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Abstract
We construct smooth 2 × 2 parabolic systems with smooth initial

data and Cα right hand side which admit solutions that are nowhere
C1. The elliptic part is in variational form and the corresponding
energy φ is strongly quasiconvex and in particular satisfies a uniform
Legendre-Hadamard (or strong ellipticity) condition.

1 Main results

In this paper we construct smooth 2 × 2 parabolic systems with smooth
initial data and Cα right hand side which admit solutions which are nowhere
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C1. The elliptic part is in variational form and the corresponding energy
φ is strongly quasiconvex and in particular satisfies a uniform Legendre-
Hadamard (or strong ellipticity) condition.

Theorem 1 Let Ω be the unit ball in R
2. Let η > 0, T > 0, α ∈ (0, 1). Then

there exists a function φ : R
2×2 → R such that φ is strongly quasiconvex,

smooth and |D2φ| ≤ C, a function f ∈ Cα(Ω × [0, T ]; R2) with ||f ||Cα < η
and a Lipschitz solution w : Ω × [0, T ] → R of the parabolic system

∂tw − divDφ(∇w) = f in Ω × (0, T ) (1)

and

w(·, 0) ≡ 0, w(t, x) = 0 for x ∈ ∂Ω (2)

such that w is nowhere C1 in Ω × (0, T ).

Other unusual features such as non-uniqueness and failure of the energy
inequality are discussed in Corollaries 2 and 3 below. We first briefly re-
view the rôle of the assumptions on φ and the connections with variational
problems.

For f = 0 equation (1) is formally the L2 gradient flow of the functional

I(w) =
∫

Ω
φ(∇w) dx.

In the study of minimizers of I, (strong) quasiconvexity plays a crucial rôle.
A function φ : R

m×n → R is called strongly quasiconvex if there exists C > 0
such that ∫

Ω
φ(F + ∇η) − φ(F ) dx ≥ C

∫
Ω
|∇η|2 dx (3)

for all η ∈ C∞
0 (Ω,Rm), all matrices F ∈ R

m×n and all domains Ω with
|∂Ω| = 0 (by a covering argument it suffices to consider a fixed domain Ω,
e.g. a ball or a cube). If the inequality holds with C = 0 we say that φ is
quasiconvex.

The importance of quasiconvexity was first realized by Morrey [Mo 52]
who showed that (under suitable growth conditions) quasiconvexity is a
necessary and sufficient condition for weak lower semicontinuity of the func-
tional I in the Sobolev space W 1,p (see also [AF 84, Ma 85]). Thus quasi-
convexity of I is closely related to the existence of minimizers of I (see e.g.
[Da 89, Mu 99]). Quasiconvexity is also closely related to (partial) regular-
ity. Evans [Ev 86] showed that minimizers of I are smooth outside a closed
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null set if φ satisfies the assumptions of Theorem 1, i.e. if φ is strictly quasi-
convex, smooth and |D2φ| ≤ C. For a recent extension to local minimizers
see [KT 01]. More general stationary points of I, however, can be nonsmooth
everywhere (see [MS 99] and Section 2 below) and this is a crucial ingredient
in the proof of Theorem 1. We finally remark that for C2-functions strong
quasiconvexity implies the Legendre-Hadamard condition (also known as
strong ellipticity or uniform rank-1 convexity)

D2φ(F )(a ⊗ b, a⊗ b) ≥ C|a|2|b|2, C > 0. (4)

To see this it suffices to take

η(x) = η0(x)
εa

k
sin kbx,

where η0 ∈ C∞
0 (Ω) and to study the limit k → ∞, ε→ 0.

Since the subtraction of an affine function from φ does not affect its
properties we may assume that φ(0) = 0, Dφ(0) = 0. This immediately
yields a nonuniqueness result:

Corollary 2 Let φ, η, T , α, Ω be as in Theorem 1, with η sufficiently small.
Then the initial-boundary value problem (1), (2), i.e.

∂tw − divDφ(∇w) = f in Ω × (0, T ),
w(x, 0) = 0, w(t, x) = 0 for x ∈ ∂Ω

has at least two solutions.

Indeed the Implicit Function Theorem, the Cα theory for linear parabolic
systems and the strong ellipticity condition (4) imply that there exists a
(smooth) solution w of the initial boundary value problem as long as f is
sufficiently small in the Cα-norm.

Our example also shows that Lipschitz solutions of (1), (2) need not
satisfy the energy identity

∫
Ω
φ(∇w(t, x)) dx|Tt=0 = −

∫ T

0

∫
Ω
|∂tw|2 dx dt +

∫ T

0

∫
Ω
f∂tw dxdt

or the energy inequality
∫

Ω
φ(∇w(t, x)) dx|Tt=0 ≤ 1

4

∫ T

0

∫
Ω
|f |2 dx dt.

3



Corollary 3 Under the assumptions of Theorem 1 we can achieve in addi-
tion that w satisfies∫

Ω
φ(∇w(T, x)) − φ(0) dx ≥ C > 0, for all T > 0.

Indeed we will construct a w such that ∇w is uniformly away from 0 and
then the assertion follows from strong quasiconvexity.

An interesting open question is whether one can construct (for a general
quasiconvex φ) solutions of (1), (2) which do satisfy an energy inequality (e.g.
by discretization in time and minimization at each time step) and whether
such solutions have better regularity properties.

2 Review of the elliptic counterexample

In this section we briefly review the construction of a similar counterexample
in the elliptic context. This will allow us to introduce the key ideas and the
necessary notation in a simpler setting.

2.1 Reduction to first order

Let Ω be the unit ball in R
2. We seek Lipschitz, nowhere C1 solutions

w : Ω → R
2 of the 2 × 2 system

− divDφ(∇w) = 0 in Ω (5)

where

φ strongly quasiconvex, smooth, |D2φ| ≤ C. (6)

In particular φ is strongly elliptic, i.e.

D2φ(F )(a⊗ b, a⊗ b) ≥ c|a|2|b|2, c > 0. (7)

We first reduce the problem to a first order system. Equation (5) is
equivalent to the existence of a potential W such that Dφ(∇w)J = ∇W ,
where J is the 90◦ rotation. If we introduce

u =
(

w
W

)
, u : Ω ⊂ R

2 → R
4 (8)

then (5) is equivalent to

∇u ∈ K ⊂ R
4×2, (9)
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where

K =
{(

X
Y

)
: Y = Dφ(X)J,X ∈ R

2×2

}
, J =

(
0 −1
1 0

)
. (10)

2.2 Rank−1 connections and T4 configurations

Our goal is to construct highly oscillatory solutions of the partial differential
relation ∇u ∈ K, where K is a given set in R

m×n. This is easy if K contains
a rank-1 connection, i.e. if there are matrices A,B ∈ K with rk(B−A) = 1.
In this case B −A = a⊗ n and we can take u = Ax+ ah(x · n), where h is
a Lipschitz function with h′ ∈ {0, 1} a.e.

By a result of Ball [Ba 80], however, sets of the form (9) cannot contain
a rank-1 connection if φ is uniformly rank-1 convex, i.e. if (4) holds. A
crucial observation is that there are simple sets K which have a nontrivial
rank-1 convex hull (defined through separation by rank-1 convex functions)
even if they contain no rank-1 connections. In the present context of elliptic
counterexamples it was first noted by Scheffer in his (unpublished) thesis
[Sch 74]. He used this fact to construct highly oscillatory solutions in the
Sobolev space W 1,1 (or W 1,2 for nonvariational examples). In other contexts
such sets where obtained independently by a number of authors [AH 86,
CT 93, NM 91, Ta 93].

Definition 4 Consider quadruples M = (M1,M2,M3,M4) of
matrices Mi ∈ R

m×n. We say that M is a T4 configuration if there exist
rank−1 matrices C1, C2, C3, C4 with

∑4
j=1Cj = 0, scalars κ1, κ2, κ3, κ4 with

κi > 0 and matrices Pj ∈ R
m×n such that the relations

Pj+1 − Pj = Cj

Mj − Pj+1 = κjCj

hold (see Fig. 1).

The simplest example arises already in diagonal 2×2 matrices. One may
take

M1 = −M3 =
(

3 0
0 −1

)
,M2 = −M4 =

(
1 0
0 3

)
. (11)

We emphasize that in general a T4 configuration need not lie in a plane.
Extending Gromov’s technique of convex integration [Gr 86] one can

show that there exist nontrivial maps whose gradients lie arbitrarily close
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M4

P1

P3

M2

M1

M3 P4

P2C1

Figure 1: T4 configuration with P1 = P , P2 = P +C1, P3 = P +C1 +C2,
P4 = P + C1 + C2 + C3. The lines indicate rank-1 connections. Note that
the figure need not be planar.

to a T4 configuration (see [MS 99], Theorem 3.1; for other approaches see
[DM 99, Ki 01, MSy 01]). We do not repeat the proof here since we use this
result only for motivation and will give a self-contained proof of Theorem 1
below.

Proposition 5 Let ε > 0 and let (M1,M2,M3,M4) be a T4 configuration.
Let P1 be as in the definition of a T4 configuration and let u0 be the affine
map

u0(x) = P1x.

Let Bε(Mi) denote the ball of radius ε around Mi. Then, for any open
bounded set Ω ⊂ R

n, there exists a Lipschitz map u : Ω → R
m such that

∇u ∈ ∪4
i=1Bε(Mi) a.e. in Ω, (12)

∇u = u0 on ∂Ω, (13)

sup
Ω

|u− u0| < ε. (14)

Remark. Note that for sufficiently small ε there are no rank-1 connections
between the four components

Bε(Mi).
Our strategy will now be to identify a strongly quasiconvex φ such that

the set K given by (10) contains many T4 configurations.
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2.3 Embedding many T4 configurations in K

The first crucial observation is that there exists a strongly quasiconvex and
smooth function φ : R

2×2 → R (with |D2φ| ≤ C) such that the set

K =
{(

X
Dφ(X)J

)
: X ∈ R

2×2

}
⊂ R

4×2, J =
(

0 −1
1 0

)

admits a T4 configuration M0 with M0
i ∈ K, see [MS 99], Lemma 4.3. One

may take

M0
1 =

⎛
⎜⎜⎝

3 0
0 −1
0 −1
3 0

⎞
⎟⎟⎠ , M0

2 =

⎛
⎜⎜⎝

1 0
0 3
0 3
1 0

⎞
⎟⎟⎠ , M0

3 =

⎛
⎜⎜⎝
−3 0
0 1
0 1
−3 0

⎞
⎟⎟⎠ , M0

4 =

⎛
⎜⎜⎝
−1 0
0 −3
0 −3
−1 0

⎞
⎟⎟⎠ .

This result per se is not enough to conclude the existence of interesting
solutions of ∇u ∈ K since Proposition 5 guarantees only that we can find
solutions whose gradient stays close to the M0

i , but K is not open, in fact it
has codimension 4. To overcome this difficulty we show that K×K×K×K
contains not only the special T4 configuration M0 but an eight-dimensional
family of T4 configurations and that the corresponding corner points Pi cover
an open set in the eight dimensional space R

4×2. This will give us enough
flexibility to carry out the construction both in the elliptic and the parabolic
case.

We first recall that the set

M = {M ∈ (R4×2)4 : M is a T4 configuration} ⊂ R
32.

is a 24-dimensional manifold near M0(see [MS 99]). Moreover for M ∈ M
near M0 the points Pj and hence Cj and κi (introduced in Definition 4) are
uniquely determined by M. We also introduce the set

K = {M ∈ (R4×2)4 : Mi ∈ K} = K ×K ×K ×K

which forms a 16-dimensional manifold near M0. We denote by πj and µj

the maps

πj : M∩K −→ R
4×2

(M1,M2,M3,M4) �−→ Pj

µj : M∩K −→ R
4×2

(M1,M2,M3,M4) �−→Mj
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Let TM0
j
K be the tangent space of K at M0

j , let Q⊥
j denote the projection

onto its orthogonal complement and define the map

ψj : M∩K −→ R
4×2

(M1,M2,M3,M4) �−→ (Mj , Q
⊥
j (Pj − P 0

j ))

Proposition 6 ([MS 99]) There exists a choice of φ such that M0 ∈ K
(where K and M0 are given above) and

(i) in a neighbourhood of M0 the manifolds M and K intersect transversely
in an eight dimensional manifold,

(ii) πj and ψj are local diffeomorphisms from a neighbourhood of M0 in
M∩K to open sets in R

4×2.

We now choose an increasing sequence of (small) neighbourhoods M0 ∈
O1 ⊂ O2 ⊂ ... in M∩K (which are diffeomorphic to an eight dimensional
ball). For 1

2 < λ1 < λ2 < ... < 1 we consider the maps λiµj +(1−λj)πj and
we define the sets (see Fig. 2)

U j
i = (λiµj + (1 − λi)πj)(Oi) ⊂ R

4×2, Ui =
4∪

j=1
U j

i . (15)

Using the nondegeneracy of ψj one can show that U j
i is open (if λ1 is chosen

sufficiently close to 1), see [MS 99]. We also define

Vj
i = πj(Oi) ⊂ R

4×2, Vi =
4∪

j=1
Vj

i (16)

and these sets are open by Proposition 6. The i-th order lamination
convex hull Elc,i of a set E is defined by inductively adding rank-1 seg-

ments. More precisely we set

Elc,0 = E

Elc,i+1 = Elc,i ∪ {[A,B] : A,B ∈ Elc,i, rk(B −A) = 1}.

Proposition 7 The sets U j
i and Vj

i have the following properties (see Figs. 2
and 3).

(i) If F ∈ U j
i then there exist A ∈ U j

i+1, B ∈ Vj
i , such that rk(B−A) = 1,

F =
λi

λi+1
A+ (1 − λi

λi+1
)B.
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P 0
1

P 0
3

M0
1

M0
2

M0
3

M0
4

K1

K2

K3

K4

U1
2

U1
3 U1

4

U2
2

U2
3

U2
4

U3
4

U4
4

V1
2

V2
2

V3
2

V4
2

Figure 2: Schematic illustration of the sets U j
i , Vj

2 and Kj . All the open sets
Vi = ∪jVj

i contain the planar rank-one square with corner points P 0
1 , . . . P

0
4 .

Hence the second order lamination convex hull V lc,2
i contains an open neigh-

bourhood of this square and in particular an open neighbourhood of 0.
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U1
2 U1

3 U1
4U4

2

U4
3

V1
2

V4
2

K1

K2

K3

K4

Figure 3: Each point in U1
i is a rank-one convex combination of a point

in U1
i+1 and a point in V1

i ; in turn each point in V1
i is a rank-one convex

combination of points in V4
i and U4

i+1.

(ii) If F ∈ Vj+1
i then there exist A ∈ U j

i+1, B ∈ Vj
i , such that rk(B−A) = 1,

F = µA+ (1 − µ)B,
1
4
< µ <

3
4

(if λ1 >
3
4
).

(iii) U j
i → Kj as i→ ∞, where Kj ⊂ K is contained in a small neighbour-

hood of M0
j .

(iv) 0 ∈ V lc,2
1 and V lc,2

1 is open and hence contains an open neighbourhood of
the two-dimensional square given by the convex hull of P 0

1 , P
0
2 , P

0
3 , P

0
4 .

Using these properties one can construct an elliptic counterexample sat-
isfying (1) and (2) by starting with a map u0 with ∇u0 ≡ 0 and iteratively
splitting the gradient along rank-1 segments (using the ’elliptic’ counterpart
of Lemma 8 below). Since the construction in the parabolic case is very
similar (with an additional complication arising from the need to control
the time derivative) we do not give the details here and refer the reader to
[MS 99].
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Our construction will be carried out in an open set U which involves
Ui,Vi and suitable rank-1 segments between these sets:

U = ∪ Ui ∪ Vi ∪ V lc,2
1

∪{[A,B] : rk(B −A) = 1, A ∈ U j
i+1, B ∈ Vj

i }. (17)

The reason for this choice of U will become clear in the proof of Lemma
9. In the following we will always assume that the sets Oi have been chosen
sufficiently small. In particular U is contained in a very small neighbour-
hood of the segment [P 0

i+1,M
0
i ] and the square with corners P 0

i (see also
Figures 2 and 3).

3 The parabolic counterexample

Solutions to the parabolic system (1)–(2) are constructed using an iterative
splitting along rank−1 segments and Proposition 7. The main ingredient
is Lemma 12 which shows how to make a small perturbation of an affine
function such that the result satisfies ∇u ∈ K in a set of fixed volume
fraction and such that u is piecewise affine on the complement. This is
done in two steps. First we achieve ∇u ∈ K modulo a C∞ remainder (see
Lemma 9). Then we approximate C∞ maps by piecewise affine C1 maps.
Both Lemma 9 and Lemma 11 are obtained by iteration of very simple
modifications, which are stated in Lemma 8 and Lemma 10, respectively.

Lemma 8 (smooth splitting along a rank−1 segment). Given

G ⊂ Ω × (0, T ) open,
A,B ∈ R

m×n, rk(A−B) = 1,
F = λA+ (1 − λ)B, λ ∈ (0, 1),

α ∈ (0, 1), 
 > 0, R > 0, i ∈ N,

and u Lipschitz in G with

∇u = F in G

there exists v ∈ C∞(G; Rm) and open sets GA ⊂ G, GB ⊂ G with |∂GA| =

11



|∂GB | = 0 such that

v − u ∈ C∞
0 (G; Rm), (18)

||(v − u)t||Cα < 2−i, (19)
dist(∇v, [A,B]) < 
, (20)

∇v = A on GA, ∇v = B on GB , (21)

|GA| ≥ (1 − 2−i)λ|G|, |GB | ≥ (1 − 2−i)(1 − λ)|G|, (22)
|GB ∩B(x,R)| > 0, ∀x ∈ ḠA. (23)

Remark. The assumption that u be Lipschitz is not empty since G is in
general not connected.

Proof. We may assume without loss of generality F = 0. In a suitable
orthonormal coordinate system we thus have A = (1−λ)a⊗ en, B = −λa⊗
en. It suffices to consider the special case m = 1 and a = 1. Indeed if for this
case we have constructed a function

∼
v ∈ C∞(G) which satisfies conditions

(18) - (22) with 
 replaced by
∼

 = 
/|a| and i replaced by

∼
i such that

2−
∼
i ≤ 2−i min(1, 1/|a|) then v = a

∼
v satisfies (18) - (22).

We thus assume from now onm = 1, F = 0, A = (1−λ)en, , B = −λen.
To construct v we exhaust most of G by rectangles, define v as a C∞

0 function
on these rectangles and extend v by zero outside.

Let η = 1
K , where K is an integer. Then there exist finitely many

disjoint cubes Qk = ak + (0, lk)n+1 ⊂ G whose total measure is larger than
(1 − η)|G|. Each cube can be subdivided into disjoint rectangles Rk,j =
ak,j + (0, wk)n × (0, lk) where lk/wk is an integer. On each such rectangle
we define v by

v(ak,j + x) =
wk

MK
Θ

(
x

wk

)
Ψ

(
t

lk

)
h

(
MK

xn

wk

)
,

where M is an integer, φ ∈ C∞
0 ((0, 1)n), Ψ ∈ C∞

0 (0, 1) and h : R → R

is smooth and periodic with period one. We now specify the choice of
Θ,Ψ, h,M and wk. We require that

0 ≤ Θ ≤ 1, Θ|(η,1−η)n ≡ 1, |∇Θ| ≤ C

η
, (24)

0 ≤ Ψ ≤ 1, Ψ|(η,1−η) ≡ 1, |Ψ′| ≤ C

η
, |Ψ′′| ≤ C

η2

h′ ∈ [−λ, 1 − λ], 0 ≤ h ≤ 1
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and that there exist intervals IA ⊂ (0, 1) and IB ⊂ (0, 1) such that

h′|IA = (1 − λ), h′|IB = −λ, |IA| = (1 − η)λ, |IB | = (1 − η)(1 − λ).

Let RA = [(η, 1 − η)n × (η, 1 − η)] ∩ {ξ : MKξn − [MKξn] ∈ IA} where [s]
denotes the integer part of a real number s. Since η = 1

K we obtain

|RA| = (1 − 2η)n+1|IA| = (1 − 2η)n+1(1 − η)λ

Similarly one defines RB and obtains

|RB | = (1 − 2η)n+1|IB | = (1 − 2η)n+1(1 − η)(1 − λ).

If we define scaled sets RA
k,j by stretching by wk in x-direction, by lk in

t-direction and translating by ak,j we find

∇v = A in RA
k,j, ∇v = B in RB

k,j.

Taking GA = ∪
k,j
RA

k,j, GB = ∪
k,j
RB

k,j we obtain |∂GA| = |∂GB | = 0 as well as

(21) and (22) as long as η is chosen such that (1− 2η)n+1(1− η)2 > 1− 2−i.
Since (18) is obvious it only remains to verify (19), (20) and (23). Re-

garding (20) we note that

∇v = Θ(
x

wk
)Ψ(

t

lk
)h′(MK

xn

wk
)en +

1
MK

(∇Θ)(
x

lk
)Ψ(

t

lk
)h(Mk

xn

wk
)

Since the first term on the right hand side belongs to [A,B] it suffices to
assure that

1
MK

|∇Θ| < 
.

In view of (24) and since η = 1
K this can always be achieved by choosing

M ≥M0(
).
In view of the triangle inequality it suffices to verify (19) within a single

rectangle (with the sharper bound 2−(i+1)). We have

vt =
wk

MKlk
Θ(

x

wk
) Ψ′(

t

lk
) h(MK

xn

wk
)

Hence

|vt| ≤ C
wk

MKlk

1
η
≤ C

wk

Mlk
.
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To estimate the Hölder seminorm of ut note that

[φ]α ≤ (Lipφ)α(oscφ)1−α ≤ C
ηα
, [Ψ′]α ≤ C

η1+α
.

Taking into account that η = 1
K we find

[ut]α ≤ C
wk

MKlk

[
1
ηα

1
wα

k

1
η

+
1

η1+α

1
lαk

+
1
η

(
MK

wk

)α]

≤ C
wk

MKlk
[2K1+αw−α

k +K1+αMαw−α
k ]

≤ C
w1−α

k Kα

M1−α lk

Choosing

wk ≤ lk
1

1−α and M ≥M1(K, i) =
(
CKα

2−(i+1)

) 1
1−α

we obtain (19). Finally to achieve (23) it suffices to choose max lk ≤ cnR.
Then each ball B(x,R) with x ∈ ḠA contains a full cube Qk and hence
intersects GB in a set of positive measure. �

Lemma 9 (pushing ∇u to K by iterated splitting). Let U ,U j
i ,Vj

i ,K,K
j be

given by (15), (16), (17), (10) and Proposition 7 (iii). Let G ⊂ Ω × (0, T )
be open, let u be Lipschitz in G with

∇u = F in G, F ∈ U . (25)

Then there exists a decomposition

G =
∼
G ∪H,

∼
G open, |H| ≥ 1

32
|G|, (26)

and a Lipschitz map v such that

(i)

v − u ∈W 1,∞
0 (G; Rm) (27)

(v − u)t ∈ Cα
0 (G; Rm); ||(v − u)t||Cα < 2−i. (28)

v|
∼
G
∈ C∞(

∼
G; Rm), ∇u ∈ U in G̃, (29)

∇v ∈ Kj a.e. in H, for some j ∈ {1, 2, 3, 4}. (30)
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(ii) If F ∈ Uk
i or dist(F,Vk+1) < η0, where Vk+1 = ∪iVk+1

i and η0 > 0 is
a universal sufficiently small constant, then j = k in (30).

(iii) For all x ∈ H and all δ > 0

|{y ∈ B(x, δ) \H : ∇u(y) ∈ Vj}| > 0.

Remark. The combination of (ii) and (iii) will allow us to show that the
solution we will construct has large oscillations of the gradient in every open
subset.

Proof. The result is essentially a direct consequence of Proposition 7
and an iterative application of Lemma 8. In order to motivate the choice of
the set U and to emphasize the role of assertion (iii) of the lemma we give
a detailed proof.

Case 1 : F ∈ U j
i . By Proposition 7(i) there exist A1 ∈ U i

i+1 and B1 ∈ Vj
i

such that rk(B −A) and

F =
λi

λi+1
A1 + (1 − λ1

λi+1
)B1.

The set U is chosen such that it contains the segment [A1, B1]. Since U is
open it also contains a 
1-neighbourhood of that segment, for sufficiently
small 
1 > 0. Hence an application Lemma 8 (with 
 = 
1 and R = R1)
yields an open set G1 ⊂ G and a map u1 with u1 − u0 ∈ C∞

0 (G; Rm),
||(u1 − u0)t||Cα < 2−(i+2), ∇u1 ∈ U and

∇u1 = A1 ∈ U j
i+1 in G1, |G1| >

(
λi

λi+1
− 2−k0−1

)
|G|.

Since B1 ∈ Vj
i assertion (23) yields

|{y ∈ B(x,R1) \ Ḡ1 : ∇u1(y) ∈ Vj}| > 0 ∀x ∈ Ḡ1.

Now we can apply the same reasoning to u1, A1 and G1. We thus obtain a
map u2 (originally defined on G1) and an open set G2 ⊂ G1 with u2 − u1 ∈
C∞

0 (G1; Rm) and

∇u2 = A2 ∈ U j
i+2 in G2, |G2| >

(
λi+1

λi+2
− 2−k0−2

)
|G1|.

It will be convenient to extend u2−u1 by zero to G. Proceeding inductively
we find maps uk, open sets Gk ⊂ Gk−1, matrices Ak and numbers Rk → 0
such that

∇uk = Ak ∈ U j
i+k in Gk, |Gk| >

(
λi+k−1

λi+k
− 2−k0−k

)
|Gk−1|,
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|{y ∈ B(x,Rk) \ Ḡk : ∇uk(y) ∈ Vj}| > 0 ∀x ∈ Ḡk. (31)

Moreover uk−uk−1 ∈ C∞
0 (G; Rm), uk = uk−1 onGk−1 and ||(uk−uk−1)t||Cα <

2−(i+k+1). By Proposition 7(iii) we have Ak → A∞ ∈ Kj. Let H =⋂
k Ḡk, G̃ = G \ H. It is easy to show that uk → v in W 1,1(G; Rm), that

(27) and (28) hold and

∇v = A ∈ Kj a.e. in H, v = uk in G \ Ḡk. (32)

Hence (29) and (30) hold, too, and assertion (ii) of Lemma 9 is obvious. To
prove assertion (iii) fix x ∈ H. Then there exists an l such that x ∈ Gk for
all k � l. Fix k > l such that Rk < δ. Then (31) and (32) imply assertion
(iii). Finally the estimates on |Gk| yield

|H| � (λ1 − 2−k0+2)|G| � 1
2
|G|,

for a suitable choice of k0.
Case 2 : F ∈ Vj+1

i . By Proposition 7 (ii) there exist A ∈ U j
i+1, B ∈ Vj

i

such that rk(B −A) = 1 and

F = µA+ (1 − µ)B,
1
4
< µ <

3
4
.

By definition U contains the segment [A,B] and hence a 
0-neighbourhood
of it. Hence we can apply Lemma 8 (with 
 = 
0) and obtain an open set
G0 ⊂ G and a map u0 with

∇u0 = A ∈ U j
i+1 on G0, |G| > 1

4
|G|.

Moreover ∇u0 ∈ U and the usual estimates hold for u − u0. Now we can
apply Case 1 to u0 and G0. This yields a map v which satisfies assertions
(i)–(iii) of the lemma with |H| � |G0|/2 � |G|/8.

Case 3 : F ∈ [A,B], where A ∈ U j
i+1, B ∈ Vj

i , rk(A−B) = 1. Then

F = µA+ (1 − µ)B, 0 < µ < 1.

If µ > 1
4 we proceed as in Case 2 and we obtain a limit map with ∇v =

A∞ ∈ Kj in H, where |H| � |G|/8. If µ < 1
4 we first use Lemma 8 to obtain

a map û and an open set Ĝ ⊂ G with

∇û = B = Vj
i on Ĝ, |Ĝ| > 3

4
|G|.
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Moreover ∇û ∈ U and the usual estimates hold. Now we can apply Case 2
to û, Ĝ and B.

It remains to verify that these constructions satisfy assertion (ii). Since
the Vj is very close to the point P 0

j and the sets U j
i lie in a small neighbour-

hood of the segment [P 0
j+1,M

0
j ] the matrix F can only be close to Vj or to

Vj+1 (see Figs. 2 and 3). If F is close to Vj+1 and hence to P 0
j+1 then µ

must be close to or bigger than 1
2 . Hence assertion (ii) holds. If F is close

to Vj then µ is close to zero. Application of Case 2 to û, Ĝ and B̂ yields a
limit map v with ∇v = A∞ ∈ Kj−1 in H. Hence (ii) holds again.

Case 4: F ∈ V lc,1
1 . Then there exist A,B ∈ V1 with rk(A− B) = 1 and

F = µA+ (1− µ)B, 1
2 < µ < 1. If F is close to Vj (i.e. close to P 0

j ) then so
is A. Applying Lemma 8 we can easily reduce the situation to Case 2 and
we obtain (i) to (iii) with |H| � |G|/16.

Case 5: F ∈ V lc,2
1 . Then F is a rank-one convex combination F =

µA+ (1− µ)B of A,B ∈ V lc,1
1 with µ � 1

2 . Again if F is close to Vj so is A.
Hence Lemma 8 allows us to reduce the situation to Case 4 and we obtain
(i)–(iii) with |H| � |G|/32. �

Lemma 10 (partial approximation of C∞ functions by piecewise affine func-
tions). Let θ > 0 be sufficiently small, let G ⊂ Ω × (0, T ) be open, let
U ⊂ R

m×n be open and bounded, let i ∈ N and let η ∈ C0(G) with η > 0 in
G. Denote D := (∇, ∂t). Suppose that

u ∈ C∞(G; Rm), ∇u ∈ U .
Then there exist

∼
G ⊂ G open, |

∼
G| ≥ θ|G|,

v ∈ C∞(G,Rm), ∇v ∈ U (33)

such that

v − u ∈ C∞
0 (G; Rm), |D(v − u)|(x) < η(x)2−i, (34)

||(v − u)t||Cα < 2−i, (35)

and v is affine on each component of
∼
G. (36)

Proof. We may assume that G is a small ball and dist(∇u, ∂U) ≥ c > 0.
Indeed in the general case we can always exhaust (a fixed compact subset
of) G by balls (with maximal radius R > 0) whose total measure exceeds a
fixed fraction of |G|. Without loss of generality we consider the ball Br ⊂ G

17



with center 0 and radius r ≤ R and assume u(0) = 0. With the help of a
cut off function ψ ∈ C∞

0 (B1, [0, 1]) with ψ|B1/2
≡ 1 we define for z ∈ B:

v(z) := ψ
(z
r

)
Du(0)z +

(
1 − ψ

(z
r

))
u(z).

The function v is affine on the set where ψ = 1, i.e. on the ball Br/2 and so
we can set θ := |Br/2|/|Br|, independent of r. Moreover using that u ∈ C∞

we can prove that |∇u−∇v| is arbitrarily small if R was chosen sufficiently
small. Hence (33) and (36) are satisfied and (34) will follow from (35).

To prove (35) we first calculate vt as

vt(z) = ψt

(z
r

) 1
r
(Du(0)z − u(z))

+ψ
(z
r

)
(ut(0) − ut(z))

+ut(z). (37)

With L := Lip (Du) <∞ we can estimate the derivative of the first term in
(37): ∣∣∣∣D

(
ψt

(z
r

) 1
r
(Du(0)z − u(z))

)∣∣∣∣
≤

∣∣∣∣ψt

(z
r

) 1
r
(Du(0) −Du(z))

∣∣∣∣
+ |Du(0) − u(z)| 1

r2

∣∣∣Dψt

(z
r

)∣∣∣
≤ C1

(
Lip(Du)

|z|
r

+ Lip(Du)
|z|2
r2

)

≤ 2C1L.

With the help of this inequality and a Taylor expansion we can estimate for
z1 �= z2 in the ball B:∣∣∣∣ψt

(z1
r

) 1
r
(Du(0)z1 − u(z1)) − ψt

(z2
r

) 1
r
(Du(0)z2 − u(z2))

∣∣∣∣
≤ 2C1L|z1 − z2| = 2C1L |z1 − z2|1−α︸ ︷︷ ︸

≤r1−α≤R1−α

|z1 − z2|α.

Choosing R ≤ (
2i+2C1L

)− 1
1−α and taking everything together we get∣∣∣∣ψt

(z1
r

) 1
r
(Du(0)z1 − u(z1)) − ψt

(z2
r

) 1
r
(Du(0)z2 − u(z2))

∣∣∣∣
≤ 2−i−1|z1 − z2|α. (38)
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We can estimate the second term in (37) in a similar way:∣∣∣ψ (z1
r

)
(ut(0) − ut(z1)) − ψ

(z2
r

)
(ut(0) − ut(z2))

∣∣∣
≤

∣∣∣ (
ψ

(z1
r

)
− ψ

(z2
r

))
(ut(0) − ut(z1))

−ψ
(z2
r

)(
(ut(0) − ut(z2)) − (ut(0) − ut(z1))

)∣∣∣
≤

(
1
r
Lip (ψ)L|z1| + L

)
|z1 − z2|

≤ (
Lip (ψ)LR1−α + LR1−α

) |z1 − z2|α.

Choosing R ≤ (2i+2Lip (ψ)L + 2i+2L)−
1

1−α the last expression can be esti-
mated from above by 2−i−1|z1 − z2|α. From this and (38) we get

|(vt − ut)(z1) − (vt − ut)(z2)| < 2−i|z1 − z2|α.

Thus we have proved (35).
A straightforward iteration of Lemma 10 gives

Lemma 11 (approximation of C∞ functions by piecewise affine functions).
Let G ⊂ Ω× (0, T ) be open, U ⊂ R

m×n be open, i ∈ N, η0 > 0. Suppose that

u ∈ C∞(G; Rm), ∇u ∈ U .

Then there exist disjoint open sets Gα, a Lebesgue null set N and a map v
such that

G =
⋃
α

Gα

⋃
N,

v ∈ C1(G; Rm), ∇v ∈ U ,
v − u ∈W 1,∞

0 (G; Rm), ||D(v − u)||L∞ < η0,

(v − u)t ∈ Cα
0 (G; Rm), ||(v − u)t||Cα < 2−i,

v affine on Gα.

Remark. To see that indeed ∇v ∈ U and not only ∇v ∈ Ū it suffices to
take η(x) = 1

2 dist(∇u(x), ∂U) > 0 in the iterative application of Lemma 10.
As an immediate consequence of Lemma 9 and Lemma 11 we obtain
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Lemma 12 (main iteration lemma). Let U ,U j
i ,Vj

i ,K,K
j be given by (15),

(16), (17), (10) and Proposition 7 (iii). Let G ⊂ Ω × (0, T ) be open, let
k ∈ N, let u be Lipschitz in G with

∇u = F in G, F ∈ U .

There exist a Lebesgue null set N and a decomposition

G =
⋃
Gα

⋃
H

⋃
N, Gα open, |H| ≥ 1

32
|G|,

and a Lipschitz map v such that

(i)

v − u ∈W 1,∞
0 (G; Rm),

(v − u)t ∈ Cα
0 (G; Rm), ||(v − u)t||Cα < 2−i.

v affine on Gα, ∇v ∈ U
∇v ∈ Kj a.e. in H, for some j ∈ {1, 2, 3, 4}.

In addition we may assume diamGα < 2−i.

(ii) If F ∈ Uk
i or dist(F,Vk+1) < η0 then j = k in (30).

(iii) For all x ∈ H and all δ > 0

|{y ∈ B(x, δ) \H : dist(∇v(y),Vj) < η0}| > 0.

Proof of Theorem 1. Step 1: Construction of the solution.
Let u0 ≡ 0. Let u1 be the map v obtained from u0 by application of

Lemma 12 with i = i0 sufficiently large (in particular 2−i0 < 1/8). Thus we
obtain a decomposition G = ∪Gα ∪ H1 ∪ N with ∇u1 ∈ K in H1. Now
apply Lemma 12 to each of the subsets Gα, with i = i0 +1. This yields new
maps u2 on Gα and subsets H2,α on which ∇u2 belongs to K (a.e.). Since
u2 − u1 ∈ W 1,∞

0 (Gα; Rm) these maps are the restriction of a Lipschitz map
u2 defined on G and we set H2 = ∪H2,α. Proceeding by induction (with

20



i = i0 + k) we find Lipschitz maps uk and disjoint sets Hk such that

uk − u0 ∈W 1,∞
0 (G; Rm) and

||(uk+1 − uk)t||Cα < 2−i0+k,

uk+1 = uk on Hl, for all l ≤ k, (39)
∇uk+1 ∈ K on Hk+1,

∇uk+1 ∈ U on G \ ∪k+1
l=1 Hl,

|G \ ∪k
l=1Hl| ≤

(
31
32

)k

|G|. (40)

In particular we deduce that uk is bounded in W 1,∞
0 and Duk and uk con-

verge a.e. Thus

uk −→ u∞ in W 1,1(G; Rm)

and by (39), (40)

∇u∞ ∈ K a.e.

Moreover

(uk)t −→ (u∞)t in Cα, ||(u∞)t||Cα ≤ 2−i0 .

Recalling that

uk =
(

wk

Wk

)
, where wk and Wk ∈W 1,∞(G; R2)

and taking into account the definition of K we see that w∞ solves the
parabolic system (1)–(2) with f = (w∞)t ∈ Cα.

Step 2: Lack of regularity. To prove that ∇w∞ is nowhere continuous we
will show that there exists a constant c > 0 such that whenever B(x0, 2
) ⊂
Ω × (0, T ) then

ess osc
B(x0,2�)

∇w∞ ≥ c. (41)

First note that |B(x0, 
) ∩ Hk| > 0 for infinitely many k. Indeed if l was
the largest value of k for which the estimate holds then ∇ul ∈ K a.e. in
B(x0, 
). Taking x ∈ B(x0, 
) ∩ Hl and B(x, δ) ⊂ B(x0, 
) we obtain a
contradiction with Lemma 12 (iii) for u = ul. Hence we may choose k such
that 2−(k−1) < 
, |B(x0, 
) ∩Hk| > 0.
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By construction of uk there exist open sets Gk−1,α such that uk−1 is affine
on Gk−1,α. Moreover Hk = ∪Hk,α where Hk,α arises from an application of
Lemma 12 to uk−1|Gk−1,α

. In particular Hk,α ⊂ Gk−1,α and diam Gk−1,α <

2−(k−1) < 
. Choose α such that |Hk,α ∩ B(x0, 
)| > 0. Then Gk−1,α ⊂
B(x0, 2
). Moreover by Lemma 12 (i)

∇u∞ = ∇uk ∈ Kj in Hk,α for some j ∈ {1, 2, 3, 4} (42)

and by Lemma 12 (iii)

|{y ∈ Gk−1,α \Hk,α : dist(∇uk(y),Vj) < η0}| > 0.

Hence there exists an open set Gk,β ⊂ Gk−1,α ⊂ B(x0, 2
) such that

uk affine on Gk,β, ∇uk = F ∈ U , dist(F,Vj) < η0.

Thus Lemma 12 (ii) (applied to uk and Gk,β) implies that there exists
Hk+1,β ⊂ Gk,β with

∇u∞ = ∇uk+1 ∈ Kj−1 in Hk+1,β and |Hk+1,β| > 0. (43)

Since the projection
(
X
Y

)
�→ X from R

4×2 to R
2×2 maps Kj and Kj−1

into two well separated sets in R
2×2 (in fact small neighbourhoods of two of

the four points in (11)) the assertion (41) follows from (42) and (43). �
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