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A three-dimensional thermoviscoelastic system derived from the balance
laws of momentum and energy is considered. To describe structural phase
transitions in solids, the stored energy function is not assumed to be convex as
a function of the deformation gradient. A novel feature for multi-dimensional,
nonconvex, and non-isothermal problems is that no regularizing higher order
terms are introduced. The mechanical dissipation is not linearized. We prove
existence global in time. The approach is based on a fixed-point argument
using an implicit time discretization and the theory of renormalized solutions
for parabolic equations with L1 data.

1. INTRODUCTION

This article is concerned with global solvability of an initial-boundary
value problem in three-dimensional thermoviscoelasticity arising from the
theory of solid-solid phase transitions. We consider a three-dimensional
body, identified with its reference configuration Ω in IR3. Here, Ω is as-
sumed to be a bounded, nonempty domain with Lipschitz boundary. Let
T > 0 be an arbitrary, but fixed time. The thermomechanical evolution of
the body will be described in terms of the deformation field u: Ω× [0, T [→
IRn and the temperature field θ: Ω× [0, T [→ IR. The evolution of the body
also depends on the stored energy function Φ(F, θ): Mat (n × n) × IR → IR
which enters the equation through the stress tensor σ(F, θ) = ∂Φ(F,θ)

∂F .
The balance laws of momentum and energy ultimately lead to the non-

linear coupled system

utt = Div (σ(∇u, θ) + ∇ut) in Ω×]0, T [, (1a)
θt = ∆θ + θσθ(∇u, θ) : ∇ut + ∇ut : ∇ut in Ω×]0, T [. (1b)
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Initial and boundary conditions are specified in Section 2. Remarks about
the derivation of this system follow at the end of this section.

To model phase transitions, we do not assume σ to be monotone in F
for temperatures below the critical temperature (i.e., the temperature at
which the phase transition occurs). Hence, the stored energy Φ will be
nonconvex as a function of F below the critical temperature.

Some remarks about the peculiarities of this model and related systems
are in order. From now on, we will focus on systems with nonconvex
energies. Equations of thermoviscoelasticity with convex energy have been
considered in [2], where renormalized solutions are used to show existence
of a solution. We will rely heavily on this machinery and comment later
on differences between convex and nonconvex energies. The novelty of
the existence result presented in this paper (Theorem 3.1) is that, to our
knowledge, all previous results for similar systems with nonconvex energies
either

(i) study the one-dimensional case, i.e., Ω = [0, 1],

or

(ii) in the multi-dimensional case, concentrate on the isothermal problem
or include capillarity-like higher-order terms that have a regularizing effect.

Even under these assumptions, it has been remarkably difficult to prove
global existence. Let us highlight a few results.

– The one-dimensional case has been studied for a long time. See, e.g.,
[6, 7, 17, 5]. Recent advances have been made in [22], where rather weak so-
lutions are considered. In the remarkable paper [26], Watson studies solids
as well as gaseous materials. It is important to notice that all these results
do not carry over to the multi-dimensional case: though very different
techniques are used throughout these papers, the crucial step is always a
bound of ux in L∞ (Ω; IR). In higher space dimensions, even in the isother-
mal case, this estimate is wrong unless one imposes rotational invariance of
Ω or physically unrealistic smoothness assumptions on the given data [24].

– The three-dimensional isothermal case has been studied by Rybka [23].
Among others, he proves existence and uniqueness of a solution in the
multi-dimensional isothermal case for Lipschitz continuous σ. Later, this
result has been generalized by Friesecke and Dolzmann [14] to allow a more
general kind of nonlinearity in σ. Our proof uses the ideas developed in
[14]. The main difficulty to generalize their results to the non-isothermal
case is the mechanical dissipation ∇ut : ∇ut in the heat equation.

– The three-dimensional, non-isothermal case including capillarity-like
higher-order terms has been an open problem for some years until recently
Paw�low and Żochowski [19] proved global existence. The proof relies on the
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observation that the higher-order term allows a parabolic decomposition of
the equation of motion. Preliminary results were, for example, obtained in
[15].

System (1a)–(1b) is derived from the the balance laws of momentum and
energy,

utt = Div (σ(∇u, θ) + ∇ut) in Ω×]0, T [, (2a)
−θΦθθ (∇u, θ) θt = ∆θ + θσθ(∇u, θ) : ∇ut + ∇ut : ∇ut (2b)

in Ω×]0, T [.

In Section 2, the assumptions on Φ are listed. In particular, by (E2), one
has

−θΦθθ (∇u, θ) = 1 − θφ′′(θ)Φ1(F ).

For physical reasons, one expects φ(θ) to be linear in θ. In this case, 1 −
θφ′′(θ)Φ1(F ) = 1, which means that (2a)–(2b) reduces to the system (1a)–
(1b) under consideration. Yet, the growth conditions we must impose allow
Φ to be linear only in an arbitrarily large, but fixed range of θ, so (1a)–(1b)
represent the balance of energy within this restricted range. This explains
why we replace the nonlinear term 1− θΦθθ (∇u, θ) by 1 and consequently
study the system (1a)–(1b) as an approximation of the full system (2a)–
(2b).

It should be noted that the viscous part ∇ut of the stress tensor is not
frame-indifferent. This is a typical weakness of multidimensional models of
thermoviscoelasticity that are analytically tractable.

We will use a self-explanatory notation for Lebesgue and Sobolev space.
E.g., L1 (Ω; IRn) denotes the class of Lebesgue integrable functions defined
on Ω with values in IRn. Time-dependent function spaces will be denoted,
e.g., W 1,2

(
0, T ; W 1,p (Ω; IR)

)
.

To prove global existence of a solution to the system (1a)–(1b), we com-
bine methods developed in [14] (to deal with the nonconvexity) with the
theory of renormalized solutions in classical thermoviscoelasticity (to deal
with the mechanical dissipation; see in particular the paper by Blanchard
and Guibé [2]).

2. THE INITIAL-BOUNDARY VALUE PROBLEM

The system (1a)–(1b) has to be furnished with appropriate initial and
boundary conditions. We study the initial-boundary value problem

utt = Div (σ(∇u, θ) + ∇ut) in Ω×]0, T [, (3a)
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θt = ∆θ + θσθ(∇u, θ) : ∇ut + ∇ut : ∇ut (3b)
in Ω×]0, T [,

u = g on ∂Ω × [0, T [, (3c)
u = u0 in Ω × {0}, (3d)

ut = v0 in Ω × {0}, (3e)
θ = 0 on ∂Ω × [0, T [, (3f)
θ = θ0 in Ω × {0}. (3g)

Here, g, u0, v0 and θ0 are given functions. Their regularity is specified in
Section 2.1. The boundary condition θ = 0 on ∂Ω seems to be inappropri-
ate, since this corresponds to zero (absolute) temperature on the boundary.
However, after reformulating the above equations for the incremental tem-
perature field with respect to a fixed temperature Θ, rather than for the
absolute temperature θ, one can see that the same proof holds for (positive)
boundary data Θ. We refrain from spelling this out, to keep the notation
simple.

On the stored energy Φ(F, θ), the following conditions will be imposed:

1. Φ is sufficiently smooth:

Φ ∈ C2(Mat (n × n) × IR; IR). (E1)

2. The stored energy is of the form

Φ(F, θ) = α + θ − θ ln(θ) + φ(θ)Φ1(F ) + Φ2(F ), (E2)

where α is constant. The other quantities will be specified in the next
paragraphs.

To simplify the notation, let us define

φj(F ) :=
∂Φj(F )

∂F
(j = 1, 2). (4)

3. Growth condition on φ: IR → IR:

|φ(θ)| , |θφ′(θ)| , |φ′(θ)| ≤ C. (E3)

4. Growth condition on Φ1:

Φ1 has linear growth near infinity. That is, φ1 is bounded. (E4)

Additionally, we require that

φ1 is a globally Lipschitz continuous function. (E5)
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5. Growth condition on Φ2:

φ2 =
∂Φ2

∂F
is a globally Lipschitz continuous function, (E6)

and there exist c, c′ > 0 such that

c|F |2 − c′ ≤ Φ2(F ) ≤ c′
(
|F |2 + 1

)
and |φ2(F )| ≤ c′ (|F | + 1) . (E7)

Remark 2. 1. We need to explain that the growth conditions (E1)–(E7)
are consistent with experimental observations of martensitic phase tran-
sitions. First, it is an inherent property of martensitic phase transitions
that the energy is convex for large temperature (beyond the so-called Md

temperature, about 300◦C for NiTi). And as there are no nonconvexities at
high temperature, there are no nonconvexities for large strains. The reason
is that only the parent (austenitic) and the martensitic phases are stable,
and their strains differ only by a few percent. Phases with large strain are
always unstable, which means they are in the convex region of the energy
landscape, away from the minimizers. Therefore, for large temperatures or
strains, the problem reduces to one which is very similar to the one studied
by Blanchard and Guibé [2]. The challenge is exactly to address the non-
convexity in small strains and below the transition temperature. Indeed,
it is important to notice that even the modeling implicitly relies on the
small strain assumption, which makes the difficult mathematical question
of growth conditions at Infinity largely irrelevant from a point of view of
applications. Specifically, the modeling of phase transitions on the contin-
uum level relies on the existence of Ericksen-Pitteri neighborhoods [12, 20].
This approach is only valid if the different stable phases can be confined to
a neighborhood which does, on the crystalline level, not include shifts by
one atomic layer (the cut-off function ξ in the example below singles out an
analogue neighborhood on the continuum level). The fact that martensitic
phase transitions are a small strain phenomenon is illustrated in [1]. Is is
demonstrated there that for specific phase transitions like the fcc-to-bcc
transition occurring in iron, the crystalline energy necessarily has to be
in L∞. Finally, we remark that some of the conditions stated above are
familiar from related problems: the conditions imposed on the tempera-
ture in (E3) for φ(θ) can also be found, for example, in [25] (however, the
restrictive assumption (E4) is not imposed there).

Remark 2. 2. A priori, it is not even clear that the strong growth
conditions one has to impose on the energy to obtain existence results
of multi-dimensional thermoviscoelastic models of phase transitions (even
with higher-order terms [19]) can be met for a frame-indifferent function.
However, a general method to derive energy functions meeting all physical
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FIG. 1. Left: Prototypical shape of φ(θ), satisfying (E3). Right: The cut-off func-
tion ξ used in the example in Remark 2.2. It takes the value 1 in a region surrounding
the possibly stable phases, and decreases to 0 for large strains.

requirements (and arbitrary growth conditions) is presented in [27, 28]. For
illustrational purposes, we give an example of the tetragonal-orthorhombic
(orthoI) symmetry breaking, as it occurs in Zirconia (ZrO2). As explained
in [11], this problem can be studied in two space dimensions. To ensure
frame-indifference of the energy (that is, to satisfy Φ(QF ) = Φ(F ) for ev-
ery Q ∈ SO(3)), we use the polar decomposition and write the energy in
C := FT F . We will write both Φ = Φ(F ) and Φ = Φ(C) when no con-
fusion can arise. It is convenient to introduce the Voigt notation for the
components of C,

C =
(

c1
1
2c6

1
2c6 c2

)
.

Using the ideas of [27, 28, 11], one can easily see that every function in C
with tetragonal symmetry can be written as

Φ(c1, c2, c6) := Φ
(
c1 + c2, c

2
1 + c2

2, c
2
6

)
.

We derive an energy function for a first order phase transition. Let us
introduce ρ1 (c1, c2, c6) := c1 + c2 and ρ2 (c1, c2, c6) := c2

1 + c2
2. Then, if

ξ = ξ(c1, c2, c6) is a smooth cut-off function (see Figure 1 on the right) and
γ > 0 is a constant, a possible energy is given by

Φ(c1, c2, c3) := α + θ − θ ln(θ)

+
2∑

j=1

ξ

[
arctan

(
θ − θc +

1
4

)
· ρj (c1, c2, c6)

− 1
2
ρj (c1, c2, c6)2 +

1
3

(c1, c2, c6)3
]

+ ξ · c2
6 + γ(c1 + c2). (5)

We first motivate this structure of Φ. The right-hand side of the first line
of (5) gives the caloric term. The second and third line of (5) describe the
behavior for ‘small’ strains, including the strain region in which the phase
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transition occurs. The last line models the growth rate for ‘large’ strains
in c1, c2 and the behavior in the off-diagonal c6, which is independent of
the phase transition. The function in square brackets is the usual Landau-
Ginzburg energy for first order transitions [13], where the planar symmetry
has been factored out and the commonly used term θ− θc + 1

4 has been re-
placed by arctan

(
θ − θc + 1

4

)
. The elimination of the the planar symmetry

is a physical necessity; one avoids unwanted minimizers. The growth condi-
tions (E3) on θ are introduced for mathematical reasons. Obviously, Φ is of
the type (E2) and satisfies the smoothness assumption (E1). It is easy to see
that φ(θ) := arctan

(
θ − θc + 1

4

)
satisfies (E3), and Φ2(F ) := ξc2

6+γ(c1+c2)
satisfies for large strains Φ2(F ) = γ(c1 + c2) = γ |F |2. Consequently,
the growth conditions (E6), (E7) are met. The example shows that these
growth conditions are physically reasonable (an experimental determina-
tion of the growth condition for large strains is not possible; in engineering
literature, the use of piecewise quadratic functions is common [16]). Fi-
nally, the two remaining growth conditions (E4) and (E5) hold since we
use the cut-off function ξ in the definition of Φ. Though these growth con-
ditions are introduced for mathematical convenience, the discussion in the
preceding remark provides a physical justification. Namely, (E4) and (E5)
model the phase transition, which happens only in a bounded set of strains.
The cut-off function ξ singles out such a set. Since we just want to give a
prototypical example for an energy function, we refrain from introducing
appropriate constants and parameters. In practice, one had to choose γ
small enough to make sure Φ2 does not hide the potential wells, and one
had to choose ξ in such a way that its decrease does not destroy the con-
vexity away from the minimizers. Both can easily be accomplished. The
details are explained in [11], where it is also shown how to fit the location of
minimizers, the energy barriers, and the elastic moduli. Since the result is
necessarily more technical and does not yield deeper insight for our goals,
we refrain from repeating it here.

2.1. Initial and Boundary Conditions
The given data should satisfy the following smoothness assumptions:

g ∈ W 1,2 (Ω; IRn) ,

u0 ∈ W 1,2
g (Ω; IRn) := {u ∈ W 1,2 (Ω; IRn)

∣∣ u − g ∈ W 1,2
0 (Ω; IRn)},

v0 ∈ L2 (Ω; IRn) ,

θ0 ∈ L1 (Ω; IR) .
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2.2. Resulting System of Equations
Using (E2), one obtains

σ(F, θ) =
∂Φ(F, θ)

∂F
= φ(θ)φ1(F ) + φ2(F )

and θσθ(∇u, θ) : ∇ut = θφ′(θ)φ1(∇u) : ∇ut. To simplify the notation, let
us write f(θ) := θφ′(θ). Then, system (3a)–(3g) becomes

utt = Div (φ(θ)φ1(∇u) + φ2(∇u) + ∇ut) in Ω×]0, T [, (6a)
u = g on ∂Ω × [0, T [, (6b)
u = u0 in Ω × {0}, (6c)

ut = v0 in Ω × {0}, (6d)
θt = ∆θ + f(θ)φ1(∇u) : ∇ut + ∇ut : ∇ut in Ω×]0, T [, (7a)
θ = 0 on ∂Ω × [0, T [, (7b)
θ = θ0 in Ω × {0}. (7c)

3. EXISTENCE OF A WEAK-RENORMALIZED SOLUTION
GLOBAL IN TIME

In order to prove existence of a weak solution, we have two overcome two
main difficulties: the nonconvexity of the energy density and the mechanical
dissipation, i.e., the term ∇ut : ∇ut in the heat equation.

The latter will lead to a parabolic equation with initial data in L1 (Ω; IR)
and a right-hand side in L1

(
0, T ; L1 (Ω; IR)

)
. We will use the concept of

renormalized solutions, introduced by Lions and DiPerna in their investiga-
tion of the Boltzmann equation [10, 9]. Further references for renormalized
solutions for parabolic equations in L1 are, e.g., [18, 4, 3]. Other frame-
works are, for example, SOLA [8], and entropy solutions [21].

In this paper, we combine ideas of [14] and [2]. In the latter paper,
renormalized solutions are applied to a thermoviscoelastic system with a
convex stored energy. Apart from the free energy, the coupling of the
equations studied here differs from [2]: for phase transitions, the essential
parameter is the temperature θ, not its gradient ∇θ.

3.1. Quick Review of Renormalized Solutions
For the reader’s convenience, the basic properties of renormalized solu-

tions are briefly recollected. With our application in mind, we concentrate
on parabolic equations.
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This Section deals with equations of the type

θt − ∆θ = H in Ω×]0, T [, (8a)
θ = 0 on ∂Ω×]0, T [, (8b)
θ = θ0 in Ω × {0}, (8c)

with H ∈ L1
(
0, T ; L1 (Ω; IR)

)
and θ0 ∈ L1 (Ω; IR).

TK(r) := max (min(r, K),−K) denotes the truncation function at height
K ≥ 0.

Definition 3.1. A measurable function θ: Ω×]0, T [→ IR is a renor-
malized solution of problem (8a)–(8c) if it satisfies the following properties:

(i) θ ∈ L∞ (
0, T ; L1 (Ω; IR)

)
,

(ii) TK(θ) ∈ L2
(

0, T ; W 1,2
0 (Ω; IR)

)
for every K ≥ 0,

(iii) lim
n→+∞

∫∫
{(x,t) | n≤|θ(x,t)|≤n+1}

|∇θ|2 dy ds = 0,

and, for every S ∈ C∞(IR; IR) with S′ ∈ C∞
0 (IR; IR),

(iv) S(θ)t − div [S′(θ)∇θ] + S′′(θ) |∇θ|2 = HS′(θ) in D′(Ω×]0, T [),

(v) S(θ) = S(θ0) in Ω × {0}.

Remark 3. 1. In our application, the right hand side H of the heat
equation will depend on a temperature θ̂ and u:

θt − ∆θ = H(θ̂, u) in Ω×]0, T [,

where H(θ̂, u) := f(θ̂)φ1(∇u) : ∇ut + ∇ut : ∇ut. To obtain the regularity
H ∈ L1

(
0, T ; L1 (Ω; IR)

)
, seeking for u ∈ W 1,2

(
0, T ; W 1,2 (Ω; IRn)

)
as reg-

ularity of the deformation looks reasonable. This is a physically reasonable
solution space: Since solids undergoing a phase transformation are likely to
form microstructures, the regularity of the deformation will be low and one
cannot necessarily expect the second spatial derivatives to be in Lp (Ω; IR).
Accepting this, we arrive at a heat equation in L1 (Ω; IR). Since the heat
capacity is constant, temperature is proportional to energy density, which
is naturally measured in an L1 (Ω; IR) norm. Therefore, the treatment of
the heat equation in L1 (Ω; IR) seems to be physically reasonable.

3.2. Statement of the Theorems
Now we are in a position to define a weak-renormalized solution of (6a)–

(7c).
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θ

φ

FIG. 2. Prototypical shape of φ(θ), satisfying φ′(r0) = 0 for some point r0 > 0 in
addition to (E3). Here, φ is chosen to be constant close to the absolute temperature
θ = 0, which is plotted at the origin.

Definition 3.2. A pair (u, θ) with u: Ω×]0, T [→ IRn and θ: Ω×]0, T [→
IR is said to be a weak renormalized solution of the system (6a)–(7c) if it
satisfies the following conditions:

(i) Regularity of u:

u ∈ L∞ (
W 1,2

g (Ω; IRn)
) ∩ W 1,∞ (

0, T ; L2 (Ω; IRn)
)

∩ W 1,2
(
0, T ; W 1,2 (Ω; IRn)

) ∩ W 2,2
(
0, T ; W−1,2 (Ω; IRn)

)
,

(ii) u is a weak solution of (6a)–(6d): for every ζ ∈ C∞
0 (Ω×]0, T [; IRn),

∫ T

0

∫
Ω

[(σ(∇u, θ) + ∇ut) : ∇ζ − ut · ζt] dx dt = 0,

u(·, 0) = u0(·) in Ω × {0},
ut(·, 0) = v0(·) in Ω × {0},

(iii) θ is a renormalized solution of (7a)–(7c).

The main theorem of this paper can be formulated as follows.

Theorem 3.1. Let Ω be a nonempty, bounded domain in IRn (n = 2
or n = 3) with a Lipschitz boundary. Assume the initial and boundary
conditions satisfy the conditions stated in Section 2.1 and Φ satisfies hy-
potheses (E1)–(E7). Then there exists a weak renormalized solution of
system (6a)–(7c).

One also has the following result concerning the positivity of the tem-
perature.

Theorem 3.2. Suppose in addition to the assumptions of Theorem 3.1
that f(r0) = 0 for some r0 ≥ 0 and θ0 ≥ r0 almost everywhere in Ω×]0, T [.



THERMO-VISCOELASTICITY WITH NONCONVEX ENERGY 11

Then the temperature θ of the weak renormalized solution of system (6a)–
(7c) satisfies θ ≥ r0 almost everywhere in Ω×]0, T [.

We remark that Theorem 3.2 gives in particular for the prototypical
energy given in Remark 2.2 the estimate θ ≥ 0 almost everywhere. To
obtain θ > 0, one has to modify the toy model for the energy to full-fill
φ′(r0) = 0 for some point r0 > 0. This can easily be achieved, an example
of such a function is plotted in Figure 3.2.

4. PROOF OF THEOREMS 3.1 AND 3.2

The main part of this section will be devoted to the proof of Theorem 3.1.
The proof of Theorem 3.2 follows at the end of the section; it is a straight-
forward application of ideas of Blanchard and Guibé [2].

We will use the Schauder Fixed Point Theorem to prove Theorem3.1.
Let θ̂ = θ̂(x, t) be an arbitrary element in L1

(
0, T ; L1 (Ω; IR)

)
. First, we

consider the problem

utt = Div
(
φ(θ̂)φ1(∇u) + φ2(∇u) + ∇ut

)
in Ω×]0, T [, (9a)

u = g on ∂Ω × [0, T [, (9b)
u = u0 in Ω × {0}, (9c)

ut = v0 in Ω × {0}. (9d)

We will show that this system has a unique solution û. Substitution of θ̂
and û in the nonlinear term on the right-hand side of Equation (7a) will give
a solution θ̂ of (7a)–(7c). We will investigate continuity and compactness
of the map Ψ: θ̂ → θ.

Theorem 4.1. The system (9a)–(9d) admits a unique weak solution û =
û(x, t) with the regularity û ∈ L∞ (

W 1,2
g (Ω; IRn)

)∩W 1,∞ (
0, T ; L2 (Ω; IRn)

)
∩ W 1,2

(
0, T ; W 1,2 (Ω; IRn)

) ∩ W 2,2
(
0, T ; W−1,2 (Ω; IRn)

)
.

Proof. Since the temperature is fixed, this is a purely viscoelastic prob-
lem. Existence and uniqueness of a solution follows from the work of
Friesecke and Dolzmann [14, Theorem 4.1]: a semi-implicit discretization
in time leads to a variational problem. The integrand is convex, due to the
discretized viscosity. Since the functional can be shown to be coercive (here,
we need the assumption that ∂Ω is Lipschitz), a solution exists. Using dif-
ferent approximations in time, one can easily obtain most of the necessary
weak convergences (to obtain strong convergence of the velocity, we use
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again that ∂Ω is Lipschitz to apply an Aubin-type argument). The crucial
step is to show strong convergence of ∇u; this is [14, Proposition 3.1]. ��

A multiplication of equation (9a) by ût and integration over space and
time yields

1
2

∫
Ω

|ût(t)|2 dx +
∫ t

0

∫
Ω

|∇ût|2 dx ds +
∫

Ω

Φ2(∇û)(t) dx

= −
∫ t

0

∫
Ω

φ(θ̂)φ1(∇û) : ∇ût dx ds +
1
2

∫
Ω

|ût(0)|2 dx +
∫

Ω

Φ2(∇û)(0) dx

for almost every t in ]0, T [.
By (E7), there are positive constants c and c′ such that

c |∇û(t)|2 − c′ < Φ2(∇û)(t) and Φ2(∇û)(0) < c′
(
|∇û(0)|2 + 1

)
.

Hence, we obtain

1
2

∫
Ω

|ût(t)|2 dx +
∫ t

0

∫
Ω

|∇ût|2 dx ds + c

∫
Ω

|∇û(t)|2 dx (10)

≤ −
∫ t

0

∫
Ω

φ(θ̂)φ1(∇û) : ∇ût dx ds +
1
2
‖v0‖2

L2(Ω;IRn)

+ c′ ‖u0‖2
W 1,2(Ω;IRn) + C

for almost every t in ]0, T [.
By (E4), φ1(∇û) is bounded. Using this and Young’s inequality, the first

term on the right-hand side can be estimated as follows:

−
∫ t

0

∫
Ω

φ(θ̂)φ1(∇û) : ∇ût dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂)
∣∣∣2 dx ds +

1
2

∫ t

0

∫
Ω

|∇ût|2 dx ds. (11)

Combining (10) and (11), we arrive at

1
2

∫
Ω

|ût(t)|2 dx +
1
2

∫ t

0

∫
Ω

|∇ût|2 dx ds + c

∫
Ω

|∇û(t)|2 dx

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂)
∣∣∣2 dx ds +

1
2
‖v0‖2

L2(Ω;IRn) + c′ ‖u0‖2
W 1,2(Ω;IRn) + C

for almost every t in ]0, T [.
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Since the terms on the left hand side are nonnegative, we can take the
supremum over t. This yields

1
2
‖ût‖2

L∞(0,T ;L2(Ω;IRn)) +
1
2
‖∇ût‖2

L2(0,T ;L2(Ω;IRn×n))

+ c ‖∇û‖2
L∞(0,T ;L2(Ω;IRn×n))

≤ C

[∥∥∥φ(θ̂)
∥∥∥2

L2(0,T ;L2(Ω;IR))
+ ‖v0‖2

L2(Ω;IRn) + ‖u0‖2
W 1,2(Ω;IRn) + 1

]
≤ C,

where C is independent of θ̂ by (E3).
Poincaré’s inequality

‖û − g‖2
L2(Ω;IRn) ≤ C

(
‖∇û‖2

L2(Ω;IRn×n) + 1
)

finally gives the bound

1
2
‖ût‖2

L∞(0,T ;L2(Ω;IRn))

+
1
2
‖∇ût‖2

L2(0,T ;L2(Ω;IRn×n)) + ‖û‖2
L∞(0,T ;W 1,2(Ω;IRn)) ≤ C.

Next, we prove continuous dependence of û on θ̂. Let θ̂1, θ̂2 be two
temperatures. Denote the corresponding solutions of (9a)–(9d) by û1 and
û2. A multiplication of the differences of the two equations by û1 − û2 and
integration over space and time yields

∂t
1
2

(∫
Ω

|û1(t) − û2(t)|2 dx +
∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

)
(12)

= −
∫ t

0

∫
Ω

[(
φ(θ̂1)φ1(∇û1) − φ(θ̂2)φ1(∇û2)

)
: (∇û1 −∇û2)

]
dx ds

−
∫ t

0

[∫
Ω

(φ2(∇û1) − φ2(∇û2)) : (∇û1 −∇û2)
]

dx ds

+
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤
∣∣∣∣
∫ t

0

∫
Ω

(
φ(θ̂1) − φ(θ̂2)

)
φ1(∇û1) : (∇û1 −∇û2)

+ φ(θ̂2) (φ1(∇û1) − φ1(∇û2)) : (∇û1 −∇û2) dx ds

∣∣∣∣
+ Lip (φ2)

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds
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≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1) − φ(θ̂2)
∣∣∣2 dx ds +

1
2

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

+ C Lip (φ1)
∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

+ Lip (φ2)
∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1) − φ(θ̂2)
∣∣∣2 dx ds + C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

+
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

for almost every t in ]0, T [ (the first inequality uses (E6), the second one
Young’s inequality, (E3), (E4) and (E5)). Similarly, using ∂tû1 − ∂tû2 as
test function. and invoking (E3), (E4), (E5), (E6) and Young’s inequality,
one obtains

∂t
1
2

∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds (13)

≤ ∂t
1
2

∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds +
1
2

∫ t

0

∫
Ω

|∇∂tû1 −∇∂tû2|2 dx ds

= −
∫ t

0

∫
Ω

(
φ(θ̂1)φ1(∇û1) − φ(θ̂2)φ1(∇û2)

)
: (∇∂tû1 −∇∂tû2) dx ds

−
∫ t

0

∫
Ω

(φ2(∇û1) − φ2(∇û2)) : (∇∂tû1 −∇∂tû2) dx ds

− 1
2

∫ t

0

∫
Ω

|∇∂tû1 −∇∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1) − φ(θ̂2)
∣∣∣2 dx ds + C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds

for almost every t in ]0, T [.
Let us add (12) and (13). The second inequality uses |φ| ≤ C, the third

one |φ′| ≤ C.

∂t
1
2

(∫
Ω

|û1(t) − û2(t)|2 dx (14)

+
∫ t

0

∫
Ω

|∇û1 −∇û1|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

)

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1) − φ(θ̂2)
∣∣∣2 dx ds
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+ C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣φ(θ̂1) − φ(θ̂2)
∣∣∣ dx ds

+ C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

≤ C

∫ t

0

∫
Ω

∣∣∣θ̂1 − θ̂2

∣∣∣ dx ds

+ C

∫ t

0

∫
Ω

|∇û1 −∇û2|2 dx ds +
∫ t

0

∫
Ω

|∂tû1 − ∂tû2|2 dx ds

for almost every t in ]0, T [.
Hence, by Gronwall’s inequality, û depends continuously on θ̂. In partic-

ular, the map

θ̂ 
→ ∇û

is continuous from L1
(
0, T ; L1 (Ω; IR)

)
to L2

(
0, T ; L2

(
Ω; IRn×n

))
; the sec-

ond line of (13) shows that

θ̂ 
→ ∇ût

is continuous from L1
(
0, T ; L1 (Ω; IR)

)
to L2

(
0, T ; L2 (Ω; IRn)

)
.

Using the estimates derived so far, one easily obtains a bound of the
nonlinear term f(θ̂)φ1(∇û) : ∇ût + ∇ût : ∇ût on the right-hand side of
the heat equation in L1

(
0, T ; L1 (Ω; IR)

)
. Namely, the following estimate

uses (E3) to obtain boundedness of f(θ̂) = θ̂φ′(θ̂)):
∥∥∥f(θ̂)φ1(∇û) : ∇ût + ∇ût : ∇ût

∥∥∥
L1(0,T ;L1(Ω;IR))

(15)

≤ C
[
‖u0‖2

W 1,2(Ω;IRn) + ‖v0‖2
L2(Ω;IRn) + 1

]
≤ C,

C being a constant independent of
∥∥∥θ̂

∥∥∥
L1(0,T ;L1(Ω;IR))

.

Substituting û and θ̂ in the right-hand side of the heat equation (7a), we
get a unique solution θ:

θt = ∆θ + f(θ̂)φ1(∇û) : ∇ût + ∇ût : ∇ût in Ω×]0, T [, (16)
θ = 0 on ∂Ω×]0, T [,
θ = θ0 in Ω × {0}

(since the right hand side is in L1
(
0, T ; L1 (Ω; IR)

)
, it has a unique renor-

malized solution, see [2, Proposition 1 & 2]).
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Recall that the map θ̂ → θ is denoted Ψ. The two maps θ̂ 
→ ∇ût and θ̂ 
→
∇û are continuous from L1

(
0, T ; L1 (Ω; IR)

)
to L2

(
0, T ; L2

(
Ω; IRn×n

))
.

Hence, the nonlinear term f(θ̂)φ1(∇û) : ∇ût +∇ût : ∇ût of the right hand
side of the heat equation is a continuous mapping of L1

(
0, T ; L1 (Ω; IR)

)
to itself. Hence, by [2, Proposition 1], Ψ is continuous. Even more, by (15)
and [2, Proposition 3], Ψ is compact for 1 ≤ p < 1 + 2

n as a map from
L1

(
0, T ; L1 (Ω; IR)

)
to Lp (0, T ; Lp (Ω; IR)).

The existence of a bounded set B ⊆ L1
(
0, T ; L1 (Ω; IR)

)
with Ψ(B) ⊆ B

is now straightforward: inequality (15) gives a bound of the right-hand side
of the heat equation by

C
[
‖u0‖2

W 1,2(Ω;IRn) + ‖v0‖2
L2(Ω;IRn) + 1

]
.

According to the theory of renormalized solutions (see, e.g., [2, Proposition
1], there exists a constant C independent of

∥∥∥θ̂
∥∥∥

L1(0,T ;L1(Ω;IR))
such that

‖θ‖L1(0,T ;L1(Ω;IR)) < R := C
[
‖u0‖2

W 1,2(Ω;IRn)

+ ‖v0‖2
L2(Ω;IRn) + ‖θ0‖L1(Ω;IR) + 1

]
.

One can choose B := B(0, R). An application of Schauder’s Fixed Point
Theorem finishes the proof. ��

We now sketch the proof of Theorem 3.2. It follows the proof of Theorem
4 in [2]. We denote by f̃(r) the function

f̃(r) :=
{

0 if r ≤ r0

f(r) else .

It is easily verified that the proof of Theorem 3.1 also applies to the sys-
tem (6a)–(7c) with f(θ) replaced by f̃(θ). By considering for K > 0 the spe-
cial test function S(r) := min(TK(r−r0), 0), one obtains from Definition 3.1
(iv) (χA is the characteristic function of a set A and S̃(r) :=

∫ r

0
S(x) dx

the primitive of S)
∫

Ω

S̃(θ)(t) dx +
∫ t

0

∫
Ω

χ]−K+r0,r0[∇θ2 dx ds

=
∫

0

∫
Ω

[
∇ut : ∇ut + f̃(θ)φ1(∇u) : ∇ut

]
S(θ) dx ds +

∫
Ω

S̃(θ0) dx.

By considering the signs of f̃ and S, one obtains
∫

Ω

S̃(θ)(t) dx ≤ 0
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for almost every t in Ω×]0, T [. This implies θ ≥ r0 almost everywhere in
Ω×]0, T [. The nature of the definition of f̃ finally implies then

f̃(θ) = f(θ) almost everywhere in Ω×]0, T [,

and Theorem 3.2 is established. ��
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