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Abstract

Lower semicontinuity results with respect to weak-* convergence in
the sense of measures and with respect to weak convergence in LP are
obtained for functionals

ve L' (QR™) — /Q f(z,v(x))dx,

where admissible sequences {v,} satisfy a first order system of PDEs
Av, = 0. We suppose that A has constant rank, f is A-quasiconvex and
satisfies the non standard growth conditions

1
5(
with ¢ € [p,pN/(N —1)) for p< N—1,q€ [p,p+1) forp >N —1.1In

particular, our results generalize earlier work where Av = 0 reduced to
v = V*u for some s € N.
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1 Introduction

It is well known that quasiconvexity is a necessary and sufficient condition for
lower semicontinuity with respect to strong convergence in L' of functionals of
the form

ue WhH (Q;R™) »—»/Qf(Vu (z)) de, (1.1)

where the integrand f = f(Vu) is nonnegative and has linear growth. More
precisely, the following result holds:

Theorem 1.1 Let Q C RY be an open bounded set, and let f : R™*N — [0, 00)
be a quasiconvex function such that

0<f(<C+) (1.2)

for all ¢ € R™*N and for some constant C > 0. Then

n—00

/ f (Vu(z)) de < lim inf/ f (Vuy, (x)) dx
Q Q

for any sequence {u,} C Wh (Q;R™) strongly convergent in L' (Q;R™) to
some u € BV (Q;R™) if and only if f is quasiconvez.

The proof of the necessity is due to Morrey [39], while the sufficiency relies
on De Giorgi’s Slicing Lemma (see e.g. [6]; see also [25], [26], [35]). In the
Appendix we present a another argument based on Gagliardo’s Trace Theorem
for W (€;R™) (see [29]). It is interesting to observe that the idea behind the
proofs using either De Giorgi’s Slicing Lemma or Gagliardo’s Trace Theorem is
actually the same.

In the scalar case, that is when m = 1, it has been proved by Serrin [44]
that Theorem 1.1 continues to hold without assuming the upper bound in (1.2).
This is due to the fact that when m = 1 quasiconvexity reduces to convexity.
Since any nonnegative convex function is the supremum of a sequence of linear
functions, trivially satisfying (1.2), lower semicontinuity results for this type of
integrands do not require apriori growth conditions. The situation is completely
different in the vectorial case m > 1, where Theorem 1.1 fails in general if f has
superlinear growth. Indeed, Acerbi, Buttazzo and Fusco [2] proved that when
N = m = 2 the functional

ueWh? (4 R?) — / |det Vu| dz
Q

is not lower semicontinuous with respect to strong convergence in LP (Q; RQ) for
any 1 < p < oo.

This striking difference in lower semicontinuity properties between function-
als with integrands with linear growth of the type (1.2) and integrands with
superlinear growth such as

0<f()<C+[EY), ¢>1,



maybe explained in part by the profound disparity in the characterization and
properties of the trace space of W14 (;R™) when ¢ = 1 and ¢ > 1. If Q is
a Lipschitz domain then the trace space of Wb (Q;R™) is L' (9€;R™), and
thus strong convergence in L' (€;R™) implies (up to a subsequence) strong
convergence of the traces in L' (9Q;;R™) where € is a smooth domain arbi-
trarily “close” do 2 and hence there exists an extension which converges in
WL (€Q;R™). On the other hand, when q > 1 the trace space of W14 (Q; R™)

is the fractional Sobolev space W'ed (09Q:; R™), therefore strong convergence
alone in L? (Q;R™) for any 1 < p < oo does not necessarily entail strong con-

vergence of the traces in Wl-a (0€; R™). By virtue of Sobolev’s Imbedding
Theorem this is guaranteed, however, if the integrand f satisfies a coercivity
condition of the form

1
7€) = 5 g -1,
with
1<p<qg<

N
. 1.3
v 1? (1.3)
As a consequence, the following result holds:
Theorem 1.2 Assume that p,q satisfy (1.3). Let @ C RN be an open bounded
set, and let f: R™*N —[0,00) be a quasiconvex function such that

S -1 < f©O =+ (14)

for all € € R™*N . Then

/f(Vu) dscgliminf/ f(Vuy,) dzx

Q n—oo Jo

for any sequence {u,} C WLa(Q;R™) which converges to u € BV (Q;R™)
strongly in L*(Q;R™).

In this generality Theorem 1.2 was proved by Fonseca e Maly [23] for p > 1,
and by Kristensen [32] when p = 1 (see the bibliography therein for previous
partial results). For the convenience of the reader we present a proof of Theorem
1.2 in the Appendix.

Observe that we take admissible converging sequences {u,} in the space
Wha(Q; RY), otherwise not only we would be unable to guarantee finiteness
of the energy, but also, since f is quasiconvex and f(§) < C (1 + £, f is
W h4-quasiconvex but it may fail to be W P-quasiconvex (see [8]). In addition,
note that by (1.4) if p > 1 and if linngi£f Jo F(Vuy)dx < oo then, necessarily,
u € WHP(Q;R™).

The proof of Theorem 1.2 strongly hinges on the properties of a linear,
compact, lifting operator

E: WhP(OQ; R™) — Whi(Q; R™)
v E(v)



such that v is the trace of E (v). The existence of such an operator follows from
standard Sobolev trace and compact embedding theorems when ¢ < % p. The
exponent

N
N-1?
is critical for the existence of the operator E, and, not surprisingly, also for
lower semicontinuity of functionals of the type (1.1). Indeed, Maly [33] proved
that the functional

dc =

ueWhN (;RY) H/ |det Vu/| dz
Q

is not lower semicontinuous with respect to weak convergence in W1? (Q; RN )
for any p < N — 1.

Lower semicontinuity of (1.1) in the borderline case where (1.4) holds for
q = 25 p is still unknown (see [24], [32], [34] for some partial results), except
for the special case where m = N and

F&) =16" " + g (dete). (1.5)

Theorem 1.3 Let Q C RY be an open bounded set, and let g : R — [0, 0]
be a lower semicontinuos convex function such that g (0) < co. Let {u,} be a
sequence of functions in WhN (Q;RN) which converges to u € BV (;RY) in
LY(S;RY), and such that

sup/ V|V de < oo,
n Jo

Then
/ g(det Vu) dr < lim inf/ g(det Vuy,) dz.
Q Q

n—oo

Theorem 1.3 was proved by Celada and Dal Maso [13] using cartesian current
(see also [22] for a new proof).

Functions of the form (1.5) may be viewed as prototypes of integrands
f = f(z,u, Vu) satisfying a “limiting” non standard growth condition (1.4)
and whose importance stems from the study of cavitation and related issues
in nonlinear elasticity and continuum mechanics. For further results in related
subjects we refer the reader to [1], [3], [7], [9], [13], [17], [20], [23], [24], [32], [33],
[34], [35], [36], [53], [54].

The purpose of this paper is to extend Theorems 1.1 and 1.2 to the general
setting of A-quasiconvexity, which has been introduced by Dacorogna [14] and
further developed by Fonseca and Miiller in [27] (see also [10]). Here, and
following [40],

N
A:LU(QGRY) - W H(ORY), Av:i=) A

=1

(i) 9v.
6$i ’



is a constant-rank (see (2.1)), first order linear partial differential operator, with
AW R? - R! linear transformations, i = 1,..., N. We recall that a function
f:R? — R is said to be A-quasiconvex if

16) < /Q S+ w(y)) dy (1.6)

for all ¢ € R? and all w € C.(RY;R?) such that Aw = 0 and fQ w(y) dy = 0,

per
where @ denotes the unit cube in RY | and the space Cper (RY; R?) is introduced
in Section 2.

The relevance of this general framework, as emphasized by Tartar (see
[47, 48, 49, 50, 51, 52]), lies on the fact that in continuum mechanics and in
electromagnetism PDEs other than curlv = 0 arise naturally and are physically
relevant, and this calls for a relaxation theory which encompasses PDE con-
straints of the type Av = 0. Some important examples included in this general
setting are given by:

(a) [Unconstrained Fields]
Av = 0.

Here, due to Jensen’s inequality, A-quasiconvexity reduces to convexity.
(b) [Divergence Free Fields]

Av =dive =0,

where v : Q C RY — RY (see [41]).
(c) [Maxwell’s Equations]

() ()

where m : R? — R? is the magnetization and h : R?® — R? is the induced
magnetic field (see [18, 51]).
(d) [Gradients]

Av = curlv = 0.
Note that w € C52,(RY;R?) is such that curl w = 0 and fQ w(y)dy = 0 if and
only if there exists ¢ € ngr(RN; R™) such that Vo = v, where d = m x N. In

this case, (1.6) reduces to the well-known notion of quasiconvezity introduced
by Morrey [39].

(e) [Higher Order Gradients]

Replacing the target space R? by an appropriate finite dimensional vector space
E™ of m-tuples of symmetric s-linear maps on RY, it is possible to find a first
order linear partial differential operator A such that v € LP(§2; E7") and Av = 0
if and only if there exists ¢ € W*9(Q; R™) such that v = V®¢ (see Theorem
1.8). In this case, (1.6) reduces to the notion of s—quasiconvezity introduced
by Meyers [38].

The first main result of the paper is given by the following theorem:



Theorem 1.4 Let

1< .

A

Let Q C RY be an open bounded set, and let f : Q x R? — [0,00) be a Borel
measurable, A-quasiconvex function such that

1 @8 = f @)l <C (1+1g" +lal™) ¢ - &l (1.8)

for all x € Q and all £,&; € RY, and for some C > 0. Assume further that for
all zg € Q and € > 0 there exists § > 0 such that

f(x0,8) — f(@,8) <e(1+ f(x,)) (1.9)
for all x € Q with |x — x| < & and for all € € RY. Then

/Qf <:c, dde—AN (:c)> dx < hnrrilgf/ﬂ f(z,v, (x)) dx

for any sequence {v,} C L4 (Q;Rd) N ker A weakly-x converging in the sense of
measures to some R¢—valued Radon measure X € M (Q; Rd) .

(1.7)

Lower semicontinuity properties of the constrained functional
/ f(z,v(x)) de with Av =0,
Q

have been proved by Fonseca and Miiller in [27] with respect to weak convergence
in L' (Q;Rd) . Note, however, that for integrands with linear growth weak-x
convergence in the sense of measures is more natural in view of the lack of
reflexivity of the space L'(2;R9).

Also, in the case (d) of gradients, that is, when

Av = curlv = 0,

Theorem 1.4 includes Theorem 1.1 for integrands which satisfy the additional
coercivity assumption

F©=l-c (1.10)

Indeed, condition (1.10) implies that the sequence {Vu,,} is uniformly bounded
in L! (Q;RmXN ) , and thus a subsequence weakly-* converges in the sense of
measures.

We do not know if Theorem 1.4 continues to hold under a convergence weaker
than weak-* convergence in the sense of measures. On one hand, Theorem 1.1
certainly seems to point in that direction, but on the other hand, even for higher
order gradients (also contemplated within the A-quasiconvexity framework; see
example (e) above) the situation is far from clear. Indeed, it is still an open
problem to determine whether the functional

u € WHQ;R™) / f(V?u)dz,
Q



where f : E$ — [0, 00) is a 2-quasiconvex function satisfying

0< f(§) =C1+E)

for all ¢ € EY, is lower semicontinuous with respect to strong convergence in
WHL(Q; R™). Note that if u € W(Q; R™), then (see [11], [19], [37])

@
b ov

and strong convergence in W11 (£; R™) implies strong convergence of the nor-

€ BM (09, R™) x L' (9 R™),
o

mal derivatives {%} in L' (0Q; R™) where €, is a smooth domain arbitrarily
v

“close” do 2. However, this does not necessarily guarantee strong convergence
of the traces in the Besov space B11 (9§2;; R™). This suggests that lower semi-
continuity might not hold under strong convergence in Wh(€; R™) and that
a stronger notion of convergence is needed. We do not know how to prove or
disprove this.

Condition (1.9) is satisfied in the important special case where the integrand
f(x,&) is a decoupled product. Indeed we have the following

Corollary 1.5 Let 1 < q < oo satisfy (1.7), let g : RN — [0,00) be an A-
quasiconver function such that

9@ —gE)l<C 1+ +lal ) lE-&

for all £,&, € R, and for some C > 0, and let h : Q x R — [0, 00] be a lower
semicontinuous function. Then

n—00

/Qh(x)g ((Z:—AN (x)) dz < 1iminf/ﬂh(x)g (vn (2)) do

for any sequence {v,} C L* (Q; Rd) N ker A weakly-+ converging in the sense of
measures to some RY—valued Radon measure A € M (Q; Rd) .

The second main result of the paper partially extends Theorem 1.2 to the
realm of A-quasiconvexity:

Theorem 1.6 Let 1 < p < g < 0o, and assume that
N
- i< N —
Q<{N—1p fpsN -1, (1.11)
p+1 ifp>N—1.

Let Q € RY be an open bounded set, and let f : Q x RY — [0,00) be an A-
quasiconver function such that

F@o—f@e)l <1+l +lal)le-al  (112)



for all x € Q and all £,& € RY, and for some C > 0. Assume that f satisfies
condition (1.9). Then

/ fz,v(x)) de < liminf/ f(x, v, (x)) do

Q n—oo Jo

for any sequence {v,} C L9 (Q; Rd) Nker A weakly converging in LP (Q; Rd) to
some v € LP (Q;Rd) .

Note that, unlike the case where p = ¢ (see [4], [15]), in general one may not
take f to be a Carathéodory function, and some kind of regularity is needed in
the x variable. Indeed, Gangbo [30] has proved that the functional

ueWh (Q;RY) — / Xk () |det Vu ()| dz,
Q

where K C RY is a compact set, is lower semicontinuous with respect to weak
convergence in WP (Q; RN) for some N —1 < p < N if and only if

LY (0K) = 0.

Here, again, one witnesss the intrinsic differences between the convex and the
quasiconvex frameworks, as it has been shown by Acerbi, Bouchitté and Fonseca
[1] that Theorem 1.6 still holds for Carathéodory functions f and with Av = 0 if
and only if curlv = 0, provided f(z, -) is convex, and without requiring condition
(1.12).

The analog of Corollary 1.5 is now:

Corollary 1.7 Let 1 < p < q < oo satisfy (1.11), let g : RN — [0,00) be an
A-quasiconvex function such that

9© —gE@) <O 1+l +1al") -l

for all £,& € R, and for some C > 0, and let h : Q x R — [0, 00] be a lower
semicontinuous function. Then

n—oo

/ h(z)g (v (x)) de < liminf/ h(z)g (v, (2)) dx
Q Q

for any sequence {v,} C L% (Q;Rd) N ker A weakly converging in LP (Q;Rd) to
some v € LP (Q;Rd).

In the case of first or higher order gradients (d) and (e), the Lipschitz condi-
tion (1.12) follows from the s—quasiconvexity of the integrand f(z,&) together
with the growth condition (1.13) below. For first order gradients, this was shown
by Marcellini [35]. The case s = 2 was treated by Guidorzi and Poggiolini [31],



while the general case was studied by Santos and Zappale [43]. More generally,
it can be shown that if the span of the characteristic cone

A= ] Aw),

weSN -1

N .
where A(w) := 3 w; A® | has dimension d then A-quasiconvexity, together with

=1
(1.13) below, implies (1.12).
As a corollary of Theorem 1.6 we obtain the following result:

Theorem 1.8 Let 1 < p,q < oo satisfy (1.11), let s € N, and suppose that
f:Qx EM™—[0,00) is a Borel integrand satisfying (1.9), and

0< flz,6) <C(A+8]7) (1.13)
for a.e. x € Q and all £ € E™, where C > 0. Assume that for a.e. x € Q the

s 7
function f(x,-) is s—quasiconvex, that is for all £ € E™

o) =int { [ flané + Toul)dys we CREYED).
Q
If {un} C W=9(;R™) converges weakly to w in WP (Q; R™) then

/ f(z, Viu) dr < lim inf/ flz, Viuy,) dx.
Q n—oo Jo

Here E7* stands for the space of m-tuples of symmetric s-linear maps on
RY. Theorem 1.8 was proved by Esposito and Mingione (see Theorem 4.1 in
[21]) under the assumptions

N(s—=1)

I“NG-1n-17

when s > 2.

2 Preliminaries

We start with some notation. Here  is an open, bounded subset of RY, £V
is the N dimensional Lebesgue measure, SV~! := {z € RY : |z| = 1} is
the unit sphere, and Q := (—1/2,1/2)" the unit cube centered at the origin.
For 7 > 0 and 79 € RY we set Q, = rQ and Q(xo,7) := 70 +7Q . A
function w € L{ (RY;R?) is said to be Q-periodic if w(z + e;) = w(z) for a.e.

loc

r € RY and every i = 1,..., N, where {ej,...,ex} is the canonical basis of
RY, and we write w € Lger(Q;Rd). Also ngr(Q;Rd) will stands for the space

of Q-periodic functions in C>(R™;R%). The Fourier coefficients of a function
w € LY (Q;R?) are defined by

per

w(N) = / w(z)e TNy, NeZN.
Q



If 1 < ¢ < oo then W—14(Q;RY) is the dual of Wol’q/(Q;Rl), where ¢’ is the
Holder conjugate exponent of ¢, that is 1/¢ +1/¢’ = 1. Tt is well known that
F € W=54(Q; RY) if and only if there exist g1,...,gn € L9(Q;R!) such that

N
0 ,
(F,w>=Z/Qgi-a—;ﬂ_dac for all w € Wy? (4 RY).
i=1 '

Consider a collection of linear operators A® : R — R!, i =1,..., N, and
define the differential operator

Ag : LYQ;RY) — W H(Q;RY)

v+— Av

as follows:

N o
(Aqu,w) = <Z A® 0xi’w>

i=1

N
= 72/ AWy gw de  for all w € W7 (4 RY).
=1 Q Ti

Even though the operator Ag so defined depends on 2, we will omit reference
to the underlying domain whenever it is clear from the context, and we will
write simply A in place of Aqg. In particular, if v € LI (Q;R?) then we will

per

say that v € ker A if Av = 0 in WI;}"?(Q;RZ), i.e. we consider test functions
w € Wt (Q;R).

In the sequel we will assume that A satisfies the constant-rank property (see

[40]), precisely there exists » € N such that
rank A (w) =r for all w € SVN~1 (2.1)

where

N
A (w) ::ZwiA(i), w e RN,
i=1

For each w € RY the operator P (w) : R — R? is the orthogonal projection

of R? onto ker A (w), and S (w) : Rl — R? is defined by S (w) A (w) z := z —

P(w)z for z € R? and S = 0 on (range(A(w))*. It may be shown that P :

RN\ {0} —Lin(R%R?) is smooth and homogeneous of degree zero and S :

RN\ {0} —Lin(R%R?) is smooth and homogeneous of degree —1 (see [27]).
For ¢ > 1 we define the operator

Sq i Le, (QRY) — Wi (Q;RY),

by
Sqv (z) == Z S(A) 0 (N) iz (2.2)

AeZN\{0}

10



whenever v € LY, (Q;R?) can be written as
v(a) = Y b(A) e (2.3)
xezN

Using (2.2) and (2.3) we may write
Sw(@) = [ K)o dy
where the periodic kernel K is given by the Fourier series
K (z) := Z S(\) e2mizA
AeZN\{0}

which converges in the sense of distributions.
For any function w defined on R™ and for every k = 1,..., N and any
positive integer s € N we define

= (o (- (7))

s times

+

where the difference quotient is given by

Fw

6—xk(z) =w(xtey) —w(x).

Moreover for any multi-index o = (g, ...,ay) € NV we use the notation

ot - (7 ()

Proposition 2.1 There exists C' > 0 such that
K ()] < Cla|' ™Y (2.4)

for all z € RM\ {0}.

Proof. Although the result is well-known to experts, we include a proof for
the convenience of the reader. It suffices to prove that

VK (z)| < C|a| N (2.5)
for all x € RN\ {0}. Let 1 € {1,--- , N} and let
- 0K .
K (z) = — () := 2miNS (N) 2w A
(z) a2, () Z TiNS (A) e
XEZN\{0}
_ Z m()\) e27rz'z-/\ _ Z m()\) 627rix~)\
AEZN\{0} xezZN

11



with
m () :=2miNS (N)

and where we have used the fact m (0) = 0.

We consider the following dyadic decomposition (cf. [45], page 241). Let
p € CX(B(0,2);[0,1]), ¢ =11in B(0,1), and define 6 (z) := ¢ (x) — ¢ (22).
Observe that § = 0 if [z| < § and |2| > 2. It turns out that

for all z € RV\ {0} . Hence

in the sense of distributions, where

Ky () o= 3 my () 2o
AEZN
and m; (A) :=m (X)d (£) . Since
mj (\) # 0 only if 2771 < |\ < 27F, (2.7)

it is clear that K; reduces to a finite sum. Note that if j < —2 clearly no integer
satisfies 2771 < |A| < 277! and so m; = 0 for all j < —2.
We claim that for every M € N

1 (N
K ()] < Cur g2 (2.8)

for all z € R\ {0}. This, together with (2.6), yields the result. Indeed, fix
x € RN\ {0}, and note first that (2.8) with M = 0 reduces to
K (2)] < Co2™. (2.9)

Choose M > N. We have

YK @< Y K@+ Y K (@)

Jj=—00 2 <|z| 7t 20> |z| 7t
) 1 )
<Co Y, PN+Cu—z >, 20M (2.10)
29 <|a| G Y

In the latter expression the first sum can be bounded above by

1+log,|z| " _1 1 oN

<
2N 1 gV 2N -1

s e @)

20 <Je|7?

12



while the second term in (2.10) may be estimated by

1 1 1 1 1
M| N=M 71 _oN-M 5N~ M—CMl N

Cy—— Z I(N=M) < &

le ||

20>z 71

To conclude the proof, it remains to establish (2.8). By means of a summation
by parts and by the Mean Value Theorem, for any k= 1,--- , N, we have

(627Ti93k _ 1) Kj (I) _ Z m; ()\) <627rix~(k+ek) _ e27rz'z-A)

AEZN
= D (my (A —ex) —m; (V) A
AezZN
_ Z 9~ m] p2miz-A
= Ok
om; .
_ Z 87:‘] ()\'i‘e](gl)ek) 627r1x~/\,
AeZN k

om,;
for some 91(91) € (0,1). By replacing m; with 5 )\] in the previous identity, we
l
obtain respectively

' , 0%m; ,
2mix; 2mixy . _ J (1) (1) 2miT- A
(e™m — 1) (e*™r — 1) K (z) gZN DY ()\ + 6, ex + 6, el) e

if 14k,

(egm-xk B 1)2Kj (z) = Z 3;;753- ()\Jr (9(1) +9(2)) ) p2miT-A
AezZN k

if | = k, where we have used the fact that partial derivatives and difference

quotients commute, i.e.
o 8m] - i 0~ m;
an \oxe ) o \on )7

and, once again, we have invoked the Mean Value Theorem.
In turn, if « is a multi-index with || = M, we have

T oni ; 0'°Im; (40 (o) 2z
TiT @ k mix-
H(e F-1) K (z) = e )\JrZ(@k +- 40, )ek e ,
k=1 AEZN k=1
where 9,(:), e ,9,(;1’“) € (0,1). By the Mean Value Theorem we derive
jol | o 0*Im; () (o)
@m) 2 K @) < Y | Frat ( A+ (6 + -+ 6™ ) e ),
rezN k=1




which, togethere with (2.7), yields

C olelm; al
K (@) < —57 > UR <A+Z(9,§1)+~~~+9,§“k>) e
|| 20-1_|a|<|A|<29+1 4] k=1
Cc2-iM
— 1
217 21 jai <214l
9—iM+jN
SO
||

Note that here we have used the fact that

d1lm; (\)
o«

‘ < Cp27M,

which results directly from the homogeneity of degree zero of the function m,
yielding
— < [e% >\ )
L
and from

G- G) I () e

where we took into account the fact suppd (57) C [2771,277]. =

It is clear that §; may be extended as an homogeneous operator of degree
—1 from W3 19(Q;R?) into L4 (Q;R?). Indeed, as it is usual, using duality

per per

principles, if L € W, .1(Q; R?) and if ¢ € Lg;r(Q; R?) then
(SqL, @) :=(L,Sp¢) , (2.11)

where for f,g € Cpe.(Q; R?) the duality pair is defined by

and where the operator

Si L, (Q;RY) — WL (Q;RY)

q per per

is defined by
Syv () == Z S () (X) e2mie-A
AeZN\{0}

whenever v € LY, (Q; RY).

per
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In particular, consider

l<g< .
1~ N7

Since the space of all Q-periodic R!-valued Radon measures Mper (Q;Rl) is
contained in W&%’Q(Q;Rd), if 4 € Mper (@Q;R") then in view of (2.11), Syp is
well defined, and using Fubini’s Theorem we may find the representation

S (@) = [ K(a =) du(y). (2.12)
Q
Indeed, if ¢ € C32,(Q; R?) we have
/ (St) (x) ¢ () dz = (Sgp, ) = (11, Syrp) = / Sy (y) d (y)
Q Q

- [ Y smeweran

@ xezZN\{0}

=L X smentran) | ot ds

AeZN\{0}
:/ (/ K(fﬂy)du(y)) ¢ () d,
Q \JaQ
thus asserting (2.12).

We can now define the operator

T, L8 (Q;RY) — L (Q;RY)

per per
as follows
T (z) == v — SgAv.
When there is no possibility of confusion we write simply S and 7 in place of
S, and 7y, respectively.
The following proposition may be found in [27].
Proposition 2.2 7 : L (Q;R?Y) — L4 (Q;R?) is a bounded linear operator

per per

and S : W 14 (Q;Rl) — L4 (Q;Rd) is a pseudo differential bounded operator

per per

of order —1 such that
(i) if v e LL (Q;R?) then T oTv =T v and A(T v) = 0;

(it) |[v=Tvl|[Le < Cgl|A ) |lw-1.0 for allv € L (Q;R?) such that vad:c =
0, for some Cq > 0;

(i1i) v—Tv=SAv.

The next result is well-known to experts. We include a proof for the conve-
nience of the reader.
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Proposition 2.3 Let 1 < p < oo, let h € LP (8QT;R‘1) , where r € (%, 1) , and
consider the measure
_ N—1
u=hwH LaQT .

Thenforse((),l),0<a§1,a7é%,wehave

IS ullzeaq.y < C'ls — |~ |1hl|Ls 6.
where

p(N=1) ¢ 1
t = N—-1—ap Zf P Noil > 0’
o0

; o]

Proof. Consider now

p=hH""

We have

Su(w)=/QK(x—y) dp (y) = 8Q~K(x—y)h(y) dHN " (y).

For any « € (0, 1] there exists a constant C' > 0 such that

o —yN T 2 Ol s e - YT
forallz = s € 0Qs and y = r&’ € 9Q,, where £, ¢’ € 9Q (recall that r € (2,1)).
Thus for x = s € 0Q s we have

A (€]

ol T

1S (@) scv—sr“/a

where
he (€) =N h(re'),

and we used (2.4). The conclusion follows from the standard convolution in-
equality for fractional integrals applied to the (/N — 1)-dimensional Lipschitz
manifold 0Q equipped with the distance induced by RY; see [45], 1§8.21, for a
very general version of fractional integration. For the case at hand one can of
course use the classical argument on local charts (see also Hardy-Littlewood-
Sobolev inequality in RN ~! [45], page 354). m

A function f:R? — R is said to be A-quasiconvez if

16) < /Q S+ w(y)) dy

for all £ € R? and all w € Cg2, (RY; R?) such that Aw = 0 and fQ w(y)dy = 0.
As it is usual, the regularity of the test function w maybe relaxed if f satisfies
appropriate growth conditions.

16



Proposition 2.4 Let f: RY — R be an upper semicontinuous, A-quasiconvex
function, such that

O =ca+g") (2.13)
for all € € R, and for some 1 < q < 0o and C > 0. Then

ﬂ@séﬁ@+wwmy

per

for all € € R? and all w € LI, (RV;R?) such that Aw =0 and fQ w(y)dy = 0.

Proof. Fix ¢ € R? and let w € L4

: 4.(RV;R%) be such that Aw = 0 and
fQ w(y) dy = 0. Then the functions

We ::pe*w—/pa*wdy
Q

per

are in C (RV;R?), Aw. = 0 and fQ we(y)dy = 0. In view of (2.13), Fatou’s
Lemma and the upper semicontinuity of f imply

e—0t

timint [ (€ (1wl = 7€+ )] dy > [ [C0+ul") ~ £(&+ w)] dy
Q Q
Since f is A-quasiconvex it follows that

/f@+w@D@2hmwg/f@+wJ@2f@L
Q Q

e—0*t

and the proof is complete. [ |

3 Proof of Theorem 1.4

In this section we prove Theorem 1.4 using the blow-up method. As it is usual,
the main effort will target the case where the limit function v reduces to a
constant.

Proposition 3.1 Let g: RY — [0,00) be an A-quasiconvex function such that

9© —gE@)I <O 1+l +lal”") lE-al, (3.1)

for all £,&; € RY and for some C > 0, where 1 < q < oo satisfies (1.7). Then

n—00

g(0) < 1iminf/Qg (Up (2)) dx

for any sequence {v,} C L* (Q;Rd) Nker A converging weakly-x to zero in the
sense of measures.

17



Proof. By a simple mollification argument and by passing to a subsequence
if necessary, without loss of generality we may assume that {v,} C C* (Q; Rd) N
ker A,

Cy := sup/ lvn (2)] dz < oo, (3.2)
n JQ
1iminf/ g (z)) de = lim [ g (v, (2)) dz, (3.3)

and there exists a nonnegative Radon measure p such that
on(2)] LY[Q = p (3.4)

as n — oo, weakly * in the sense of measures. Fix 6 > 0. By (3.2); there exist

E,C(1-2§1-9), El(En):g
such that
1(0Qy) =0 (3.5)
and
/ lo,| dHN ™Y < €y (6) = 4% (3.6)
Q.. o

for all r € E,,. Fix r € E,, and let

Wn,r = XrUn — / Un, dy

r

By the A-quasiconvexity of g and as g > 0, we have

/Q g(vn) dz > /Q 9T (wor)) dat [ g@on)do— [ g(T (wn,)) da

i Q

> 4(0)1Q] + /Q g (vn) dr /Q 9 (T (wny) de (3.7)

T

—9(0)(Q.] + /Q 9 Gervm) — 9 (T (wn,))] do,

where ;- is the characteristic function of the set ), and where we have used
Proposition 2.4. By (3.1) we have

[ 1ot =9 (7 )
<C [ (14 boonl™ 1T ) ™) bt = T ()] da

Q
§ C/ |X7"Un - T(wn,T”q dx + C/ (1 + |ern|q_1) |ern - T(wn,r)| da.
Q Q

18



Hence from (3.7) we have
/ g (Un) dz Z g( |Q1 26| / |ern - wn,r)|q dx
Q
- C/ 1 + |X7‘Un|Q71) IXrvn — T (wn,)| do.
Q

Multiply the previous inequality by x g, and integrate in r to obtain

5 5
2 /Q g(vn) da 29 (0)Q1-2s] 5

— C/ XE"/ Ixrvn — T (wp,)|* dxdr (3.8)
1-25
1-6 L

-C XE, / (1 + |Xr'Un|q_ ) |XTUTL -7 (wn,r)| dx dr,
1-25 Q

where we have used the fact that £! (E,) = 2. By (1.7) we may choose ¢; such

that

q if ¢ > 1,
=9 (1,%) =1, (3.9)
We claim that
1-6 q1
lim XE, / vpdy| dr =0. (3.10)
n—=o0 J1_25 .

Indeed, fix r € (1 —26,1—9). If u(9Q,) > 0 then xg, (r) = 0 for all n by (3.5),
while if ©(0Q,) = 0 then fQ XrUndy — 0 by Theorem 1.62 in [5], and because

v, — 0 in the sense of measures. The claim now follows from (3.2) by Lebesgue
Dominated Convergence Theorem.
Next we show that

lim XEn/ IXrvn — '(Un,r)|q1 dxdr =0, (3.11)
1-26

n—oo

or, equivalently by (3.10),

lim XE,L / |wi,r — T (wp,)|" dzdr = 0. (3.12)

By Proposition 2.2(ii) we have
lwn,r =T (W)l por @ = ClA (’UnXT)”W*LlH(Q) 5

and thus to prove (3.12) it suffices to show that

1-6
q1
| e A v g dr =0, (3.13)
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Fix ¢ € C(Q;R!). Using (3.6), if r € E,, then we deduce that

N

/ A(i)XTUn % dx
— Q 6.%1
i=1

|<A (ern) 71/)>| -

N ‘/ A (vr) v RN (3.14)
Q.
< C/BQ |on| dHN 19 e (0mty < C YN oo (i) -
Hence
XE, A(XTUH)HM(Q;RL) < C (315)

for all n and r € (1 — 24,1 — J). We now show that

XE,LA (ern) = 0

in the sense of measures. Fix ¢ € CX(Q;R!) and r € (1—-2§,1-46). If
w(0Qr) > 0 then xg, (r) = 0 for all n by (3.5). Thus assume p(0Q,) = 0.
Since v, € ker A, we have, by Theorem 1.62 in [5] and the fact that v, — 0 in
the sense of measures,

[, OU
(A(xrvn),¥) = ;/Q/ﬂ )X o dz — 0. (3.16)

Therefore, {xg, A (Xrvn)} is a bounded sequence of R!-valued Radon measures
converging weak-* to zero. Since M (Q; Rl), the space of all R!-valued Radon
measures, is compactly embedded in W54 (Q; RY), we deduce that

xE, A(Xrvn) — 0in W L9(Q;R)) as n — oo

for all r € (1 — 26,1 —4), with

XE, A(an’l“)HW*qul Q) <C

foralln and r € (1 — 24,1 — §) . By Lebesgue Dominated Convergence Theorem,
we obtain (3.13), and, in turn, (3.11).
Finally, we prove that

1-6
lim XE, / lon |9 o — T (wh,)| dazdr = 0. (3.17)

n—oo J1-26 -

If ¢ = 1 then this is a consequence of (3.11). Thus, without loss of generality,
we may assume that ¢ > 1. We begin by showing that

1-5
lim XE, (/ o |97 dx) ‘/ U dy‘ dxdr =0. (3.18)
n—oo J1-26 Qr Qr
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Indeed, since g < 2, by (3.2); we have

1-6 1—6
/ XE, (/ 0|77 da:) ‘/ Un dy‘ drdr <C XE,
1-2§ Q- - 1-26

and thus (3.18) follows from (3.10). In view of (3.18), proving (3.17) is equivalent
to showing that

/ Un dy‘ dx dr,

T

1-5
lim XE. / [on |9 i — T (wnp)| dazdr = 0. (3.19)
5

n—00 1—2
r

Now, if £ € (0,1) then we have

/ / |U"|q_1 |wn,r - T(wn7,«)| dx dr
En ks
:/ / [T wn e = T (wnp) [V |wp,r = T (wpp) |* dadr - (3.20)
En r

1—¢
< </ / 00| 575 [wnr — T (wny) | da dr>
En e
X (/ / |wn.r — T (wp,r) | dz dr) ,
E, r

where we used Hoélder’s inequality with exponents 1/(1 —¢) and 1/e. By (3.12)
the second factor on the right hand side of the previous inequality converges to
zero as n — 00, hence to prove (3.19), and thus (3.17), it remains to show that

sup/ / |’Un|g |wn,r — T (Wp,r) | dedr < .
n JE, JQr

In light of (3.14), and since A (v,) = 0, we may identify A (wy,) = A (Xxrvn)
with the measure

P = —A (V) vy HNL LBQT .

Hence by Proposition 2.2(iii)
W — T (Wn,r) = SA(XrUn) = Stir.n. (3.21)
Note that 0 < (¢ — 1) (N — 1) < 1 and let

ae((g—1)(N-1),1), t::N]iiz_la. (3.22)

Then
. N -1 _ 1 Yo 1
N-1-(@g-1)(N-1) 2-¢ q—1
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Using Holder’s inequality, Proposition 2.3 with p = 1, (3.6), and (3.21), we have

/ / |vn|g|wn,r *T(wn,r) |d’JJd7"
E, -
r vt
- / / / |1)Tl|E |wn,r -7 (wnm) | dHn_l dsdr
En 0 BQS
r
</, 1
E, JO
<c / /
E, JO
1 g1
<C / H|Un|:
0
1 g1
oI,
0 LY (0Qs)

1 " 1/t .y 1/t
<C (/ H|vn|E ds) =C (/ v, | T=2 dx) )
0 L¥(9Q.) Q

which remains bounded as n — oo, since (¢ — 1)t < 1 we may choose ¢ :=
1—(¢—1)t. Hence (3.17) holds.
By (3.11) and (3.17), letting n — oo in (3.8) yields

g—1
|UTL| 1—e¢

LY (00.) ||’LUn,7' -7 (w””“)HL‘(aQS) ds dr

g—1
|Un| 1—e¢

—8)" Y |vn dsd
Lt,(aQs)(T s)"|[onllLr0q,) dsdr

(r—s)"%drds

LY (9Qs) /Enﬂ[s,l]

ds

n—oo

) 1)
2 1iminf/ g (vn) dz > g(0)|Q1-25] >
Q

and to conclude the proof it suffices to divide the previous inequality by % and
then let § — 0". m
We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Without loss of generality we may assume that

hminf/ flz,op(z))de = lim [ f(z,v,(x))dr < .
Passing to a subsequence, if necessary, we find a nonnegative Radon measure y
such that

P, on(2) £V [ Q2 g

as n — 0o, weakly * in the sense of measures. We claim that

d‘LL (xO): lim /L(Q(l‘o,?"))

N Jim N > f(zg,v(z0)) for LN a.e. z9 € Q. (3.23)

If (3.23) holds, then the conclusion of the theorem follows immediately. Indeed,
let p € C.(;R), 0 < ¢ < 1. Since

dp N

M:dﬁN + s
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where ps > 0, we have

lim f(x,vn)deHminf/(p(x) f(x,vn)dx:/(pdu
oo Q Q

n—00 Q n—

dp
> — > .
> [ ooz [ prand

By letting ¢ — 17, and using Lebesgue Dominated Convergence Theorem, we
obtain the desired result. Thus, to conclude the proof of the theorem, it suffices
to show (3.23).

Let I\
=——¢€ L' (R?
vi=aew © (%R,
and fix zg € 2 such that
dp . p(Q(zo, 1))
N (o) = Tllrél+ N < 00, (3.24)
1 As )
lim —N/ [v(z) — v(zg)|dx =0, lim M =0.
r—0t T Q(zo,7) r—0+ T
Choosing ry \, 0 such that p(90Q(xg, %)) = 0, we have
du o w(@Qo, k) L
agv (o) = Jim SN = i i o [ S de
= Jim i [ foo o) + wnaly) dy
— o0t n—oo Q
where wy, k(y) := vn(zo + Try) — v(xo). Clearly wy € ker A, and we claim

that wy, 220 weakly-x in the sense of measures if we first let n — co and then
k — oo. Indeed, fix ¢ € C.(Q;R?). After a change of variables, we get

/ () W (1) dy = / (1) (0n (0 + 7xy) — v(x0)) dy
Q Q

If we now let n — oo, and use the facts that v, — X weakly-* in the sense of
measures and that

A=vLY o+ As,

we obtain that

i :i T 70 v(z) —v(z T
i [ )ty = [ o (T w0 = ot d

n—oo Q Tk
1 T — T
+— ¢ ( 0) ds.
Tk Q(zo,7mk) Tk
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Hence

) 1
oy go(y)wn,k(y)dy\ S N R DI
n—oJQ Ty JQ(xo,rr)
As| (Q(xo, Tk
Hllpllzgy 2o 07D,

k

The claim then follows by letting ¥ — oo and by using (3.24). Diagonalize to
get wy € LY(Q;RY) Nker A such that wy, 2 0 weakly- in the sense of measures,
and

d
g (o) = i [ fao 4 iy, o) + wnly) dy

where r, — 0. Fix £ > 0. By (1.9) and Proposition 3.1 we have

du €
—_— > 1 dy —
dEN(x)_l—i—Ekggo/sz’ (o) +wi(y))dy — 77—
1 €
> - .
S —
It now suffices to let ¢ — 0. ]

4 Proof of Theorem 1.6

In this section we prove Theorem 1.6. We begin with the following

Proposition 4.1 Let g: RNV — [0,00) be an A-quasiconvex function such that

9@ gl <1+ +lal ") le-al, (4.1)

for all £, & € RY, and for some 1 < g < 0o and C > 0. If {v,} C L4 (Q;Rd) N
ker A converges weakly to zero in LP (Q;Rd), where 1 < p < oo satisfies (1.11),
then

g(0) < 1iminf/Qg (v, (z)) dx.

n—oo

Proof. The proof of this proposition follows closely that of Proposition 3.1,
therefore we indicate only the main modifications. Condition (3.2), should be
replaced by

Cy := sup/ |on(2)|” dr < oo,
n JQ

and, correspondingly, (3.6) by
/ [u, [P dHN 1 < C (6) (4.3)
0Qr

for all € E,,. Conditions (3.4) and (3.5) are no longer needed, while the expo-
nent ¢; in (3.9) is set to be equal to q. Equality (3.10) now follows immediately
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since fQ XrUndy — 0 as v, — 0 in LP (Q;Rd) for any r € (1 —26,1—-19). To
prove (3.13), fix ¢ € C2°(Q;R'). Since v, € ker A and v,, — 0 in L? (Q;R?),
we have

N o
_ o) .
(A(xrvn) ,9) = ;:1 /Q AXvn 5= da =0, (4.4)
and if r € E,,, and by (4.3),
N
3 / Ay, 0, 2 gy
— Q 6.%1
i=1

1/p
<o ([ 1ol a1 ) 1lg.m < C Iolliag,m-

r

|<A (ern) 71/)>| -

_ '/ A (1) vtp AHN 1
80,

Hence,
XE, A Oron)ll o 90,1y < € (4.5)

for all n and r € (1 —2§,1—9).
We recall that Sobolev Compact Embedding Theorem we have

Wyt (QR') — L* (0Qu:R').

where V- 1)g
-1q ..,
s < Nog if ¢ <N,
00 if ¢ > N.

Thus, (1.11) yields that the Sobolev space I/VO1 a (Q; Rl) is compactly embedded
in LP' (8QT; Rl), and by duality we have LP (8QT; Rl) compactly embedded in
W—la (Q;Rl), which, together with (4.4) and (4.5) implies that

x5, A (Xrvn) — 0in W H(Q;R!) as n — oo

for all r € (1 — 26,1 —9), with

XE, A(anT)Hw—l,q(Q) § c

for alln and r € (1 — 26,1 — §) . By Lebesgue Dominated Convergence Theorem
we obtain (3.13), and, in turn, (3.11).
To prove (3.17), in place of (3.22) we take

(q—p)(N—1) _ p(N-1)
ae(—p ,1)7 t'_iNflfap’

where, without loss of generality, we are assuming ¢ > p (see [27] for the case

p=¢q). Then
p / p
t> —— < —
p—q+1l q-1

Y
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where we have used the fact that p— ¢+ 1 > 0 by (1.11).
We may now proceed exactly as before, with the only exception that now
we have (¢ — 1)t < p. Hence taking
-1
1—e=1""y
p
we conclude. m
We are now ready to prove Theorem 1.6.
Proof of Theorem 1.6. We proceed as in the proof of Theorem 1.4, until
(3.24) which should be replaced by

Q) 1 Lo
N (o) = 7-1—1»%1+ N < oo, lim - |v(x) — v(zo)|Pdx = 0.

r—o+ iV
(4.6)
As in Theorem 1.4 we let wy, x(y) := vp(zo + rry) — v(zo). We claim that
wpk — 0 in LP(Q;RY) if we first let n — oo and then & — oo. Indeed, fix

Y e L”/(Q; R?), where p’ is the Holder conjugate exponent of q. Using Holder’s
inequality and then making a change of variables, we get

‘/Qso(y) Wy k() dy‘ < ‘/ng(y)(vn(xo + rry) — v(o +7“ky))dy‘

+ /Qw(y)(v(wm%y)—v(fco))dy‘

\

1 1/p
+ ||¢||LPI(Q) <@ /Q( : |v(x) — v(zo)|P d:c) .
Z0,Tk

If we now let n — oo the first integral tends to zero due to the fact that v, — v
in LP(Q(xo,7%); R?). The claim then follows by letting k& — oo and by using
(4.6). Diagonalize to get wy, € L9(Q; R%) Nker A such that wy — 0 in LI(Q;R?)
and

<

d
M—HN(%): hm/f($o+rky7v($o)+wk(y))dy
k—N)O Q

where 7, — 0. We may now continue as in the proof of Theorem 1.4 using
Proposition 4.1 in place of Proposition 3.1. m

5 Proof of Theorem 1.8

Finally, we prove Theorems 1.8.
Proof. For any function v € LP(Q2; E) consider the differential operator A

0 0
Av = (— Viy.infinya-is — Ao

Ui1~~iniih+2mis) :
Ox; Ox; 0<h<s—1,1<i,j i1...is<N
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Here h = 0 and h = s — 1 correspond to the multi-indexes jis...is; and
i1...15—1j. As shown in [27],

{w € C (RN ET) : Aw =0, / wds = o} ={Vp: p € CZ(RY;R™)}.
Q

(5.1)
Since for a.e. x € 2 and for all v € E7",

flao) =int { [ flao+ Tp)dy s ¢ € Cr RN R
Q
it follows from (5.1) that

f(z,v) = inf {/Q flz,v+w(y))dy w e CSZT(RN;E:"‘) Nker A,

/Qw(y) dy = 0}

and thus f is A-quasiconvex. Let {ux} C W*9(;R™) be any sequence such
that up — w in WP(Q; R™). Again by (5.1) AV°u; = 0, and so we may apply
Theorem 1.6, where the target space R? is replaced by the finite dimensional

Euclidean vector space E.*, to obtain

/ fz, Viu)de < hminf/ fz, Viuy) du.
Q k—oo Jo

6 Appendix

Proof of Theorem 1.1. Using the blow-up method as in Theorem 1.4, we
may assume, without loss of generality, that

11

N
—5,5) and wu(x)=0.

0-q(

Asu, — 0in L* (Q, Rd) , by Egoroff’s and Fubini’s Theorems for any ¢ € (0,

0,1)
we may find a subsequence of {u,} (not relabelled) such that for a.e. r € (4,1

)

lim un| dHN 1 = 0.

n—00 aQr

Since L! (8QT U 8Q;Rd) is the trace space of W11 (Q\QT;Rd) , we may find
{v,} c Whi (Q\QT;Rd) such that v, = u, on 9Q, and v,, = 0 on IQ (in the
sense of traces) and

HUTLHlel(Q\Q,.;]Rd) < K, ||unHL1(8Q,.;]Rd)
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for some constant K, > 0. We have

/ f(an)dacg/ C(1+|Vu,]|) dx
QA\Q~ QAQ\Q~

<o (Q\Qr) + CK, HUHHLl(aQT;Rd) :

If we define v, to be u, in Q, then {v,} C VVOL1 (Q;Rd) and thus by the
quasiconvexity of f we have

f0) < /Qf(an)dx/Q\QTf(an)d:ch Qrf(Vun)dx

< CLY (Q\Qn) + O, lun 11 o) + /Q £(Van) de
and letting n — oo we conclude that
f(0) <CLY (Q\Q,) + liminf / f(Vu,) dz.
n—oo Q

It now suffices to let § — 1~ (and hence 7). |

Proof of Theorem 1.2. We consider only the case 1 < p < co. As in the
previous proof, we may assume, without loss of generality, that

N
Q=Q:= (%,%) and wu(x) =0,

and
liminf/ f(Vup)dz = lim | f(Vu,)dz < oo,
Q

n—oo n—00 Q

so that by condition (1.4)
K = Sup/ |Vu,|P dz < co.
n JQ

Fix 0 € (0,1) . By Egoroff’s and Fubini’s Theorems, we may find a subsequence
(not relabeled) such that for a.e. r € (0,1)

lim [un|P dHN 1 = 0.
n—oo 8@7‘
Define
R = {r € (6,1): lim [un [P dHN T =0,

T

2K
hminf/ |V, |P dHN 1 < —}
6Q7v 1 - (5

n—oo
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Note that by Fatou’s Lemma
K> liminf/ / |Vun|P dHN " dr
=0 J(5,1)\R JOQn

> / lim inf / |V, [P dHN ~dr
(5, D\R " Jaq.

> 2461\ R)Tos,

and so L1(R) > (1 —4)/2.
Fix r € R. Since p > %q, standard Sobolev trace and compact embedding
theorems guarantee the existence of a lifting linear and compact operator

E -Wh(0Q,;RY) — Wh(Q; RY)
v+— F (v)

such that v is the trace of E (v). Define {v,} C W,"*(Q;R?) by

v (2) { U () ifrx e,
" : o (z) E (up) (z) if x € Q\Qr,

where ¢ € C!(Q;[0,1]) is such that ¢ (z) = 1 in @, and |Vip| < % As
E (u,) — 0 in WH4(Q\Q,;RY), by condition (1.4) we have

lim F(Vo) dz = / £(0) da.
oo Jo\Q- Q\Qr

Hence, using the quasiconvexity of f at 0 we obtain

liminf/ f(Vuy) dz > liminf f(an)

= lim inf/ f(Vu,)dez — lim f(Vuy,) dx
nmee e J\Qy
> f(0) = LY(Q\ @) f(0)
=" (Qr)f( )a
and the proof is complete if we let § — 1~ (and hence 7). ]
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