
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Why verb-initial languages are not

frequent

by

Andre Grüning

Preprint no.: 10 2003

Why verb-initial languages are not frequent

André Grüning∗

Max-Planck-Institute for Mathematics in the Sciences
Inselstr. 22–26

D-04103 Leipzig, Germany

February 7, 2003

Abstract

In our simulations with simple recurrent networks we demonstrate that
small artificial languages are learnt worse or better depending on their
basic word order. We show that verb-initial languages are difficult to learn,
reflecting the lower frequency of verb-initial natural languages.

We try to go beyond mere simulations proposing two objective mathe-
matical measures to explain our results.

1 Introduction

Basic Word Order Most natural languages can be assigned a basic word
order, the order in which verb V, (non-pronominal) subject S and a possible (non-
pronominal) direct object O appear in simple declarative sentences. English e.g.
is an SVO-language, while Welsh (generic: “Lladdodd y ddraig y dyn.” / killed
the dragon the man, i.e. “The dragon killed the man.”) is VSO and Japanese is
SOV (generic: “Gakusei-ga hon-o yonda.” / student book read, i.e. “The student
read a book.”)).

The six possible orders of S, V, O are not equally frequent in the world’s
languages [13], see table 1.

Connectionism We want to follow the connectionist approach assuming that
complex (linguistic) behavior can be explained better by sub-symbolic computa-
tion using neural networks rather than symbolic rules.

While traditional linguists ascribe the similarity of natural languages to some
innate hard-wired universal grammar (UG), the connectionist belief is that rule-
like behavior emerges from the cooperation of many simple neurons.

∗e-mail: gruening@mis.mpg.de

1

http://personal-homepages.mis.mpg.de/gruening/index.html
http://www.mis.mpg.de
mailto:gruening@epost.de

order frequency H(3|2) − H(3|21) states

SVO 42% 0 10
SOV 45% 0.218 10
VSO 9% 0.817 15
VOS 3% 0.820 15
OVS < 1% 0 8
OSV < 1% 0.193 10

Table 1: Information loss as difference of conditional entropies and the number
of states of the minimal FSA.

There has been a lot of work to show that UG rules need not be hard-wired but
emerge in a natural way in trained neural networks. These network simulations
are paralleled to natural linguistic behavior: Networks learn a particular rule
better (worse) which is a hint why this rule is (not) preferred for natural language,
too. This is what we do for basic word order in section 2, for subjacency see [4].

In fact, one only shows that a rule is learnt better/worse by this one particular
network type with this one particular learning rule. Sometimes one feels the need
to have a deeper explanation for this, making the connection to natural language
stronger. This does not mean that we want to go back to formal grammar. We
rather think in terms of dynamical systems, compare [11, 1].

Processing language means translating hierarchical structured data to a time
series and vice-versa. It is our conviction that natural measures of complexity
for times series can be found that are relevant for natural language. In the best
case we hope these measures assign a low complexity to rules that are frequent
in natural languages showing that not innate principles but more general natural
principles form natural languages.

Some steps in this direction are undertaken in section 3.

2 Simulations

Simple recurrent networks (SRN) [5] are a simple type of recurrent artificial
neural networks. They have an explicit short-term memory ranging back one time
step, but develop during training a short-term memory that can implicitly extend
further back in time [6].

Lexicon Our lexicon consists of a small number of verbs and nouns, see tables 2
and 3. For the sake of simplicity we do not model inflection or articles. Each entry
can have special properties; cry e.g. takes no object and as subjects only those
nouns that denote human beings, whereas break does not impose any restrictions

2

either on its subject or object. The labels in the lexicon are chosen arbitrarily,
but in a way resembling their real world counterparts.

Grammar In contemporary grammar theory, the verb as the predicate is con-
sidered the most important part of a sentence [3, 12] and assumed to select its
arguments (here subject and object). Even though a certain subject may restrict
the possible objects of a verb and vice-versa, as a first approximation the verb is
regarded to select its arguments independently.

Building a sentence To build a sentence a verb is chosen (with a chance
of 1 : 10 as there are ten verbs), then its arguments are selected with appro-
priate chances according to the subcategorizing properties. The probability for
optionally transitive verbs to take an object is 0.5. 182 different sentences can be
generated, each with a certain probability. Two examples are given in table 4.
We should rather speak of sentence templates than sentences as the word order
is not yet defined.

Building a corpus A corpus of templates is constructed choosing 10000 sen-
tence templates according to their probability and output in the six possible
basic word orders to give six differently ordered corpora (SVO, SOV, ...). To
each sentence an end-of-sentence marker is added.

Training SRN The network consists of input and output layer and one hidden
layer. There are input and output neurons corresponding to each word and the
end-of-sentence marker. In our case there are 17 each.

The corpus is presented to the network word by word using unary coding,
and its task is to predict the next word by activating the corresponding output
neuron. As there is an ambiguity in what the next word will be – there are
sentences starting with the same words but ending in different ones –, what the
network really will learn to predict is the probability distribution of possible next
words in the context of the preceding ones. As usual, to check if the network

label property

book -
dog a
house -
man h
mouse a
woman h

Table 2: Nouns in the lexicon. Properties: a = animal, h = human, - = none

3

label transitive subject properties object properties

break optional - -
call optional h a ∨ h
chase yes a ∨ h a ∨ h
cry no h -
destroy yes - -
eat yes h a
kill yes a ∨ h a ∨ h
move optional a ∨ h -
run no a ∨ h -
see yes a ∨ h -

Table 3: Verbs in the lexicon. Required argument properties: a = animal, h =
human, - = none

has succeeded in learning, the mean square error (MSE) between the networks’
output activations and the probability distribution in the corpus is computed and
used as the error signal for Elman backpropagation [5].

For each of the six corpora 100 Urns are initialized and trained for 100 epochs
with a learning rate of 0.2. The nets turned out not to be very sensitive to
variation in learning rate or a momentum different from 0. The whole experiment
is repeated for nets with sizes of the hidden layer between 5 and 100.

Results The averaged MSE for 100 networks with 9 hidden neurons are printed
in figure 1 up to epoch 20 (there are no qualitative changes after 20 epochs). This
curve is generic for networks with a size of the hidden layer between 5 and 20.
For the sake of clarity confidence intervals have been left out.1 For networks with
less than 5 hidden neurons, the errors become exceedingly high, so they fail to
learn the languages at all.

We observe that the verb-initial languages are learnt much worse than the
subject- or object-initial ones, furthermore VOS is learnt better than VSO.

The subject- and object-initial languages are learnt almost equally well: OVS

performs slightly better than OSV and SOV, and SVO slightly worse.

1The statements in this section are with confidence of 95% or better.

sentence probability

man eat mouse 1/40
house break 1/120

Table 4: Two sentences from the corpus in SVO order and their probabilities.

4

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20

M
S

E

Epochs

SVO
SOV
VSO
VOS
OVS
OSV

Figure 1: Simulation results, Elman network with 9 neurons in the hidden layer

Examining the output activations more closely, we note that the networks
fail to learn to look back in time for more than one time step accurately enough:
In a verb-initial language e.g., after the first noun the end-of-sentence marker is
always activated to a small but above-background extent, irrespective of whether
the verb is transitive or not. Similarly in SVO, the networks fail to distinguish
subject and object position predicting to some degree another verb to follow after
the object or end-of-sentence already after the subject.

For networks with more than 20 hidden neurons the differences between all
the languages diminish more and more, whereas the MSE do not fall significantly
but remain constant at about 0.005. Since with the size of the hidden layer the
short-term memory capacity of the networks grows, why nets with a big hidden
layer neurons have less difficulty to learn the verb-initial languages.

3 Measures of Complexity

Entropy An objective measure for the amount of information contained in a set
of symbols (e.g. letters, words, sentences) each appearing with certain probability
is the information entropy [8].2 The higher the entropy the more difficult it gets
to predict the next symbol correctly.

Using the probabilities of the 182 different sentences in our corpus the set of

2We calculate the entropies using log2, then the entropy equals the average number of bits
for identifying a single symbol, if an optimal code were used.

5

sentences has an information entropy H0 = 6.814. It holds

H0 = H(1) + H(2|1) + H(3|21),

where H(1) is the entropy for predicting the first word, H(2|1) the conditional
entropy for predicting the second word knowing the first one, and finally H(3|12)
denotes the conditional entropy for predicting the third word knowing both the
first and the second one.

Assuming that it is harder to keep more items in mind a longer time (this
applies to SRNs and to human beings), an interesting question is how much
information we lose, if we can look back in time only one step. For each language
type we have therefore calculated H(3|21) and the entropy H(3|2) for the third
word, knowing only the second one. The difference H(3|2) − H(3|21), i.e. the
loss of information is printed in table 1 (see [9] for similar ideas).

SVO and OVS are in this sense optimal as no information is lost reflecting the
fact that S and O are selected independently. Knowing V and additionally S does
not give more information about O than knowing V alone, and vice-versa.

The verb-initial languages have the biggest information loss, making them
more difficult to predict. The information loss for SOV and OSV is smaller.

Counting States To the degree considered here, basic word order is a linear
phenomenon, i.e. no recurrence is involved. Our languages can be produced
and recognized by finite state automata (FSA) [10]. It has been shown that
neuronal networks simulating an FSA must develop a representation of the states
of the FSA [2] in their state space3. This implies that regular languages with a
smaller minimal FSA are learnt easier as the lower number of states imposes
fewer constraints on the state space dynamics of the neuronal network. 4

Whereas the minimal automate for subject and object initial language have
a comparatively low number of states, verb-initial language require more states
(table 1). This again is due to the fact that the verb selects its arguments. So
if the verb comes first more information (i.e in VOS about the subject) has to be
stored a longer time (as the subject intervenes verb and subject), see figures 2
and 4.

4 Conclusion

We derived from a small lexicon a simple corpus of two and three word sentences.
This corpus with six possible different word orders was fed into Elman networks
as a word prediction task. We computed conditional entropies and the minimal
FSA for each language.

3But it is not guaranteed that the minimal FSA is learnt, see e.g. [7]
4We belief other factors to be involved, too, as e.g. the number and similarity of transition

between the states, the number of different input symbols and so on.

6

Start s(a)
dog, mouse

s

book, house

s(h)

man, woman
o(ah)

chase, kill

o

destroy, see

oo

break, move

f

run

destroy

break

o(a)
eat

chase, kill

destroy, see

oo(ah)call

break, move

cry, run

{obj(a)}

{obj(ah)}

{obj}

{obj(ah)}

to Start

EOS

{obj}

EOS

EOS

Figure 2: Minimal Automaton for SVO, and the VOS language respectively.

The computer simulations, entropies and the FSA demonstrate that verb-
initial languages are more difficult to learn or have a higher complexity than
argument-inital ones. The precise order within this groups varied, but is more
similar for the members within each group than to any language outside the
respective group.

Leaving aside the object-first languages (OSV, OVS, VOS) for a moment, the
simulations as well as the additional considerations about entropy and FSA reflect
the frequency distribution of word orders in the world’s languages. Our theoreti-
cal consideration back-up the simulations and yield a measure of complexity that
is indepent of the particular network type and learning rule.

Why did our approach fail for the object-first languages? It is clear from the
construction of our corpus, that object and subject are treated almost symmetri-
cally. Thus results should be comparable when subject and object are exchanged.

But why are object first language so rare then in the real world? Our setup is
such that only syntactic phenomena can be captured. Invoking now pragmatics
we argue here that in real languages it might be useful to include subjects, which
often give the topic, in the beginning of a sentence to enable the early use of

Start

v1
destroy

v2break

s(h)

cry

v4
eat

v5
call

v6

sea

s(ah)

run

v7

chase,kill

v9

move

f to Start
EOS

s
{obj}

{subj}

os

{obj, subj}

{subj}
EOS

{subj(h)}
{obj(a)}

{obj(a)}

os(h)

{obj(h), subj(h)}

{subj(h)}

EOS

{obj}

{subj(ah)}

{obj(ah)}

{obj(d)}

os(ah)

{obj(ah), subj(ah)}

{subj(ah) EOS

Figure 3: Minimal Automaton for VOS

7

contextual information, breaking the symmetry between subject and object.

References

[1] Mikael Bodén, Janet Wiles, Bradley Tonkes, and Alan Blair. Learning to
predict a context-free language: Analysis of dynamics in recurrent hidden
units. In D. Willshaw and A. Murray, editors, Proceedings of the Nineth
International Conference on Artificial Neural Networks (ICANN 99), pages
359–364, 1999.

[2] Mike Casey. The dynamics of discrete-time computation, with application
to recurrent neural networks and finite state machine extraction. Neural
Computation, 8:1135–1178, 1996.

[3] Vivan J. Cook and Mark Newson. Chomsky’s Universal Grammar. Black-
well, Oxford, 2nd edition, 1996.

[4] Michelle R. Ellefson and Morton H. Christiansen. Subjacency constraints
without universal grammar: Evidence from artificial language learning and
connectionist modeling. In The Proceedings of the 22nd Annual Conference
of the Cognitive Science Society, 2000.

[5] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14:179–211,
1990.

[6] Jeffrey L. Elman. Distributed representations, simple recurrent networks,
and grammatical structure. Machine Learning, 7:195–225, 1991.

[7] C. L. Giles, C.B. Miller, D. Chen, H.H. Chen, G. Z. Sun, and Y .C. Lee.
Learning and extracting finite state automata with second-order-recurrent
neural networks. Neural Computation, 4:393–405, 1992.

[8] Stanford Goldman. Information Theory. Prentice Hall, New York, 1953.

[9] Peter Grassberger. Toward a quantitative theory of self-generated complex-
ity. International Journal of Theoretical Physics, 25(9):907–938, 1986.

[10] John E. Hopcroft and Jerrey D. Ullmann. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Mass., 1979.

[11] Cristopher Moore. Dynamical recognizers: Real-time language recognition
by analog computers. Theoretical Computer Science, 201, 1998.

[12] Carl Pollard and Ivan A. Sag. Head-driven phrase structure grammar. Univ.
of Chicago Pr., 1994.

[13] R.S. Tomlin. Basic Word Order: Functional Principles. Croom Helm, Lon-
don, 1986.

8

	Introduction
	Simulations
	Measures of Complexity
	Conclusion

