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Abstract
Using a variational approach we rigorously deduce a nonlinear model for
inextensible rods from three-dimensional nonlinear elasticity, passing to
the limit as the diameter of the rod goes to zero. The theory obtained
is analogous to the Föppl-von Kármán theory for plates. We also derive
an asymptotic expansion of the solution and compare it to a similar ex-
pansion which Murat and Sili obtained starting from three-dimensional
linear elasticity.

1 Introduction

In this paper we continue the rigorous derivation of rod equations by three-
dimensional nonlinear elasticity through Γ-convergence. We refer to [2, 3] for
a survey about one-dimensional models and a discussion on the history of the
classical derivations of such theories (see also [8], [16]).

Under the assumption of uniformly small strain Mielke rigorously derived the
fully nonlinear rod equations through a centre manifold argument [9, 10]. While
Mielke’s approach is based on a deep analysis of the equilibrium equations, the
starting point of our approach is the elastic energy

E(h)(v) :=
∫

Ωh

W

((
z1,

z′

h

)
,∇v(z)

)
dz

of a deformation v ∈W 1,2(Ωh; R3), where Ωh := (0, L)×hS , S is an open subset
of R

2 with Lipschitz boundary, and z := (z1, z′) varies in Ωh . By heuristic
arguments energies E(h) of order h2 are expected to correspond to stretching
and shearing deformations of the fibre, leading to a string theory, while energies
E(h) of order h4 to bending flexures and torsions keeping the fibre unextended,
leading to a rod theory. If E(h) is of order h6 , one expects that the corresponding
deformation is close to a rigid motion, so that one can linearize around it and
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obtain a theory analogous to the Föppl-von Kármán theory for plates (see [6]).
The elastic theory for strings has been rigorously derived by Acerbi, Buttazzo, and
Percivale in [1], while the bending-torsion theory for inextensible rods has been
recently justified in [11] and independently by Pantz in [15]. The mathematical
setting in which both results are formulated is that of Γ-convergence (see [4] for
a comprehensive introduction to this notion of variational convergence). In this
paper we analyse the case where E(h) is of order h6 and we identify the Γ-limit
of the functionals h−6E(h) .

To state our results, it is convenient to introduce the following change of
variables:

z1 = x1, z′ = hx′,

and to rescale deformations according to y(x) := v(z(x)), so that y belongs to
W 1,2(Ω; R3), where Ω := (0, L)×S . We will use the notation

∇hy :=
(
y,1

∣∣∣∣ 1
h
y,2

∣∣∣∣ 1
h
y,3

)
,

so that
1
h2
E(h)(v) = I(h)(y) :=

∫
Ω
W (x,∇hy(x)) dx.

We assume that the stored energy function W satisfies the following assumptions:

i) W : Ω×M
3×3 → [0,+∞] is a Carathéodory function; for some δ > 0

the function F �→ W (x, F ) is of class C2 for dist(F,SO(3)) < δ and for
a.e. x ∈ Ω;

ii) the second derivative ∂2W/∂F 2 is a Carathéodory function on the set
Ω×{F ∈ M

3×3 : dist(F,SO(3)) < δ} and there exists a constant γ > 0
such that∣∣∣∣∂2W

∂F 2
(x, F )[G,G]

∣∣∣∣ ≤ γ|G|2 for dist(F,SO(3)) < δ and G ∈ M
3×3
sym ;

iii) W is frame-indifferent, i.e., W (x, F ) = W (x,RF ) for a.e. x ∈ Ω and every
F ∈ M

3×3 , R ∈ SO(3);

iv) W (x, F ) = 0 if F ∈ SO(3); W (x, F ) ≥ C dist2(F,SO(3)) for every F ∈
M

3×3 , where the constant C > 0 is independent of x .

Under these assumptions we first show a compactness result for sequences of
deformations whose rescaled energies h−4I(h) are bounded. More precisely, we
prove in Theorem 2.2 that for any sequence (y(h)) such that

lim sup
h→0

1
h4
I(h)(y(h)) < +∞,
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we can find some constants R(h) ∈ SO(3), c(h) ∈ R such that R(h) → R and the
functions ỹ(h) := (R(h))T y(h) − c(h) satisfy (up to subsequences)

∇hỹ
(h) → Id strongly in L2(Ω).

Since the limit deformation is a rigid motion, it is natural to study the behaviour
of the deviation (suitably rescaled) of ỹ(h) from the identity. Thus, we introduce
the functions

u(h)(x1) :=
∫

S

ỹ
(h)
1 (x) − x1

h2
dx2dx3,

v
(h)
k (x1) :=

∫
S

ỹ
(h)
k (x)
h

dx2dx3 for k = 2, 3,

w(h)(x1) :=
1

µ(S)

∫
S

x2ỹ
(h)
3 (x) − x3ỹ

(h)
2 (x)

h2
dx2dx3,

where we have set µ(S) :=
∫
S(x2

2 + x2
3) dx2dx3 and we have chosen the axes in

such a way that∫
S
x2x3 dx2dx3 =

∫
S
x2 dx2dx3 =

∫
S
x3 dx2dx3 = 0.

The function u(h) measures the averaged deviation of the deformation component
along the fibre, while v(h)

k the averaged deviation of the deformation components
which are normal to the fibre. The function w(h) is related to the (linearized)
torsion of the section. In Theorem 2.2 we show that (up to subsequences) the
following properties hold:

• u(h) ⇀ u weakly in W 1,2(0, L);

• v
(h)
k → vk strongly in W 1,2(0, L), where vk ∈W 2,2(0, L) for k = 2, 3;

• w(h) ⇀ w weakly in W 1,2(0, L).

In Theorem 4.5 we prove that the Γ-limit of the functionals h−4I(h) is an integral
functional depending on u, vk , and w , of the following form:

I0(u, v2, v3, w) =
1
2

∫ L

0
Q(x1, u,1 +

1
2
(v2

2,1 + v2
3,1), A,1) dx1,

where

A :=

⎛
⎝ 0 −v2,1 −v3,1

v2,1 0 −w
v3,1 w 0

⎞
⎠ ,

and Q(x1, t, F ) is a quadratic form in the pair (t, F ) defined through a suit-
able minimization procedure involving the quadratic form of linearized elasticity
Q3(x,G) := ∂2W

∂F 2 (x, Id)[G,G] (see (4.1)).
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A key ingredient in the proof is a rigidity result by Friesecke, James, and
Müller (see Theorem 2.1), which ensures that low energy deformations are close
to a rigid motion and provides the crucial estimate in the proof of compactness.

In the last part of the paper we also show (under slight additional regularity
assumptions) that solutions ỹ(h) admit an asymptotic development ŷ(h) of the
form

ŷ
(h)
1 = x1 + h2(u− x2v2,1 − x3v3,1) + h3β1,

ŷ
(h)
k = hxk + hvk + h2wx⊥k + h3βk for k = 2, 3,

where β ∈ L2(Ω; R3) and x⊥ denotes the point (0,−x3, x2). The asymptotic
expansion has to be interpreted in the following sense:

ỹ
(h)
1 − ŷ

(h)
1

h2
→ 0,

ỹ
(h)
k − ŷ

(h)
k

h
→ 0 (k = 2, 3) in W 1,2(Ω),

and

[(∇hỹ
(h))T∇hỹ

(h)]1/2 − Id

h2
− [(∇hŷ

(h))T∇hŷ
(h)]1/2 − Id

h2
→ 0 in L1(Ω).

This asymptotic analysis generalizes to the nonlinear setting an earlier result by
Murat and Sili in the context of linearized elasticity (see [12, 13]).

The plan of the paper is as follows. In Section 2 we prove the compactness
result and a lower bound for the Γ-limit, while in Section 3 we show an upper
bound; Section 4 contains the identification of the Γ-limit and some remarks
about the characterization of the limit density Q when W satisfies some addi-
tional requirements, as homogeneity or isotropy; finally, Section 5 is devoted to
the study of the asymptotic behaviour of solutions.

2 Compactness and lower bound

In the sequel S is a bounded open subset of R
2 with Lipschitz boundary. We

assume that L2(S) = 1. We recall that the axes are chosen in such a way that∫
S
x2x3 dx2dx3 =

∫
S
x2 dx2dx3 =

∫
S
x3 dx2dx3 = 0. (2.1)

The following rigidity estimate is proved in [5].

Theorem 2.1 Let U be a bounded Lipschitz domain in R
n , n ≥ 2. Then there

exists a constant C(U) with the following property: for every v ∈ W 1,2(U ; Rn)
there is an associated rotation R ∈ SO(n) such that

‖∇v −R‖L2(U) ≤ C(U)‖dist(∇v,SO(n))‖L2(U).

Using the previous theorem we can show the following compactness result.
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Theorem 2.2 Let (y(h)) be a sequence in W 1,2(Ω; R3) such that

lim sup
h→0

1
h4

∫
Ω
W (x,∇hy

(h)) dx < +∞. (2.2)

Then, there exist maps R(h) : [0, L] → SO(3), R̃(h) : [0, L] → M
3×3 with

|R̃(h)| ≤ c, and constants R
(h) ∈ SO(3), c(h) ∈ R such that the functions

ỹ(h) := (R(h))T y(h) − c(h) satisfy

‖∇hỹ
(h) −R(h)‖L2(Ω) ≤ Ch2, (2.3)

‖R(h) − R̃(h)‖L2(0,L) ≤ Ch2, ‖∇R̃(h)‖L2(0,L) ≤ Ch, (2.4)

‖R(h) − Id‖L∞(0,L) ≤ Ch. (2.5)

Moreover, if we define

u(h)(x1) :=
∫

S

ỹ
(h)
1 (x) − x1

h2
dx2dx3,

v
(h)
k (x1) :=

∫
S

ỹ
(h)
k (x)
h

dx2dx3 for k = 2, 3,

w(h)(x1) :=
1

µ(S)

∫
S

x2ỹ
(h)
3 (x) − x3ỹ

(h)
2 (x)

h2
dx2dx3,

where µ(S) :=
∫
S(x2

2 + x2
3) dx2dx3 , then, up to subsequences, the following prop-

erties are satisfied:

(a) u(h) ⇀ u weakly in W 1,2(0, L);

(b) v
(h)
k → vk strongly in W 1,2(0, L), where vk ∈W 2,2(0, L) for k = 2, 3;

(c) w(h) ⇀ w weakly in W 1,2(0, L);

(d)
∇hỹ

(h) − Id

h
→ A strongly in L2(Ω), where A ∈ W 1,2((0, L); M3×3) is

given by

A =

⎛
⎝ 0 −v2,1 −v3,1

v2,1 0 −w
v3,1 w 0

⎞
⎠ ; (2.6)

(e) sym
R(h) − Id

h2
→ A2

2
uniformly on (0, L);

(f) the sequence (β(h)) defined by

β
(h)
1 (x) :=

1
h

(
ỹ

(h)
1 (x) − x1

h2
− u(h)(x1) + x2v

(h)
2,1 (x1) + x3v

(h)
3,1 (x1)

)
,

β
(h)
j (x) :=

1
h2

(
ỹ

(h)
j (x) − hxj

h
− v

(h)
j (x1) − hw(h)(x1)x⊥j

)
for j = 2, 3,
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where x⊥ := (0,−x3, x2), is weakly convergent in L2(Ω) to a function β
belonging to the space

B :=
{
θ ∈ L2(Ω; R3) :

∫
S
θ(x) dx2dx3 = 0, θ,2, θ,3 ∈ L2(Ω; R3),∫

S
(x3θ2 − x2θ3) dx2dx3 = 0

}
. (2.7)

Moreover, β(h)
,k ⇀ β,k in L2(Ω) for k = 2, 3.

Proof. – The coerciveness assumption on W and the bound (2.2) imply that

lim sup
h→0

1
h4

∫
Ω

dist2(∇hy
(h),SO(3)) dx < +∞.

Applying Theorem 2.1 as in the proof of the compactness result of [11], we can
find a sequence of piecewise constant maps R(h) : [0, L] → SO(3) such that∫

Ω
|∇hy

(h) −R(h)|2dx ≤ Ch4,

and ∫
I′
|R(h)(x1 + ξ) −R(h)(x1)|2dx1 ≤ Ch2(|ξ| + h)2, (2.8)

where I ′ is any open interval compactly contained in (0, L) and ξ ∈ R satisfies
|ξ| ≤ dist(I ′, {0, L}). Let η ∈ C∞

0 (0, 1) be such that η ≥ 0, and
∫ 1
0 η(s) ds = 1.

We set ηh(s) := 1
hη(

s
h ) and we define

R̃(h)(x1) :=
∫ h

−h
ηh(s)R(h)(x1 − s) ds,

where we have extended R(h) outside [0, L] by taking R(h)(x1) = R(h)(0) for
every x1 < 0, R(h)(x1) = R(h)(L) for every x1 > L . Clearly |R̃(h)| ≤ c for every
h , while properties (2.4) follow by (2.8). Moreover, since by construction

|R(h)(x1 + s) −R(h)(x1)|2 ≤ C

h

∫
Ω

dist2(∇hy
(h),SO(3)) dx ≤ Ch3

for every |s| ≤ h , we have by Jensen inequality that

‖R̃(h) −R(h)‖2
L∞ ≤ Ch3. (2.9)

By the Sobolev-Poincaré inequality and the second inequality in (2.4), there exist
constants Q(h) such that ‖R̃(h)−Q(h)‖L∞ ≤ Ch . Combining this inequality with
(2.9), we have that ‖R(h)−Q(h)‖L∞ ≤ Ch . This implies that dist(Q(h),SO(3)) ≤
Ch ; thus, we may assume that Q(h) belongs to SO(3) by modifying Q(h) by order
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h , if needed. Now choosing R
(h) = Q(h) and replacing R(h) by (Q(h))TR(h) and

R̃(h) by (Q(h))T R̃(h) , we obtain (2.5).
By a suitable choice of the constants c(h) we may assume∫

Ω
(ỹ(h)

1 − x1) dx = 0,
∫

Ω
ỹ

(h)
k dx = 0 for k = 2, 3 . (2.10)

Let A(h) := R(h)−Id
h . By (2.5) there exists A ∈ L∞((0, L); M3×3) such that, up

to subsequences,
A(h) ⇀ A weakly∗ in L∞(0, L). (2.11)

On the other hand, it follows from (2.4) that

R̃(h) − Id

h
⇀ A weakly in W 1,2(0, L).

In particular, A ∈ W 1,2((0, L); M3×3) and h−1(R̃(h) − Id) also converges uni-
formly. Using (2.9) we deduce that

A(h) → A uniformly. (2.12)

In view of (2.3), this clearly implies the convergence property in (d).
Since R(h) ∈ SO(3), we have

A(h) + (A(h))T = −h(A(h))TA(h).

Hence, A + AT = 0. Moreover, after division by 2h , we obtain property (e) by
(2.12).

Property (b) immediately follows from the convergence in (d) and (2.10).
Moreover, vk,1 = Ak1 for k = 2, 3, so that vk ∈W 2,2(0, L), since A ∈W 1,2(0, L).

The convergence of (u(h)) follows from (2.3), property (e), and the normal-
ization (2.10).

By the convergence in (d) we deduce that

1
h ỹ

(h)
2 − x2

h
−
∫

S

1
h2
ỹ

(h)
2 → A23x3 in L2(Ω),

and analogously,

1
h ỹ

(h)
3 − x3

h
−
∫

S

1
h2
ỹ

(h)
3 → −A23x2 in L2(Ω).

Now, since w(h) can be written as

w(h)(x1) =
1

µ(S)

∫
S
x2

(
1
h ỹ

(h)
3 − x3

h
−
∫

S

1
h2
ỹ

(h)
3

)
dx2dx3

− 1
µ(S)

∫
S
x3

(
1
h ỹ

(h)
2 − x2

h
−
∫

S

1
h2
ỹ

(h)
2

)
dx2dx3,
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it is clear that w(h) converges to the function w = −A23 = A32 in L2(0, L). The
convergence is actually weak in W 1,2(0, L), since one can check that (w(h)

,1 ) is
bounded in L2(0, L) by (2.3).

By differentiating β
(h)
1 with respect to xk with k = 2, 3, we have

β
(h)
1,k =

1
h3
ỹ

(h)
1,k +

1
h
v

(h)
k,1 =

1
h2

(
1
h
ỹ

(h)
1,k +

∫
S
ỹ

(h)
k,1 dx2dx3

)
. (2.13)

Note that this can be rewritten as

β
(h)
1,k =

1
h ỹ

(h)
1,k −R

(h)
1k

h2
+
∫

S

ỹ
(h)
k,1 −R

(h)
k1

h2
dx2dx3 +

R
(h)
1k +R

(h)
k1

h2
,

where the right-hand side is now bounded in L2(Ω) by virtue of (2.3) and property
(e). Therefore, the sequence (β(h)

1,k ) is bounded in L2(Ω) for k = 2, 3; using the

Poincaré inequality and the fact that
∫
S β

(h)
1 dx2dx3 = 0, we deduce that there

exists a constant C > 0 such that∫
S
(β(h)

1 (x))2dx2dx3 ≤ C

∫
S
[(β(h)

1,2 (x))2 + (β(h)
1,3 (x))2] dx2dx3

for a.e. x1 ∈ (0, L) and for every h . Integrating both sides with respect to x1 ,
we obtain that the sequence (β(h)

1 ) is bounded in L2(Ω); so, up to subsequences,
β

(h)
1 ⇀ β1 and β

(h)
1,k ⇀ β1,k weakly in L2(Ω).

As for the sequences (β(h)
2 ), (β(h)

3 ), we have by differentiation that

β
(h)
j,k =

1
h2

(
1
h
ỹ

(h)
j,k − δjk − hw(h)(1 − δjk)(−1)k

)

for j, k = 2, 3. Now it is easy to check that

ejk(β(h)) :=
1
2
(β(h)

j,k + β
(h)
k,j ) =

1
h2

[sym (∇hỹ
(h) − Id)]jk (2.14)

for j, k = 2, 3; thus, (ejk(β(h))) is bounded in L2(Ω) by (2.3) and (e). Note that,
thanks to the definition of w(h) , the function (β(h)

2 (x1, ·), β(h)
3 (x1, ·)) belongs for

a.e. x1 ∈ (0, L) to the closed subspace{
α = (α2, α3) ∈W 1,2(S; R2) :

∫
S
α dx2dx3 = 0,

∫
S
(x3α2 − x2α3) dx2dx3 = 0

}
,

where an inequality of Korn type holds (see [14]). Thus, there exists a constant
C > 0 such that

‖β(h)
2 (x1, ·)‖2

W 1,2(S) + ‖β(h)
3 (x1, ·)‖2

W 1,2(S) ≤ C
∑
j,k

‖ejk(β(h)(x1, ·)‖2
L2(S) (2.15)
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for a.e. x1 ∈ (0, L) and for every h . Integrating (2.15) with respect to x1 ,
we find that the sequences (β(h)

2 ), (β(h)
3 ) are bounded in L2(Ω), as well as their

derivatives with respect to x2, x3 . This concludes the proof of (f). �

Lemma 2.3 Assume (2.2) is satisfied. Let R(h), ỹ(h), u,A, and β be as in The-
orem 2.2. Then

G(h) :=
(R(h))T∇hỹ

(h) − Id

h2
⇀ G in L2(Ω), (2.16)

and the symmetric part of G, denoted by G̃ , satisfies

G̃ = u,1e1 ⊗ e1 − A2

2
+ sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣ β,2

∣∣∣∣ β,3

⎞
⎠ . (2.17)

Moreover,

lim inf
h→0

1
h4

∫
Ω
W (x,∇hy

(h)) dx ≥ 1
2

∫
Ω
Q3(x, G̃(x)) dx, (2.18)

where Q3 is twice the quadratic form of linearized elasticity, i.e.,

Q3(x, F ) :=
∂2W

∂F 2
(x, Id)[F,F ]. (2.19)

Proof. – The estimate (2.3) implies that the L2 -norm of G(h) is bounded;
therefore, up to subsequences, there exists G ∈ L2(Ω; M3×3) such that (2.16) is
satisfied.

In order to identify the symmetric part of G we decompose R(h)G(h) as
follows:

R(h)G(h) =
∇hỹ

(h) − Id

h2
− R(h) − Id

h2
,

so that

F (h) := sym
∇hỹ

(h) − Id

h2
= sym (R(h)G(h)) + sym

R(h) − Id

h2
.

The right-hand side converges weakly to G̃ + A2/2 by (2.5), (2.16), and prop-
erty (e) of Theorem 2.2. Therefore, the sequence (F (h)) has a weak limit F in
L2(0, L), satisfying F = G̃+A2/2. To conclude we need only to identify F .

Consider the functions

φ
(h)
1 (x) :=

ỹ
(h)
1 (x) − x1

h2
,

which satisfy φ
(h)
1,1 = F

(h)
11 for every h . From property (f) of Theorem 2.2 it

follows that the functions φ(h)
1 −u(h) +x2v

(h)
2,1 +x3v

(h)
3,1 , which are equal to hβ(h)

1 ,
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converge to 0 strongly in L2(Ω). Thus, by properties (a) and (b) of Theorem 2.2
we have that

φ
(h)
1 → u− x2v2,1 − x3v3,1 in L2(Ω). (2.20)

Now, since φ
(h)
1,1 converges weakly to F11 in L2(Ω) by construction, we deduce

that

F11(x) = u,1(x1) − x2v2,11(x1) − x3v3,11(x1)

= u,1(x1) +
∑

k=2,3

A1k,1(x1)xk. (2.21)

Passing to the limit in the equality (2.14) we immediately have that

ejk(β) = Fjk for j, k = 2, 3. (2.22)

It remains to identify F1k for k = 2, 3. By (2.13) we can write F (h)
1k as follows:

2F (h)
1k =

ỹ
(h)
k,1

h2
+
ỹ

(h)
1,k

h3
=

1
h2

(
ỹ

(h)
k,1 −

∫
S
ỹ

(h)
k,1 dx2dx3

)
+ β

(h)
1,k .

Using the definition of βj for j = 2, 3 it is easy to show that

1
h2

(
ỹ

(h)
k,1 −

∫
S
ỹ

(h)
k,1 dx2dx3

)
= hβ

(h)
k,1 + w

(h)
,1 x⊥k ,

hence
2F (h)

1k = hβ
(h)
k,1 + w

(h)
,1 x⊥k + β

(h)
1,k .

Since the right-hand side converges to w,1x
⊥
k + β1,k weakly in W−1,2(Ω) by

properties (c) and (f) of Theorem 2.2, we have that

2F1k = w,1x
⊥
k + β1,k. (2.23)

Combining (2.21), (2.22), and (2.23), we obtain (2.17).
We now show the lower bound (2.18). By Taylor expansion we have that

W (x, Id+A) =
1
2
∂2W

∂F 2
(x, Id+ tA)[A,A], (2.24)

where 0 < t < 1 depends on x and A . We introduce the functions

χh(x) :=

{
1 if x ∈ {|G(h)| ≤ h−1},
0 otherwise.

Note that from the boundedness of G(h) in L2(Ω) it follows that χh → 1 in
measure. Hence

χhG
(h) ⇀ G in L2(Ω). (2.25)
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Using the frame-indifference and (2.24) we obtain

1
h4

∫
Ω
W (x,∇hy

(h)) dx ≥ 1
h4

∫
Ω
χhW (x,∇hy

(h)) dx

=
1
h4

∫
Ω
χhW (x, (R(h))T∇hy

(h)) dx

=
∫

Ω

1
2
χh
∂2W

∂F 2
(x, Id + h2th(x)G(h))[G(h), G(h)] dx, (2.26)

where 0 < th(x) < 1. It is convenient to write the last integral as

∫
Ω

1
2
χh
∂2W

∂F 2
(x, Id+ h2th(x)G(h))[G(h), G(h)] dx

=
∫

Ω

1
2

(
χh
∂2W

∂F 2
(x, Id+ th(x)h2G(h))[G(h), G(h)] −Q3(x, χhG

(h))
)
dx

+
∫

Ω

1
2
Q3(x, χhG

(h)) dx. (2.27)

By Scorza-Dragoni theorem there exists a compact subset K of Ω such that
∂2W
∂F 2 |K×Bδ(Id) is continuous (hence, uniformly continuous on compact subsets).
Therefore, for every ε > 0 we have for h sufficiently small

∫
Ω

1
2

(
χh
∂2W

∂F 2
(x, Id+ th(x)h2G(h))[G(h), G(h)] −Q3(x, χhG

(h))
)
dx

≥ −1
2
ε

∫
K
χh|G(h)|2dx ≥ −Cε. (2.28)

As for the second integral on the right-hand side of (2.27), it is lower semicontin-
uous with respect to the convergence (2.25), since Q3 is a nonnegative quadratic
form. Combining this fact with (2.26), (2.27), and (2.28), we obtain

lim inf
h→0

1
h4

∫
Ω
W (x,∇hy

(h)) dx ≥ 1
2

∫
Ω
Q3(x,G) dx − Cε. (2.29)

Since ε is arbitrary and Q3(x,G) depends only on the symmetric part of G (by
frame-indifference), the thesis follows immediately from (2.29). �

3 Upper bound

In this section we prove that the lower bound shown in Lemma 2.3 is optimal in
the sense specified by the following theorem.
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Theorem 3.1 Let u,w ∈ W 1,2(0, L), and vk ∈ W 2,2(0, L) for k = 2, 3. Let β
be a function in B (see (2.7)) and let A ∈ W 1,2((0, L); M3×3) be defined as in
(2.6). Set

G̃ := u,1e1 ⊗ e1 − A2

2
+ sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣β,2

∣∣∣∣ β,3

⎞
⎠ .

Then there exists a sequence (y̌(h)) ⊂W 1,2(Ω; R3) such that properties (a)-(f) of
Theorem 2.2 are satisfied and

lim sup
h→0

1
h4

∫
Ω
W (x,∇hy̌

(h)) dx ≤ 1
2

∫
Ω
Q3(x, G̃(x)) dx, (3.1)

where Q3 is defined as in (2.19).

Proof. – Assume first that u,w, vk , β are smooth. For every h > 0 let us
consider the function

y̌(h)(x) :=

⎛
⎝ x1

hx2

hx3

⎞
⎠+

⎛
⎝ h2u

hv2
hv3

⎞
⎠− h2

⎛
⎝ x2v2,1 + x3v3,1

x3w
−x2w

⎞
⎠+ h3β. (3.2)

Then, properties (a)-(f) are clearly satisfied. Moreover,

∇hy̌
(h) = Id+

⎛
⎝ h2u,1 −hv2,1 −hv3,1

hv2,1 0 −hw
hv3,1 hw 0

⎞
⎠

− h2

⎛
⎝ x2v2,11 + x3v3,11

x3w,1

−x2w,1

∣∣∣∣β,2

∣∣∣∣ β,3

⎞
⎠+O(h3).

Using the identity (Id +BT )(Id +B) = Id+ 2 symB + BTB , we obtain for the
nonlinear strain

(∇hy̌
(h))T∇hy̌

(h) = Id+ 2h2u,1e1 ⊗ e1

+ 2h2sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣β,2

∣∣∣∣ β,3

⎞
⎠+ h2ATA+O(h3).

Taking the square root and using the definition of G̃, we have that

[(∇hy̌
(h))T∇hy̌

(h)]1/2 = Id+ h2G̃+O(h3). (3.3)

We have det∇hy̌
(h) > 0 for sufficiently small h . Hence by frame-indifference

W (x,∇hy̌
(h)) = W (x, [(∇hy̌

(h))T∇hy̌
(h)]1/2); thus, by (3.3) and Taylor expan-

sion, we obtain
1
h4
W (x,∇hy̌

(h)) → 1
2
Q3(x, G̃) a.e.,
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and

1
h4
W (x,∇hy̌

(h)) ≤ 1
2
γ|G̃|2 + Ch

≤ C(|A|4 + |A,1|2 + |β,2|2 + |β,3|2 + |u,1|2 + 1) ∈ L1(Ω).

Now the inequality (3.1) follows by the dominated convergence theorem.
In the general case, it is enough to smoothly approximate u,w in the strong

topology of W 1,2 , vk in the strong topology of W 2,2 , and β, β,k in the strong
topology of L2 , and to use the continuity of the right-hand side of (3.1) with
respect to these convergences. �

4 Identification of the Γ-limit

Let Q : (0, L)×R×M
3×3
skew → [0,+∞) be defined as

Q(x1, t, F ) := min
α∈W 1,2(S;R3)

∫
S
Q3

⎛
⎝x,

⎛
⎝F

⎛
⎝ 0

x2

x3

⎞
⎠+ te1

∣∣∣∣α,2

∣∣∣∣ α,3

⎞
⎠
⎞
⎠ dx2dx3,

(4.1)
where Q3 is the quadratic form defined in (2.19). Physically the minimizer α
in (4.1) corresponds to the warping of cross-section, induced by the bending and
torsion encoded in F and the stretch t in the direction of the rod.

For u,w ∈W 1,2(0, L) and v2, v3 ∈W 2,2(0, L) we introduce the functional

I0(u, v2, v3, w) :=
1
2

∫ L

0
Q(x1, u,1 +

1
2
(v2

2,1 + v2
3,1), A,1) dx1, (4.2)

where A ∈W 1,2((0, L); M3×3) denotes the matrix

A :=

⎛
⎝ 0 −v2,1 −v3,1

v2,1 0 −w
v3,1 w 0

⎞
⎠ .

The main result of this section is the proof of the Γ-convergence of the functionals
1
h4 I

(h) to I0 . Before stating the theorem we analyse some properties of the limit
density Q .

Remark 4.1 The minimum in (4.1) is attained. To prove this, recall first that
Q3(x,G) depends only on the symmetric part of G. Thus the functional in (4.1)
is invariant under the transformation α �→ α+c1 +c2x⊥ , and hence the minimum
can be computed on the subspace

V :=
{
α ∈W 1,2(S; R3) :

∫
S
α dx2dx3 = 0,

∫
S
(x3α2 − x2α3) dx2dx3 = 0

}
.
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Since Q3(x, F ) ≥ C|symF |2 for every F , the minimizing sequences contained in
V are compact with respect to the weak topology of W 1,2(S; R3) (using again
Korn’s inequality for (α2, α3), see e.g. [14]). Moreover, the functional to minimize
is lower semicontinuous in α with respect to this convergence. This is enough to
guarantee the existence of a minimizer. The strict convexity of Q3(x, ·) on the
set of symmetric matrices ensures also that the minimizer is unique in V .

Remark 4.2 (Euler-Lagrange equation) Fix x1 ∈ (0, L), t ∈ R , and F ∈
M

3×3
skew . Let αmin ∈ V be the minimizer of the problem (4.1). For sake of notation

we set

g(x2, x3) := F

⎛
⎝ 0

x2

x3

⎞
⎠+ te1, bhk

ij (x) :=
∂2W

∂Fih∂Fjk
(x, Id),

and we call Bhk the matrix in M
3×3 , whose elements are given by (Bhk)ij = bhk

ij .
Then αmin satisfies the following Euler-Lagrange equation:∫

S

∑
h,k=2,3

(Bhkαmin
,k , ϕ,h) dx2dx3 = −

∫
S

∑
h=2,3

(Bh1g, ϕ,h) dx2dx3 (4.3)

for every ϕ ∈W 1,2(S; R3).
From this equation it is clear that αmin depends linearly on the pair (t, F ).

Hence Q is a quadratic form of (t, F ). Moreover, Q is uniformly positive definite,
i.e.,

Q(x1, t, F ) ≥ C̃(t2 + |F |2) ∀t ∈ R,∀F ∈ M
3×3
skew, (4.4)

where the constant C̃ does not depend on x1 . To see this note that Q3(x,G) ≥
C|symG|2 by hypothesis (iv) on W . Thus it suffices to establish the bound (4.4)
for the special quadratic form Q3(x,G) = |symG|2 . If it failed, there would exist
(t, F ) �= (0, 0) and α = αmin ∈ V such that

sym

⎛
⎝F

⎛
⎝ 0

x2

x3

⎞
⎠+ te1

∣∣∣∣α,2

∣∣∣∣ α,3

⎞
⎠ = 0.

The equations for the 1k component yield

F12x2 + F13x3 + t = 0,
F23x3 + α1,2 = 0,

−F23x2 + α1,3 = 0.

Thus F12 = F13 = t = 0, and by derivation of the two last identities we deduce
F23 = 0, a contradiction.
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Remark 4.3 For future reference we note that there exists a constant C ′ (inde-
pendent of x1 , t , and F ) such that

‖αmin
,2 ‖2

L2(S) + ‖αmin
,3 ‖2

L2(S) ≤ C ′‖g‖2
L2(S). (4.5)

Indeed, since Q3(x, F ) ≥ C|symF |2 for every matrix F , we have

1
C

∑
h,k=2,3

(Bhkϕ,k, ϕ,h) ≥
∑

k=2,3

|ϕ1,k|2 +
∑

j,k=2,3

|ejk(ϕ)|2 ∀ϕ ∈W 1,2(S; R3),

where 2ejk(ϕ) := ϕj,k + ϕk,j . Taking αmin as test function in (4.3) and using
the above inequality, we obtain∫

S

∑
k=2,3

|αmin
1,k |2dx2dx3 +

∫
S

∑
j,k=2,3

|ejk(αmin)|2dx2dx3

≤ − 1
C

∫
S

∑
h=2,3

(
Bh1g, αmin

,h

)
dx2dx3

≤ 1
C

∑
h=2,3

‖Bh1g‖L2(S)‖αmin
,h ‖L2(S), (4.6)

By Korn inequality there exists a constant C1 > 0 such that∫
S

∑
j,k=2,3

|αmin
j,k |2dx2dx3 ≤ C1

∫
S

∑
j,k=2,3

|ejk(αmin)|2dx2dx3;

hence, by (4.6) we have

‖αmin
,2 ‖2

L2(S) + ‖αmin
,3 ‖2

L2(S) ≤ C2

∑
h=2,3

‖Bh1g‖L2(S)‖αmin
,h ‖L2(S)

≤ C3‖g‖L2(S)

∑
h=2,3

‖αmin
,h ‖L2(S) (4.7)

where the last inequality follows from the boundedness of the entries of Bhk

(this is a consequence of the assumption (ii) on W ). Inequality (4.5) follows
immediately from (4.7).

Remark 4.4 When Q3 does not depend on x2 and x3 , we can find a more
explicit representation for Q . More precisely, the form Q can be decomposed
into the sum of two quadratic forms

Q(x1, t, F ) = Q1(x1, t) +Q2(x1, F ),

where

Q1(x1, t) := min
a,b∈R3

Q3(x1, (te1 | a | b)), (4.8)

Q2(x1, F ) := Q(x1, 0, F ). (4.9)
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To see this fix x1, t , and F , and let α ∈W 1,2(S; R3). It is convenient to introduce
the following quantities:

a :=
∫

S
α,2 dx2dx3, b :=

∫
S
α,3 dx2dx3,

β(x2, x3) := α(x2, x3) − x2a− x3b.

By expanding the quadratic form Q3 we have that

∫
S
Q3

⎛
⎝x1,

⎛
⎝F

⎛
⎝ 0

x2

x3

⎞
⎠+ te1

∣∣∣∣α,2

∣∣∣∣ α,3

⎞
⎠
⎞
⎠ dx2dx3

= Q3(x1, (te1 | a | b)) +
∫

S
Q3

⎛
⎝x1,

⎛
⎝F

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣β,2

∣∣∣∣ β,3

⎞
⎠
⎞
⎠ dx2dx3. (4.10)

The absence of a coupling term is due to the fact that the matrix (te1 | a | b) is
independent of x2, x3 , while the matrix

⎛
⎝F

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣ β,2

∣∣∣∣ β,3

⎞
⎠

has zero average on S by (2.1) and by the definition of β . Now, equality (4.10)
implies that Q(x1, t, F ) ≥ Q1(x1, t) +Q2(x1, F ).

Vice-versa, let β ∈ W 1,2(S; R3) be a minimizer for the problem defining
Q(x1, 0, F ). Then expanding the quadratic form Q3 and using the fact that Q3

is nonnegative, it is possible to show that β must satisfy∫
S
β,2 dx2dx3 =

∫
S
β,3 dx2dx3 = 0.

Let (a, b) ∈ R
3×R

3 be a minimizer for (4.8) and let

α(x2, x3) := β(x2, x3) + x2a+ x3b.

The identity (4.10) now implies the required inequality.
The formula (4.9) can be further simplified if the stored energy function is

isotropic or if S is a circle (see Remarks 3.5 and 3.6 in [11]).

We now state and prove the convergence result.

Theorem 4.5 As h → 0, the functionals 1
h4 I

(h) are Γ-convergent to the func-
tional I0 given in (4.2), in the following sense:

16



(i) (compactness and liminf inequality) if lim suph→0 h
−4I(h)(y(h)) < +∞,

then there exist constants R
(h) ∈ SO(3) and c(h) ∈ R such that (up to subse-

quences) R(h) → R and the functions defined by

ỹ(h)(x) := (R(h))T y(h)(x) − c(h), u(h)(x1) :=
∫

S

ỹ
(h)
1 (x) − x1

h2
dx2dx3,

v
(h)
k (x1) :=

∫
S

ỹ
(h)
k (x)
h

dx2dx3 for k = 2, 3,

w(h)(x1) :=
1

µ(S)

∫
S

x2ỹ
(h)
3 (x) − x3ỹ

(h)
2 (x)

h2
dx2dx3,

satisfy

(1) ∇hỹ
(h) → Id in L2(Ω);

(2) there exists u,w ∈W 1,2(0, L) such that u(h) ⇀ u and w(h) ⇀ w weakly in
W 1,2(0, L);

(3) there exist vk ∈ W 2,2(0, L) such that v(h)
k → vk strongly in W 1,2(0, L) for

k = 2, 3.

Moreover, we have

lim inf
h→0

1
h4
I(h)(y(h)) ≥ I0(u, v2, v3, w); (4.11)

(ii) (limsup inequality) for every u,w ∈W 1,2(0, L), v2, v3 ∈W 2,2(0, L) there
exists (y̌(h)) such that (1)-(3) hold (with ỹ(h) replaced by y̌(h) ) and

lim sup
h→0

1
h4
I(h)(y̌(h)) ≤ I0(u, v2, v3, w).

Proof. – (i) Properties (1)-(3) follow from Theorem 2.2. By Lemma 2.3 we
know that

lim inf
h→0

1
h4

∫
Ω
W (x1,∇hy

(h)) dx ≥ 1
2

∫
Ω
Q3(x, G̃(x)) dx, (4.12)

where G̃ can be written as

G̃(x) = u,1e1 ⊗ e1 − A2

2
+ sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣ β,2

∣∣∣∣ β,3

⎞
⎠

= sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠+ (u,1 +

1
2
(v2

2,1 + v2
3,1)) e1

∣∣∣∣β,2

∣∣∣∣ β,3

⎞
⎠

+
1
2

⎛
⎝ 0 v3,1w −v2,1w

v3,1w w2 + v2
2,1 v2,1v3,1

−v2,1w v2,1v3,1 w2 + v2
3,1

⎞
⎠ . (4.13)
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Set α(x) := β(x) + 1
2x2γ2(x1) + 1

2x3γ3(x1), where

γ2(x1) := 2v3,1w e1 + (w2 + v2
2,1) e2 + v2,1v3,1 e3, (4.14)

γ3(x1) := −2v2,1w e1 + v2,1v3,1 e2 + (w2 + v2
3,1) e3. (4.15)

Using these new definitions, we have that

G̃(x) = sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠+ (u,1 +

1
2
(v2

2,1 + v2
3,1)) e1

∣∣∣∣α,2

∣∣∣∣ α,3

⎞
⎠ . (4.16)

Since α(x1, ·) ∈W 1,2(S; R3) for a.e. x1 ∈ (0, L), it follows from the definition of
Q that ∫

Ω
Q3(x, G̃(x)) dx ≥

∫ L

0
Q(x1, u,1 +

1
2
(v2

2,1 + v2
3,1), A,1) dx1. (4.17)

The thesis (4.11) now simply follows from (4.12) and (4.17).

(ii) Let u,w ∈ W 1,2(0, L) and v2, v3 ∈ W 2,2(0, L). Let α(x1, ·) ∈ V be
the solution of the minimum problem defining Q(x1, u,1 + 1

2(v2
2,1 + v2

3,1), A,1) (see
Remark 4.1 for the definition of the space V ). Then α and its derivatives α,2, α,3

belong to L2(Ω; R3). Indeed, by the Sobolev-Poincaré inequality we have

‖α(x1, ·)‖2
L2(S) ≤ C

(
‖α,2(x1, ·)‖2

L2(S) + ‖α,3(x1, ·)‖2
L2(S)

)
for a.e. x1 ∈ (0, L); thus, integrating with respect to x1 , we deduce

‖α‖2
L2(Ω) ≤ C‖α,2‖2

L2(Ω) + ‖α,3‖2
L2(Ω).

Therefore it is enough to prove that α,2, α,3 ∈ L2(Ω; R3). This can be done by
integrating the estimate (4.5) with respect to x1 ; in that way, we obtain the
following inequality:

‖α,2‖2
L2(Ω) + ‖α,3‖2

L2(Ω) ≤ C ′

⎛
⎝‖A,1‖2

L2(0,L) + ‖u,1‖2
L2(0,L) +

∑
k=2,3

‖vk,1‖4
L4(0,L)

⎞
⎠ .

The right-hand side is bounded, since A ∈ W 1,2((0, L); M3×3), u ∈ W 1,2(0, L),
and vk,1 = Ak1 ∈ L∞(0, L) by the Sobolev embedding theorem.

Now let γ2, γ3 be defined as in (4.14), (4.15). We denote by α̃ the function
given by

α̃(x) := α(x) − ω(x1)x⊥,

where ω is chosen in such a way that the function

β(x) := α̃(x) − 1
2
x2γ2(x1) − 1

2
x3γ3(x1)
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belongs to the set B defined in (2.7). Since Q3(x1, F ) = Q3(x1, symF ), it is
clear that α̃(x1, ·) is still a minimizer for the problem defining Q(x1, u,1+ 1

2 (v2
2,1+

v2
3,1), A,1). To conclude it is enough to use the equivalence of (4.16) and (4.13)

and to apply Theorem 3.1 to the functions u,w, vk , and β . �

5 Asymptotic behaviour of solutions

In Theorem 2.2 we have shown that sequences whose energy 1
h4 I

(h) is finite,
converge strongly in W 1,2(Ω) to a rigid motion. The aim of this section is to
characterise the asymptotic behaviour of the deviation of solutions from the rigid
motion and of the nonlinear strain from the identity. We will then compare this
result with the expansion obtained by Murat and Sili in the setting of linear
elasticity [12].

Theorem 5.1 Let (y(h)) be a sequence in W 1,2(Ω; R3) such that

lim sup
h→0

1
h4

∫
Ω
W (x,∇hy

(h)) dx < +∞.

Let R(h) ∈ SO(3) and c(h) ∈ R be as in Theorem 2.2 and let ỹ(h) := (R(h))T y(h)−
c(h) . Then there exist u,w ∈ W 1,2(0, L), v2, v3 ∈ W 2,2(0, L), and β ∈ B (see
(2.7) for the definition of B ) such that the scaled deviations of ỹ(h) from the
identity satisfy, up to subsequences,

φ
(h)
1 :=

ỹ
(h)
1 − x1

h2
⇀ u− x2v2,1 − x3v3,1 weakly in W 1,2(Ω), (5.1)

φ
(h)
k :=

ỹ
(h)
k − hxk

h
→ vk strongly in W 1,2(Ω), (5.2)

while the scaled nonlinear strain satifies

[(∇hy
(h))T∇hy

(h)]1/2 − Id

h2
⇀ G̃ weakly in L2(Ω), (5.3)

where

G̃ = u,1e1 ⊗ e1 − A2

2
+ sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣ β,2

∣∣∣∣ β,3

⎞
⎠

and A is defined as in (2.6).
If we assume in addition that

lim
h→0

1
h4

∫
Ω
W (x,∇hy

(h)) dx =
1
2

∫ L

0
Q(x1, u,1 +

1
2
(v2

2,1 + v2
3,1), A,1) dx1, (5.4)
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then the convergence in (5.1) and (5.3) are strong. Furthermore, the matrix G̃
satisfies

G̃ = u,1e1 ⊗ e1 + sym

⎛
⎝A,1

⎛
⎝ 0

x2

x3

⎞
⎠∣∣∣∣αmin

,2

∣∣∣∣ αmin
,3

⎞
⎠ , (5.5)

where αmin is the solution in V of the minimum problem defining Q(x1, u,1 +
1
2(v2

2,1 + v2
3,1), A,1).

Proof. – Properties (5.1) and (5.2) are consequences of Theorem 2.2. Indeed,
from (2.3), (e), and (d) it follows that the sequence (∇φ(h)

1 ) is bounded in L2(Ω).
Since φ(h)

1 → u− x2v2,1 − x3v3,1 strongly in L2(Ω) by (2.20), we have that (5.1)
holds up to subsequences. From (d) it follows that ∇φ(h)

k → vk,1e1 strongly in
L2(Ω). By (2.10) and the Poincaré inequality we conclude that (5.2) holds true.

The convergence in (5.3) easily follows from (2.16).
Assume now that (5.4) holds. Combining it with (2.26), (2.27), and (2.28),

we obtain

1
2

∫ L

0
Q(x1, u,1 +

1
2
(v2

2,1 + v2
3,1), A,1) dx1

= lim sup
h→0

1
h4

∫
Ω
W (x,∇hy

(h)) dx ≥ lim sup
h→0

1
h4

∫
Ω
χhW (x,∇hy

(h)) dx

≥ lim sup
h→0

1
2

∫
Ω
Q3(x, χhG

(h)) dx ≥ 1
2

∫
Ω
Q3(x, G̃(x)) dx. (5.6)

Since the last term is always greater or equal than the first one, all the inequalities
above are equalities and for a.e. x1 ∈ (0, L)

Q(x1, u,1 +
1
2
(v2

2,1 + v2
3,1), A,1) =

∫
S
Q3(x, G̃(x)) dx2dx3.

As proved in Remark 4.1, the minimum problem defining Q has a unique solution
αmin in the subspace V , so that, writing G̃ as in (4.16),

αmin(x) = α(x) − ω(x1)x⊥, (5.7)

where
α(x) = β(x) +

1
2
x2γ2(x1) +

1
2
x3γ3(x1), (5.8)

γ2, γ3 are defined as in (4.14) and (4.15), and ω is uniquely determined by the
requirement that α − ωx⊥ ∈ V . Substituting (5.7) in the expression of G̃ we
obtain (5.5).

Next, using the coerciveness of Q3 , from (2.25) and the fact that the equality
holds in the last inequality of (5.6) we can deduce that

χh symG(h) → G̃ strongly in L2(Ω). (5.9)
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By the definition of G(h) we obtain

(∇hy
(h))T∇hy

(h) = Id+ 2h2symG(h) + h4(G(h))TG(h),

so that we have the following bound∣∣∣[(∇hy
(h))T∇hy

(h)]1/2 −
(
Id+ h2symG(h)

)∣∣∣ ≤ Ch4|G(h)|2.

Multiplying both sides by 1
h2χh and using the fact that h2|G(h)| ≤ h on the set

{x ∈ Ω : χh(x) �= 0}, we get

χh
[(∇hy

(h))T∇hy
(h)]1/2 − Id

h2
→ G̃ strongly in L2(Ω).

Since the equality holds in the first inequality of (5.6), we have that

lim
h→0

1
h4

∫
Ω
(1 − χh)W (x,∇hy

(h)) dx = 0. (5.10)

Using the inequality

|(ATA)1/2 − Id|2 ≤ dist2(A,SO(3)) ≤ 1
C
W (x,A) ∀A ∈ M

3×3,

we have by (5.10)

lim sup
h→0

∫
Ω
(1 − χh)

∣∣∣∣∣ [(∇hy
(h))T∇hy

(h)]1/2 − Id

h2

∣∣∣∣∣
2

dx ≤ 0.

This concludes the proof of the strong convergence of the scaled nonlinear strain.
To establish the strong convergence of (φ(h)

1 ) in W 1,2(Ω), we first prove that

1
h2

dist(∇hỹ
(h),SO(3)) → |G̃| in L2(Ω). (5.11)

From the definition of G(h) it follows that
1
h2
χhdist(∇hỹ

(h),SO(3)) =
1
h2
χhdist(Id+ h2G(h),SO(3))

= χh|symG(h)| + χhO(
1
h2

|G(h)|2).

By (5.9) and the fact that χh
1
h2 |G(h)|2 is bounded by h , we deduce that

1
h2
χhdist(∇hỹ

(h),SO(3)) → |G̃| in L2(Ω).

In combination with (5.10) this yields (5.11). In particular, the convergence
(5.11) implies that the sequence

(
1
h4 dist2(∇hỹ

(h),SO(3))
)

is equi-integrable. By
a refined version of Theorem 2.1 (see Proposition 5.2 below) this implies that

|G(h)|2 =
1
h4

|(R(h))T∇hỹ
(h) − Id|2 is equi-integrable. (5.12)
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By (5.9) and (5.12) we have that

symG(h) → G̃ strongly in L2(Ω). (5.13)

Since R(h) → Id strongly in L∞ , we obtain

(R(h) − Id)G(h) → 0 strongly in L2(Ω).

Thus,

1
h2

sym (∇hỹ
(h) −R(h)) = sym (R(h)G(h)) → G̃ strongly in L2(Ω). (5.14)

Now, since we can decompose φ(h)
1,1 as

φ
(h)
1,1 =

ỹ
(h)
1,1 −R

(h)
11

h2
+
R

(h)
11 − 1
h2

,

we have by (5.14) and property (e) of Theorem 2.2 that (φ(h)
1,1) is strongly con-

vergent in L2(Ω). The strong convergence of (φ(h)
1,k) for k = 2, 3 follows from

property (d) of Theorem 2.2. This concludes the proof. �

Proposition 5.2 Let (y(h)) be a sequence in W 1,2(Ω; R3) such that

dist(∇hy
(h),SO(3)) ≤ h2(M + f)

where M ∈ R, M ≥ 0, and f ∈ L2(Ω). Let R(h) be the map constructed in
Theorem 2.2. Then

|∇hy
(h) −R(h)| ≤ h2(G1 +G2)

with
‖G1‖Lp(Ω) ≤ CM for some p > 2, ‖G2‖L2(Ω) ≤ C‖f‖L2(Ω).

In particular, if h−4dist(∇hy
(h),SO(3)) is equi-integrable, then h−4|∇hy

(h) −
R(h)|2 is equi-integrable.

For a proof we refer to [7].

5.1 Comparison with linear elasticity

The result of Theorem 5.1 can be read as follows. The sequence (φ(h)), which
describes the scaled deviation of ỹ(h) from the identity, behaves asymptotically
as the sequence (φ̂(h)) defined by

φ̂
(h)
1 = u− x2v2,1 − x3v3,1 + hβ1,

φ̂
(h)
k = vk + hwx⊥k + h2βk (k = 2, 3),
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in the following sense. We set for φ ∈W 1,2(Ω; R3)

D(h)(φ) :=

(
φ1,1

1
hφ1,k

1
hφj,1

1
h2φj,k

)
j, k ∈ {2, 3}.

Then it is easy to see that the scaled nonlinear strain can be expressed in terms
of φ(h) as

[(∇hỹ
(h))T∇hỹ

(h)]1/2 − Id

h2

= symD(h)(φ(h)) +
1
2
h2[D(h)(φ(h))]TD(h)(φ(h)) +O(h2|symD(h)(φ(h))|2),

and that

symD(h)(φ̂(h)) +
1
2
h2[D(h)(φ̂(h))]TD(h)(φ̂(h)) = G̃+O(h)

provided β ∈ W 1,2(Ω; R3). In this case, the convergence result of Theorem 5.1
and the fact that h symD(h)(φ(h)) → symA = 0 in L2(Ω) imply that

(
symD(h)(φ(h)) +

1
2
h2[D(h)(φ(h))]TD(h)(φ(h))

)

−
(

symD(h)(φ̂(h)) +
1
2
h2[D(h)(φ̂(h))]TD(h)(φ̂(h))

)
→ 0 strongly in L1(Ω).

The condition β ∈ W 1,2(Ω; R3) corresponds to higher regularity of the solution,
as shown in Lemma 5.3 and Lemma 5.4 below.

The comparison of φ(h) and φ̂(h) generalizes to the nonlinear setting an earlier
result by Murat and Sili in the context of linearized elasticity. More precisely,
Murat and Sili have studied in [12] the asymptotic behaviour of the solution ϕ(h)

of a linearized elasticity problem in an inhomogeneous cylinder, whose diameter
h tends to 0. They show that ϕ(h) has the same asymptotic behaviour of

ϕ̂(h) := ϕ+ hψ + h2ζ

in the following sense:

ϕ(h) → ϕ strongly in W 1,2 ,

e(h)(ϕ(h)) − e(h)(ϕ̂(h)) → 0 strongly in L2 ,

where e(h)(f) := symD(h)(f). The functions ϕ,ψ, ζ enjoy the following prop-
erties: ϕ satisfies the Bernoulli-Navier equation, i.e., there exist u ∈ W 1,2(0, L)
and vk ∈W 2,2(0, L) such that

ϕ1 = u− x2v2,1 − x3v3,1, ϕk = vk;
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the function ψ1 belongs to L2(Ω; R3) with derivatives ψ1,2, ψ1,3 in L2(Ω; R3),
while there exists a function w ∈W 1,2(0, L) such that

ψ2(x) = −w(x1)x3, ψ3(x) = w(x1)x2;

finally, the function ζ belongs to the space{
θ ∈ L2(Ω; R3) : θ1 = 0, θk,j ∈ L2(Ω) for j, k = 2, 3,∫

S
(x3θ2 − x2θ3) dx2dx3 = 0

}
.

This linear asymptotic result is in agreement with Theorem 5.1. Indeed, ϕ(h) , as
solution of a linearized elasticity problem, is defined as a suitable rescaling of the
deviation of the deformation y(h) from the identity (which corresponds to φ(h) in
our notation), while e(h)(ϕ(h)) is the linearized strain. Moreover, the asymptotic
development ϕ̂(h) found by Murat and Sili has exactly the same structure of the
asymptotic development φ̂(h) found in the nonlinear case.

We conclude the section with two lemmas showing that higher regularity of
β is related to higher regularity of solutions.

Lemma 5.3 Assume that the function x1 �→ ∂2W

∂F 2
((x1, x

′), Id) is differentiable

for a.e. x′ ∈ S and∣∣∣∣ ∂∂x1

(
∂2W

∂F 2

)
(x, Id)

∣∣∣∣ ≤ C̃ for a.e. x ∈ Ω .

Let u ∈ W 2,2(0, L) and A ∈ W 2,2((0, L); M3×3). Let αmin(x1, ·) denote the
solution in V of the problem (4.1) defining Q(x1, u,1 + 1

2 (v2
2,1 + v2

3,1), A,1). Then
αmin belongs to W 1,2(Ω; R3), as well as the function β determined by (5.8) and
(5.7).

Proof. – Let I ′ be an open interval compactly contained in (0, L). Let x1 ∈ I ′

and ε > 0. For any function f : Ω → R
N we set

∆εf(x) :=
1
ε

(
f(x1 + ε, x′) − f(x)

)
. (5.15)

Using the Euler-Lagrange equation (4.3) we obtain∫
S

∑
h,k=2,3

(
Bhk(x1 + ε, x′)∆εα

min
,k (x), ϕ,h(x′)

)
dx′

= −
∫

S

∑
h=2,3

(
∆εB

h1(x)g(x) +Bh1(x1 + ε, x′)∆εg(x), ϕ,h(x′)
)
dx′

−
∫

S

∑
h,k=2,3

(
∆εB

hk(x)αmin
,k (x), ϕ,h(x′)

)
dx′, (5.16)
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where ϕ is any test function in W 1,2(S; R3) and

g(x) := A,1(x1)

⎛
⎝ 0

x2

x3

⎞
⎠+ (u,1(x1) +

1
2
v2
2,1(x1) +

1
2
v3
3,1(x1))e1. (5.17)

Taking ∆εα
min(x1, ·) as test function in (5.16) and arguing as in the proof of

(4.5), we obtain that there exists a constant C (independent of x1 , I ′ , and ε)
such that

‖∆εα
min
,2 ‖2

L2(S) + ‖∆εα
min
,3 ‖2

L2(S)

≤ C
∑

h=2,3

‖∆εB
h1g +Bh1∆εg +

∑
k=2,3

∆εB
hkαmin

,k ‖2
L2(S)

≤ C
(
‖g‖2

L2(S) + ‖∆εg‖2
L2(S) + ‖αmin

,2 ‖2
L2(S) + ‖αmin

,3 ‖2
L2(S)

)
. (5.18)

By the Sobolev-Poincaré inequality we know that

‖∆εα
min(x1, ·)‖L2(S) ≤ C

(
‖∆εα

min
,2 ‖2

L2(S) + ‖∆εα
min
,3 ‖2

L2(S)

)
.

Integrating both sides on I ′ and using (5.18), we have

‖∆εα
min‖L2(I′×S)

≤ C
(
‖g‖2

L2(Ω) + ‖∆εg‖2
L2(I′×S) + ‖αmin

,2 ‖2
L2(Ω) + ‖αmin

,3 ‖2
L2(Ω)

)
.

To conclude it is enough to show that the right-hand side is bounded by a constant
independent of I ′ and ε . The only term for which this is not trivial is the quantity
‖∆εg‖L2(I′×S) . By (5.17) we have

g,1 = A,11

⎛
⎝ 0

x2

x3

⎞
⎠+ (u,11 + v2,1v2,11 + v3,1v3,11)e1.

From the regularity assumptions on A and u it follows that g,1 belongs to
L2(Ω; R3). This implies the required bound on ‖∆εg‖L2(I′×S) . �

Let f2, f3 ∈ L2(0, L). We introduce the functional

J0(u, v2, v3, w) := I0(u, v2, v3, w) −
∫ L

0

∑
k=2,3

fkvk dx1 (5.19)

for every u ∈W 1,2(0, L), v2, v3 ∈W 2,2(0, L), and w ∈W 1,2(0, L).
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Lemma 5.4 Assume that the function x1 �→ ∂2W

∂F 2
((x1, x

′), Id) is differentiable

for a.e. x′ ∈ S and∣∣∣∣ ∂∂x1

(
∂2W

∂F 2

)
(x, Id)

∣∣∣∣ ≤ C̃ for a.e. x ∈ Ω . (5.20)

Let f2, f3 ∈ L2(0, L) and let (u, v2, v3, w) be a minimizer for J0 . Then u,w ∈
W 2,∞(0, L) and v2, v3 ∈W 3,∞(0, L). In particular, A ∈W 2,∞((0, L); M3×3).

Proof. – Let B̂ : (0, L) → M
3×3 be the symmetric matrix associated to the

quadratic form Q(x1, ·) defined in (4.1); thus, we can express Q as

Q(x1, t, F ) =

⎛
⎜⎜⎝B̂(x1)

⎛
⎜⎜⎝

t
F12

F13

F32

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

t
F12

F13

F32

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ∀t ∈ R,∀F ∈ M

3×3
skew.

The matrix B̂ is uniformly positive definite by (4.4). Moreover, from the assump-
tion of differentiability of ∂2W/∂F 2 and (5.20), it follows that B̂ is differentiable
with respect to x1 and its derivative is bounded on (0, L). We will denote the
j -th row of B̂ by B̂j .

For simplicity of notation we introduce the function ζ ∈ L2((0, L); R4) defined
by

ζ(x1) :=

⎛
⎜⎜⎝

u,1 + 1
2v

2
2,1 + 1

2v
2
3,1

v2,11

v3,11

w,1

⎞
⎟⎟⎠ .

If (u, v2, v3, w) is a minimizer of J0 , then the following Euler-Lagrange equations
hold: ∫ L

0
ϕ1,1B̂1ζ dx1 = 0, (5.21)∫ L

0
ϕ2,11B̂2ζ dx1 = −

∫ L

0
ϕ2,1v2,1B̂1ζ dx1 +

∫ L

0
f2ϕ2 dx1, (5.22)∫ L

0
ϕ3,11B̂3ζ dx1 = −

∫ L

0
ϕ3,1v3,1B̂1ζ dx1 +

∫ L

0
f3ϕ3 dx1, (5.23)∫ L

0
ϕ4,1B̂4ζ dx1 = 0 (5.24)

for every ϕi ∈ C∞(0, L). From these equations we want to deduce some higher
regularity of ζ .

From (5.21) it follows that there exists a constant c1 ∈ R such that

B̂1(x1)ζ(x1) = c1 for a.e. x1 ∈ (0, L). (5.25)
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Analogously, (5.24) implies that there exists a constant c4 ∈ R such that

B̂4(x1)ζ(x1) = c4 for a.e. x1 ∈ (0, L). (5.26)

Using (5.25) in (5.22) and (5.23), we have for k = 2, 3

∫ L

0
ϕk,11B̂kζ dx1 =

∫ L

0
(fkϕk − c1vk,1ϕk,1) dx1

=
∫ L

0
(fk + c1vk,11)ϕk dx1 ∀ϕk ∈ C∞

0 (0, L).

This implies that the second derivative of B̂kζ belongs to L2(0, L) and coincides
with fk +c1vk,11 almost everywhere. Therefore, there exists gk ∈W 2,2(0, L) such
that gk,11 = fk and

B̂k(x1)ζ(x1) = gk(x1) for a.e. x1 ∈ (0, L). (5.27)

Combining together (5.25), (5.26), and (5.27), we have

B̂(x1)ζ(x1) = g(x1) ∈W 2,2((0, L); R4),

where we have set g := c1e1 + g2e2 + g3e3 + c4e4 . Since B̂ belongs to W 1,∞ and
is uniformly coercive, the inverse B̂−1 is still in W 1,∞ ; therefore,

ζ(x1) = (B̂−1)(x1)g(x1) ∈W 1,∞((0, L); R4).

This immediately implies that vk ∈W 3,∞(0, L) and w ∈W 2,∞(0, L). Moreover,
we have that u,1 + 1

2v
2
2,1 + 1

2v
2
3,1 belongs to W 1,∞(0, L). Since v2

k,1 ∈W 1,∞(0, L),
we can conclude that u,1 belongs to W 1,∞(0, L) too. This finishes the proof of
the lemma. �

Remark 5.5 The functional J0 defined in (5.19) can be obtained as Γ-limit of
the energies 1

h4 I
(h) by adding a term describing transversal body forces of order

h3 and by imposing a boundary condition which eliminates rigid motions of the
body.
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non-linéaire tridimensionnelle. Preprint, 2002.

28



[16] P. Villaggio: Mathematical models for elastic structures. Cambridge Univer-
sity Press, 1997.

29


