξ1, ξ2)z(x) + 2z(x)∗dxH(ξ1)dxz(ξ2).

From (27), it follows that dxz(ξ2) = (λk(H(x))In−H(x))†dxH(ξ2)z(x). Com-
bining the latter two equations, the final result follows. �

The above theorem says that, if M(x) ∈ Hk,µ(n) is a smooth family,
then the eigenvectors associated with the constant multiplicity eigenvalue
λk(M(x)) are still smooth, whereas, in general, the eigenvectors associated
with a smooth family cannot even be guaranteed to be continuous (see [20,
Remark II.6.9]).

8 Appendix B

Proof of Theorem 4.12: Let n, n1, . . . , nr ∈ N be such that
∑r

k=1 nk =
n. Set D = { diag(µ1In1 , . . . , µrInr) | µk∈R, µ1 > . . . > µr } ⊂ H(n) and
D′ = { diag(A1, . . . , Ar) | Ak∈Cnk×nk } ⊂ Cn×n. It is easily seen that D′

is the centralizer of each element of D in Cn×n, i.e., for all D ∈ D and all
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M ∈Cn×n, MD = DM iff M ∈D′. By U(n) we denote the set of all unitary
n × n matrices. It is a compact connected real Lie group of real dimension
dimR U(n) = n2. Its tangent spaces are

TUU(n) = { jAU | A∈H(n) } , U ∈U(n).

D is a submanifold of H(n) of dimension dimR D = r. Its tangent spaces are

TDD = { diag(δ1In1, . . . , δrInr) | δk∈R } , D ∈ D.

In order to show that H(n; n1, . . . , nr) is a submanifold of H(n), we consider
the map

ψ : U(n) ×D → H(n), ψ(U,D) := UDU∗.

Obviously, H(n; n1, . . . , nr) = ψ (U(n) ×D) . We will show that the differ-
ential of ψ has constant rank ρ, where ρ := n2 + r − ∑r

k=1 n
2
k. To this end,

we need the following easily verified lemma.

Lemma 8.1 For U ∈ U(n) and A ∈ H(n) set fU(A) = UAU∗. Then fU :
H(n) → H(n) is a linear isomorphism of H(n), and we have for all D∈D,

{ A∈H(n) | Aψ(U,D) = ψ(U,D)A } = fU(D′ ∩H(n)).

Moreover, dim fU(D′ ∩H(n)) = dim (D′ ∩H(n)) =
∑r

k=1 n
2
k.

The differential of the real analytic map ψ at (U,D) ∈ U(n) × D in the
direction (∆1,∆2) = (jAU, diag(δ1In1, . . . , δrInr) )∈TUU(n) × TDD is

d(U,D)ψ(∆1,∆2) = ∆1DU
∗ + UD∆∗

1 + U∆2U
∗

= j(Aψ(U,D) − ψ(U,D)A) + U∆2U
∗

= U( j(f ∗
U(A)D −Df ∗

U(A)) + ∆2 )U∗.

Since the diagonal elements of f ∗
U(A)D−Df ∗

U (A) are zero, the lemma above
yields that the kernel of the differential d(U,D)ψ : TUU(n) × TDD → H(n)
is ker d(U,D)ψ = { (jAU, 0)∈TUU(n) × TDD | A∈fU (D′ ∩H(n)) } . Thus,
rank d(U,D)ψ = dim (U(n) × D) − dim ker d(U,D)ψ = ρ. We will need the fol-
lowing fact.

Proposition 8.2 Let (U0, D0)∈U(n)×D and let V ⊂ U(n)×D be an open
neighbourhood of (U0, D0). Then there is an open neighbourhood W ⊂ H(n)
of ψ(U0, D0) such that ψ(V ) ∩W = H(n; n1, . . . , nr) ∩W.
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Proof: Suppose the claim fails . Then there are sequences Dk∈D, Uk∈U(n)
such that (a) limk→∞ ψ(Uk, Dk) = ψ(U0, D0), and (b) ψ(Uk, Dk) �∈ ψ(V ) for
all k. Since the eigenvalues are continuous functions it follows from (a) that
limk→∞Dk = D0. Since U(n) is compact, we can assume that limk→∞Uk =

Ũ for some Ũ ∈ U(n). Consider now the sequence Ũk = UkŨ
∗U0. We

have limk→∞ Ũk = U0. From the relation ψ(Ũ , D0) = limk→∞ ψ(Uk, Dk) =

ψ(U0, D0) it follows that Ũ∗U0 ∈ D′. The latter implies that ψ(Uk, Dk) =

ψ(Ũk, Dk) for all k. Thus, by (b), (Ũk, Dk) �∈ V for all k, a contradiction. �

We are now in the position to show that H(n; n1, . . . , nr) is a submanifold
of H(n) of dimension ρ. Let q = dim(U(n) × D) and (U0, D0)∈U(n) × D.
Recall that dimH(n) = n2. We have seen that the differential of ψ has
constant rank ρ. By the Rank Theorem [4, Theorem 10.3.1],[21, Theorem
2.5.3] there are neighborhoods V of (U0, D0) andW of ψ(U0, D0) and analytic
diffeormorphisms φ1 : V → φ1(V ) ⊂ R

q, φ2 : W → φ2(W ) ⊂ R
n2

such that
for all (x1, . . . , xq)∈φ1(V ),

φ2 ◦ ψ ◦ φ−1
1 (x1, . . . , xq) = (y1, . . . , yρ, 0, . . . , 0).

Thus φ2(W ∩ ψ(V )) = Rρ × {0}. By Proposition 8.2 we may assume that
W ∩ψ(V ) = W ∩H(n; n1, . . . , nr). Hence φ2 is a chart for H(n; n1, . . . , nr)
about ψ(U0, D0). �
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