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Abstract. For a simple class of Lagrangians and variational integrators, derived by time dis-
cretization of the action functional, we supply conditions ensuring: i) The Γ-convergence of the
discrete action sum to the action functional; ii) The weak∗ convergence of the discrete trajectories
in W 1,∞(R) and uniform convergence on compact subsets; and iii) The convergence of the Fourier
transform of the discrete trajectories as measures in the flat norm.
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1. Introduction. This work is concerned with the application of Γ-convergence
methods to the elucidation of the convergence properties of discrete dynamics and
variational integrators. The theory of discrete dynamics has a relatively short but
vigorous history. A recent review of this history may be found in [8], which can also
be consulted for an up-to-date review of the subject. As understood here, discrete
dynamics is a theory of Lagrangian mechanics in which time is regarded as a discrete
variable ab initio, and in which the discrete trajectories follow from a discrete ver-
sion of Hamilton’s principle, obtained by replacing the action integral by an action
sum. The mechanical properties of the discrete system are described by a discrete
Lagrangian, defined as a function of pairs of points in configuration space. Using gen-
erating functions, Veselov [11] (see also [9]) showed that the discrete Euler-Lagrange
equations generate symplectic maps. Wendlandt and Marsden [12] pointed out that
Veselov’s theory of discrete dynamics can be used to formulate numerical methods for
time integration of Lagrangian systems, known as variational integrators. Wendlandt
and Marsden [12] also showed that variational integrators are automatically symplec-
tic and conserve discrete momentum maps, such as linear and angular momentum,
exactly along discrete trajectories. By adopting a spacetime view of Lagrangian me-
chanics, as advocated by Marsden et al. [7], it is possible to devise variational inte-
grators which preserve the energy, momentum and symplectic structure, as shown by
Kane et al. [5]. Extensions of the theory to partial differential equations based on
multisymplectic geometry may be found in [7].

The convergence properties of variational integrators have been ascertained us-
ing conventional techniques, such as Gronwall’s inequality [8]; or by backward error
analysis [6, 10, 8]. In addition, time-stepping algorithms for linear structural dynam-
ics have also been traditionally analyzed by phase-error analysis [1, 2, 4]. In this
type of analysis, the focus is in establishing the convergence of the amplitude and
frequency of oscillatory numerical solutions to the amplitude and frequency of the
exact solution, a form of convergence which we shall refer to as spectral convergence.
Phase-error analysis is a particularly powerful tool in as much as it establishes the
convergence of solutions in a global, instead of merely local, sense. In particular, it
allows to compare infinite wave trains. The engineering literature on the subject relies
on a case-by-case analysis of linear time-stepping algorithms, and general conditions
ensuring spectral convergence do not appear to have been known, nor do extensions
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of phase-error analysis to nonlinear systems appear to be in existence.
The variational character of variational integrators opens the way for the appli-

cation of Γ-convergence methods to the problem of understanding the convergence
properties of discrete dynamics, a line of inquiry which appears not to have been
pursued to date. In the work presented in this paper, we focus on a simple class of
Lagrangians and variational integrators and supply conditions ensuring:

(i) The Γ-convergence of the discrete action sum to the action functional.
(ii) The weak∗ convergence of the discrete trajectories in W 1,∞(R) and uniform

convergence on compact subsets.
iii) The convergence of the Fourier transform of the discrete trajectories as mea-

sures in the flat norm.
It bears emphasis that these notions of convergence are not local, as those derived from
consistency and Gronwall’s inequality, but apply to infinite wave trains. In particular,
(iii) gives rigorous form to the traditional notions of phase-error analysis and spectral
convergence, and extends them to nonlinear systems. While in this paper we focus
on a simple class of Lagrangians in order to minimize technicalities, we would like to
emphasize that the Γ−convergence framework is very flexible and should permit the
analysis of much more general Lagrangians than considered here.

2. Formulation of the problem. Let X = L2
loc(R, Rn), and let E be the col-

lection of all open bounded intervals of R. We recall that the spaces L2
loc(R, Rn) can

naturally be equipped with a countable system of seminorms ||u||L2
loc(Ak,Rn), where

Ak is an increasing sequence of open bounded intervals such that ∪kAk = R. These
seminorms define a distance with respect to which L2

loc(R, Rn) becomes a complete
metric space. Let m > 0 and V ∈ C(Rn). The functional I : X × E → R defined by

I(u, A) =
{ ∫

A

(
m
2 |u̇(t)|2 − V (u(t))

)
dt, u ∈ H1(A, Rn)

+∞, otherwise (2.1)

is the action of u over the open bounded interval A. The first variation of I is the
functional δI : H1

loc(R, Rn) × C∞
c (R, Rn) × E → R defined by

δI(u, ϕ, A) =
∫

A

(
mu̇(t)ϕ̇(t) − DV (u(t))ϕ(t)

)
dt. (2.2)

The stationary points of I are functions u such that

I(u, A) < ∞, δI(u, ϕ, A) = 0, ∀ A ∈ E , ϕ ∈ C∞
c (A, Rn). (2.3)

Lemma 2.1. Let u be a stationary point of the action functional (2.1). Assume
in addition that V is C2 and that there is a constant C > 0 such that |D2V | ≤ C. Let
a < b be such that that b− a < π/ω0 with ω0 =

√
C/m. Then u minimizes I(·, (a, b))

among all functions v ∈ X with v(a) = u(a), v(b) = u(b) where v(a) is understood as
the left-sided limit and v(b) is understood as the right-sided limit.

Remark 2.1. For a general function v ∈ X the value v(a) may not be defined.
For the purpose of minimizers, however, it suffices to consider functions with I(v, A) <
∞. Then v|(a,b) ∈ H1

(
(a, b), Rn

)
and hence the one-sided limits v(a) and v(b) exist

in view of the Sobolev embedding theorem.
Proof. Let ϕ ∈ C∞

c

(
(a, b), Rn

)
. Then

I(u + ϕ, (a, b)) − I(u, (a, b)) =

δI(u, ϕ, (a, b)) +
∫ b

a

(m

2
ϕ̇2(t) − V (u(t) + ϕ(t)) + V (u(t)) + DV (u(t)) · ϕ(t)

)
dt.

(2.4)
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But u is a stationary point of I and, hence, δI(u, ϕ, (a, b)) = 0. Therefore

I(u + ϕ, (a, b)) − I(u, (a, b)) =∫ b

a

(m

2
ϕ̇2(t) − V (u(t) + ϕ(t)) + V (u(t)) + DV (u(t)) · ϕ(t)

)
dt.

(2.5)

But by Taylor’s theorem we have

|V (u + ϕ) − V (u) − DV (u)ϕ|(x) =
1
2
|D2V (u(x) + λ(x)ϕ(x))| |ϕ(x)|2 (2.6)

for some λ(x) ∈ [0, 1]. In addition, by the assumed upper bound on |D2V | we have

|V (u + ϕ) − V (u) − DV (u)ϕ| ≤ C

2
|ϕ|2 (2.7)

and

I(u+ϕ, (a, b))−I(u, (a, b)) ≥
∫ b

a

(
m

2
ϕ̇2 − C

2
|ϕ|2

)
dt ≥

(
m

2
π2

(b − a)2
− C

2

) ∫ b

a

|ϕ|2 dt,

(2.8)
where we have made use of Poincare’s inequality. Clearly, the right-hand side of this
inequality is strictly positive provided that

m

2
π2

(b − a)2
− C

2
> 0, (2.9)

which in turn holds if b − a < π/
√

C/m. By density estimate (2.8) holds also for
functions in H1

0

(
(a, b), Rn

)
. Hence we may take ϕ = v−u and the proof is finished.

3. The flat norm on measures. Definition 3.1. Let µ be a Radon measure
on R

n. Then the flat norm of µ is

||µ|| = sup{
∫

Rn

fdµ | f : R → R Lipschitz, Lip f ≤ 1, sup |f | ≤ 1} (3.1)

As a direct consequence of the definition one obtains

||δa|| = 1, ||δa − δb|| = min(|a − b|, 2) (3.2)

We will apply the flat norms to measures in Fourier space and the above examples
indicate how convergence in the flat norm is related to concepts of spectral conver-
gence.

One important property of the flat norm is that it metrizes weak* convergence of
measures, in the following sense.

Proposition 3.2. Let µk be Radon measures supported in a compact set K ⊂ R
n.

i) If µk
∗
⇀ µ in M(Rn), then ||µk − µ|| → 0.

ii) If ||µk − µ|| → 0 and the mass of the µk is uniformly bounded, then µk
∗
⇀ µ

in M(Rn).
Proof. We recall the proof for the convenience of the reader. The first assertion

follows from the compactness of Lipschitz functions with respect to uniform conver-
gence. Indeed we may assume that µ = 0 and we have to show that ||µk|| → 0.
Suppose otherwise. Then there exists a δ > 0, a subsequence of µk (not relabelled)
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and a sequence of functions fk such that |fk| ≤ 1, Lipfk ≤ 1 and
∫

fkdµk ≥ δ. For
a further subsequence we have fk → f uniformly in K. By weak* convergence the
mass ||µk||M of the measures µk is uniformly bounded. Thus

lim sup
k→∞

∫
fkdµk ≤ lim sup

k→∞

(∫
fdµk + sup

K
|fk − f | sup

k
||µk||M

)
= 0. (3.3)

This contradiction proves assertion i).
As regards ii) we first observe that µ has bounded mass. Indeed for all Lipschitz

functions f ∫
fdµ = lim

k→∞

∫
fdµk ≤ sup

K
|f | sup

k
||µk||M. (3.4)

Thus we may suppose again that µ = 0. Now let f ∈ C(Rn), ε > 0. Then there exists
a Lipschitz function g such that supK |f − g| < ε. Thus

lim sup
k→∞

∣∣∣∣
∫

fdµk

∣∣∣∣ ≤ lim sup
k→∞

∣∣∣∣
∫

gdµk

∣∣∣∣ + ε sup
k

||µk||M ≤ Cε. (3.5)

This proves assertion ii) since ε > 0 was arbitrary.

4. Variational integrators. Let Th be a triangulation of R of size h. Specifi-
cally, Th is a collection of ordered disjoint open intervals (ti, ti+1) whose closures cover
the entire real line, and whose lengths are less or equal to h. Let Xh be the subspace
of X consisting of continuous functions such that u|E ∈ P1(E), ∀E ∈ Th. Here Pk(E)
denotes the set of polynomials over E of degree less or equal to k. Define the discrete
action functionals Ih : X × E → R as

Ih(u, A) =
{

I(u, A), u ∈ Xh

+∞, otherwise. (4.1)

The stationary points of Ih, or discrete solutions, are functions such that

I(uh, A) < ∞, δI(uh, ϕh, A) = 0, ∀ A ∈ E , ϕh ∈ Xh, with ϕh = 0 on R\A. (4.2)

Remark 4.1. In (4.2) it suffices to consider intervals (ti, tj) which are compatible
with the triangulation Th. Indeed if (a, b) is a general interval and (ti, tj) is the
maximal compatible subinterval then the conditions ϕh ∈ Xh and ϕ = 0 in R \ (a, b)
imply that ϕ = 0 in (a, ti) and (tj , b).

Let E = (ti, ti+1) ∈ Th and ui = uh(ti). Then the discrete Lagrangian is

Ld(ui, ui+1) = Ih(u, E). (4.3)

For piecewise linear approximations this gives

Ld(ui, ui+1) =
m

2
(ui+1 − ui)2

ti+1 − ti
−

∫ ti+1

ti

V

(
ti+1 − t

ti+1 − ti
ui +

t − ti
ti+1 − ti

ui+1

)
dt. (4.4)

In terms of the discrete Lagrangian, the discrete Euler-Lagrange equations take the
form

D2Ld(ui−1, ui) + D1Ld(ui, ui+1) = 0 (4.5)
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or, for piecewise linear approximations,

m

{
ui+1 − ui

ti+1 − ti
− ui − ui−1

ti − ti−1

}
+

∫ ti+1

ti

DV
(
uh(t)

) ti+1 − t

ti+1 − ti
dt +

∫ ti

ti−1

DV
(
uh(t)

) t − ti−1

ti − ti−1
dt = 0.

(4.6)

Lemma 4.1. Let u ∈ Xh be a stationary point of the discrete action functional
Ih. Assume in addition that V is C2 and that there is a constant C > 0 such that
|D2V | ≤ C. Let a < b be such that that b − a < π/ω0 with ω0 =

√
C/m. Then u

minimizes Ih(·, (a, b)) among all functions v ∈ Xh with v = u on R \ (a, b).
Proof. The proof of Lemma 2.1 applies since Xh is a subspace of X . Note that

functions in Xh are continuous, hence we do not need to distinguish between left and
right limits at a and b.

Lemma 4.2.

a) The sequence of spaces Xh is dense in X, i.e. for each u ∈ X there exist
vh ∈ Xh with vh → u in X.

b) Suppose that V ∈ C(Rn) and V (s) ≤ C(1 + |s|2). If A is an open bounded
interval and if I(u, A) < ∞ then the sequence vh in a) can be chosen such
that in addition vh|A → u|A in H1(A, Rn).

Proof. Let η ∈ C∞
0 (−1, 1) be a mollifier with η ≥ 0,

∫
η = 1, and define ηh(x) =

h−1η(x/h). Let Nhw denote the nodal interpolation of a function w with respect to
the triangulation Th. For u ∈ X define Thu = Nh(ηh ∗ u) and set vh = Thu. We need
to show that for every R > 0 we have

∫ R

−R

|vh − u|2 dt → 0 (4.7)

By standard interpolation estimates

∫ R

−R

|Nhw − w|2 dt ≤ Ch2

∫ R+h

−R−h

|ẇ|2 dt. (4.8)

Combining this with standard estimates for convolutions we get

∫ R

−R

|Thu−u|2 dt ≤ C

∫ R+2h

−R−2h

|u|2 dt,

∫ R

−R

|Thu−u|2 dt ≤ Ch2

∫ R+2h

−R−2h

|u̇|2 dt. (4.9)

Now let ε > 0 and write u = u(1) + u(2) with u(1) ∈ H1
(
(−2R, 2R), Rn

)
and∫ 2R

−2R
|u(2)|2 dt ≤ ε. Then

lim sup
h→0

∫ R

−R

|Thu − u|2 dt ≤ Cε (4.10)

and this proves the first assertion.
The proof of the second assertion is almost the same. The main additional diffi-

culty is that u may jump at the ends of the interval A = (a, b) (note that u is contin-
uous in (a, b) by the Sobolev embedding theorem and the left limit u(a) and the right
limit u(b) are well-defined and finite). To handle this difficulty we first define approx-
imations of u which are continuous in the slightly large interval Ah = (a−2h, b+2h).
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Set

uh(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t), t ≤ a − 2h
u(a), a − 2h < t ≤ a
u(t) a < t < b
u(b) b ≤ t < b + 2h
u(t) t ≥ b + 2h

(4.11)

Let vh = Thuh Then uh − u → 0 in L2(R, Rn) and vn − u = Th(uh − u) + (Thu − u).
Hence by the boundedness of Th on L2 (see (4.9)) and the proof of assertion a) we
have vh → u in X . To establish the convergence in H1(A, Rn) we first recall the
standard interpolation estimates∫ b

a

| d

dt
(Nhw − w)|2 ≤

∫ b+h

a−h

| d

dt
w|2,

∫ b

a

| d

dt
(Nhw − w)|2 ≤ Ch2

∫ b+h

a−h

| d2

dt2
w|2.

(4.12)
Since I(u, A) < ∞ the map u is in H1(A, Rn). Now decompose u|A = u(1) +u(2) such
that u(1) ∈ H2(A, Rn) with u̇(1)(a) = u̇(1)(b) = 0 and ||u(2)||2H1(A,Rn) ≤ ε. Combining
the above interpolation estimates with standard estimates for convolutions such as∫ b+h

a−h

| d

dt
(ηh ∗u−u)|2 ≤

∫ b+2h

a−2h

| d

dt
u|2,

∫ b+h

a−h

| d

dt
(ηh ∗u−u)|2 ≤ Ch2

∫ b+2h

a−2h

| d2

dt2
u|2

(4.13)
we easily conclude that∫ b

a

| d

dt
(v(1)

h − u
(1)
h )|2 ≤ Ch2,

∫ b

a

| d

dt
(v(2)

h − u
(2)
h )|2 ≤ Cε. (4.14)

Taking first the limit h → 0 and then ε → 0 we obtain assertion b) since uh = u on
(a, b).

Lemma 4.3. Let V ∈ C(Rn) with V (s) ≤ C(1 + |s|2). Then I
(
·, (a, b)

)
is lower

semicontinuous in X.
Proof. In view of the continuity and growth conditions on V the map u →∫ b

a
V (u)dt is continuous on L2

(
(a, b), Rn

)
and hence on X . Moreover the map u →∫ b

a
m
2 u̇2dt is lower semicontinous on L2

(
(a, b), Rn

)
since it is lower semicontinuous on

the closed subspace H1
(
(a, b), Rn

)
(as a seminorm) and takes the value ∞ outside

that subspace.
One key ingredient of our argument is that the functionals Ih are Γ-convergent

to I. This is very closely related to convergence of the corresponding minimizers
and we will see that it can also be used to establish convergence of stationary points
by restricting attention to sufficiently short intervals. For general information about
Γ-convergence we refer to [3]. Here we only need the definition in the simplest case.

Definition 4.4. Let X be a metric space. We say that a sequence of functionals
Ih : X → [−∞,∞] is Γ-convergent to I if

(i) (lower bound) Whenever uh → u in X then

lim inf
h→0

Ih(uh) ≥ I(u); (4.15)

(ii) (upper bound/recovery sequence) for each u ∈ X there exists a sequence vh →
u such that

lim
h→0

Ih(vh) = I(u). (4.16)
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We write Γ − limh→0 Ih = I to denote Γ-convergence.
Lemma 4.5. Let V ∈ C(Rn) with V (s) ≤ C(1+|s|2). Then Γ−limh→0 Ih

(
·, (a, b)

)
=

I
(
·, (a, b)

)
in X.

Proof. Let uh ∈ X be a sequence converging to u ∈ X . From the fact that
Ih

(
·, (a, b)

)
≥ I

(
·, (a, b)

)
and the lower semicontinuity of I

(
·, (a, b)

)
, it follows that

lim infh Ih

(
uh, (a, b)

)
≥ lim infh I

(
uh, (a, b)

)
= I

(
u, (a, b)

)
. Now let u ∈ X . If

I(u, A) = ∞ there is nothing to show. If I(u, A) < ∞ then u|A ∈ H1(A, Rn).
Hence by Lemma 4.2 there exist uh ∈ Xh such that uh|A → u|A strongly in H1. Thus
Ih(uh, A) → I(u, A).

Theorem 4.6. Let I be an action functional. Assume that V is C2 and that there
is a constant C > 0 such that |D2V | ≤ C. Let uh a sequence of stationary points of
the corresponding discrete action integral Ih, and let ûh be the Fourier transform of
uh. Suppose that

(a) ûh is a Radon measure of uniformly bounded mass.
(b) No mass leaks to infinity in Fourier space, i.e.,

lim
R→∞

sup
h

∫
|k|≥R

|ûh(k)| dk = 0. (4.17)

Then
i) uh

∗
⇀ u in L∞(R) and W 1,∞(R) and uh → u uniformly on compact subsets.

ii) u is a stationary point of I.
iii) ûh → û as measures in the flat norm.
Proof. The sequence uh is bounded in L∞ since mass(ûh) ≡ ||ûh||M is bounded.

Hence, there is a subsequence, relabelled uh, such that

uh
∗
⇀ u in L∞. (4.18)

At the same time,

ûh
∗
⇀ µ in M. (4.19)

Hence, µ = û. But uh is a stationary point of Ih and, consequently, it satisfies the
discrete Euler-Lagrange equations (4.6), whence we have

m

∣∣∣∣ui+1 − ui

ti+1 − ti
− ui − ui−1

ti − ti−1

∣∣∣∣ ≤∣∣∣∣∣
∫ ti+1

ti

DV
(
uh(t)

) ti+1 − t

ti+1 − ti
dt +

∫ ti

ti−1

DV
(
uh(t)

) t − ti−1

ti − ti−1
dt

∣∣∣∣∣ ≤∣∣∣∣
∫ ti+1

ti

DV
(
uh(t)

) ti+1 − t

ti+1 − ti
dt

∣∣∣∣ +

∣∣∣∣∣
∫ ti

ti−1

DV
(
uh(t)

) t − ti−1

ti − ti−1
dt

∣∣∣∣∣ ≤∫ ti+1

ti

∣∣∣∣DV
(
uh(t)

) ti+1 − t

ti+1 − ti

∣∣∣∣ dt +
∫ ti

ti−1

∣∣∣∣DV
(
uh(t)

) t − ti−1

ti − ti−1
dt

∣∣∣∣ ≤∫ ti+1

ti

|DV
(
uh(t)

)
| dt +

∫ ti

ti−1

|DV
(
uh(t)

)
| =

∫ ti+1

ti−1

|DV
(
uh(t)

)
| dt

(4.20)

But, DV is continuous and ||uh||L∞ ≤ C, and hence ||DV (uh)||L∞ ≤ C and∣∣∣∣ui+1 − ui

ti+1 − ti
− ui − ui−1

ti − ti−1

∣∣∣∣ ≤ C|ti+1 − ti−1|. (4.21)
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Iterating this bound we obtain

|u̇h(a) − u̇h(b)| ≤ C(|a − b| + 2h). (4.22)

This inequality, together with the boundedness of uh in L∞, implies that ||u̇h||L∞ ≤ C,
and by the Arzela-Ascoli theorem we conclude that uh → u uniformly on compact
subsets and uh

∗
⇀ u in W 1,∞. We claim that in addition ||ü||L∞ ≤ C. Indeed consider

again a standard mollifier ηδ(x) = δ−1η(x/δ) as above and let uh,δ = ηδ∗uh. It follows
from (4.22) that

|u̇h,δ(a) − u̇h,δ(b)| ≤ C(|a − b| + 2h + 2δ). (4.23)

We now take first the limit h → 0 and then the limit δ → 0. Using the Lebesgue
point theorem for u̇ we conclude that |u̇(a)− u̇(b)| ≤ C|a− b| which proves the claim.

To prove that u is a stationary point of I it suffices to show that u minimizes I(·, A)
among functions with the same boundary values, for all sufficiently short intervals A.
Fix A = (a, b) with b − a < π/ω0, where ω0 =

√
C/m. We first note that, by

Lemma 4.5, Γ − limh→0 Ih

(
·, (a, b)

)
= I

(
·, (a, b)

)
in X , and hence

lim inf
h→0

Ih

(
uh, (a, b)

)
≥ I

(
u, (a, b)

)
. (4.24)

Now consider a competitor v ∈ X with v ∈ H1
(
(a, b), Rn

)
(here and in the following

we write v instead of v|(a,b) to simplify the notation) with v(a) = u(a) and v(b) = u(b),
where as usual v(a) is the left-sided limit of v and v(b) is the right sided limit. We
claim that

I
(
v, (a, b)

)
≥ I

(
u, (a, b)

)
(4.25)

By Lemma 4.5 there exists a recovery sequence vh ∈ Xh with vh → v in H1
(
(a, b), Rn

)
and

lim
h→0

Ih

(
vh, (a, b)

)
= I

(
v, (a, b)

)
(4.26)

If vh and uh agree and if the interval (a, b) is compatible with the triangulation Th (i.e.
if a and b are endpoints of intervals in Th) we can use the minimizing property of uh

(see Lemma 4.1) to conclude. In general we can always find intervals (ah, bh) ⊂ (a, b)
which are compatible with Th such that ah → a and bh → b. Since in view of
the Sobolev embedding theorem vh → v and uh → u uniformly in (a, b) we have
vh(ah) − uh(ah) → v(a) − u(a) = 0 and vh(bh) − uh(bh) → 0. Hence there exist
affine functions lh, converging to zero in C1 such that vh + lh and uh agree at ah and
bh. Define ṽh ∈ X by ṽh = vh + lh in (ah, bh), ṽh = uh else. Now we can use the
minimizing property of uh to obtain.

Ih

(
uh, (ah, bh)

)
≤ Ih

(
ṽh, (ah, bh)

)
= Ih

(
vh + lh, (ah, bh)

)
. (4.27)

Moreover (4.24) can be sharpened to

lim inf
h→0

Ih

(
uh, (ah, bh)

)
≥ I

(
(a, b), u

)
. (4.28)

Indeed from strong L2 convergence of uh we deduce convergence of
∫ bh

ah
V (uh) and for

the other term we first fix a < a′ < b′ < b, observe that for sufficiently small h we
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have
∫ bh

ah
|u̇h|2 ≥

∫ b′

a′ |u̇h|2, use lower semicontinuity and finally take the limit a′ → a,
b′ → b. With the notation Ah = (ah, bh) we finally get

I(u, A) ≤ lim inf
h→0

Ih(uh, Ah) ≤ lim inf
h→0

Ih(vh + lh, Ah) = lim inf
h→0

Ih(vh, Ah) = I(v, A)

(4.29)
and this shows that u is minimizing.

Finally, assumption (b) guarantees that ||ûh− û|| → 0 (where || · || denotes the flat
norm). Indeed, let ϕ ∈ C∞

c (−1, 1), ϕ = 1 in (−1/2, 1/2), and let ϕR(k) = ϕ(k/R).
Then ϕRûh

∗
⇀ ϕRû and, hence, ||ϕRûh − ϕRû|| → 0. But

lim
R→∞

||(1 − ϕR)ûh, (1 − ϕR)û|| ≤ 2 lim
R→∞

sup
h

∫
|k|≥R/2

|ûh| dk = 0. (4.30)

5. Numerical integration. In practise the discrete Lagrangian Ld has to be
computed by means of a numerical integration scheme, leading to a new discrete func-
tional Jh. Our approach can easily be adapted to cover the convergence of stationary
points of Jh to stationary points of I. The main elements of this extension are:

i) Gamma convergence: Γ − limh→0 Jh = I.
ii) Stationary points of Jh are minimizing on short intervals.
iii) A priori estimates for stationary points of Jh.

These properties hold for a large class of numerical quadrature schemes. For defi-
niteness, here we restrict attention to the simple mid-point quadrature rule. Thus,
if (a, b) = (ti, tj) is an interval which is compatible with the triangulation Th, and if
u ∈ Xh (i. e., u is continuous and piecewise affine on Th) we set

Jh(u, (ti, tj)) =
m

2

j−1∑
l=i

(tl+1 − tl)
∣∣∣∣u(tl+1) − u(tl)

tl+1 − tl

∣∣∣∣
2

+
j−1∑
l=i

(tl+1 − tl)V
(

u(tl+1) + u(tl)
2

)
. (5.1)

In order to study the convergence properties of Jh, it is convenient to extend the
definition of Jh to intervals (a, b) which are not compatible with the triangulation Th.
To this end, let (ti, tj) denote the largest subinterval of (a, b) which is compatible with
the triangulation. Then we set

Jh

(
u, (a, b)

)
= (ti − a)

[
m

2

∣∣∣∣u(ti) − u(ti−1)
ti − ti−1

∣∣∣∣
2

+ V

(
u(ti) + u(a)

2

)]

+ (b − tj)

[
m

2

∣∣∣∣u(tj+1) − u(tj)
tj+1 − tj

∣∣∣∣
2

+ V

(
u(tj) + u(b)

2

)]

+ Jh(u, (ti, tj)). (5.2)

Finally, if u �∈ Xh we set J
(
u, (a, b)

)
= ∞. As before, we say that uh is a stationary

point of Jh, or discrete a solution, if

Jh(uh, A) < ∞, δJh(uh, ϕh, A) = 0, ∀ A ∈ E , ϕh ∈ Xh, with ϕh = 0 on R \ A.
(5.3)
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Remark 4.1 still applies in the present setting, i. e., in (5.3) it suffices to consider
intervals A = (ti, tj) which are compatible with the triangulation Th. The discrete
Euler-Lagrange equations again take the form

D2Ld(ui−1, ui) + D1Ld(ui, ui+1) = 0, (5.4)

where the discrete Lagrangian is now given by

Ld(ui, ui+1) =
m

2
|ui+1 − ui|2

ti+1 − ti
− V

(
ui + ui+1

2

)
. (5.5)

Theorem 5.1. Let I be an action functional. Assume that V is C2 and that
there is a constant C > 0 such that |D2V | ≤ C. Let uh be a sequence of stationary
points of the discrete action integral Jh, and let ûh be the Fourier transform of uh.
Suppose that

(a) ûh is a Radon measure of uniformly bounded mass.
(b) No mass leaks to infinity in Fourier space, i.e.,

lim
R→∞

sup
h

∫
|k|≥R

|ûh(k)| dk = 0 (5.6)

Then
i) uh

∗
⇀ u in L∞(R) and W 1,∞(R) and uh → u uniformly on compact subsets.

ii) u is a stationary point of I.
iii) ûh → û as measures in the flat norm.
As mentioned above the main new element in the proof of Theorem 5.1 is the

following Γ-convergence result.
Lemma 5.2. Under the assumptions of Theorem 5.1 we have

Γ − lim
h→0

Jh

(
·, (a, b)

)
= I in X. (5.7)

Proof. To separate the contributions of u̇ and V (u) we define

J1,h

(
u, (a, b)

)
=

m

2

j−1∑
l=i

(tl+1 − tl)
∣∣∣∣u(tl+1) − u(tl)

tl+1 − tl

∣∣∣∣
2

+
m

2
(ti − a)

∣∣∣∣u(ti) − u(ti−1)
ti − ti−1

∣∣∣∣
2

+
m

2
(b − tj)

∣∣∣∣u(tj+1) − u(tj)
tj+1 − tj

∣∣∣∣
2

=
m

2

∫ b

a

|u̇|2 dt,

J2,h

(
u, (a, b)

)
=

j−1∑
l=i

(tl+1 − tl)V
(

u(tl+1) + u(tl)
2

)

+ (ti − a)V
(

u(ti) + u(a)
2

)
+ (b − tj)V

(
u(tj) + u(b)

2

)
.

The upper bound for Γ-convergence follows directly from part (b) of Lemma 4.2.
Indeed, if u ∈ X = L2

loc(R, Rn) and I
(
u, (a, b)

)
< ∞ then there exist vh ∈ Xh with

vh → u in H1
(
(a, b), Rn

)
. Therefore, J1,h

(
vh, (a, b)

)
=

∫ b

a
|v̇h|2 →

∫ b

a
|u̇|2. By the



On the Γ-Convergence of Discrete Dynamics and Variational Integrators 11

Sobolev embedding theorem we have that vh → u uniformly, and from this we easily
deduce that J2,h

(
vh, (a, b)

)
→

∫ b

a
V (u). This completes the proof of the upper bound.

For the lower bound we consider a sequence uh → u in X . We may fix a sub-
sequence such that lim infh→0 Jh

(
uh, (a, b)

)
is actually a limit. Note that for any

interval (ti, ti+1) of the triangulation Th we have

∫ ti+1

ti

u2
h dt =

1
3
(ti+1 − ti)

(
u2

h(ti) + u2
h(ti+1) + uh(ti)uh(ti+1)

)
.

≥ 1
6
(ti+1 − ti)

(
u2

h(ti) + u2
h(ti+1)

)
(5.8)

Thus

J2,h

(
uh, (a, b)

)
≤ C

∫ b+h

a−h

(1 + |uh|2) dt ≤ C. (5.9)

If limh→0 Jh

(
uh, (a, b)

)
= ∞ there is nothing to show. Hence, we may suppose

limh→0 Jh

(
uh, (a, b)

)
< ∞ (along the subsequence chosen initially) and we thus have

m

2

∫ b

a

|u̇h|2 dt = J1,h

(
uh, (a, b)

)
≤ C. (5.10)

Therefore, uh ⇀ u in H1
(
(a, b), Rn

)
and lim infh→0 J1,h

(
uh, (a, b)

)
≥

∫ b

a |u̇|2. More-
over, by the Sobolev embedding theorem uh → u uniformly and thus J2,h

(
vh, (a, b)

)
→∫ b

a
V (u).
Next we verify that stationary points of Jh are again minimizers on sufficiently

short intervals.
Lemma 5.3. Let u be a stationary point of the discrete functional Jh. Assume in

addition that V is C2 and that there is a constant C > 0 such that |D2V | ≤ C. Let
a < b be such that that b−a < 2/ω0 with ω0 =

√
C/m. Then u minimizes Jh(·, (a, b))

among all functions v ∈ Xh with u = v in R \ (a, b).
Proof. It suffices to consider the case that (a, b) = (ti, tj) is an interval com-

patible with the triangulation (see Remark 4.1). Using the discrete Euler-Lagrange
equations(5.4), (5.5) and the Taylor expansion of V as in the proof of Lemma 2.1 we
obtain for all ϕ ∈ Xh which vanish at the endpoints a and b

Jh

(
u + ϕ, (a, b)

)
− Jh

(
u, (a, b)

)
≥ m

2

∫ b

a

|ϕ̇|2 − C

2

j−1∑
l=i

∣∣∣∣ϕ(tl) + ϕ(tl+1)
2

∣∣∣∣
2

≥ m

2

∫ b

a

|ϕ̇|2 − C

2
(b − a) sup |ϕ|2

≥
(

m

2
− C

2
(b − a)2

4

) ∫ b

a

|ϕ̇|2 ≥ 0.

We finally prove Theorem 5.1.
Proof. The proof is very similar to that of Theorem 4.6. Again we have for a

subsequence uh
∗
⇀ u in L∞ and ûh

∗
⇀ û in M. The discrete Euler-Lagrange equations
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provide a W 1,∞ estimate in complete analogy with (4.20). Indeed we have∣∣∣∣ui+1 − ui

ti+1 − ti
− ui − ui−1

ti − ti−1

∣∣∣∣ ≤ (ti+1 − ti)
∣∣∣∣DV (

ui+1 + ui

2
)
∣∣∣∣+(ti − ti−1)

∣∣∣∣DV (
ui + ui−1

2
)
∣∣∣∣ .

(5.11)
Since DV is continuous and ‖uh‖L∞ ≤ C we get (4.21) again, i. e.,∣∣∣∣ui+1 − ui

ti+1 − ti
− ui − ui−1

ti − ti−1

∣∣∣∣ ≤ C|ti+1 − ti−1|. (5.12)

Iterating the bound we obtain as before (4.22) and deduce uh
∗
⇀ u in W 1,∞. Now

the proof can be finished exactly as the proof of Theorem 4.6, replacing Ih by Jh and
using the Γ-convergence of Jh.
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