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Abstract

The purpose of this paper is to show that the joint numerical range
of a m-tuple of n xn hermitian matrices is convex whenever the largest
eigenvalue of an associated family of hermitian matrices parameterized
by the (m — 1)-dimensional sphere has constant multiplicity and, as
a more technical condition, the union over the sphere of the largest
eigenvalue eigenspaces does not fill the full n-dimensional complex
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vector space. It is this global, as opposed to local, behavior of the
eigenvalues that makes the problem essentially topological. For m < 3,
it is shown that the set of hermitian matrices with simple eigenvalues
is open and dense in the space of all hermitian matrices, from which
it already follows that the numerical range is generically convex for
m < 3. From there on, an additional argument shows that convexity
always holds when m < 3 and n > 3. Furthermore, our sufficient
condition for convexity is in fact a criterion for stable convexity, in the
sense that should the sufficient condition fails while convexity holds,
the latter can be destroyed by an arbitrarily small perturbation of the
data.

1 Introduction

In the beautiful paper, “Das algebraische Analogon zu einem Satze von Fejér”
(Math. Zeitschrift 2 (1918), 187-197), O. Téplitz introduced and studied the
numerical range of a complex matrix. If C'is a n X n matrix, its numerical
range F(C') is the set of complex numbers of the form z*Cz, where z is a
n-tuple of unit norm. Toplitz proved, among other things, that the outer
boundary of the compactum F(C') is a convex curve. He conjectured that
the numerical range itself was convex, and shortly after, in another beautiful
paper, F. Hausdorff proved it. (See F. Hausdorff, “Der Wertvorrat einer
Bilinearform”, Math. Zeitschrift 3 (1919), 314-316.) This result, which
carries the name of Toplitz-Hausdorff theorem [12, 9], launched the thriving
subject of numerical range. Its vitality is due, in particular, to the many
extensions of Toplitz’ original setting.

An especially natural extension is the joint numerical range of a collection
of hermitian matrices. Let A = (Ay,..., A,,)" be hermitian n x n matrices.
Their joint numerical range, F(A), is the set of vectors in R™ of the form
v=(2"A12,...,2*A2)*, where z is a unit vector in the complex space of n
dimensions. In view of the representation C' = A; + ) A, the set F(C) is the
joint numerical range of (A;, A2)*. Already in 1918, T6plitz and Hausdorff
knew that the joint numerical range is not, in general, convex. Toplitz in
his paper pointed out that the convexity fails if Aq,..., A,2 is a basis of the
vector space H(n) of hermitian n X n matrices. Hausdorff observed that
Toplitz’ idea and the result of his own paper combine to prove the convexity
of the outer boundary of the joint numerical range of any triple of hermitian
matrices.

Applications of the subject of numerical range to robust control the-
ory [7, 6, 9, 26, 31] gave a powerful impetus to the mathematical investigation
of the joint numerical range for arbitrary m-tuples of hermitian matrices. The



robust stability of a feedback system consisting of n loops and m block un-
certainties involves the joint numerical range of an associated collection of m
hermitian n x n matrices [7]. There is a vast mathematical literature on the
subject of convexity, or the lack thereof, of the joint numerical range. Below
we will briefly survey the main points.

The discussion in Toplitz’ and Hausdorft’s papers implies that: a) The
joint numerical range, F, of a triple (A;, A, A3)* of hermitian 2 X 2 matrices
is typically not convex; b) For any triple of hermitian n x n matrices, the
outer boundary of F is convex. Let now n > 2. Binding [1] and Fan and
Tits [8] proved the convexity of F(A;, As, A3). (See § 2.2 below where the
methods of these papers are recast in our setup. In § 5.1, we will re-establish
this result as a byproduct of our approach; see Theorem 5.4.) The situation
becomes drastically different as we move on to the 4-tuples of hermitian ma-
trices, and more generally, to the joint ranges F(A, ..., A,,), where m > 4.
In this case, the joint numerical range F (A, As, As, ..., A,) is, typically,
not convex. (See Examples 3, 4, and Proposition 2.10 in § 2.2.) In view
of these counterexamples, the emphasis in the study of the joint numerical
range of m-tuples, m > 3, of hermitian matrices was redirected towards: a)
The study of conditions ensuring that F(Ay, ..., A,,) is convex; b) The study
of the outer boundary and the convex hull of F(A;,..., A,,). We refer to
27, 28] and the references cited therein for more recent trends and develop-
ments.

The major result of this paper is that the joint numerical range of m her-
mitian matrices is convex if the largest eigenvalue of the family of hermitian
matrices, A(n) = >, m;4;, n € S™ !, parameterized by the unit sphere in
dimension m—1 has constant multiplicity (along with another more technical
condition) and that the property of simple eigenvalue for the entire family
is open and dense if m < 3. The global, as opposed to local (see [6, Sec.
5]), multiplicity behavior of the eigenvalues is clearly a differential /algebraic
topological issue. Thus, from the first standpoint, we continue and consid-
erably extend the material of the publication [19], which introduced the dif-
ferential topological approach in the special case of the numerical range of a
complex matrix. Alongside the differential topology, we widely use algebraic
topological methods, in particular the theory of fiber bundles to describe
the relationship between a constant dimensional eigenspace of A(n) and 7.
The topological approach to the convexity of the joint numerical range goes
back to [1]. The genericity issue, which is here strengthened to openess and
density, goes back to [24].



We will now discuss the contents of the paper in some detail. In § 2,
we establish the setting and the basic properties of the numerical range. In
particular, in § 2.1, we introduce our approach to the joint numerical range
as the range of a real analytic map defined on a complex projective space. In
§ 2.2, we motivate our approach with simple, but essential, examples. Also,
we prove a few propositions that will be crucially used in the body of the
paper; see, in particular, Proposition 2.11 and Corollary 2.12.

§ 3 consists of two subsections. In § 3.1, we study the convex hull of a
compactum in the euclidean space from the viewpoint of support functions.
This material is still preliminary; see, for instance, [14]. The differentiability
of a support function plays an important role in our approach.

The body of the paper starts in § 3.2. From there on, we specialize our
analysis to the joint numerical range, F(A), of a m-tuple A of hermitian
matrices. It is in this part that the family A(n) is introduced. We show that
the support function of F(A) is the highest eigenvalue of A(n). Thus, our
investigation of convexity and the related properties of the joint numerical
range hinges on the study of eigenvalues of certain families of hermitian
matrices. Under the crucial assumption that the family in question has a
block of eigenvalues of constant multiplicity (see Proposition 3.10), we carry
over this study to § 4. Let A(n) satisfy the assumption, and let u be the
multiplicity. In § 4.2 we associate with the numerical range F(A) a fiber
bundle over the unit sphere of m — 1 dimensions whose fiber is the unit
sphere in the complex p-dimensional eigenspace. See Theorem 4.5. In order
to use the results of § 4.2 to study the convexity of numerical ranges, we
investigate in § 4.3 the issue of the multiplicity of eigenvalues of a linear
family of hermitian matrices. It turns out that, for m < 4, all eigenvalues of
A(n),n € S™ 1 are simple, generically. See Proposition 4.10.

Theorem 5.1 in § 5 is the main result of the paper. It says, essentially,
that if the highest eigenvalue of A(n),n € S™ !, has constant multiplicity,
then the numerical range F(A) is convex. The additional technical assump-
tion of Theorem 5.1 is automatically satisfied unless m = n + 1, and the
highest eigenvalue has multiplicity n/2. From the latter and the essentially
topological fact of genericity, we recover as a particular case the known result
that the numerical range of any triple of n X n,n > 3, matrices is convex. See
Theorem 5.4. In § 5.2 we show that Theorem 5.1 actually yields a criterion
of stable convexity. Namely, if A does not satisfy the constant multiplic-
ity assumption, but F(A) is nevertheless convex, then the convexity can be
destroyed by an arbitrarily small perturbation of A. See Theorem 5.6.

The remaining two sections are the Appendices. There we prove two
important technical theorems that we have crucially used in the body of the
paper. See especially the proof of Theorem 3.7 in § 7.
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2 Preliminaries and the setting

The notation is standard. By N, R and C we denote the set of natural num-
bers, real numbers and complex numbers respectively. By F"*™ we denote
the space of n x m-matrices with entries in F € {R,C}. If A €F"*™ then
AT (resp. A*) denotes its (resp. conjugate) transpose, and A’ stands for its
generalized inverse in the sense of Moore-Penrose [30]. We denote by || -|| the
Euclidean vector norm in C" unless otherwise stated. By S™ ! we denote
the unit sphere in R™. If U is a subspace of C" or R" then U+ denotes its or-
thogonal complement with respect to the standard inner product. By CP"*
we denote the projective space of C*. We use the notation [z] € CP""* for
the element defined by z € C*\{0}.

By H(n) we denote the real vector space of hermitian n x n-matrices,
dimH(n) = n?. If A € H(n) then A\(A) > A(A) > ... > N\, (A) are its
eigenvalues, and Fjy(A),1 < k < n, are the corresponding eigenspaces. Note

We will use the terms C"-manifold, C"-mapping, etc for any » € N U
{oo,w}. Let M, N be C"-manifolds, and let f : M — N be a C"- map. Let
x € M. Then T,M denotes the tangent space of M at x, and d,.f : T,M —
TN is the differential. We will denote by d’g : T,M x T,M — R the
second differential, whenever it is defined. Note that d2g is a symmetric
bilinear form.

2.1 Basic properties of the joint numerical range

We introduce the main object of study.

Definition 2.1 Let A= (Ay, ..., An)"€H(n)™ be an m-tuple of hermitian
matrices. Set

F(A) = F(Ar, o An) ={ (2 Az, 2 A2)" | zeCm, |12 =1}

Then F(A) C R™ is the joint numerical range of matrices Ay, ..., A, .

We will also say that F(A) is the numerical range of A. Note that for any
unitary matrix U € C"*" we have

The formula

Fu([z]) =

(z*Alz Z*Amz)T
[ S F



defines a real analytic mapping F4 : CP" ! — R™, and the compact, con-
nected set F(A) is the range of Fis. If m = 1 then F(A) is a classical object.

Proposition 2.2 Let A€ H(n). Then F(A) = [M\.(A), \1(A)].

We will recall the basic general properties of F(A) and F4. To this end
we introduce the following notation. Let M = [uy] € RP*™ and A =
(A1, ..., Apn) €H(n)™. Set

Hi1 ... Him Ay 221:1 HlkAk
MA=| : : D= : € H(n)P.

Ppr oo Hpm | |Am 221:1 Ppk A

Lemma 2.3 Let AcH(n)™. Let M €RP*™ be an arbitrary matriz viewed as
a mapping, M : R™ — RP. Then M o Fy = Fy4.

Despite its simplicity, Lemma 2.3 yields important consequences.

Corollary 2.4 1. Let AcH(n)™ and M € RP*™. Then F(MA)= MF(A).

2. Let A€ H(n)™, BEH(n)" be such that span(Ay, ..., A,,) =span(By, ..., B,).
Then there exist linear maps R™ % R* 5 R™ such that o(F(A)) = F(B),
U(F(B)) = F(A), and (40 6) r = (60 6)|r = id.

Proof: Claim 1 is immediate from Lemma 2.3. Under the assumptions of
claim 2, there exist matrices ¢, such that B = ¢A and A = ¥ B. They
satisfy the requirements. 0

Remark 1. Let A, B satisfy the assumptions of claim 2 above. Then F(A)
and F(B) are affinely equivalent. In particular, one of them is convex if and
only if the other one is.

Corollary 2.5 Let AcH(n)™, let n€R™ be a nonzero vector, and let c€R.
Set H={yeR™|n"y =c}. Then: 1. We have n" o Fx = Fyry; 2. We
have {nTy | ye F(A) } = [M\(nT A), \i(nT A)]; 3. The inclusion F(A) C H
holds if and only if nTA = cI,.

Proof: The first claim is a special case of Lemma 2.3. Combining it with
Proposition 2.2, we obtain the second. It implies the third. 0

If K CR™, we denote by aff(K) its affine hull.
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Proposition 2.6 Let A€ H(n)™. Denote by V4 C R™ the subspace defined
by Vi = { neR™| nTAeRI, } Then:

1. The set F(A) is a singleton if and only if Vo =R™;

2. We have Vy = {0} if and only if I,,, Ay, ..., A, are linearly independent
if and only if aff (F(A)) = R™.

3.Let ¢ = codimVy. Suppose that ¢ # 0,m. Let Q = (n1,...,nm) be an
orthonormal basis of R™ such that (Mes1, ... ,Mm) 1S a basis of V4. Then
A = ¢l for d+1 < j < m. Set B =n/A for1 < j <, and let
B = (By,...,B))*. Define the affine mapping o : R® — R™ by a(x) =
Q2T cor1y ... sem)t. Then I, By, ..., By are linearly independent, F(A) =
a( F(B)) and

aff(F(A) = a(R") = {y e R™ [ nfy = ¢;, (+1<j <m}.
4. We have dim(aff (F(A))) = ¢.

Proof: Claim 1 is obvious, as well as the former equivalence in claim 2,
while the latter is immediate from Corollary 2.5. Since Vp = {0}, by claim
2, I,,, B, ... By are linearly independent. The definition of () implies that

QTA = (By,...,By,co1ly, ... ,cnl,)t. Hence, for any unit vector z € C™
we have QT F4([z]) = Fora([z]) = (2*Biz,... , 2" Bz, cos1, . .. , C) T, imply-
ing QT F(A) = a(F(B)). We leave the rest to the reader. O

Let IC,, be the metric space of nonempty compact subsets of R™, endowed
with the Hausdorff metric. The formula A — F(A) defines a mapping F :
H(n)™ — K. Recall that a mapping f : X — Y of metric spaces is Lipshitz
if there exists ¢ > 0 such that for any z,2’ € X we have d(f(z), f(2)) <
cd(z,x"). This notion depends only on the equivalence classes of the metrics.
Any norm on the vector space H(n)™ induces a metric on it. All these metrics
are equivalent.

Proposition 2.7 The mapping F : H(n)™ — K,, is Lipshitz with respect to
the natural metrics.

Proof: Let B = (By,...,B,2)* be a basis of H(n). Then for each A €
H(n)™ there is a unique matrix My € R such that A = M4B. The
map A — My is linear. Define a norm, v, on H(n)™ by v(A) = ||[Mal|. Set
¢ = maxyerp) ||y|. Then for all A, A’€H(n)™ and all [z]€ CP" ',

1Fa([2]) = Far([2DIl = IMa—a Fp([2])|| < cv(A—A").
The claim follows. U



For A = (Ay,...,A,)" € H(ny)™ and B = (By,...,Bn)" € H(n)™ let
ADB=(A @ By,... ,An® Bp)" €H(ny +n2)™. For X, Y CR™ we set

coX,)Y)={ oz +agy| z€X, yeY, ax >0, oy +ay=11}.

The set co(X,Y) is not convex, in general. If X and Y are convex, then
co(X,Y) = co(X UY), where co(-) denotes the convex hull of a set.

Proposition 2.8 Let A € H(n1)™ and B € H(ny)™. Then F(A® B) =
co(F(A), F(B)).

Proof: A unit vector z € C™ "2 can be written in the form z = [\/a; 2T, \/ag2d]T,
where z, € C™ are unit vectors and «op > 0, a; + as = 1. We have

Faep([z]) = arFa([z1]) + a2 Fp([22]). O

The following is an immediate consequence of Proposition 2.8.

Corollary 2.9 Let AcH(ny)™, B€H(ng)™. Then
a) If F(A) and F(B) are conver, then F(A @ B) is convex;
b) If F(A) = F(B), then F(A® B) is conver.

2.2 Basic examples

In this subsection we present a few examples of the (joint) numerical ranges.
They demonstrate the difficulties and the pitfalls of the subject. In what
follows, the meaning of the parameters n, m comes from the notation H(n)™.

Let A = (A;, Ay)* €H(n)?. Introducing A = A; + 5 As, we identify F(A)
with the classical numerical range of A. The celebrated Toplitz-Hausdorft
theorem [12] yields, in particular, that the joint numerical range of any two
hermitian matrices is convex. See [19, 13] for the differential geometry of the
map F4 in this case.

Let m be arbitrary. Suppose that Ay,..., A, € H(n) commute. Simulta-
neously diagonalizing Ay, ..., A, by a unitary matrix, we obtain that F(A)
is a convex polytope. The converse also holds: If F(A) is a polytope then
the matrices Ay, ..., A, commute [2].

Example 1. We will now consider a specific example with m = 3. Let

S L [ 1 I E
7ol Ry o0 TPTlo -1

be the Pauli spin-matrices. They form an orthonormal basis in the space of
traceless matrices in H(2). Let p > 1. For 1 < k < 3 set Ay = 04, ® I,.
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Let A = (Ay, Ay, A3)* € H(2u)?. Let 2 = (z1,29) € C*, where ||z||* =
|21 ||* + ||22]|*. Let S? € B® C R? be the unit sphere and the unit ball. Since

2* Az 2R(2]22)
Fu([z]) = | 7" A2z = | 23(2{22)
2" Azz 120 = Nl 22l®

we have ||Fa([2])]|* = 4|2 22]* + (J|21])* — [|22]|?)* < ||2||* = 1. We will show
that F(A) = S? if p = 1, and F(A) = B3 if u > 2. Set Fa([z]) =
(pcos¢, psing, r)T. It suffices to find a solution z = (21, 29) € C** of this
equation for any r € [-1,1],0 € R, p = V1 —7r2ifp =1, and 0 < p <
VI—r2if u > 1. For p=1set z; = /(1 +7)/2,20 = /(1 —71)/2e’. For
> 1set 21 = \/(1+7)/2v1, 20 = /(1 —1)/2e"vy, where vy,v, € CH are
unit vectors, such that vive = 0, if |r| = 1, and vjvy = p/v/1 — r? otherwise.
Example 2 [1, 8, 6]. Let now n = 2, and m arbitrary. Let A = (Ay,...,A,)* €

H(2)™. For 1 <k <mset Ay = {Z}k ng] , where ay, by ER, wy, =z, + Jyr €
k Ok
C. Define

T WY —‘“;‘“ ay + by
M=|: =+ : |eR™  p=g : c R™ (2)
Am—bm

Let 0 = (01, 09,03)* be as in Example 1. Then
A= [M p} “ = Mo + pls.
I

Let a : R® — R™ be the affine mapping given by a(¢) = ME + p. Then, by
Corollary 2.4 and the preceding example

F(A) = MF(o) +p = a(F(0)) = a(5?). (3)

In what follows we do not distinguish between an ellipsoid in R? (resp. ellipse
in R?) and its image under an isometry ¢ : R3 — R™ (resp. i : R> — R™). Let
M = U diag(sy, s2, 53)V be a singular value decomposition. Since U € R™*3
and V € R**3 are isometries, we obtain the following classification.

a) If rank M = 3, then F(A) is an ellipsoid with semi-axes s; > so > s3.

b) If rank M = 2, then F(A) is a solid ellipse with semi -axes s1, s9.

c) If rank M = 1, then F(A) is a segment of length s; .

d) If M =0, then F(A) is a point.

In particular, F(A) is convex if and only if rank M < 3. If m > 3, then
rank M = 3, generically, and F(A) is nonconvex.
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Example 3. In this example n = m = 4. For k = 1,2,3 set Ay = o} D oy,
and let Ay = I, ® (—1,). By Proposition 2.8 and Example 1

F(A) =co(S* x {1},5* x {-1}) C R™.

Let ¢ € R. The hyperplanes H. = {(y,c) | y € R®} are parallel in R*. Then
FA)YNH. = {(y,c) ]| || <yl § 1}. In particular, F(A) is not convex.
Example 4. Let now n be arbitrary, and m > 4. Set

0k @ On—2)x(n—2y 1<k <3,
A = Q0252 D I k=4,

Onxn 4<k<m.
Proposition 2.8 and Example 1 yield

F(A) = co (52 x {01, HOM} }> % {Opm_sye1}-

Since

o)) - (72| resrena

the set F(A) is a nonconvex cone. Hence, we obtain the following.

Proposition 2.10 For any m > 4, there exist A€ H(n)™ such that F(A) is
not convew.

Example 5
Let n be arbitrary, and let eq,... ,e, be the standard basis of C". We
define o™ = (o™, ... ol ) e H(n )2”_1 by o\ = epel + enel ‘77(:—)1% =

J(enel —egel) for 1 <k <n—1, and

n I,.. 0
agn)l_[ 01 _1:|

If n = 2 we recover the Pauli spin matrices. Let z = (21,...,2,)T €C™. For
1<k <n-—1we have

Z*a,gn)z = 2R(Zxzn), 2*07(171_)1+kz = 23(Zpzn); 20N 2 = (Z |zk|2> — |za]?

Since ||z]] = 1, we have
2n—1 n—1 n—1 2
|Eoen (EDIP = D (2"072)* =4 [Zzal” + (Zw - w) =1
j=1 k=1 k=1
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Let y = (y1,... ,y2n-1)" €S?" V. Let yp,_1 =7, and for 1 <k <n — 1 set

Yk = 06 COS(Ok),  Yn—14k = Ok sin(Px).

The parameters thus introduced are constrained only by r € [—1, 1], ¢ €R,
>0, 30 =1—72 For 1 <k<n—1lsetz=0ifr=-1,2 =
V1/(2(1 —1))pp if r # —1, and let 2, = \/(1 —r)/2e’?. Then F, ) ([2]) =
y. Since F(c™) C S2=1  we obtain F(c™) = §2n=1),

Let weC" ! and a,beR. Extending the calculations of Example 2, we
obtain

) @ 0 [ [ 0

Combining this and Examples 2 and 5, we obtain the following.

Proposition 2.11 Let n and m be arbitrary. For 1 < k < m let a, bi €R,

wp =, + R €CP L AL = [akI”T_l wk], and let A= (Aq,... , Ap)*. Set

GRS a1+ by
M=|: : e Rmx@n=l) ) — = : c R™.
T Y g G+ b
5
Define a: Rt — R™ by a(§) = ME+p. Then A= M I +pl,, and,

finally, F(A) = a(S?"2).

Proposition 2.11 serves as a source of examples of numerical ranges. We
give a simple criterion of convexity for these examples.

Corollary 2.12 Let n and m be arbitrary. Let A = (Aq,... ,An)" and
M € R™ =1 be as in Proposition 2.11. Then F(A) is convex if and only
if rank M < 2n — 1. In particular, if m < 2n — 1, then F(A) is convez.

Proof: In view of Proposition 2.11, F(A) is a translation of the image of
the unit sphere under the linear mapping M : R**~1 — R™. We use the
singular value decomposition of M, and extend the argument of Example 2.
If rank M > 2n — 1, then F(A) C R™ is an isometric image of a (2n — 2)-
dimensional ellipsoid. If rank M < 2n — 1, then F(A) C R™ is an isometric
image of a solid ellipsoid of dimension rank M. We leave the details to the
reader. 0J
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3 Convex hull of the joint numerical range

In this section, we derive results relevant to the convex hull of F(A). Besides
being of interest in their own rights, these results will be used in § 5. In § 3.1,
we review those propositions from differentiable convex analysis that will be
used later. In § 3.2, we specialize these results to the joint numerical range.

3.1 Differentiability of support functions

We work in the space R™. For n € R™ 1 # 0, and ¢ € R set H(n,c) = {y €
R™|nTy =c},H (n,c) = {y € R™|nTy < ¢}. Let C,, C K,, be the set of
convex subsets, and let §,, denote the set of convex functions s: R™ — R
satisfying s(an) = as(n) for a > 0. The latter are called support functions.
In what follows, we review basic facts about compact (convex) sets in R™
and their support functions. We refer the reader to [14] for details.

Let K € K,,, and set s(n) = max,exn’y. Then s € S, is the support
function of K. For n € S™! the halfspace (resp. hyperplane) H™(n, s(n))
(resp. H(n,s(n))) is the supporting halfspace (resp. supporting hyperplane)
of K in direction 7. We have [14, Theorem 2.2.2]

co(K)= (] H (ns(n)={ yeR™| n"y<s(n) :neR™}.

nesm—1

For ne S™ ! we set ®,(K) = KNH(n,s(n)). By 0K we denote the boundary
of K and by dyK the outer boundary. The latter is the boundary between
K and the unbounded component of R™\ K. Obviously, ®,(K) C dyK. Let
C €C,,. Then the convex sets ®,(C) are called the exposed faces of C. We
have [14, Proposition 3.1.15]

0C = U, egnr @,(C). 5)

The set C' € C,, is said to be strictly convex if ®,(C) is a singleton for any
nesSm1i,

Proposition 3.1 Let K€ ,,. Then the following claims hold.

i) For any ne S™ ', we have ®,(co(K)) = co(®,(K)).

ii) The set co(K) is strictly convez if and only if ®,(K) is a singleton for all
nesSm1,

i) We have dco(K) =, cgm-1 co(P,(K)).

iv) The inclusion 0 co(K) C 0K holds if and only if dco(K) = 0K if and
only if ®,(K) is convex for any neS™ L.
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Proof: The claims ii) —iv) follow from claim ¢) and relation (5). We prove
the first claim. Let s be the support function of K and let y € ®,(co(K)).
Then n'y = s(n) and y = > 1_, a;y;, where y; € K, ; > 0, and Y« = 1.
Therefore for all indices n7y; < s(n). Suppose that n’y, < s(n) for at
least one index. Then s(n) = ny = > anTy; < > a;s(n) = s(n). Thus,
nTy; = s(n) for all j, and hence y € co(®,(K)), implying that ®,(co(K)) C
co(®,(K)). The opposite inclusion follows from @,(K) C ®,(co(K)). O

In the rest of this subsection we study the gradient and the Hessian of
support functions. We will use the notation Vf(z) for the gradient at x € R™.

Proposition 3.2 Let K € K,,,, and let s be its support function. Suppose
that s is continuously differentiable on an open set, U C R™. Then for

nel nS™ 1 the set ®,(K) is a singleton: ®,(K) = {Vs(n)}.

Proof: Let neU. For any y€®,(K), we have n”y = s(n). For any such y,
set f(€) = s(&) —yT&. Then the function f > 0 is continuously differentiable
on U, and f(n) = 0. Hence Vs(n) = y. Since the latter holds Vy € ®,(K),
the claim follows. O

Now, we consider the case when the support function is at least twice
differentiable.

Proposition 3.3 Let K € KC,,,, and let s be its support function. Let r > 2,
and assume that s is a C"-function on R™\{0}. Suppose that d%s 1S positive
definite on n* for any n. Then

i) The map n — Vs(n) is a C""-embedding of S™ into R™.

it) The set co(K) is strictly convex. The range of the above map is dco(K).
We have Oco(K) = 0y K.

The proof is based on the following lemma.

Lemma 3.4 Let s be the support function of K €K,,. Assume that s is a C?-
function on R™{0}. Let m,m,€S™ ! and suppose that Vs(ny) € H(n2, s(12)).
Then the differential of Vs at my satisfies (d,,Vs)(ni) C ny.

Proof: Let €T, 5™ ' =ni and let v : (—¢,€) — S™! be a differentiable
curve satisfying v(0) = n; and +/(0) = £. By assumption we have Vs(v(0)) €
H (n2, s(n2)), and Proposition 3.2 yields that Vs(y(t)) € K € H™ (12, s(12)) for
all t € (—¢,¢€). Thus the function t — 1l Vs(y(t)) attains its maximum, s(n,),
at t = 0. Thus 0 = Z (13 V5(7(t))|1=0 = 13 (ds0)V5)(7/(0)) = 3 (d,V5)(§). O
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Proof of Propostion 3.3: The second claim is a consequence of Propo-
sitions 3.1 and 3.2. We will prove the first. By Proposition 3.2 we have
Vs(n) € H(n, s(n)). Thus, by the lemma, (d,Vs) (n) C n*. Now, the positive
definiteness of the quadratic form ™3¢ — d2s(€, &) = £7(d, Vs)(§) yields

(dNVs) (nt) =n™. (6)

Thus, the map n — Vs(n), n € S™ !, is an immersion. We now prove that
it is injective. Let 7€ S™!, 7 # n, and suppose that Vs(n) = Vs(77). Then
Vs(n) € H(7,s(7)). Thus, by the lemma, (d,Vs)(n*) C p*. If fj # —n this
contradicts equation (6). If 7 = —n, then K is contained in the hyperplane
H(n,s(n)). Then, by Proposition 3.2, K is a singleton, which contradicts
equation (6) again. Thus, we have shown that the map Vs(n) is an injective
immersion, and since it applies to a closed manifold it is an embedding. [J

3.2 Support function of a joint numerical range

Let A= (Ay, ..., Apn)*€H(n)™. We will apply the material of the preceding
section to F(A). If VC C™ is a subspace, we denote by F(A; V) the numer-
ical range of the restriction of A to V', i.e. F(A; V) ={Fa([z])|0# 2z€V }.
The following result is basic.

Proposition 3.5 Let A€ H(n)™, let F(A) be its numerical range, and let
s € S, be the support function of F(A). Then

s(n) = M(n'A). (7)
Let n€ S™ 1. Then
FA)NVH@n,M(n'A)) = F(A; Ei(n'A)). (8)
Proof: Let z € C", |z|| =1, and let n€R™. Then n? F4([2]) = 2*(nTA)z <
A1 (nTA). Equality holds if and only if z€ E;(nT A). O
Specializing Proposition 3.1 to the numerical range with the help of

Proposition 3.5 yields the following useful claim.

Corollary 3.6 Let AcH(n)™. Then the following claims hold.
i) Let T C R™ be a proper subset. Then T is an exposed face of co(F(A)) if
and only if there exists n€R™ such that T = co (F(A; Ei(nTA))).
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ii) The set co(F(A)) is strictly conver if and only if F(A; E1(nTA)) is a
singleton for any ne S™ 1.

iii) We have dco(F(A)) = U, cgm1 co(F(A4; Er(n"A))).

iv) The inclusion 0 co(F(A)) C OF(A) holds if and only if Oco(F(A)) =
O F (A) if and only if F(A; E1(nTA)) is convex for any ne S™ ! .

In order to apply Propositions 3.2 and 3.3, we need a technical, but useful,
theorem. For positive integers k, j,n such that k — 1+ pu < n, let Hy ,(n)
denote the set of hermitian n x n-matrices A such that A\;(A) = A\x(A) if and
onlyif £ < j < k+p—1. For AeHy, ,(n), the eigenvalue A\, (A) = ... = Ay 1
has multiplicity p, while all other eigenvalues have arbitrary multiplicity.

Theorem 3.7 Let M be a C"-manifold and let H : M — H(n) be a C"-map
such that H(M) C Hy,,(n). Then the following claims hold.

1. Let xo€ M and let (2o, ... , 2o0u) be an orthonormal basis of Ey(H (xo)).
Then there exists an open neighbourhood Uy of xy and C"-maps z; : Uy —
C", 1 < j < u, such that for any x € Uy the set (z1(z),...,z,(x)) is an
orthonormal basis of E,(H(x)), (z1(x0),- ., 2u(%0)) = (201, - - , 20u), and if
¢ eT,,M, then

(day2))(§) = (Ak(H (w0)) I — H (20))" (g H (€)) 205-

2. The composition N\, o H is a C"-function on M. Let x € M, & € T, M,
and let z,w € Ex(H(z)). Then

dy(A,, o H)(§w*z = w*d, H(E)z. 9)
In particular, if ||z|| = 1 then
dy(A\ o H)(§) = 2"d, H(§)z.

3. Let r > 2, and suppose that the second differentials below are defined at
x € M. Let &,& € T, M. Then for any unit vector z € Ei(H(x)), we have

(2o H)) (&, &) = 22°(doH(&) (M(H (2)) L, — H(2)) do H(&))z
+2(d2H(&1,6))z.

In order not to interrupt the flow of exposition, we defer the proof of The-
orem 3.7 to Appendix A. Specializing Proposion 3.2 and the above Theorem
to the numerical range, and using Proposition 3.5, we obtain the following
result.
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Theorem 3.8 Let AcH(n)™. Suppose that A\;(nTA) has constant multiplic-
ity form € U CR™, an open set. Then the support function of F(A) is real
analytic on U. Let z€ E1(nTA) be any unit vector. Then, in the notation of
equation (7), for any n€U, we have

dys(§) = 2(E7A)z (10)
P2s(61,&) = 22 (L A)(s(n) L, — nA) (] A)-=. (1)

If n € UNS™!, then the intersection of co(F(A)) with H(n,s(n)) is a
singleton, and

F(A; Bx(n'A)) = {Vs(n)} = {(z"Arz,... ,2"An2)"} = {Fa(l2])}.

Now, we consider the situation where \;(nTA), n€S™ !, has constant multi-
plicity pu. Since A, (n"A) = —A;(—n"A), its multiplicity is p as well. If p > 2,
then all matrices A; are scalar, and F(A) is a point. Hence, we assume in
what follows that p < 3. The proposition below is the main result of this
section. We use the notation of equation (7) in its formulation.

Theorem 3.9 Let A€ H(n)™. Let p < 2 be the multiplicity of Ai(n"A).
Then the map n — Vs(n) is a real analytic embedding of S™ ! into R™.
The range of the map is the boundary of the strictly convex set co(F(A)).

The latter coincides with the outer boundary of F(A).

Proof: In view of Proposition 3.3 and Theorem 3.8, it suffices to show that,
for any ne S™1 and £ ent\ {0}, there exists a unit vector z € E;(nTA) such
that

0 < dys(&,€) = 2(6"A2)" (M A) L, — n"A)T (€7A ). (12)

Since the operator (A\;(nTA)I, —nTA) is positive semidefinite, the preceding
inequality is equivalent to (£7A)z ¢ Ey(nTA). This follows from the third
claim in the proposition below. 0

Proposition 3.10 Let A € H(n)™. Suppose that there are 1 < k,u < n,
k+u—1 < n/2, such that n”"A € Hy,(n) for any n € R™\ {0}. Let
N1, M2 € S™ 1 be linearly independent vectors and let 1 < j < n. Then the
following claims hold.

i) We have Ex(i7A) O Ey(—nTA) # {0} if and only if Ex(n7A) = E;(—nTA).
The latter holds if and only ifn —k —p+2<j<n—k+1.

i) We have Ex(nfA) N E;(nyA) = {0}.

iii) We have Ey,(n{A) N (n1;4) Ex(n{A) = {0}.
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Proof: The first claim is immediate from the definition of H, ,(n) and the
fact that E;(—n’ A) = Enp1-;(m’ A). Let 0 # z € Ej(nlA).

Suppose that z is also an eigenvector of nf A. Then z is an eigenvector of
nTA for all n €span{n;,n2}. For each n # 0 the eigenvalue A\y(nTA) belongs
to an isolated group of p identical eigenvalues. Thus z € Ei(nTA) for all
n € span{n;,n2}. In particular, z € Ey(—nfA). This contradicts the first
claim.

Suppose now that (niA)z € Ex(nfA). Set f(n) = A(nTA). Since z €
Ey.(nfA), the relation (9) in Theorem 3.7 implies that w*(nA)z = d,, f (n2)w*z
for all w € Ex(nfA). We conclude that (n3A)z = d,, f(n2)z. Thus z is an
eigenvector of nA, a contradiction to the second claim. 0

4 The viewpoint of differential topology

4.1 The boundary of a joint numerical range

In this section we study the critical points and the critical values of the
numerical range map [, and obtain information about the boundary of
F(A), which will be written 0F(A). We begin with necessary preliminaries.
Let M, N be smooth manifolds without boundary, and let f : M — N be a
differentiable map. Then x € M is a critical point if d,f : T, M — T,N is
not surjective. The set of critical points will be written C(f) C M. A point
y€ N is a critical value if f~1(y) contains a critical point. The following fact
is basic.

Theorem 4.1 Let the setting be as above. Then f~Y(df(M)) C C(f).

Let z € C" be a unit vector. The differential at § = 0 of the map
§ — [z + 6], d€[z]*, induces a linear isomorphism of [2]* = {weC" |w*z =
0} onto the tangent space T[Z]C]P’"*l. Replacing z by ez changes the iso-
morphism in question by the factor e=7’. We will use these isomorphisms to
identify 7,;CP" " with [z]*.

Proposition 4.2 Let A = (Ay,... ,A,) € H(n)™. Let z € C" be a unit
vector, and let [z] € CP"! be the corresponding point. Identify T[Z]C]P’”_1
with [2]* via the linear isomorphism determined by z. Let 6 € [2]*. Then

A Fa(6) = 2 (R(z"A10), ..., R(z*A,0))" . (13)
The space (range al[Z]FA)L consists of n€R™ such that z is an eigenvector of

nTA.
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Proof: Equation (13) is immediate from the special case m = 1 and the
relation Fu([2]) = (Fa,([2]),..., Fa, ([2]))T. The following chain of equiv-
alences yields the other claim: 1 € (ranged,jFa)* iff V§ € [2]* we have
n?dFa(6) = 0 iff V6 € [z]* we have dF,ra(6) = 0 iff [2] is a critical point
of Fyry iff 2 is an eigenvector of nTA. The second equivalence in the chain
holds by Corollary 2.5. The last equivalence was proved in [19]. U

The corollary below follows directly from Theorem 4.1 and Proposition 4.2.

Corollary 4.3 Let AcH(n)™ and let Fy : CP*™' — R™ be the correspond-
ing mapping. Then the set of critical points of Fy is

C(Fa) = { [z]eCP" | 3nesS™": 2 is an eigenvector of n"A } .

Let y€ OF (A). Then for each [z] € F;'(y) there exists n € S™ ' such that z
is an eigenvector of nT A.

The case m = 2 of Corollary 4.3 is contained in [19].

4.2 Eigenvalues of constant multiplicity

If X is a vector space, we denote by P(X) the corresponding projective space.
If X CY is a subspace, then P(X) C P(Y). The following Theorem is the
main result of this subsection.

Theorem 4.4 Let A€ H(n)™. Suppose that there are 1 < k,pu<n, k+ pu—
1 < n/2, such that n"A € Hy ,.(n) for any n€R™\ {0}. Then the following
claims hold.

i) Let ni,my € S™ 1 be linearly independent vectors and let 1 < j < n. Then
the projective spaces P(Ey(nfA)) and P(E;(nfA)) are disjoint. Furthermore,
P(Ex(n{A)) NP(E;(—n{A)) # 0 if and only if P(Ex(n{A)) = P(E;(—n{A)).
The latter holds if and only ifn —k —p+2<j<n—k+1.

it) The disjoint union P = |, cgm-1 P (Ex(n"A)) is a closed real analytic
submanifold of CP" "

iii) Define p : P — S™ 1 by p([z]) = nif 2 € Ex(n"A). Then the triple
(P, p, S™ YY) is a real analytic, locally trivial fiber bundle with fiber CP#1,

Theorem 4.4 has a reformulation in terms of sphere bundles. We will use
it in § 5. For convenience of the reader, we formulate the theorem below.

Theorem 4.5 Let A€ H(n)™, and let the assumptions be as in Theorem 4.4.
Then the spheres S(E(n"A)) = { z€ E,(n™A) | |zll=1}, ne S, are
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pairwise disjoint. Their union & = |, cgm-1 S(Ey(nTA)) is a compact sub-
manifold of C™. The map q : S — S™ ', where q(z) = n if z€ S(Ex(nTA)), is
well defined, and (S,q,S™ 1) is a real analytic, locally trivial sphere bundle.

Proof of Theorem 4.4: The first claim i) is immediate from Proposi-
tion 3.10. It implies that the subsets P (Ej(n"A)) € CP"', ne S™!, are
pairwise disjoint. Therefore the projection p : P — S™~! is well defined.

Regarding claims ii) and iii), we first establish the purely topological
properties of P and p. Let [z],j > 1, be a sequence in P converging to
[2] € CP"~'. Multiplying the vectors zj by suitable scalars, we can assume
that lim z; = 2. Set n; = p([z;]) € S™ . Then

(1 A)z; = A1, A4) ;. (14)

By compactness of S™ 1 the sequence 7, has a converging subsequence, 7,.
Let n be its limit. By equation (14) and by continuity, (n7A)z = \(nTA)z.
Hence, z € P and p([z]) = n = limp([z;,]). Thus, P € CP"' is a closed
subset. Now, suppose that the sequence n; does not converge to 7. Then
there exists an open set U 2 1 and a subsequence of 7;, contained in S™ 1\ U
and converging to 77 # 1. By equation (14), (77A)z = M\.(77A)z. Thus
z€ Ep(nTA) N Ex(TA), a contradiction. Hence, p is continuous.

Next, we address the submanifold properties of P. For any open subset
V C S™ 1 set Py = p~ (V). We show that for any [2] € Py there exists an
open set U C CP"! containing [z], such that U NP = U NPy.. Assume the
opposite. Then there exists a sequence [z;] C P \ Py converging to [z] and
such that p([z;]) ¢ V for all j. But, by continuity of p, lim p([2;]) = p([z]) €V,
a contradiction. Thus, in order to prove that P is a submanifold [21, 2.7], it
suffices to show that for each € S™ ! there exists an open neighbourhood
V C 8™ ! of 5 such that Py is a submanifold. However, by the construction
below there is an open neighborhood V' (n) of 7 and a real analytic embedding
U, : V(n) x CP*~! — CP" " such that Py, = ¥,(V(n) x CP#~1). Thus
Py is a real analytic submanifold of cp.

We are now going to construct the embedding V¥,. According to The-
orem 3.7, there is an open neighborhood V' C S™~! of n € S™ ! and real
analytic functions z,...,2, : V. — C" such that z(7),... ,z,(n) is an or-
thonormal basis of Ex(77 A) for all 7€ V. Moreover, the differentials of the
z; satisty d,z;(€) = G, (z;(n),§), where

Gyt Ex(n"A) xnt — Ex(n"A)*, Gy(z,€) == (A" A) L, — 0" A)T (€7A4)2.

Note that for each z € Ey(n"A)\{0} the linear map G, (z,-) : n* — Ex(nTA)*
is injective since G,(z,€) = 0 with & € n*\ {0} implies that ((%A)z €
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E)(nTA). The latter fails by Proposition 3.10 iii) because (£7A)z € Ey(nTA)
and (§TA)z € (€TA)Ex(nTA). Let Z(7) = [21(7), - - ., 2,(m)] €C™*. Then Z(7)
is unitary and range(Z (7)) = Ex("A). Now define the real analytic map

UV xCP+! — CP" (7, [w]) = [Z([Mw].

Then U({5} x CP*') = P(E,("A)) for every n€ V. Thus ¥ is injective.
Its inverse ¥~!: Py — V x CP*~! has the form

U () = (D), [Z(p(D))2]), Izl =1

Thus ¥~! is continuous, and W is a homeomorphism onto its image.
We now show that an appropriate restriction of ¥ is an immersion. A
direct computation of the differential of ¥ at (n, [w]) yields

A ¥ (€,0) = Gy (Z(n)w, £) + Z(n)d ,

EEL(nTA)L €EL(nTA)

where £ €nt, d € T[w}(CIP’“_l =~ w™. The relation dg, ) ¥(£,6) = 0 implies
(&,6) = 0. Thus, dy w7 is injective. Therefore, for every [w] € CP#,
there exist open neighborhoods V,, ¢ V c S™ ' and U, C CP* ! of g
and [w], respectively, such that V|, «p, is an immersion. By compact-
ness, there are wi,... ,w, € CP*~! such that Uicj<r Un; = CP*~'. Set
V(n) == Micj<r V- Then V(n) x CP ! C Ui<j<r(Vio; X Uy;), and hence
the map ¥, := U|y(,)«cpr—1 is a real analytic immersion. But, ¥, is also a
homeomorphism onto its image, Py ;. Thus, ¥, is a real analytic embed-
ding.

The maps U, n€ S™ ! are local parametrizations of P. Their inverses
Ut Pygy — Vin) x CP# pe S™71, are bundle charts which endow
the triple (P,p, S™ ') with the structure of a real analytic projective fiber
bundle [21]. To see this first note that for each 1 € V(n) the restriction
U, g aray - P(ER(77A)) — {7} x CP*~! is the projectivization of a linear
isomorphism. Consider now two parametrizations

Uy s V() X CP' 7 = Py, Uy (0, [w]) o= [Zi(mw], = 1,2,

where Z;(7) is unitary. Suppose the sets V(1) and V(7)) overlap. Then
the change of charts satisfies W, ' o W, (77, [w]) = (7, [T(7)w]), where T'(77) :=
Z5()*Z1(n) is unitary, so that the transition function depends analytically
on 7. (See [21, Remark 2.5.7, Section 6.4].) O

The special case of Theorem 4.4, when p = 1 is especially useful.
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Corollary 4.6 Let A€ H(n)™. Suppose that for an index k # ”T“ and all
n € S™ ! the eigenvalue \i(nTA) is simple. Let ¢(n) = Ep(nTA) € CP™ !,
Y1) = Eny1-r(nTA). Then ¢,1p : S™1 — CP" ! are real analytic embed-
dings. They satisfy the identity ¢(—n) = (n). If j # k,n+ 1 — k then
H(S™ Y NP(E;(n"A)) = 0 for all ne S™ 1.

We conclude this section with a few remarks and examples. The following
example illustrates the fact that the condition k # ”T“ in Corollary 4.6 is
necessary.

Example 6. Let o, be the Pauli spin-matrices, and set

- 9 i G e

Then A\ (nTA) = 1, A\(nTA) = 0,A3(nTA) = —1 for all n € S%. Thus, all
eigenvalues are simple. However, for all € S? we have ¢(n) = Fy(nTA) =
C(0,0,1)T.

Let A€ H(n)™. Suppose that A has a block of eigenvalues of constant
multiplicity, u. The following proposition imposes some restrictions on the
parameters.

Proposition 4.7 Let the notation be as in Theorem 4.4, and let A€ H(n)™
satisfy the assumptions of the Theorem. Suppose that (k,m, p) # (1,n+1,%).
Then

m < 2(n — u). (15)

Proof: We use the notation of Theorem 4.4. Denote by dim the real
dimension. Then

2(n—1) =dimCP" ' > dim P = dim S"™ '+ dim CP* ' = m —1+2(u—1).

Suppose that dim CP" ! = dimP. Then P C CP"! is open. Since P is
closed, and CP"! is connected, P = CP"!. By Theorem 4.4, this is possi-
ble only if £ = 1, u =n/2. But then m =n + 1. O

Proposition 4.7 is proved in [10] by a different method. The following example
shows that if the eigenvalue in Proposition 4.7 is simple, then the bound in
equation (15) is sharp.

Example 7. (Compare with [10], page 395.) Set

X, = { {0"*1 g” xEC"l}CH(n).

X
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For all z,y€C" ! with 2*y = 0 we have

o | P e P P e TR

Hence, if A = (Ay,..., Ayn_1))* is a basis of X, over R, the largest and the
smallest eigenvalues of any n’A are simple.

Examples of A€ H(n)™ with a block of eigenvalues of arbitrarily high con-
stant multiplicity can be constructed via tensor products. The proposition
below does this for an important special case.

Proposition 4.8 Let B € H(n)™. Suppose that \i(n’ B) is simple for all
neS™ 1t Letr > u>1 be arbitrary, and let C € H(r) be a positive semi-
definite matriz such that \(C) = A\,(C) > X\s1(C). Set A; = B; ® C
for 1 < j <m, and let A = (Ay,... ,An)* € H(rn)™. Then M\i(nT A) has
multiplicity p for all ne S™ 1.

Proof: The eigenvalues of n7A are \;(n” B)A\;(C). O

For completeness we mention the method given in [11] to construct linear
families of hermitian matrices with eigenvalues of constant multiplicities.
Let m = p(n,C), where p(n,C) is defined as in [11]. Then there exists
a m-tuple U = (Uy,...,U,)* of unitary n x n-matrices such that n'U is
unitary for all € S™ !, Let Ag € H(n) and set A = (Ay,...,A,)* where
B 0 AU;
Ae = {UkAo 0
eigenvalues: let z € C™ be an eigenvector of Ay such that Agx = Agz. Then we

have for all ne 8™ (nTA) [2T, £((nT0)z)T|T = (£Xo) [2T, £((n'U)z)T]T.

]. Then all matrices nT A, n € S™!, have the same

4.3 Genericity of simple eigenvalues

This subsection deals with the likelihood of having eigenvalue crossing in
a linear m-parameters family of hermitian matrices, a problem initiated by
von Neumann and Wigner [24]. They correctly pointed out that, for m < 3,
eigenvalue crossing does not “in general” occur; here, we further prove the
openness and density of the noncrossing property in Proposition 4.10. The
dimension formula of Theorem 4.12 for a specific crossing pattern is available
in [24]; here, we further investigate the topological properties of the set of
matrices exhibiting the crossing pattern.

Let Ho(n, m) C H(n)™ be the set of A€H(n)™ such that for any n€R™\{0}
all eigenvalues of n7A are simple. The following statement is an immediate
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consequence of Corollary 4.3 and Corollary 4.6. We denote a disjoint union
by W .

Corollary 4.9 Let A € Ho(n,m). For 1 < k < n and n € R™\ {0} set
or(n) = Ex(n™A). For k # (n+1)/2 the maps ¢ : S™* — CP"' are real
analytic embeddings. We have C(Fy) = L««J,E(jf”m oR(S™7).

Corollary 4.9 is subordinate to the simplicity condition of all eigenvalues,
which as we show here below is generically satisfied when m < 3.

Proposition 4.10 Let m < 3. Then Ho(n,m) is open and dense in H(n)™.

Our proof of Proposition 4.10 relies on the Lemma and the Theorem below.
Let M be a differentiable manifold. A subset, N C M, has measure 0 if for
any coordinate chart U C M the Lebesgue measure of U N N is 0. If f :
My — M, is a smooth map of diffentiable manifolds, and dim M; < dim M,
then f(M;) C M, is a set of measure 0. See, e. g., [3, 23]. A submanifold
M C R" is R*-homogeneous if R*M = M, where R* := R\{0}.

Lemma 4.11 Let X be a finite dimensional real vector space, and let M C
X be a R*-homogeneous submanifold. Let N; be the set of j-tuples (x4, ... ,x;) €
X7 such that spanf{xy,... ,x;} N M # 0. If 1 < j < codim M, then N; C X’
has measure zero.

Proof: The projectivization of M is a proper submanifold (and hence a sub-
set of measure 0) of the projective space P(X). Thus the claim holds for j =
1. Now, let j be arbitrary. For £ = (z1,... ,2;) € X7, let X¢ be a subspace of
X such that X = X¢@span({) and let P¢ : X — X¢ be the linear projection
onto X¢ along span(¢). Furthermore, let Q;(§) = P¢(M) + span(§) € X. If
J < codimM, then dim M < dim X¢, and hence P¢(M) is a subset of measure
0 of X¢. Then, by Fubini’s Theorem, @); (£) is a subset of measure 0 of X. Let
z,7 € X and suppose that T ¢ span(§). Then Rz C span(¢, z) iff P£(Rz) =
P¢(Rr) iff x € PE(R7) + span(§). Using these equivalences with & € M, it
is straightforward to verify that the sets N; = {£€ X7 | M Nspan(€) # 0}
satisfy N; 11 = (V; x X)U{ (& 2)| € XI\N;, 2€Q;(€) }. Thus, we obtain
the following statement: If N; has measure 0 and j < codim M, then N,
as measure 0. But N; has measure 0. ]

For nq,... ,n, €N such that 22:1 n; =n, let H(n;nq,...,n,) denote the set
of AeH(n) such that A\;(A) = N\, (A) > Ny i1(A), Ayr1(A) = Ayng (A) >
)‘n1+n2+1(A>? etc.
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Theorem 4.12 Any H(n;nq,...,n,) is a real analytic R*-homogenous sub-
manifold of H(n). Furthermore,

codimH(n;ny, ... ,n,) = <Z;=1 n?) -

We defer the proof of this Theorem to Appendix B. Note that, if n; > 1
for at least one j, then codim H(n;ny,... ,n,) > 3. Equality holds if there
is an index jy such that n;, = 2 and n; = 1 for all j # j,. The union of
the H(n;ny,...,n,)’s over all sequences except 1,...,1 is the real algebraic
variety, V,, of hermitian n X n matrices with multiple eigenvalues. The
following corollary is immediate from Theorem 4.12.

Corollary 4.13 The variety V,, has codimension 3 in H(n).

Proof of Proposition 4.10: The set Hg(n, m) is open for arbitrary values
of n and m. Thus, it suffices to show that for m < 3 and n > 2 the set
Co(n,m) := H(n)™\ Ho(n, m) has an empty interior. By definition, Cy(n, m)
is the set of A € H(n)™ such that span{Ay,...,A,} NV, # 0. By Corol-
lary 4.13 and Lemma 4.11, Cy(n, 1), Co(n, 2), and Cy(n, 3) are sets of measure
zero in ‘H(n)™ for m = 1,2, 3, respectively. O

5 Convexity of numerical range

5.1 The highest eigenvalue and the convexity

The following theorem is the main result of this paper.

Theorem 5.1 Let A€ H(n)™ be such that \;(nTA), n€ S™ 1, has constant
multiplicity. Suppose, in addition, that \J, cgm—1 E1(n" A) # C™. Then F(A)

18 convez.

Remark 2. If the dimensional parameters of A€ H(n)™ satisfy the inequal-
ity (15), then, by the proof of Proposition 4.7, dim P < dim CP"~! and the
extra assumption in the above theorem is fulfilled. Thus, by Proposition 4.7,
the additional assumption is redundant, unless m = n+1 and the multiplicity
of the highest eigenvalue is n/2.

We will need the propositions below for the proof of Theorem 5.1.

Proposition 5.2 Let A € H(n)™. Suppose that the largest eigenvalue of
nTA,ne S™ Y has constant multiplicity. Then 0pF(A) C R™ is a real ana-
Iytic submanifold diffeomorphic to S™~1. Let s be as in Proposition 3.5, let
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S and q be as in Theorem 4.5, and define m := (Vs)oq: S — 0yF(A). Then
(8,7, 00F (A)) is a real analytic, locally trivial sphere bundle.

Proof: The claims follow from Theorems 3.8, 3.9, and 4.5. 0

We will need the following basic fact. For convenience of the reader, we
will sketch a proof.

Proposition 5.3 Let C € C,,, and suppose that int(C) # 0. Let xy €
int(C). Forx € R™ x # xy, let R(z) denote the ray from xy containing x.
Then R(x)NIC' consists of a unique point, r(x). The mapr : R™\{zq} — 0C
15 a continuous retraction.

Proof: We assume, without loss of generality, that o = 0. Set f(z) =
inf{t > 0| /t € C}. Then r(x) = z/f(x). The function f > 0 is convex,
hence continuous. See, e. g., [16, Theorem 2.1.23]. O

Proof of Theorem 5.1: Let S and 7 : § — 0dco(F(A)) be as in Propo-
sition 5.2. Assume that the claim fails. Then there exists a point yy €
int(co(F(A))) \ F(A). For y € R™\ {yo}, let r(y) be the point of inter-
section of the ray R(y) = { yo+t(y —vo) | t >0} with Oco(F(A)). By
Proposition 5.3, the map 7 : R™\ {yo} — Oco(F(A)) is a continuous retrac-
tion. By the additional assumption of Theorem 5.1, there exists a unit vector
20 € C"\S. Then (1 —t)z +tzg # 0 and Fa([(1 — t)z + t20]) # vo, for all
t€0,1] and any z€S. Thus, we have constructed the homotopy:

h:[0,1] x & — dco(F(A)), h(t,z) =ro Fs([(1 —t)z + tz]).

Since h(0,-) = m and h(1,-) is a constant map, it follows that 7 is homotopi-
cally trivial. Since 7 : S — 0dco(F(A)) is a sphere bundle over a sphere, the
latter is impossible. ! ([l

Remark 3. The examples of § 2.2 show that we cannot suppress the addi-
tional assumption in Theorem 5.1. Set A = (01, 09,03)*. Then the highest
eigenvalue of " A is simple for all n, but |, .. E1(n"A) = C?. Thus, the ad-
ditional assumption of the Theorem does not hold. And, indeed, F(A) = S2.

'We sketch a proof: The homotopy h : [0,1] x & — Jco(F(A)) has a continuous lift
g:]0,1] xS — S such that h = wog and ¢(0,-) = ids [33, Theorem 7.13]. The map ¢(1,)
has degree 1 and is therefore surjective [15]. The latter implies that h(1,-) is surjective
and hence non constant.
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As an application of the preceding results, we will provide a new proof of
the following known theorem [1, 8]:

Theorem 5.4 Let A€ H(n)™, where 1 < m < 3 and where n is arbitrary
unless m = 3, in which case n > 3. Then F(A) is conver.

We need some preliminaries. For any n,m let C(n,m) be the set of A €

H(n)™ such that F(A) is convex.

Proposition 5.5 The set C(n,m) is closed in H(n)™.

Proof: By Proposition 2.7, the mapping A — F(A) from H(n)™ to Iy, is
continuous. But C(n,m) is the preimage of the closed set C,, C IC,,. O

Proof of Theorem 5.4: The case m = 1 is trivial. For m = 2, this is
the celebrated Toplitz- Hausdorff theorem. See, e. g., [12]. We will prove
the claim for 2 < m < 3. The inequality m < 2(n — 1) makes the extra
assumption of Theorem 5.1 redundant. Thus, Ho(n,m) C C(n,m). Since
m < 3, Proposition 4.10 applies. Hence, C(n, m) is dense in H(n)™. But, by
Proposition 5.5, C(n, m) is closed. O

5.2 Stable convexity

Let ||-||s and ||- || » be the spectral norm and the Frobenius norm on the space
of n X n matrices, respectively. Let dg,dr denote the translation invariant
distance functions on H(n)™ defined by de(A, 0) = max,csm-1 ||n” Ao, where
e = S F. The following theorem is the main result of this Section.

Theorem 5.6 Let m > 4. Then
intC(n,m) = { AeH(n)™ | M(n"A)is simple for allne S™ ' }.
Let AeC(n,m). Then
V2dp(A,8C(n,m)) = 2dg(A,C(n,m)) = min (A (n7A) — Ay(nTA)).

nesm—1

We will need a few auxilliary results.

Lemma 5.7 Let m > 4. Let Ay €H(n) be such that dim Ey(A,) = 2. Set
N(A) ={ (A2,..., Ap) €H(n)™ " | F(A1, As, ..., Ayp) is not convex } .
Then N(Ay) is open and dense in H(n)™'.
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Proof: Set A = (A1, Ay,...,A,)". Let (21,22) be an orthonormal basis
of E1(Ay). For 1 < j < m, let B; be the Gram matrix of A; with respect
to (21,22). Then By = A\(Ay)ls. Set B = (Bs,...,B,)*. By Example 2,
B = Mo + pl,, pe R™!, where

%(Z;Ang) %(Z;Ang) %(ZTAQZl — Z;AQZQ)
M = : : : c R(m—l)xi’,.

R(z5Amz1) S(z5A521) %(z’fAmzl—z;Ang)

By Proposition 3.5 and Example 2, F(A)NH(e1, \i(A41)) = F(A, E1(Ar)) =
F(Bi,...,Bn) = { (A1)} x (M(S?%) + p). If this intersection is not convex
(that is, rank(M) = 3 by Example 2), then F(A) is not convex. It follows
that M (A;) contains those (As, ..., A,)* €H(n)™ ! such that rank M = 3.
Hence, the complement of N(A;) is contained in a closed subvariety of

H(n)™ L. O

Proposition 5.8 Let m > 4. Let A€ H(n)™ be such that dim E;(nTA) > 1
for some ne S™ 1. Then either F(A) is nonconvez, or A € 9C(n,m).

Proof: We can assume that A; is diagonal and dim E;(A;) > 1. Suppose
that A € C(n,m). Let A] be a diagonal matrix such that dim E£;(A4)}) =
2. By Lemma 5.7, arbitrarily close to (A}, As..., A,,)", there are A’ =
(A}, AL . AL ) € H(n)™ \ C(n,m). Since A} can be chosen arbitrarily
close to Ay, we obtain a sequence A®) € H(n)™\ C(n, m) converging to A. [J

Let M C H(n) be the set of M such that \;(M) is a multiple eigenvalue.
Lemma 5.9 Let AgeH(n). Then
V2dp(Ag, M) = 2ds(Ag, M) = A\ (Ag) — Aa(Ay). (16)

Proof: Let A, B€H(n) be arbitrary. Then ||[A — Bl|s > |[M(A) — M\(B)|
for any 1 <k <n, and ||A— B||% > >7_,(A(B) — Me(4))% See, e. g., [30,
Cor. 4.10, Cor. 4.13]. Applying this to a pair Ay, M, where M € M, we
obtain 2d5(140, M) Z |/\1(A0) — )\Q(AQ)|, QdF(A(), M)2 Z ()\1(140) — /\2(140))2.
This yields lower bounds on the distances in equation (16).

The distance functions are invariant under the conjugation by unitary
matrices. The set M is also invariant. Hence, we can assume that Ag is
diagonal. Letting M vary over the set of diagonal matrices in M, we attain
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the bounds. O

Proof of Theorem 5.6: Let S(n,m) C H(n)™ be the open subset of A’s
such that \;(nTA) is simple for all n € S™1. By Theorem 5.1, S(n,m) C
C(n,m). By Proposition 5.8, C(n,m) \ S(n,m) C dC(n,m). This proves the
first claim. The second is immediate from Lemma 5.9. U

6 Conclusion

The main point of this paper is that, in view of the no crossing criterion
for the largest eigenvalue of a family of matrices parameterized by a sphere,
convexity of the joint numerical range is essentially a topological issue. This
“noncrossing” issue is in fact very general and appears in a variety of other
problems—e.g., system balancing [32], quantum mechanics [24], etc.

7 Appendix A

We will derive Theorem 3.7 from the following result.

Theorem 7.1 Let Ay € Hy,(n), and let Ao = A\i(Ao). Let (vor, ... ,vo,) be
an orthonormal basis of Ex(Ag). Then there exists an open neighbourhood
U C H(n) of Ay and real analytic functions v; : U — C", 1 < j < p,
such that for any A€ U the vectors vi(A),... v, (A) form an orthonormal
basis of Zf:l’j_l E;(A) satisfying (v1(Ao), ... ,v.(Ao)) = (vor,-.. ,vou). The
differential of v; at Ay satisfies

dAOUj(A) = (/\Oln — Ao)TAUQj, AEH(TL) (]_7)
Proof: Let Vg := [vo1, ... , vp,] €C™#* and
h:C"" — H(p), h(V) = 3(VyV = V* ).

Note that h is onto since h(—$VoX) = X for all X € H(u). Therefore

dimgker h = 2nu — p*. (18)
Let
i H(n) X (ker b x C%F) — C™ x H(w),  f(A, (V,L)) = [AY - VL] .
ViV~ 1,

28



We are going to prove the theorem by applying the implicit function theorem
to the equation f(A, (V, L)) = 0. By our assumptions on V;, we already have
(Ao, Vo, Aol,)) = 0. The differential of f at (A, (V, L)) is

AV 4+ Ay — Ayl — VA
dawviey f(Ar, Az, Ag) = { 1 A§V2+ V*ZAz 3} ’

where (A1, Ay, Ag)€H(n) x (ker b x CF*#). In particular

Ao — ML) Ag — VoA
Ao A — ( 0 04in 2 083 .
d(Aoy(Vo,koIH))f(Oa 2 3) |: A§Vo i V.O*AQ

The columns of V) form an orthonormal basis of ker(Ag — Agl,,). Thus [, —
VoV is the orthogonal projector onto (ker(Ag — Aol,))*. Hence

(AO_)\O )(AO_)\O ) (AO_/\O )(AO_)\O ):In—%%*

Using this fact, it is easily verified that
1 t . X
d(Ao,(Vo,)onH))f 07 QX/OY + (AO - AOIn) X) _‘/E) X - Y

for all X e C™** | Y € H(p). Thus the map
d(Aoa(Vo,kofu))f (0, ) ) s ker h x CHH — C™ x H(M)

is onto. However, from (18), it follows that ker h x C*** and C™** x H(u)
have the same real dimension. Thus d(a,,(v.1,)).f (0, -, -) is bijective and

_ 1 A
(d(AO’(V(”)‘OIH))f(O"") 1) (K/{]) B { %Y+(—‘% X)\O ) X .

Now, the implicit function theorem for real analytic functions [4, Theorem
10.2.4] yields existence of a neighbourhood U’ C H(n) of Ay and a real
analytic map (V,L) : U — C™*" x H(u) such that

(V(Ao), L(Ao)) = (Vo, Aoly) (19)
and
o] = 7 e,z = U UHA 20
for all AcU’. The differential of the map (V, L) at Ag is given by
[Zi(;‘[féﬁ))} - (d(Ao,(Vo,Aqu))f(Oa g '))_1 dao,(Voror, ) f(4A,0,0)
— T
= { (AOVOAAOVO) AVO] : AeH(n). (21)
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Let (x1(A),... ,z,(A)) be an orthonormal basis of eigenvectors of L(A) such
that

L(A)x;(A) = N\ (L(A)) z;(A), j=1,..., 4.
Then it follows from (20) that (V(A)z1(A),...,V(A)z,(A)) is an orthonor-

mal system of eigenvectors of A corresponding to the same eigenvalues. Thus
DML, A(LIANY S (A Aa(A)} (22)

By (19) we have
M(L(Ag)) = ... = Au(L(A)) = Ao = Me(Ao) = ... = Nepu—1(Ao). (23)

The eigenvalue functions A — \;(A) are continuous . Hence (22), (23) and

the fact that \g # A\(Ap) for £ & {k,... ,k+ pu— 1} imply that

)‘J(L(A)) = )‘kJrjfl(A)? J=L1...p (24)
N(L(A) # A(A), L&k k+p—1; (25)

for all A in a neighbourhood U C U’ C H(n) of Ay. Therefore

range V' (A) = span{V (A)z1(A),... ,V(A)z,(A)} = Z E;(A). (26)

j=k

Finally, let v;(A) denote the j* column of V(A). Then by (19), (21) and
(26), the functions v; : U — C™ have the properties required in the theo-
rem. 0

Proof of Theorem 3.7: Using charts, the proof of Theorem 3.7 can be
reduced to the case where the manifold M is an open subset of a real Banach
space X and H : M — Hy, ,(n) is a C"-map, 7€ N* U {oo, w}.

Let zg € M and let (2o, . .. , 20,) be an orthonormal basis of the eigenspace
Ex(H(zp)). As in Theorem 7.1, choose an open neighbourhood U C H(n) of
H(xy) and functions v; : U — C", j =1,...,p, such that

(01(H (20)), - vu(H(20))) = (201, - - - ; Z0p)-

Set z; = vj o H|y,, where Uy = H (U N Hy u(n)). Then (z1(z),. .., z,.(z))
is an orthonormal basis of Ej(H (x)) for all x € Uy. Applying the chain rule
to (17), we obtain

duy2(€) = (\e(H (20)) In — H(x0)) doy H(§) 205, §€To,M = X, (27)
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Now set w(z) = Y i_ a;z(z) and z(z) = Y7/_, Bzj(x), where ay, 3; € C.
Then, for all z€ Uy,

(Mg o H)(x)w(z) z(x) = w(z) H(x)z(x). (28)

Moreover, the function = — w(x)*z(x) = >7/_, @;f; is constant. Differenti-
ating the relation (28), we obtain

dz(A 0 H)(§) w(x)"2(z) = w(x)'d.H(¢)z(v)
(

= w(x)'dH(E)z(2).
In the special case z(x) = w(z), ||z(z)|| = 1, we have
dz (A 0 H)(E) = 2(x)"do H (£)z ().

Suppose now that H is twice differentiable. Set g(z) = z(x)*d,H (&1)z(x) for
a fixed & € T, M. Differentiating g, we obtain the second derivative of A\ o H
as

dy (M 0 H)(&1, &) = dog(82) = 2(2) A2 H (&1, &) 2(x) + 22(2)"do H (€1)da2(82)-

From (27), it follows that d,2(&) = (M (H (x)) I, — H(z))'d, H (&) z(z). Com-

bining the latter two equations, the final result follows. O

The above theorem says that, if M(z) € Hy,(n) is a smooth family,
then the eigenvectors associated with the constant multiplicity eigenvalue
A(M(x)) are still smooth, whereas, in general, the eigenvectors associated
with a smooth family cannot even be guaranteed to be continuous (see [20,

Remark 11.6.9]).

8 Appendix B

Proof of Theorem 4.12: Let n,n4,...,n, € N be such that >, _,n, =
n. Set D = { diag(pu1lny, .- s prdn,) | uk€R, g > ... > p, } C H(n) and
D' = { diag(As,... . 4,) | AgeCm>™ } C C™™. It is easily seen that D’
is the centralizer of each element of D in C"*", i.e., for all D € D and all
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MeCY™™ MD = DM ifft M eD'. By U(n) we denote the set of all unitary
n X n matrices. It is a compact connected real Lie group of real dimension
dimg U (n) = n?. Its tangent spaces are

ToU(n) ={ JAU | AeH(n)}, UelU(n).
D is a submanifold of H(n) of dimension dimg D = r. Its tangent spaces are
TpD = { diag(611n,, ... ,6,1n) | Ss€RY, DeD.

In order to show that H(n; ni,... ,n,) is a submanifold of H(n), we consider
the map

¢ UM) x D — H(n), (U, D):=UDU".

Obviously, H(n; ny,...,n,) = ¥ (U(n) x D). We will show that the differ-
ential of ¢ has constant rank p, where p :=n? +r — >, n2. To this end,
we need the following easily verified lemma.

Lemma 8.1 For U € U(n) and A € H(n) set fu(A) = UAU*. Then fy :
H(n) — H(n) is a linear isomorphism of H(n), and we have for all D €D,

{ AcH(n) | AY(U.D)=v(U,D)A} = fulD' A Hm)).
Moreover, dim fy (D' NH(n)) = dim (D' N H(n)) = >, _, ni.

The differential of the real analytic map ¢ at (U,D) € U(n) x D in the
direction (A1, Ay) = (AU, diag(011,,, ... ,0,:1,,) ) €Tyl (n) x TpD is

dwpyb(A1,Ay) = A DU* + UDA} + UAU*
JAY(U, D) = (U, D)A) + UAU”
= UQ(fi(A)D — Dfy(A)) + As)U™.

Since the diagonal elements of f{5(A)D — D f5(A) are zero, the lemma above
yields that the kernel of the differential d(ypyy @ TyU(n) x TpD — H(n)
is ker dwpyp = { (JAU,0) €Ty (n) x TpD | A€ fu(D'N'H(n)) }. Thus,
rank dypyy) = dim (U(n) x D) — dimker dpy = p. We will need the fol-

lowing fact.

Proposition 8.2 Let (Uy, Dy) €U(n) x D and let V C U(n) x D be an open
neighbourhood of (Uy, Dy). Then there is an open neighbourhood W C H(n)
of w(Uy, Dyg) such that (V) NW =H(n; nq,... ,n,.) NW.
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Proof: Suppose the claim fails . Then there are sequences Dy, € D, U, €U(n)
such that (a) limg_o ¥(Uyg, D) = ¥(Uy, Do), and (b) ¥(Uy, Dy) € (V') for
all k. Since the eigenvalues are continuous functions it follows from (a) that
limy_,oo Dy = Dy. Since U(n) is compact, we can assume that limy_,., Uy =
U for some U € U(n). Consider now the sequence U, = U,U*U,. We
have limy_, ﬁk = Up. From the relation @Z)(ﬁ, Dy) = limg_.oo ¥(Uy, Dy) =
¥(Uy, Dy) it follows that ﬁ*Uo € D'. The latter implies that ¥(Uy, Dy) =
w(ﬁk,Dk) for all k. Thus, by (b), (ﬁk,Dk) ¢ V for all k, a contradiction. [J

We are now in the position to show that H(n; n, ... ,n,) is a submanifold
of H(n) of dimension p. Let ¢ = dim(U(n) x D) and (Uy, Do) €U(n) x D.
Recall that dimH(n) = n?. We have seen that the differential of 1 has
constant rank p. By the Rank Theorem [4, Theorem 10.3.1],[21, Theorem
2.5.3] there are neighborhoods V' of (Uy, Dy) and W of 1(Uy, Dy) and analytic
diffeormorphisms ¢y : V — ¢1(V) C RY, ¢y : W — ¢o(W) € R” such that
for all (z1,...,2q)€p1(V),

¢Qowo¢f1(x1,... Tq) = (Y1, .Y, 0,...,0).

Thus ¢o(W N(V)) = R? x {0}. By Proposition 8.2 we may assume that
Wny(V)=WnH(n; ni,...,n,). Hence ¢s is a chart for H(n; ny,... ,n,)
about ¥(Up, Dy). O
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