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DRIFT-DIFFUSION LIMITS OF KINETIC MODELS FOR CHEMOTAXIS: A
GENERALIZATION

H. HWANG, K. KANG, AND A. STEVENS

Abstract. We study a kinetic model for chemotaxis introduced by Othmer, Dunbar, and Alt [22], which was
motivated by earlier results of Alt, presented in [1], [2]. In two papers by Chalub, Markowich, Perthame and
Schmeiser, it was rigorously shown that, in three dimensions, this kinetic model leads to the classical Keller-
Segel model as its drift-diffusion limit when the equation of the chemo-attractant is of elliptic type [4], [5]. As
an extension of these works we prove that such kinetic models have a macroscopic diffusion limit in both two
and three dimensions also when the equation of the chemo-attractant is of parabolic type, which is the original
version of the chemotaxis model.

Introduction

In [16] and [17] Keller and Segel introduced and studied a model for aggregation of the cellular slime mold
Dictyostelium discoideum due to cyclic AMP which is an attractive chemical signal for the amoebae. The model
is of advection-diffusion type and consists of two coupled parabolic equations

(1)
∂ρ

∂t
= ∇ · (D(ρ, S)∇ρ− χ(ρ, S)ρ∇S),

(2)
∂S

∂t
= D0∆S + φ(ρ, S).

Here ρ = ρ(x, t) denotes the cell density and S = S(x, t) is the density of the chemo-attractant. The cells are
attracted by the chemical and χ denotes their chemotactic sensitivity. The substance S diffuses and is also
produced by the amoebae. Typically φ(ρ, S) is given by

(3) φ(ρ, S) = αρ− βS, α, β ≥ 0.

where −βS is the loss term due to decay or external chemical reactions. The first rigorous derivation of the
macroscopic chemotaxis equations from microscopic models, namely interacting stochastic many particle sytems,
was given in [26].

In [4] a kinetic model of the equation (1) was discussed with a reduced version of the equation (2) which is
the Poisson equation without decay term

(4) −∆S = αρ.

The following kinetic equation for the oriented cell density f = f(x, v, t) ≥ 0 is considered in [4, page 3]

(5)
∂f

∂t
+ v · ∇xf =

∫
V

(T [S]f ′ − T ∗[S]f)dv′,

where x, v, and t indicate position, velocity, and time, respectively. Here the abbreviations f ′ = f(x, v′, t),
T [S] = T [S](x, v, v′, t) and T ∗[S] = T [S](x, v′, v, t) are used. The cell density ρ fulfills

(6) ρ(x, t) =
∫

V

f(x, v, t)dv,

where V is the set of admissible velocities which is assumed to be compactly supported (e.g. spherically
symmetric balls, spheres, or spherical shells).
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Using stochastic models for the motion of bacteria and leukocytes Alt formally derived (1) from a transport
equation which is similar to (5), [1, section 8], [2, section 3]. Later a general formulation of this velocity-jump
process was presented and studied in [22, section 3]. In [23] and [24] Othmer and Hillen studied the formal
diffusion limit of a transport equation of (5) by moment expansions, which is the generalization of earlier Alt’s
works [1], [2], and showed its limit becomes chemotaxis equations (1), (2) under specific assumptions on turning
kernel (see e.g. [24, see page 1237-1240]). Based on their results [24] a rigorous proof of their limit was given in
[4]. After using diffusive scaling of time and space, the non-dimensional form of (5) leads to [4, page 4]

(7) ε2
∂fε

∂t
+ εv · ∇xfε = −Tε[Sε](fε), x ∈ R

n, v ∈ V, t > 0

where

Tε[Z](g) =
∫

V

(T ∗
ε [Z]g − Tε[Z]g′)dv′.

The diffusion limit ε→ 0 was studied with respect to initial conditions

(8) fε(x, v, 0) = f0(x, v), x ∈ R
n, v ∈ V,

and coupled to the equation (2) for the chemo-attractant. The authors proved in [4] that the coupled nonlinear
system (7), (8), and (2) results in Keller-Segel type equations for chemotaxis as its macroscopic drift-diffusion
limit under suitable conditions turning kernel in three dimension (compare e.g. [4, Theorem 5] and [5, Theorem
2]). In [4] and [5], the authors also proved that for suitable turning kernels, blow up can be prevented on
the kinetic level for fixed ε > 0. However, there seem to be some technical difficulties to prove the limit in
two dimension, although a similar result is expected to hold as in three dimensions. The method of proofs
in [4] is mainly based on the potential estimate for S in (2) where S has the following Newtonian potential
representation in R

3, i.e.

S(x, t) =
1
4π

∫
R3

ρ(y, t)
|x− y|dy.

In this article, we consider the transport equation (7) with initial condition (8) coupled to

(9)
∂Sε

∂t
− ∆Sε = ρε =

∫
V

fεdv

instead of (4).
Our main result is the existence of a macroscopic diffusion limit of the kinetic model in both two and three

dimensions. More precisely, under the same assumptions on the turning kernel K[S] as given in [4], we prove
that the coupled nonlinear system (7), (8), and (9) converges to Keller-Segel type equations for ε→ 0 (compare
Theorem 3.4). We can also show that certain kernels excludes blow up of the solutions in finite time on the
kinetic level (compare Theorem 2.5). Our main tool is the potential estimate for the heat operator for S. More
precisely, we use the following representation formula

(10) Sε(x, t) = Γ ∗ ρε(x, t) =
∫ t

0

∫
Rn

1
(4π(t− s))

n
2
e−

|x−y|2
4(t−s) ρε(y, s)dyds.

For simplicity, throughout this article, the decay term is assumed to be zero, i.e. β = 0 in (3). Our result is
true however also for non-zero decay term, see also the discussion in Remark 3.6.

The plan of this paper is as follows: In section 2, we introduce notations used in this article and briefly
review derivations of the macroscopic equation presented in [4]. In section 3, we prove that the kinetic model
has a global solution for (7)-(10) under the same assumptions on the turning kernel as in [4]. In section 4, we
present the proof of existence of the diffusion limit for a short time interval.
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1. Preliminaries

We first introduce notations which will be used throughout this article and also recall some observations
presented in [4].

• z0 = (x0, t0) denotes an arbitrary point in R
n+1, where x0 ∈ R

n and t0 ∈ [0,∞).
• By Γ we denote the fundamental solution of the heat equation in R

n × R

Γ(x, t) =
1

(4πt)
n
2
e−

|x|2
4t .

• For Ω ⊂ R
n and 1 ≤ q ≤ ∞, Lq(Ω) denotes the Banach space of measurable functions with

‖u‖Lq(Ω) =
(∫

Ω

|u(x)|q dx
)1/q

, q <∞ and ‖u‖L∞(Ω) = ess sup
Ω

|u|.

Let Lq
+(Ω) = {f ∈ Lq(Ω) : f ≥ 0}.

• Let Q = Ω × (a, b).For 1 ≤ q ≤ ∞, Lq(Q) denotes the Banach space of all measurable functions with
the finite norm

‖u‖Lq(Q) =

(∫ b

a

∫
Ω

|u(x, t)|q dx dt
)1/q

.

• For 1 ≤ q ≤ ∞, W k,q(Ω) denotes the usual Sobolev space; i.e., W k,q(Ω) = {u : Dαu ∈ Lq(Ω), 0 ≤ |α| ≤ k}.
• Cα(Ω) denotes the Banach space of functions that are Hölder continuous with the exponent α ∈ (0, 1),

and Ck+α(Ω) consists of all functions whose all derivatives up to k−th order are Hölder continuous with
the exponent α ∈ (0, 1).

• u ∈ Lp
loc(Q) means u ∈ Lp(Q′) for all Q′ � Q.

• By C = C(α, β, . . .) we denote a constant depending on the prescribed quantities α, β, . . . . The domain
Ω considered in this article is R

2 or R
3.

To make this note self-contained, we review the formal derivation of the macroscopic equation from the
kinetic model presented in [4] (compare the details in [4, page 5-7]). Since the integral of Tε[S](f) with respect
to the velocity vanishes, the macroscopic conservation equation is obtained

(11)
∂ρε

∂t
+ ∇ · Jε = 0,

where Jε(x, t) = ε−1
∫

V vfε(x, v, t)dv is the flux density. The turning kernel is assumed to have the following
asymptotic expansion Tε[S] = T0[S] + εT1[S] +O(ε2). Then the turning operator can be expanded in a similar
way and

Tk[S](f) =
∫

V

(T ∗
k [S]f − Tk[S]f ′)dv′.

By asymptotic expansion of fε = f0 + εf1 +O(ε2) and Sε = S0 + εS1 +O(ε2), the equation for the leading order
terms can be obtained from (7):

(12) T0[S0](f0) = 0, S0 = ρ0 ∗ Γ, ρ0 =
∫

V

f0dv.

Comparing coefficients in (7) results in

(13) v · ∇xf0 = −T0[S0](f1) − T1[S0](f0) − T0S [S0, S1](f0)

where T0S [S0, S1] is a turning operator and its kernel is the Frechet derivative of T0 with respect to S, evaluated
at S0 in the direction S1. Here, for clarity, we recall the assumptions on the leading order turning operator
presented in [4, (A0) page 6].
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Assumption 1.1. There exists a bounded velocity distribution F (v) > 0, such that T ∗
0 [S]F = T0[S]F ′ and∫

V

vF (v)dv = 0,
∫

V

F (v)dv = 1.

The turning rate T0[S] is bounded, and there exists a constant γ = γ[S] > 0 such that T0[S]/F ≥ γ for all
(v, v′) ∈ V × V, x ∈ R

n, and t > 0.
Let us recall two useful lemmas proven in [4].

Lemma 1.2. Let χ : R→R, g : V→R, and let

φS
ε [S] =

Tε[S]F ′ + T ∗
ε [S]F

2
, φA

ε [S] =
Tε[S]F ′ − T ∗

ε [S]F
2

,

denote the symmetric and, respectively, antisymmetric part of Tε[S]F ′. Then∫
V

∫
V

Tε(Fg)χ(g)dv =
1
2

∫
V

∫
V

φS
ε [S](g − g′)(χ(g) − χ(g′))dv′dv

+
1
2

∫
V

∫
V

φA
ε [S](g + g′)(χ(g) − χ(g′))dv′dv.

The same holds for Tk[S] with analogous definitions of φS
K [S] and φA

k [S].
Proof. See Lemma 1 in [4].

With g = f/F and χ = id one obtains
Lemma 1.3. Let the assumption 1.1 hold. Then, the entropy equality∫

V

T0[S](f)
f

F
dv =

1
2

∫
V

∫
V

φS
0 [S](

f

F
− f ′

F ′ )
2dv′dv ≥ 0

holds. For g ∈ L2(V ; dv/F ), the equation T0[S](f) = g has a unique solution f ∈ L2(V ; dv/F ) satisfying∫
V
fdv = 0 if and only if

∫
V
gdv = 0.

Proof. See Lemma 2 in [4].

The kernel of T0[S] is spanned by F , thus from (12) and by using the entropy equality one obtains f0(x, v, t) =
ρ0(x, t)F (v) where p0 has to be determined. Since the equilibrium distribution is independent of S, (13) leads
to

(14) T0[S0](f1) = −vF · ∇ρ0 − ρ0T1[S0](F ).

Therefore, f1 can be written as follows

f1(x, v, t) = −κ(x, v, t) · ∇ρ0(x, t) − Θ(x, v, t)ρ0(x, t) + ρ1(x, t)F (v),

where κ = κ[S0], Θ = Θ[S0] are solutions of T0[S0](κ) = vF , T0[S0](Θ) = T1[S0](F ), respectively, and ρ1 is a
new unknown. For the flux density, we have the asymptotic expansion Jε =

∫
V
vf1dv+O(ε). Therefore, passing

to the limit ε→0, the conservation equation (11) becomes the following convection-diffusion equation

(15) ∂tρ0 −∇ · (D[S0]∇ρ0 − Γ[S0]ρ0) = 0,

where the diffusive tensor and the convection field are given by

D[S0](x, t) =
∫

V

v ⊗ κ[S0](x, v, t)dv, Γ[S0](x, t) = −
∫

V

vΘ[S0](x, v, t)dv.

Here tensor notation is used, i.e. u⊗ v = (uivj)i,j=1,...,n. Thus, the formal limit of (7) and (10) is the equation
(15) coupled to

(16) S0 = ρ0 ∗ Γ =
∫ t

0

∫
Rn

1
(4π(t− s))

n
2
e−

|x−y|2
4(t−s) ρ0(y, s)dyds.
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2. Global solutions of kinetic model

In this section we show that solutions of the coupled system (7)-(10) do not blow up for fixed ε > 0 if the
turning kernel satisfies a certain structure condition. Without loss of generality, let us set ε = 1 in (7). We first
recall some well-known facts needed for our purpose.
Theorem 2.1. (Young’s inequality) Suppose 1 ≤ p, q, r ≤ ∞. If f ∈ Lp(Rn) and g ∈ Lr(Rn), then
f ∗ g ∈ Lq(Rn) and

||f ∗ g||Lq(Rn) ≤ ||f ||Lp(Rn)||g||Lr(Rn),
1
q

=
1
p

+
1
r
− 1.

Proof. See e.g. [7, page 232-233].

Lemma 2.2. (Gronwall’s inequality) Let g and h be positive functions. Suppose that f is continuous and
satisfies

f(t) ≤ g(t) + h(t)
∫ t

0

f(s)ds.

Then

(17) f(t) ≤ g(t) + h(t)
∫ t

0

g(s)e
R t

s
h(τ)dτds.

Proof. Computations are straightforward, and thus the details are omitted (see e.g. [6]).

The next lemma shows Lp and L∞-estimate of S in terms of f .
Lemma 2.3. Suppose S to be a solution of (9) in R

n with n = 2, 3.
(1) In the case n = 2, S satisfies the following estimates

(18) ||S(·, t)||Lp(R2) ≤ Cpt
1
p ||f0(·, ·)||L1(R2×V ) 1 ≤ p <∞,

(19) ||S(·, t)||L∞(R2) ≤ Ct
1
2 sup

0≤s≤t
||f(·, ·, s)||L2(R2×V ).

(2) In the case n = 3, S satisfies the following estimates

(20) ||S(·, t)||Lp(R3) ≤ C
2p

3 − p
t−

1
2 + 3

2p ||f0(·, ·)||L1(R3×V ) 1 ≤ p < 3,

(21) ||S(·, t)||L∞(R3) ≤ Ct
1
4 sup

0≤s≤t
||f(·, ·, s)||L2(R3×V ).

Proof. We first consider the case n = 2. For given p with 1 ≤ p < ∞, using Young’s inequality and then
change variables y = ỹ√

t−s
, we have

||S(·, t)||Lp(R2) ≤
∫ t

0

||Γ(·, t− s)||Lp(R2)||ρ(y, s)||L1(R2)

≤ C

∫ t

0

1

(t− s)1−
1
p

ds||f0||L1(R2×V ) = Cpt
1
p ||f0||L1(R2×V )

where C = C(p). In the last equality we used 1 − 1/p < 1 for all 1 ≤ p < ∞. We also used that
||f(·, ·, t)||L1(R2×V ) = ||f0(·, ·)||L1(R2×V ) due to the macroscopic conservation equation (11). Similarly, for n = 3
we have

||S(·, t)||Lp(R3) ≤
∫ t

0

||Γ(·, t− s)||Lp(R3)||ρ(y, s)||L1(R3)

≤ C

∫ t

0

1

(t− s)
3
2− 3

2p

ds||f0||L1(R3×V ) = C
2p

3 − p
t−

1
2+ 3

2p ||f0||L1(R3×V ),
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where 1 ≤ p < 3 was used in the last calculation. Since estimates (19) and (21) can easily be seen by similar
computations, we omit the details. This completes the proof.

The structure condition for T [S] assumed in [4, (A1) page 12] is
Assumption 2.4. There exists C > 0 such that for all x ∈ R

n, v, v′ ∈ V, t ∈ R
+ and S ∈ W 1,∞(Rn),

nonnegative turning kernel T satisfies

(22) T [S](x, v, v′, t) ≤ C(1 + S(x+ v, t) + S(x− v′, t)).

Under the Assumption 2.4, the next theorem shows the global existence of solutions for system (7)-(10).
Theorem 2.5. Let the Assumption 2.4 hold. Assume that f0 ∈ L1

+∩L∞(Rn×V ) where n = 2 or 3. Then there
exist global solutions f(·, ·, t) ∈ L1

+ ∩L∞(Rn × V ) and S(·, t) ∈ Lp(Rn) for all 2 ≤ p ≤ +∞ for all t ∈ [0,∞) of
the nonlinear system (7)-(10) for any fixed ε > 0.

Proof. Here, without loss of generality, we assume ε = 1. Mass is conserved for ρ, thus ||ρ(·, t)||L1(Rn) =
||f0||L1(Rn×V ). Since the turning kernel is nonnegative, we have

∂tf(x, v, t) + v · ∇xf(x, v, t) ≤
∫

V

T [S](x, v, v′, t)f(x, v′, t)dv′.

Using the Assumption 2.4, we get

f(x, v, t) ≤ f0(x− vt, v) + C

∫ t

0

ρ(x− vs, t− s)ds

+Cf1(x, v, t) + Cf2(x, v, t),

where

∂tf1(x, v, t) + v · ∇xf1(x, v, t) =
∫

V

S(x+ v, t)f(x, v′, t)dv′,

∂tf2(x, v, t) + v · ∇xf2(x, v, t) =
∫

V

S(x− v′, t)f(x, v′, t)dv′.

with initial conditions f1(x, v, 0) = 0, f2(x, v, 0) = 0. For the first term f1, one can easily see that

f1(x, v, t) =
∫ t

0

S(x− vs+ v, t− s)ρ(x− vs, t− s)ds.

After simple calculations, we obtain the following estimate

(23) ||f1(·, ·, t)||Lp(Rn×V ) ≤ C sup
0≤s≤t

||S(·, s)||Lp(Rn)

∫ t

0

||ρ(·, t− s)||Lp(Rn)ds.

In a similar way, f2 can be written as follows.

f2(x, v, t) =
∫ t

0

∫
V

S(x− vs− v′, t− s)f(x− vs, v′, t− s)dv′ds

=
∫ t

0

S(·, t− s) ∗ f(x− vs, ·, t− s)(x− vs)ds.

Using Young’s inequality, we obtain the following pointwise estimate for S ∗ f
|S(·, t− s) ∗ f(x− vs, ·, t− s)(x− vs)|
≤ ||S(·, t− s) ∗ f(x− vs, ·, t− s)||L∞(Rn)

(24) ≤ ||S(·, t− s)||Lp(Rn)||f(x− vs, ·, t− s)||Lq(V ),

where q is the Hölder conjugate of p, i.e. q = p/(p− 1). Here we note that q ≤ p if p ≥ 2. Since V is compact,
we have

||f(x− vs, v′, t− s)||Lq(V ) ≤ C||f(x− vs, v′, t− s)||Lp(V ),
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where C = C(V ). Therefore, f2 satisfies

||f2(·, ·, t)||Lp(Rn×V ) ≤ C sup
0<s<t

||S(·, s)||Lp(Rn)

∫ t

0

||f(·, ·, t− s)||Lp(Rn×V )ds,

where p ≥ 2. Using ||ρ(·, t)||Lp(Rn×V ) ≤ C(V )||f(·, ·, t)||Lp(Rn×V ) and summing up the above estimates, we
obtain for p ≥ 2

||f(·, ·, t)||Lp(Rn×V ) ≤ ||f0(·, ·)||Lp(Rn×V )

(25) +C(1 + sup
0≤s≤t

||S(·, s)||Lp(Rn))
∫ t

0

||f(·, ·, s)||Lp(Rn×V ),

where C = C(V ). Up to this point, all calculations are independent of dimensions. To estimate, however, the
Lp-norm of S, we need to consider the different cases separately, depending on the dimension. We start with
two dimensional case.

• The two dimensional case: R
2

Using the estimate (18), for all 2 ≤ p <∞ we obtain

||f(·, ·, t)||Lp(R2×V ) ≤ C||f0(·, ·)||Lp(R2×V )

+C(1 + t
1
p )||f0||L1(R2×V )

∫ t

0

||f(·, ·, s)||Lp(R2×V ).

Therefore, applying Gronwall’s inequality, we have for 2 ≤ p <∞.

(26) ||f(·, ·, t)||Lp(R2×V ) ≤ C||f0(·, ·)||Lp(R2×V )(1 + t
1
p exp(Ct

1+p
p )),

where C = C(f0, V, p). Next we will show the L∞-estimate of f . Note first that due to estimate (19), we get

(27) ||S(·, t)||L∞(R2) ≤ Ct
1
2 sup

0≤s≤t
||f(·, ·, s)||L2(R2×V ) ≤ C(t

1
2 + t exp(Ct

3
2 )).

The last inequality in (27) is due to the estimate (26) when p = 2. Letting p = ∞ in (23), we have

||f1(·, ·, t)||L∞(R2×V ) ≤ sup
0≤s≤t

||S(·, s)||L∞(R2)

∫ t

0

||ρ(·, t− s)||L∞(R2)ds.

On the other hand, taking p = ∞ and q = 1 in (24), we have

||f2(·, ·, t)||L∞(R2×V ) ≤ C sup
0≤s≤t

||S(·, s)||L∞(R2)

∫ t

0

||f(·, ·, t− s)||L1(R2×V )ds

= Ct sup
0≤s≤t

||S(·, s)||L∞(R2)||f0(·, ·)||L1(R2×V )ds.

Therefore, combining the above estimates and using (27), we have

||f(·, ·, t)||L∞(R2×V ) ≤ C(1 + t sup
0≤s≤t

||S(·, s)||L∞(R2))||f0(·, ·)||L1(R2×V )

+C(1 + sup
0≤s≤t

||S(·, s)||L∞(R2))
∫ t

0

||f(·, ·, s)||L∞(R2×V )

≤ C[1 + t
3
2 + t2 exp(Ct

3
2 )] + C[1 + t

1
2 + t exp(Ct

3
2 )]
∫ t

0

||f(·, ·, s)||L∞(R2×V ).

Gronwall’s inequality implies

||f(·, ·, t)||L∞(R2×V ) ≤ C[1 + t
3
2 + t2 exp(Ct

3
2 )] + C[1 + t

1
2 + t exp(Ct

3
2 )]

{
∫ t

0

(1 + s
3
2 + s2 exp(Cs

3
2 )) exp(

∫ t

s

1 + τ
1
2 + τ exp(Cτ

3
2 )dτ)ds}.
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After simple calculations and simplifications, we obtain

(28) ||f(·, ·, t)||L∞(R2×V ) ≤ C(1 + exp(Ct exp(Ct
3
2 ))),

where C = C(f0, V ).

• The three dimensional case: R
3

Note first that, due to (20) and (25), for any p with 2 ≤ p < 3 we obtain

(29) ||f(·, ·, t)||Lp(R3) ≤ C(1 + t−
1
2+ 3

2p exp(Ct
1
2+ 3

2p )),

where C = C(f0, V, p) and we used Gronwall’s inequality (17). In particular, when p = 2, we have

(30) ||f(·, ·, t)||L2(R3) ≤ C(1 + t
1
4 exp(Ct

5
4 ))

Using (21) and (30), we have

(31) ||S(·, t)||L∞(R3) ≤ C(t
1
4 + t

1
2 exp(Ct

5
4 )).

Following a similar procedure as in the two dimensional case, we obtain the following L∞-estimate of f .

||f(·, ·, t)||L∞(R3×V ) ≤ C(1 + t sup
0≤s≤t

||S(·, s)||L∞(R3))||f0(·, ·)||L1(R3×V )

+C(1 + sup
0≤s≤t

||S(·, s)||L∞(R3))
∫ t

0

||f(·, ·, s)||L∞(R3×V )ds.

Therefore, with the aid of (31), one can have

||f(·, ·, t)||L∞(R3×V ) ≤ C(1 + t
3
4 + t

3
2 exp(Ct

5
4 ))

+C(1 + t
1
4 + t

1
2 exp(Ct

5
4 ))
∫ t

0

||f(·, ·, s)||L∞(R3×V ).

Applying Gronwall’s inequality and simplifying it, we obtain

(32) ||f(·, ·, t)||L∞(R3×V ) ≤ C[1 + exp(Ct
1
2 exp(Ct

5
4 ))],

where C = C(f0, V ). This completes the proof.

In the proof of Theorem 2.5, Lp and L∞ estimates for f and S are obtained. Since such estimates are of
independent interest, we restate them in the next corollary.
Corollary 2.6. Let f and S be solutions of the nonlinear system (7)-(10) for fixed ε > 0 (here ε = 1). Then,
under the same assumption as in Theorem 2.5, f and S satisfy the following estimates for all t ∈ [0,∞).

• Two dimensional case:

||f(·, ·, t)||Lp(R2×V ) ≤ C(1 + t
1
p exp(Ct

1+p
p )), 2 ≤ p <∞,

||f(·, ·, t)||L∞(R2×V ) ≤ C(1 + exp(Ct exp(Ct
3
2 ))),

||S(·, t)||L∞(R2) ≤ C(t
1
2 + t exp(Ct

3
2 )).

• Three dimensional case:

||f(·, ·, t)||Lp(R3×V ) ≤ C(1 + t
1
2+ 3

2p exp(Ct
1
2+ 3

2p )) 2 ≤ p < 3,

||f(·, ·, t)||L∞(R3×V ) ≤ C[1 + exp(Ct
1
2 exp(Ct

5
4 ))],

||S(·, t)||L∞(R3) ≤ C(t
1
4 + t

1
2 exp(Ct

5
4 )).

Proof. This is a restatement of (26), (27), (28), (29), (31), and (32).
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Remark 2.7. Before we obtained Lp-estimates of f for certain ranges of p which depend on the dimension. By
using interpolation arguments, we can also have similar estimates for other exponents p in both cases. Under
the same assumption as in Theorem 2.5, when n = 2, f satisfies

||f(·, ·, t)||Lp(R2×V ) ≤ C(1 + t
p−1

p exp(Ct
3(p−1)

p )), 1 ≤ p < 2.

Indeed, since 1 ≤ p < 2, we can interpolate the Lp-norm of f in terms of the L1 and L2-norm of f . By similar
arguments, in case n = 3, one can have

||f(·, ·, t)||Lp(R3×V ) ≤ C exp(1 + t
5(p−1)

2p exp(Ct
5(p−1)

2p )), 1 ≤ p < 2,

||f(·, ·, t)||Lp(R3×V ) ≤ C[1 + exp(Ct
p−2
2p exp(t

5(p−2)
4p ))] 3 ≤ p <∞.

The last inequality is obtained by interpolating the left-hand side by the L2- and L∞-norm of f . Since compu-
tations are straightforward, and thus the details are omitted. �

3. Local existence of diffusion limits

In this section, the diffusion limit for kinetic models of the form (7)-(10) is presented. First, in next lemma,
we review estimates for S, which are known from potential theory. Since the proofs are straightforward, the
details are omitted (see e.g. [18, Chap. 4] and [19, Chap. 4, 6]).
Lemma 3.1. Let I = [0, T ) ⊂ R and 0 < T <∞. Suppose ρ ∈ L∞(I;L1(Rn)) ∩ L∞(I;Lq(Rn)) where q > n.

(1) In the case n = 2

S ∈ L∞(I;W 1,p(R2)) ∩ L∞(I; C1+α(R2)), 1 ≤ p <∞, 0 < α ≤ q − 2
q

,

and S satisfies the following estimate

||S||L∞(I;W 1,p(R2)) + ||S||L∞(I;C1+α(R2)) ≤ C(||ρ||L∞(I;L1(R2)) + ||ρ||L∞(I;Lq(R2))).

(2) In the case n = 3

S ∈ L∞(I;W 1,p(R3)) ∩ L∞(I; C1+α(R3)), 1 ≤ p <∞, 0 < α ≤ q − 3
q

,

and S satisfies the following estimates

||S||L∞(I;W 1,p(R3)) + ||S||L∞(I;C1+α(R3)) ≤ C(||ρ||L∞(I;L1(R3)) + ||ρ||L∞(I;Lq(R3))).

We need similar assumptions on φS
ε [S] and φA

ε [S] as in [4].
Assumption 3.2. There exist γ > 0 and a non-decreasing function Λ ∈ L∞

loc, such that

φS
ε [S] ≥ γ(1 − εΛ(||S||W 1,∞(Rn)))FF ′

∫
V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ(||S||W 1,∞(Rn),

where F ∈ L∞(V ) is a positive velocity distribution satisfying Assumption 1.1, and φS
ε and φA

ε are defined in
Lemma 1.2.
Theorem 3.3. Let the Assumption 1.1 and Assumption 3.2 hold and let q > n with n = 2, 3. Assume further
that

f0 ∈ χq = L1(Rn × V ) ∩ Lq(Rn × V ;
dxdv

F q−1
).

Then there exists a t∗ > 0, independent of ε, such that the solution fε, Sε satisfies

fε ∈ L∞((0, t∗);χq),

Sε ∈ L∞((0, t∗);W 1,p(Rn) ∩ C1+α(Rn)), 1 ≤ p <∞, α =
q − n

q
,
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(33) rε =
fε − ρεF

ε
∈ L2((0, t∗); Rn × V :

dxdvdt

F
).

Proof. This can be shown by following the same procedure given in the proof of Theorem 4 in [4], and
therefore, the details are omitted.

Now we are ready to prove the existence of the diffusion limit in a short time interval.
Theorem 3.4. Let the assumption of Theorem 3.3 hold. Assume further that for families (Sε), which are
uniformly bounded in L∞

loc([0,∞); C1+α(Rn)) for some α as ε → 0 with 0 < α ≤ 1, such that Sε and ∇Sε

converges to S0 and ∇S0, respectively, in Lp
loc([0,∞); Rn) for some p > n/(n − 1) with n = 2, 3, we have the

convergence
Tε[Sε] → T0[S0] in Lp

loc([0,∞); Rn × V̄ × V̄ ),

(34)
Tε[Sε](F )

ε
=

2
ε

∫
V

φA
ε [Sε]dv′ → T1[S0](F ) in Lp

loc([0,∞); Rn × V̄ ).

Then solution fε and Sε of (7)-(10) satisfy

fε → ρ0F in L∞((0, t∗);χq) weak ∗,

Sε → S0 in Lq
loc((0, t

∗); Rn), 1 ≤ q <∞,

∇Sε → ∇S0 in Lq
loc((0, t

∗); Rn), 1 ≤ q <∞.

Proof. Since the proof is similar to that of Theorem 5 in [4], we present only a brief sketch of the procedure.
First we note, due to (33), that

Jε =
1
ε

∫
V

vfεdv =
∫

V

vrεdv ∈ L2((0, t∗);L2(Rn))

uniformly in ε. Recalling the cell conservation equation (11), one can easily see that

∂t(∇Sε) ∈ L2((0, t∗);L2
loc(R

n))

by considering the gradient of the convolution of (10). The strong convergence follows combining the above
estimate and the parabolic regularity for the convolutions defining Sε and ∇Sε from ρε. Therefore, the kinetic
equation (7) leads to

ε
∂fε

∂t
+ v · ∇xfε = −ρε

T [Sε](F )
ε

− Tε[Sε](rε).

By assumption (34) and passing to the limit, we obtain

T0[S0](r0) = −vF · ∇ρ0 − ρ0T1[S0](F ).

This equation can be solved as (14). The limit of the cell conservation equation is ∂tρ0 + ∇ · J0 = 0 with
J0 =

∫
V
vr0dv. This completes the proof.

Remark 3.5. In Theorem 3.4, the local existence of the diffusion limit was shown. However, we do not know
whether the limit exists globally in time or blows up in finite time. There are fewer results about regularity
questions for the full parabolic-parabolic system (1)-(3), in particular, in case the domain is R

n when compared
to the large amount of blow-up results that are known for the parabolic-elliptic system (see e.g. [3], [8], [9], [10],
[11], [20] for unbounded domains, and for sake of space compare the survey paper [14] for the results on bounded
domains). To the best of the authors’ knowledge, blow up results in finite time for the full parabolic-parabolic
system are only due to Herrero and Velázquez, [12] when the domain is a disk in two dimension (compare also
the related results in [13], [15], and [25] for blow up which might happen in either finite or infinite time). It
seems, however, to be an open problem whether or not solutions of the full parabolic-parabolic system blow up
in finite time in the whole space R

n, n = 2, 3. Recently, in [21], it was shown that self-similar solutions exist
globally in time in two dimension for suitable initial conditions, i.e.

∫
R2 u0 < 8π.
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Remark 3.6. As mentioned earlier, in this article, we consider the chemo-attractant equation with no decay
term. Our results, however, can easily be extended to the case with non-zero decay term. Indeed, S has similar
estimates as in the case with zero decay term because the fundamental solution for this case is of the following
form

(4πt)−
n
2 exp(−|x|2

4t
− βt).

Furthermore, we can also extend our arguments to more general types of production and degradation of the
external stimulus. More precisely, one can consider φ(ρ, S) in (3) of the form

φ(ρ, S) = α(ρ, S)ρ− β(ρ, S)S.

If α(·, ·) is positive, β(·, ·) is nonnegative and both functionals are bounded, then one obtains the same estimates
for S as in Lemma 2.3. Since the rest of our arguments follows the same procedures, we omit the details. �
Remark 3.7. In [4, section 3] and [5, section 2] specific examples for the 3D turning kernel are presented. For
instance, if turning kernel is Tε = ϕ(S(x, t), S(x+εv+ t)) where ϕ is strictly positive and increasing with respect
to second argument. This kernel satisfies the structure condition (22). So global existence of solutions for the
kinetic model with an elliptic equation for S is known for fixed ε > 0. The drift-diffusion limit was also proven
locally in time. By using asymptotic expansion, we have

Tε[S] = T0[s] + T1[S] +O(ε2), T0[S] = ϕ(S, S), T1[S] = ϕ2(S, S)v · ∇S,

where ϕ2 is the partial derivative of ϕ with respect to the second argument. In this case, the chemotactic
sensitivity and diffusive coefficient can be computed explicitly (see [5, page 5])

χ(S0) =
ϕ2(S0, S0)d
ϕ(S0, S0)|V | , D(S0) =

d

ϕ(S0, S0)|V |2 , d =
1
3

∫
V

|v|2dv.

In general, χ and D are variables of S0, but they may become constants with a particular choice of ϕ as indicated
in [5, see Example 1]. More precisely, if ϕ is of the form

ϕ(S, S̃) = ψ(S̃ − S), ψ(x) = C1
x√

1 + x2
+ C2, C2 > C1 > 0,

then one can easily see that ϕ is strictly positive and increasing, and ϕ(S0, S0) = C2, ϕ2(S0, S0) = C1, which
immediately implies that χ and D are constants. Therefore, in such case, the macroscopic equation is

∂tρ0 −∇ · (D∇ρ0 − χρ0∇S) = 0, −∆S0 = ρ0, inR
3,

with constant coefficients D and χ. Blowup for the solutions of this system for χ = D was proven, compare the
reference list in remark 3.5. In our case the macroscopic equation for (7) and (10) becomes

∂tρ0 −∇ · (D∇ρ0 − χρ0∇S) = 0, ∂tS0 − ∆S0 = ρ0, in R
n, n = 2, 3.

We also obtain global existence of solutions for the kinetic model and local existence of solutions for the drift-
diffusion limit. However, we do not know global existence or blow up in finite time for the macroscopic equation
as indicated in Remark 3.5. �
Remark 3.8. Results on the direct regularizations of blowup solutions of the parabolic Keller-Segel model are
discussed in [27]. Velázquez considered the model

(35) ut = ∆u −∇ · (Gε(u)∇v), (x, t) ∈ R
2 × R

+

−∆v = u, (x, t) ∈ R
2 × R

+

where Gε(u) = 1
εQ(εu) and Q(ξ) is an increasing function which satisfies

Q(ξ) = ξ +O(ξ2) as ξ → 0,
Q(ξ) ∼ const. as ξ → ∞,
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e.g. Q(ξ) = ξ/(1 + ξ). For ε > 0 the solutions of (35) are globally defined in time under general assumptions
on the initial data. If ε = 0 then Gε(u) = G0(u) = u, so the system reads

ut = ∆u−∇ · (u∇v), −∆v = u,

and solutions blow-up in finite time if their initial mass is large enough. It is then a rather natural question to
try to understand the asymptotics of the solutions of (35) when ε approaches zero. This has been addressed in
[27] by using formal asymptotic expansions. With this method it has been seen that there are solutions of (35)
which have a finite amount of mass concentrated in a neighborhood of a set of points xi(t). In the limit ε → 0
the function u that characterizes the solution of (35) approaches to a continuous, bounded density plus a set of
moving Dirac masses placed at the points xi(t) and having masses Mi(t). If one denotes u as the smooth part
of the solution in the limit ε→ 0 it turns out that, according to the analysis done in [27], the joint dynamics of
the singular parts of the solution plus the smooth part is given by

ut = ∆u−∇ · (u∇v) +
1
2π

N∑
j=1

Mj(t)
(x− xj(t))
|x − xj(t)|2

· ∇u, (x, t) ∈ R
2 ×R+

−∆v = u, (x, t) ∈ R
2 ×R+

ẋi(t) = Γ(Mi(t))Ai(t), t > 0, i = 1, 2, ..., N(36)

Ai(t) = −
N∑

j=1,j �=i

Mj(t)(xi(t) − xj(t))
2π|xi(t) − xj(t)|2

+ ∇v(xi(t), t), t > 0

dMi(t)
dt

= u(xi(t), t)Mi(t), t > 0, i = 1, 2, ..., N,

where Γ(M) can be computed in terms of Q(ξ). Moreover, the question of describing how the solutions of (35)
that are initially of order one can develop regions with high mass densities by means of the blow-up mechanism
for (35) with ε = 0 has also been considered in [27]. Therefore, system (36) can be considered as a way of
continuing the solutions of (35) beyond the blow-up time for ε = 0. The well posedness of this model is analyzed
in [28].

An interesting question is if and how the ”kinetic regularizations” compare to certain ”regularizations of the
parabolic model”.
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