Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

Rigidity Estimate for Two Incompatible Wells

by

Nirmalendu Chaudhuri and Stefan Mueller

Rigidity estimate for two incompatible wells

Nirmalendu Chaudhuri and Stefan Müller
Max Planck Institute for Mathematics in the Sciences
Inselstr. 22-26, D-04103 Leipzig, Germany chaudhur@mis.mpg.de, sm@mis.mpg.de

February 18, 2003

1 Introduction

Recently, Friesecke, James and Müller [8, 9] obtained the following interesting rigidity estimate in connection to their study in nonlinear plate theory.

Theorem 1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain, $n \geq 2$. There exists a constant $C(\Omega)$ with the property that for each $u \in W^{1,2}\left(\Omega, \mathbb{R}^{n}\right)$, there exists an associated rotation $R \in S O(n)$, such that

$$
\begin{equation*}
\|\nabla u-R\|_{L^{2}(\Omega)} \leq C(\Omega)\|\operatorname{dist}(\nabla u, S O(n))\|_{L^{2}(\Omega)} \tag{1}
\end{equation*}
$$

This generalizes a classical result of F. John [11] who derived an estimate of $\|\nabla u-R\|_{L^{2}}$ in terms of $\| \operatorname{dist}\left(\nabla u, S O(n) \|_{L^{\infty}}\right.$ for locally Bilipschitz maps u. In connection with mathematical models for materials undergoing solidsolid phase transformations $[1,2,4,7,17]$, one is interested in deformations u whose gradient is close to a set $K:=\cup_{i=1}^{m} S O(n) U_{i}$, which consists of several copies of $S O(n)$ (so-called energy wells). Here we consider the twowell problem for two strongly incompatible wells. For further information on the two-well problem see $[6,15,22]$. Rigidity for a linearized version of the two-well problem is discussed in [5, 12]. We prove an estimate of the type (1) for two strongly incompatible wells.

Theorem 2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain, $n \geq 2$ and $K:=S O(n) \cup S O(n) H$, where $H=\operatorname{diag}\left(\lambda_{1}, \cdots \lambda_{n}\right), \quad \lambda_{i}>0$ such that $\sum_{i=1}^{n}\left(1-\lambda_{i}\right)\left(1-\operatorname{det} H / \lambda_{i}\right)>0$. There exists a positive constant $C(\Omega, H)$ with the following property. For each $u \in W^{1,2}\left(\Omega, \mathbb{R}^{n}\right)$ there is an associated $R:=R(u, \Omega) \in K$ such that

$$
\begin{equation*}
\|\nabla u-R\|_{L^{2}(\Omega)} \leq C(\Omega, H)\|\operatorname{dist}(\nabla u, K)\|_{L^{2}(\Omega)} \tag{2}
\end{equation*}
$$

Theorem 2 has interesting consequences for the scaling of the energy in thin martensitic films [3, 20] which will be discussed in a forthcoming paper.

2 Preliminary Results

To prove Theorem 2, we need some preliminary lemmas. The first lemma is due to J. P. Matos [15] and concerns construction of smooth uniformly convex function, which have quadratic growth and whose gradient is the cofactor on the set $K:=S O(n) \cup S O(n) H$.

Lemma 1 (Matos [15]). Let $K:=S O(n) \cup S O(n) H, H=\operatorname{diag}\left(\lambda_{1}, \cdots \lambda_{n}\right)$, $\lambda_{i}>0$. Then there exits a smooth function $W: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, which is uniformly convex and has quadratic growth and satisfies $\nabla W=\nabla$ det $=\operatorname{cof}$ in K, if and only if $\sum_{i=1}^{n}\left(1-\lambda_{i}\right)\left(1-\operatorname{det} H / \lambda_{i}\right)>0$.

The following lemma is a version of the generalized Poincaré inequality, see Theorem 3.6.5 in [16].

Lemma 2. $\Omega \subset \mathbb{R}^{n}$, $n \geq 2$ be a bounded Lipschitz domain and $0<\delta \leq 1$. Suppose that $u \in W^{1,1}(\Omega)$ and $\mathcal{L}^{n}(\{x \in \Omega: u(x)=0\}) \geq \delta \mathcal{L}^{n}(\Omega)$. Then there exists $C(n, \delta, \Omega)>0$ such that

$$
\|u\|_{L^{n /(n-1)}(\Omega)} \leq C(n, \delta, \Omega)\|\nabla u\|_{L^{1}(\Omega)} .
$$

Next we state a variant of a lemma by Luckhaus [14] for bounded domains. This lemma is an important ingredient in the proof of our main Theorem.

Lemma 3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain, $n \geq 2$ and let $\chi: \Omega \rightarrow\{0,1\}$ be a characteristic function. Then there exists a constant $C(\Omega)>0$, such that for any $u \in W^{1,2}(\Omega)$
$\min \left(\int_{\Omega} \chi, \int_{\Omega} 1-\chi\right) \leq 16 \int_{\Omega}|u-\chi|^{2}+C(\Omega)\left(\int_{\Omega}|u-\chi|^{2} \int_{\Omega}|\nabla u|^{2}\right)^{n / 2(n-1)}$.
Proof. Let $u \in W^{1,2}(\Omega)$ and let $A:=\{x \in \Omega: u(x) \leq 1 / 2\}$. Suppose first that $\mathcal{L}^{n}(A) \geq 1 / 2 \mathcal{L}^{n}(\Omega)$. Define, $E:=\{x \in \Omega: \chi=1\}$ and $E_{u}:=$ $\{x \in E: u \geq 3 / 4\}$. On $E \backslash E_{u}$ the inequality $u<3 / 4$ implies $4|u-\chi| \geq \chi$ and hence

$$
\begin{equation*}
\int_{\Omega} \chi=\int_{E_{u}} \chi+\int_{E \backslash E_{u}} \chi \leq \int_{E_{u}} \chi+16 \int_{\Omega}|u-\chi|^{2} . \tag{3}
\end{equation*}
$$

To estimate the integral $\int_{E_{u}} \chi$, we define the function $\psi: \Omega \rightarrow \mathbb{R}$ by

$$
\psi(x):=\left(u(x)-\frac{1}{2}\right)_{+} \wedge \frac{1}{4},
$$

where $a \wedge b:=\min (a, b)$ and $a_{+}:=\max (a, 0)$. Observe that $\nabla \psi \equiv 0$ on $\{x \in \Omega: u(x) \geq 3 / 4\} \cup A$ and $\psi=0$ on A. Hence by Lemma 2, we have

$$
\begin{align*}
\int_{E_{u}} \chi & =\mathcal{L}^{n}\left(E_{u}\right) \\
& =4^{n /(n-1)} \int_{E_{u}}|\psi|^{n /(n-1)} d x \\
& \leq 4^{n /(n-1)} \int_{\Omega}|\psi|^{n /(n-1)} d x \\
& \leq C\left(\int_{\Omega}|\nabla \psi|\right)^{n /(n-1)} d x \\
& =C\left(\int_{\{1 / 2 \leq u \leq 3 / 4\}}|\nabla u| d x\right)^{n /(n-1)} \\
& \leq C\left(\mathcal{L}^{n}(\{1 / 2 \leq u \leq 3 / 4\}) \int_{\Omega}|\nabla u|^{2}\right)^{n / 2(n-1)} \\
& \leq 4^{n /(n-1)} C\left(\int_{\Omega}|u-\chi|^{2} \int_{\Omega}|\nabla u|^{2}\right)^{n / 2(n-1)} \tag{4}
\end{align*}
$$

Hence for the case $\mathcal{L}^{n}(A) \geq 1 / 2 \mathcal{L}^{n}(\Omega)$ we obtain from (3) and (4)

$$
\begin{equation*}
\int_{\Omega} \chi \leq 16 \int_{\Omega}|u-\chi|^{2}+C\left(\int_{\Omega}|u-\chi|^{2} \int_{\Omega}|\nabla u|^{2}\right)^{n / 2(n-1)} \tag{5}
\end{equation*}
$$

If $\mathcal{L}^{n}(A)<1 / 2 \mathcal{L}^{n}(\Omega)$, it suffices to replace u by $1-u$ and χ by $1-\chi$.
Lemma 4. Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$ be a bounded Lipschitz domain and let K_{1}, K_{2} be compact disjoint subsets of $\mathbb{R}^{n \times n}$. Define, $\mathrm{d}_{P}(\cdot):=\operatorname{dist}(\cdot, P)$ and $K:=K_{1} \cup K_{2}$. Then there exists a constant $C:=C\left(K_{1}, K_{2}, \Omega\right)>0$, such that for any $w \in W^{2,2}\left(\Omega, \mathbb{R}^{n}\right)$

$$
\begin{align*}
\min \left(\int_{\Omega} \mathrm{d}_{K_{1}}^{2}(\nabla w), \int_{\Omega} \mathrm{d}_{K_{2}}^{2}(\nabla w)\right) \leq & C\left(\int_{\Omega} \mathrm{d}_{K}^{2}(\nabla w) \int_{\Omega}\left|\nabla^{2} w\right|^{2}\right)^{n / 2(n-1)} \\
& +C \int_{\Omega} \mathrm{d}_{K}^{2}(\nabla w) \tag{6}
\end{align*}
$$

Proof. Let $f: \mathbb{R}^{n \times n} \rightarrow[0,1]$ be the Lipschitz function defined by

$$
f(F):=\frac{\operatorname{dist}\left(F, K_{1}\right)}{\operatorname{dist}\left(F, K_{1}\right)+\operatorname{dist}\left(F, K_{2}\right)}
$$

Then $f=0$ in K_{1} and $f=1$ in K_{2}. Let $u \in W^{1,2}(\Omega)$ and let χ be a characteristic function on Ω. Then by Lemma 3, we have

$$
\begin{align*}
\int_{\Omega} \mathrm{d}^{2}(u,\{0\}) \bigwedge \int_{\Omega} \mathrm{d}^{2}(u,\{1\})= & \int_{\Omega}|u|^{2} \bigwedge \int_{\Omega}|u-1|^{2} \\
= & \int_{\Omega}|u-\chi+\chi|^{2} \bigwedge \int_{\Omega}|u-\chi+\chi-1|^{2} \\
\leq & 2 \int_{\Omega}\left(|u-\chi|^{2}+|\chi|\right) \bigwedge \int_{\Omega}\left(|u-\chi|^{2}+|\chi-1|\right) \\
= & 2\left[\int_{\Omega}|u-\chi|^{2}+\min \left(\int_{\Omega} \chi, \int_{\Omega} 1-\chi\right)\right] \\
\leq & 2 \int_{\Omega}|u-\chi|^{2}+16 \int_{\Omega}|u-\chi|^{2} \\
& +C(\Omega)\left(\int_{\Omega}|u-\chi|^{2} \int_{\Omega}|\nabla u|^{2}\right)^{n / 2(n-1)} \tag{7}
\end{align*}
$$

Let $w \in W^{2,2}\left(\Omega, \mathbb{R}^{n}\right)$, define $u: \Omega \rightarrow \mathbb{R}$ by $u(x):=f(\nabla w(x))$. Since f is Lipschitz, $u \in W^{1,2}(\Omega)$. Define,

$$
\chi(x):= \begin{cases}0, & \text { if } u(x) \leq 1 / 2 \\ 1, & \text { if } u(x)>1 / 2 .\end{cases}
$$

Hence $\operatorname{dist}(u(x),\{0,1\})=|u(x)-\chi(x)|$. Now observe that for any $F \in$ $\mathbb{R}^{n \times n}, \operatorname{dist}(f(F),\{0,1\})=\operatorname{dist}(f(F), f(K)) \leq \operatorname{Lip}(f) \operatorname{dist}(F, K)$. Let $M:=$ $\max \left(\operatorname{diam}(K),|K|_{\infty}\right),|K|_{\infty}:=\max _{K}|F|, B(0, M):=\left\{F \in \mathbb{R}^{n \times n}:|F| \leq\right.$ $M\}$ and $C=C\left(K_{1}, K_{2}\right):=\sup _{B(0,2 M)}\left[\operatorname{dist}\left(F, K_{1}\right)+\operatorname{dist}\left(F, K_{2}\right)\right]$. Then on $B(0,2 M)$, $\operatorname{dist}\left(\cdot, K_{1}\right) \leq C f$ and $\operatorname{dist}\left(\cdot, K_{2}\right) \leq C(1-f)$. Note that for $|F| \geq 2 M, \operatorname{dist}(F, K) \geq M$ and hence $\operatorname{dist}\left(F, K_{i}\right) \leq 2 \operatorname{dist}(F, K) i=1,2$. Therefore by taking $u=f(\nabla w), w \in W^{2,2}\left(\Omega, \mathbb{R}^{n}\right)$, we obtain

$$
\begin{align*}
\int_{\Omega} \mathrm{d}_{K_{1}}^{2}(\nabla w) & =\int_{\{x \in \Omega:|\nabla w(x)| \leq 2 M\}} \mathrm{d}_{K_{1}}^{2}(\nabla w)+\int_{\{x \in \Omega:|\nabla w(x)|>2 M\}} \mathrm{d}_{K_{1}}^{2}(\nabla w) \\
& \leq C \int_{\{x \in \Omega:|\nabla w(x)| \leq 2 M\}}|f(\nabla w)|^{2}+4 \int_{\{x \in \Omega:|\nabla w(x)|>2 M\}} \mathrm{d}_{K}^{2}(\nabla w) \\
& \leq C \int_{\Omega}|u|^{2}+4 \int_{\Omega} \mathrm{d}_{K}^{2}(\nabla w) . \tag{8}
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
\int_{\Omega} \mathrm{d}_{K_{2}}^{2}(\nabla w) \leq C \int_{\Omega}|1-u|^{2}+4 \int_{\Omega} \mathrm{d}_{K}^{2}(\nabla w) . \tag{9}
\end{equation*}
$$

Hence the lemma follows from (7)-(9).
Remark 5. One easily sees that the best constant C in Lemma 4 is invariant under uniform scaling and translation of the domain.

3 The Rigidity Theorem

We begin with an interior estimate.
Theorem 3.1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain, $n \geq 2$, and $U \subset \subset \Omega$. Let $K:=S O(n) \cup S O(n) H$, where $H=\operatorname{diag}\left(\lambda_{1}, \cdots \lambda_{n}\right), \lambda_{i}>0$ is such that $\sum_{i=1}^{n}\left(1-\lambda_{i}\right)\left(1-\operatorname{det} H / \lambda_{i}\right)>0$. Then there exists a positive constant $C(U, \Omega, H)$ with the following property. For each $u \in W^{1,2}\left(\Omega, \mathbb{R}^{n}\right)$ there is an associated $R \in K$ such that

$$
\begin{equation*}
\|\nabla u-R\|_{L^{2}(U)} \leq C(U, \Omega, H)\|\operatorname{dist}(\nabla u, K)\|_{L^{2}(\Omega)} \tag{10}
\end{equation*}
$$

Proof. First we note that, $|K|_{\infty}:=\max _{F \in K}|F|=\max \left(\sqrt{n},\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)^{1 / 2}\right)$. Throughout this proof C is a generic absolute constant depending only on n, the λ_{i}, Ω and U. Its value can vary from line to line, but each line is valid with C being a pure positive number. By a truncation argument, see Proposition A. 1 in [9] it is enough to prove the inequality (10) for maps with $\|\nabla u\|_{L^{\infty}(\Omega)} \leq M$, for some constant M depending only on Ω and the set K. To see this, first observe that $|F| \leq 2 \operatorname{dist}(F, K)$ if $|F| \geq 2|K|_{\infty}$. Hence by Proposition A. 1 in [9] applied with $\lambda=4|K|_{\infty}$, for each $u \in W^{1,2}\left(\Omega, \mathbb{R}^{n}\right)$ there exists a map $v \in W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ satisfying

$$
\begin{aligned}
\|\nabla v\|_{L^{\infty}(\Omega)} & \leq 4 C|K|_{\infty}:=M \\
\|\nabla v-\nabla u\|_{L^{2}(\Omega)}^{2} & \leq C \int_{\{x \in \Omega:|\nabla u(x)|>2|K| \infty\}}|\nabla u|^{2} d x \\
& \leq 4 C \int_{\Omega} \operatorname{dist}^{2}(\nabla u, K) d x
\end{aligned}
$$

This in particular implies that $\|\operatorname{dist}(\nabla v, K)\|_{L^{2}(\Omega)} \leq(2 \sqrt{C}+1)\|\operatorname{dist}(\nabla u, K)\|_{L^{2}(\Omega)}$. Hence, if we prove the inequality (10) for v the assertion for u follows by the triangle inequality.

Step 1. Elliptic estimate:

Let

$$
\begin{equation*}
\epsilon:=\|\operatorname{dist}(\nabla u, K)\|_{L^{2}(\Omega)} . \tag{11}
\end{equation*}
$$

Without loss of generality we may assume $\epsilon \leq 1$. By Lemma 1 , there exists a smooth function $W: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ such that W is uniformly convex and satisfies $|\nabla W(F)| \leq C(1+|F|),\left|\nabla^{2} W(F)\right| \leq C$ for all $F \in \mathbb{R}^{n \times n}$ and $\nabla W=$ cof on $K=S O(n) \cup S O(n) H$. Define $A: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ by $A:=\nabla W$. Then A is a uniformly monotone vector field, i.e. $A(F)-A(G):$ $F-G \geq C|F-G|^{2}$, where $A: B:=\operatorname{tr}\left(A^{t} B\right)$. Now define $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ by

$$
f(F):=\operatorname{cof}(F)-A(F) .
$$

Since $f=0$ on K and $\operatorname{div} \operatorname{cof} \nabla u=0$ (where div is taken by rows) we obtain

$$
\begin{equation*}
-\operatorname{div} A(\nabla u)=\operatorname{div} f(\nabla u) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(F)|^{2} \leq C \operatorname{dist}^{2}(F, K) \text { whenever }|F| \leq M \tag{13}
\end{equation*}
$$

Let $w \in W^{1,2}\left(\Omega, \mathbb{R}^{n}\right)$ be a solution to,

$$
\left\{\begin{array}{lll}
\operatorname{div} A(\nabla w) & =0 \quad \text { in } \Omega \tag{14}\\
w & =u, & \text { on } \partial \Omega
\end{array}\right.
$$

To see that (14) has a solution it suffices to minimize $v \mapsto \int_{\Omega} W(\nabla v)$ subject to $v=u$ on $\partial \Omega$. By the standard elliptic regularity (see e.g. Theorem 1.1, Chapter II in [10]), $w \in W_{\text {loc }}^{2,2}\left(\Omega, \mathbb{R}^{n}\right)$ and for each $x \in \Omega, 0<r<\frac{1}{2} \operatorname{dist}(x, \partial \Omega)$, we have

$$
\begin{equation*}
\int_{B(x, r)}\left|\nabla^{2} w\right|^{2} d x \leq \frac{C}{r^{2}} \int_{B(x, 2 r)}|\nabla w|^{2} d x . \tag{15}
\end{equation*}
$$

Let $z:=u-w$, then $z=0$ on $\partial \Omega$. Since

$$
-[\operatorname{div} A(\nabla u)-A(\nabla w)]=\operatorname{div} f(\nabla u) \text { in } \Omega,
$$

we obtain, by testing with $z=u-w$

$$
\begin{aligned}
\int_{\Omega} A(\nabla u)-A(\nabla w): \nabla u-\nabla w d x & =\int_{\Omega} f(\nabla u): \nabla w-\nabla u d x \\
& \leq\left(\int_{\Omega}|f(\nabla u)|^{2} d x \int_{\Omega}|\nabla u-\nabla w|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

By monotonicity we have

$$
\begin{align*}
\int_{\Omega}|\nabla u-\nabla w|^{2} d x & \leq C \int_{\Omega}|f(\nabla u)|^{2} d x \\
& \leq C \int_{\Omega} \operatorname{dist}^{2}(\nabla u, K) d x \\
& =C \epsilon^{2} \tag{16}
\end{align*}
$$

Therefore it is enough to prove that there exists $R \in K$, such that

$$
\begin{equation*}
\int_{\Omega}|\nabla w-R|^{2} d x \leq C \epsilon^{2} \tag{17}
\end{equation*}
$$

Step 2. Estimates in measure:

Let us define $E:=\{x \in \Omega: \operatorname{dist}(\nabla w(x), S O(n) H) \leq \rho\}$, where $2 \rho:=$ $\operatorname{dist}(S O(n), S O(n) H)$. Therefore $\operatorname{dist}(\nabla w(x), S O(n)) \geq \rho$ on the set E and $\operatorname{dist}(\nabla w(x), S O(n)) \leq C \operatorname{dist}(\nabla w(x), K)$ in $\Omega \backslash E$. If $\mathcal{L}^{n}(E)=0$, then by Theorem 1 (Theorem 3.1 in [9]), there exists $R \in S O(n)$ satisfying (17) and hence we are done in this case. Let U be a relatively compact subset of Ω. If $\mathcal{L}^{n}(E \cap U)=0$, trivially we obtain (10) and hence we assume $\mathcal{L}^{n}(E \cap U)>0$. Choose $0<s_{0}<1 / 2$, let α_{n} be the volume of the unit ball in \mathbb{R}^{n} and let $\delta=\delta(U):=1 / 3 \operatorname{dist}(U, \partial \Omega)$. From (15) and (16) we obtain
$\int_{U}\left|\nabla^{2} w\right|^{2} \leq C(\delta, \Omega) \int_{\Omega}|\nabla w|^{2} \leq C(\delta, \Omega) \int_{\Omega}\left(|K|_{\infty}^{2}+\operatorname{dist}^{2}(\nabla w, K)\right) \leq C(\delta, \Omega, K)$.
Let $K_{1}:=S O(n), K_{2}:=S O(n) H$ and $\mathrm{d}_{P}(\cdot):=\operatorname{dist}(\cdot P)$. Therefore by Lemma 4, we have

$$
\begin{align*}
\mathcal{L}^{n}(E \cap U) \bigwedge \mathcal{L}^{n}(U \backslash E) & \leq \frac{1}{\rho^{2}}\left(\int_{U} \mathrm{~d}_{K_{1}}^{2}(\nabla w) \bigwedge \int_{U} \mathrm{~d}_{K_{2}}^{2}(\nabla w)\right) \\
& \leq C(n, U, K)\left[\epsilon^{2}+\left(\epsilon^{2} \int_{U}\left|\nabla^{2} w\right|^{2}\right)^{n / 2(n-1)}\right] \\
& \leq C(n, \delta, U, \Omega, K) \epsilon^{n /(n-1)} \\
& \leq \begin{cases}\alpha_{n} s_{0} \delta^{n}, & \text { if } \epsilon \leq \epsilon_{0} \\
\left(\alpha_{n} s_{0} / C\right)^{-(n-2) / n} \delta^{2-n} \epsilon^{2}, & \text { if } \epsilon \geq \epsilon_{0}\end{cases} \tag{18}
\end{align*}
$$

where $\epsilon_{0}:=\left(\alpha_{n} s_{0} / C\right)^{(n-1) / n} \delta^{n-1}$. If $\epsilon \geq \epsilon_{0}$, then we have a bound for $\int_{U} \mathrm{~d}_{K_{1}}^{2}(\nabla w)$ or $\int_{U} \mathrm{~d}_{K_{2}}^{2}(\nabla w)$ with the optimal scaling ϵ^{2} and hence the assertion follows from Theorem 1. Therefore, suppose $\epsilon \leq \epsilon_{0}$ and hence either $\mathcal{L}^{n}(E \cap U)$ or $\mathcal{L}^{n}(U \backslash E)$ is small.

Step 3. Covering argument and the final estimate:

Let us first assume that $\mathcal{L}^{n}(E \cap U) \leq \alpha_{n} s_{0} \delta^{n}$. In this case we will prove that there exists a constant C, depending only on n, Ω and K, such that

$$
\begin{equation*}
\mathcal{L}^{n}(E \cap U) \leq C \int_{\Omega} \operatorname{dist}^{2}(\nabla w(x), K) d x \tag{19}
\end{equation*}
$$

By $\quad f_{E} f d x$ we denote the mean value $\left(\mathcal{L}^{n}(E)\right)^{-1} \int_{E} f d x$. Let M be the Hardy maximal operator defined by

$$
M f(x):=\sup _{0<r<\infty} f_{B(x, r)}|f| d x
$$

Let $x \in \Omega$ and $0<r<\frac{1}{2} \operatorname{dist}(x, \partial \Omega)$ and $B(x, r) \subset \Omega$, be the ball of radius r, centered at x. Then by Remark 5 there exists $C:=C(n, K)>0$, such that

$$
\begin{align*}
C \int_{B(x, r)} \mathrm{d}_{K_{1}}^{2}(\nabla w) \bigwedge \int_{B(x, r)} \mathrm{d}_{K_{2}}^{2}(\nabla w) \leq & \left(\int_{B(x, r)} \mathrm{d}_{K}^{2}(\nabla w) \int_{B(x, r)}\left|\nabla^{2} w\right|^{2}\right)^{n / 2(n-1)} \\
& +\int_{B(x, r)} \mathrm{d}_{K}^{2}(\nabla w) \tag{20}
\end{align*}
$$

Substituting (15) in (20) and dividing both sides by $\mathcal{L}^{n}(B(x, r))$, we obtain

$$
\begin{align*}
C \oint_{B(x, r)} \mathrm{d}_{K_{1}}^{2}(\nabla w) \bigwedge \oint_{B(x, r)} \mathrm{d}_{K_{2}}^{2}(\nabla w) \leq & \left(\oint_{B(x, r)} \mathrm{d}_{K}^{2}(\nabla w) \oint_{B(x, 2 r)}|\nabla w|^{2}\right)^{n / 2(n-1)} \\
& +\oint_{B(x, r)} \mathrm{d}_{K}^{2}(\nabla w) \\
\leq & \left(M\left(|\nabla w|^{2}\right)(x) \oint_{B(x, r)} \mathrm{d}_{K}^{2}(\nabla w)\right)^{n / 2(n-1)} \\
& +\oint_{B(x, r)} \mathrm{d}_{K}^{2}(\nabla w) \tag{21}
\end{align*}
$$

Here and in the following we extend $|\nabla w|^{2}$ by zero outside Ω. Define the set $A_{\infty}:=\left\{x \in \Omega: M\left(|\nabla w|^{2}(x)\right) \geq R^{2}\right\}$, where $R:=2 \sqrt{2}|K|_{\infty}$. We claim $A_{\infty} \subset\left\{x \in \Omega: M\left(\operatorname{dist}^{2}(\nabla w(x), K)\right) \geq R^{2} / 10\right\}$. Indeed observe that for each $x \in \Omega,|\nabla w(x)|^{2} \leq\left(|\nabla w(x)|^{2}-\frac{R^{2}}{2}\right)_{+}+\frac{R^{2}}{2}$ and hence $M\left(|\nabla w(x)|^{2}\right) \leq M\left(|\nabla w(x)|^{2}-\frac{R^{2}}{2}\right)_{+}+\frac{R^{2}}{2}$. Therefore, for each $x \in A_{\infty}$,
$M\left(|\nabla w(x)|^{2}-\frac{R^{2}}{2}\right)_{+} \geq \frac{R^{2}}{2}$. By the definition of R, it is easy to verify that $\left(|\nabla w(x)|^{2}-\frac{R^{2}}{2}\right)_{+} \leq 4 \operatorname{dist}^{2}(\nabla w(x), K)$. This yields the claim. Therefore by the weak L^{1} estimate for the maximal function (e.g. see Theorem 7.4 in [19])

$$
\begin{equation*}
\mathcal{L}^{n}\left(A_{\infty}\right) \leq \mathcal{L}^{n}\left(\left\{M\left(\operatorname{dist}^{2}(\nabla w(x), K)\right) \geq R^{2} / 10\right\}\right) \leq C \int_{\Omega} \operatorname{dist}^{2}(\nabla w, K) \tag{22}
\end{equation*}
$$

If $\mathcal{L}^{n}\left(E \cap U \backslash A_{\infty}\right)=0$, then $\mathcal{L}^{n}(E \cap U)=\mathcal{L}^{n}\left(A_{\infty}\right)$ and hence (19) follows from (22). Suppose $\mathcal{L}^{n}\left(E \cap U \backslash A_{\infty}\right)>0$. By the Lebesgue point Theorem, there exists a set N of measure zero, such that for each $x \in\left(E \cap U \backslash A_{\infty}\right) \backslash N$ there exists $r_{x}>0$ satisfying

$$
\begin{equation*}
\frac{\mathcal{L}^{n}\left(E \cap U \cap B\left(x, r_{x}\right)\right)}{\mathcal{L}^{n}\left(B\left(x, r_{x}\right)\right)}=s_{0} . \tag{23}
\end{equation*}
$$

By smallness of measure of $E \cap U$, it follows that $B\left(x, 2 r_{x}\right) \subset \Omega$. By Besicovitch covering Theorem there exists countable number of disjoint balls $B\left(x_{i}, r_{i}\right)$ satisfying (23) such that

$$
\begin{equation*}
\mathcal{L}^{n}\left(E \cap U \backslash A_{\infty}\right) \leq C \sum_{i \geq 1} \mathcal{L}^{n}\left(B\left(x_{i}, r_{i}\right)\right) \tag{24}
\end{equation*}
$$

Since for each $i \geq 1$ we have $\operatorname{dist}(\nabla w(x), S O(n) H) \geq \rho$ on $B\left(x_{i}, r_{i}\right) \backslash E$ we deduce from (21) that for each $x \in(E \cap U) \backslash A_{\infty}$

$$
\begin{align*}
s_{0} \rho^{2} & \leq \min \left(s_{0} \rho^{2},\left(1-s_{0}\right) \rho^{2}\right) \\
& \leq \min \left(f_{B\left(x_{i}, r_{i}\right)} \mathrm{d}_{K_{1}}^{2}(\nabla w), \oint_{B\left(x_{i}, r_{i}\right)} \mathrm{d}_{K_{2}}^{2}(\nabla w)\right) \\
& \leq C\left(\oint_{B\left(x_{i}, r_{i}\right)} \mathrm{d}_{K}^{2}(\nabla w)\right)^{n / 2(n-1)}+\oint_{B\left(x_{i}, r_{i}\right)} \mathrm{d}_{K}^{2}(\nabla w) \tag{25}
\end{align*}
$$

Since r_{i} can be chosen smaller than 1 and $\int_{B\left(x_{i}, r_{i}\right)} \mathrm{d}_{K}^{2}(\nabla w) \leq C \epsilon^{2}$, from the above inequality we obtain

$$
\begin{equation*}
\int_{B\left(x_{i}, r_{i}\right)} \mathrm{d}_{K}^{2}(\nabla w) \geq C\left(s_{0} \rho^{2}\right)^{2(n-1) / n} \mathcal{L}^{n}\left(B\left(x_{i}, r_{i}\right)\right. \tag{26}
\end{equation*}
$$

Hence by summing over all i and by (24), we obtain

$$
\begin{equation*}
\mathcal{L}^{n}\left(E \cap U \backslash A_{\infty}\right) \leq C \int_{\Omega} \mathrm{d}_{K}^{2}(\nabla w) \tag{27}
\end{equation*}
$$

Therefore the inequality (19) follows from (22) and (27). Now from (19), we obtain

$$
\begin{align*}
\int_{U} \operatorname{dist}^{2}(\nabla w, S O(n)) & =\int_{U \backslash E} \operatorname{dist}^{2}(\nabla w, S O(n))+\int_{U \cap E} \operatorname{dist}^{2}(\nabla w, S O(n)) \\
& \leq C \int_{U \backslash E} \operatorname{dist}^{2}(\nabla w, K)+C\left[\mathcal{L}^{n}(U \cap E)+\int_{U \cap E} \operatorname{dist}^{2}(\nabla w, K)\right] \\
& \leq C \int_{\Omega} \operatorname{dist}^{2}(\nabla w, K) \tag{28}
\end{align*}
$$

Now the desired estimate follows from Theorem 1. If $\mathcal{L}^{n}(U \backslash E) \leq \alpha_{n} s_{0} \delta^{n}$, we obtain the inequality (28) with $S O(n) H$ instead of $S O(n)$. This finishes the proof of the Theorem 3.1.

Proof of Theorem 2.

To establish the estimate up to the boundary we proceed as in [9] and make use of the following cube decomposition of Ω (see Theorem 1 and Proposition 3, Chapter VI in [21]).

Proposition 3.2. There exists a constant N, which depends only on the dimension n and a collection $\mathcal{F}=\left\{Q_{1}, Q_{2} \cdots\right\}$ of closed cubes, whose sides are parallel to the axes and having disjoint interiors so that
(i) $\Omega=\cup_{k} Q_{k}$
(ii) $\operatorname{diam} Q_{k} \leq \operatorname{dist}\left(Q_{k}, \partial \Omega\right) \leq 4 \operatorname{diam} Q_{k}$
(iii) each point in Ω is contained in at most N of the enlarged concentric cubes Q_{k}^{*}, where $Q_{k}^{*}:=x_{k}+\frac{9}{8}\left(Q_{k}-x_{k}\right)$ and where x_{k} is the center of Q_{k}.

As in the proof of Theorem 3.1 we may assume $\|\nabla u\|_{L^{\infty}(\Omega)} \leq M, M$ being a constant depending on the domain Ω and the λ_{i}. We again use the decomposition $w=u-z$ as in the proof of Theorem 3.1. We now establish a weighted estimate for $\nabla^{2} w$ and then conclude by a weighted Poincaré inequality. Fix one of the cubes $Q:=\operatorname{int} Q_{k}=\bar{x}+\left(-\frac{r}{2}, \frac{r}{2}\right)^{n}$ of the above family \mathcal{F} and denote $Q^{\mu}:=\bar{x}+\mu(Q-\bar{x})$ the concentric cube enlarged by a factor $\mu>1$. From the assertion (ii) of Proposition 3.2 it follows that the enlarged cube Q^{μ} is contained in Ω for every $1<\mu<2$. We choose $\mu>1$
such that $\mu^{2}<2$. Now apply the local estimate of Theorem 3.1 to $\Omega=Q^{\mu^{2}}$ and $U=Q^{\mu}$. Since the estimate (10) is invariant under dilations we get

$$
\begin{equation*}
\int_{Q^{\mu}}\left|\nabla u-R_{Q}\right|^{2} d x \leq C(H, \mu) \int_{Q^{\mu^{2}}} \operatorname{dist}^{2}(\nabla u, K) d x . \tag{29}
\end{equation*}
$$

By elliptic regularity we have

$$
\begin{equation*}
r^{2} \int_{Q}\left|\nabla^{2} w\right|^{2} d x \leq \frac{C}{(\mu-1)^{2}} \min _{F \in \mathbb{R}^{n \times n}} \int_{Q_{k}}|\nabla w-F|^{2} d x . \tag{30}
\end{equation*}
$$

Hence by using (29) and the decomposition $w=u-z$ we get

$$
\begin{equation*}
\int_{Q} r^{2}\left|\nabla^{2} w\right|^{2} d x \leq C(\mu, H) \int_{Q^{\mu^{2}}}\left(\operatorname{dist}^{2}(\nabla u, K)+|\nabla z|^{2}\right) d x \tag{31}
\end{equation*}
$$

Now let $\mu=\sqrt{\frac{9}{8}}$. Then assertion (ii) of Proposition 3.2 implies that

$$
\begin{align*}
\int_{Q_{k}}\left|\nabla^{2} w\right|^{2} \operatorname{dist}^{2}(x, \partial \Omega) d x & \leq C(n, H) \int_{Q_{k}^{*}}\left(\operatorname{dist}^{2}(\nabla u, K)+|\nabla z|^{2}\right) d x \\
& =C(n, H) \int_{\Omega}\left(\operatorname{dist}^{2}(\nabla u, K)+|\nabla z|^{2}\right) \chi_{Q_{k}^{*}}(x) d x \tag{32}
\end{align*}
$$

Summation over k and the assertion (iii) of Proposition 3.2 and (16) yield

$$
\begin{align*}
\int_{\Omega}\left|\nabla^{2} w\right|^{2} \operatorname{dist}^{2}(x, \partial \Omega) d x & \leq C(n, H) N \int_{\Omega}\left(\operatorname{dist}^{2}(\nabla u, K)+|\nabla z|^{2}\right) d x \\
& \leq C(n, \Omega, H) \int_{\Omega} \operatorname{dist}^{2}(\nabla u, K) d x \tag{33}
\end{align*}
$$

To conclude the proof we write $f=\nabla w$ and use a weighted Poincaré inequality of the form

$$
\begin{equation*}
\min _{F \in \mathbb{R}^{n \times n}} \int|f(x)-F|^{2} d x \leq C(\Omega) \int_{\Omega}|\nabla f|^{2} \operatorname{dist}^{2}(x, \partial \Omega) d x \tag{34}
\end{equation*}
$$

which is valid for $f \in W^{1,2}\left(\Omega, \mathbb{R}^{n \times n}\right)$. This inequality is derived in [9] as an immediate consequence of the following estimate (see Theorem 1.5 of [18] or Theorem 8.8 of [13]):

$$
\int_{U}|g|^{2} d x \leq C(U) \int_{U}\left(|g|^{2}+|\nabla g|^{2}\right) \operatorname{dist}^{2}(x, \partial \Omega) d x
$$

for $g \in W_{\text {loc }}^{1,2}(U) \cap L^{2}(U)$. Apply the inequality (34) to (33) to obtain $F \in$ $\mathbb{R}^{n \times n}$ such that

$$
\begin{align*}
\int_{\Omega}|\nabla u-F|^{2} d x & \leq 2\left(\int_{\Omega}|\nabla w-F|^{2} d x+\int_{\Omega}|\nabla z|^{2} d x\right) \\
& \leq C \int_{\Omega} \operatorname{dist}^{2}(\nabla u, K) d x \tag{35}
\end{align*}
$$

If $F \in K$ we are done. Suppose $0<\delta:=\operatorname{dist}(F, K)=|F-R|, R \in K$. From (35) it easily follows that

$$
\mathcal{L}^{n}(\Omega) \delta^{2} \leq C \int_{\Omega} \operatorname{dist}^{2}(\nabla u, K) d x
$$

and hence

$$
\begin{align*}
\int_{\Omega}|\nabla u-R|^{2} d x & \leq 2 \int_{\Omega}|\nabla u-F|^{2} d x+2 \mathcal{L}^{n}(\Omega) \delta^{2} \\
& \leq C \int_{\Omega} \operatorname{dist}^{2}(\nabla u, K) d x \tag{36}
\end{align*}
$$

This finishes the proof of Theorem 2.

References

[1] J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987), 13-52.
[2] J. M. Ball and R. D. James, Proposed experimental test of a theory of fine microstructure and the two-well problem. Phil. Trans. Royal Soc. London A. 338 (1992), 389-450.
[3] K. Bhattacharya and R. D. James, A theory of thin films of martensitic materials with applications to microstructures. J. Mech. Phys. Solids 47 (1999), 531-576.
[4] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rational. Mech. Anal. 103 (1988), 237-277.
[5] A. DeSimone and G. Friesecke, On the problem of two linearized wells. Calc. Var. Partial Differential Equations 4 (1996), 293-304.
[6] G. Dolzmann, B. Kirchheim, S. Müller and V. Šverák, The two-well problem in three dimensions. Calc. Var. Partial Differential Equations 10 (2000), 21-40.
[7] G. Dolzmann, Variational methods for crystalline microstructure analysis computations. Lecture Notes in Mathematics 1803, Springer, (2003).
[8] G. Friesecke, R. D. James and S. Müller, Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Acad. Sci. Paris Ser. I 334 (2002), 173-178.
[9] G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002), 1461-1506.
[10] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, (1983).
[11] F. John, Rotation and strain. Comm. Pure Appl. Math. 14 (1961), 391413.
[12] R. V. Kohn and V. Lods, Some remarks about two incompatible elastic strains. In Preparation.
[13] A. Kufner, Weighted Sobolev Spaces. John Wiley \& Sons, New York, (1985).
[14] S. Luckhaus, Solutions for the two-phase Stefan problem with the GibbsThomson law for the melting temperature. European J. Appl. Math. 1 (1990), 101-111.
[15] J. P. Matos, Young measures and the absence of fine microstructures in a class of phase transitions. European J. Appl. Math. 6 (1992), 31-54.
[16] C. B. Morrey, Multiple Integrals in the Calculus of Variations. Springer, (1966)
[17] S. Müller, Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems, Lecture Notes in Math., 1713, 85-210, Springer, Berlin, (1999).
[18] J. Nečas, Sur une méthode pour résourde les équations aux dérivées partielles du type elliptique voisine de la variationelle. Ann. Scuola Norm. Sup. Pisa 16 (1962), 305-326.
[19] W. Rudin, Real and Complex Analysis. Third edition. McGraw-Hill Book Co., New York, (1987).
[20] Y. C. Shu, Heterogeneous thin films of martensitic materials. Arch. Rational. Mech. Anal. 153 (2000), 39-90.
[21] E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J.
[22] V. Šverák, On the problem of two wells. Microstructure and phase transition, 183-189, IMA Vol. Math. Appl., 54, Springer, New York, (1993).

