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Abstract

In preceding papers [8, 11, 12, 6], a class of matrices (H-matrices) has been developed which are
data-sparse and allow to approximate integral and more general nonlocal operators with almost linear
complexity. In the present paper, a weaker admissibility condition is described which leads to a coarser
partitioning of the hierarchical H-matrix format. A coarser format yields smaller constants in the work
and storage estimates and thus leads to a lower complexity of the H-matrix arithmetic. On the other
hand, it preserves the approximation power which is known in the case of the standard admissibility
criterion. Furthermore, the new weak H-matrix format allows to analyse the accuracy of the H-matrix
inversion and multiplication.

AMS Subject Classification: 65F50, 65F30, 65N35, 65F10
Key words: integral equations, BEM, H-matrices

1 Introduction

The hierarchical matrix technique allows an efficient treatment of dense matrices arising, e.g., from boundary
element methods (BEM). At the same time it provides matrix formats which enable the computation and
storage of inverse FE stiffness matrices corresponding to elliptic problems. It is shown (e.g., in [8], [11], [12])
that the storage of n×n H-matrices as well as the matrix-vector multiplication and matrix-matrix addition
have a cost of order O (kn log n), where the local rank k is the parameter determining the approximation
error. Moreover, the matrix-matrix-multiplication and the inversion take O(k2n log2 n) operations.

The hierarchical matrices are represented by means of a certain block partitioning. Figure 2.1 shows
a typical block structure. Each block is filled by a submatrix of a rank not exceeding k. Then, for the
mentioned class of matrices, it can be shown that the exact dense matrix A and the hierarchical matrix AH
differ by ‖A − AH‖ ≤ O(ηk) for a certain number η < 1. This exponential decrease allows to obtain an error
ε by the choice k = O (log(1/ε)) .

Although the bounds for computational cost are almost linear in the matrix size n, one has to take care
of the constant suppressed by the notation O (. . .) . In fact, the matrix-matrix multiplication needs a much
larger CPU time than the matrix-vector multiplication. The reason is not only the extra factor k log n but
a larger constant associated with the matrix-matrix multiplication.

This gives rise to consider in more detail the involved constants. In fact the arising constants are identified
and described in the papers [12, 6]. The more interesting question is whether there is a possibility to find
modifications with smaller constants.

It is not surprising that the mentioned constants can be decreased when we use a simpler block par-
titioning. Figure 2.3 shows such a coarser partitioning, which is already discussed in [8] as first model
problem. However, in [8] we rejected this simple partitioning since the proof of the approximation result
‖A − AH‖ ≤ O(ηk) requires the finer partitioning shown in Figure 2.1.

Surprisingly, recent numerical tests have shown that nevertheless ‖A − AH‖ ≤ O(η̃k) with η ≤ η̃ < 1
seems to be valid also for the simpler partitioning from Figure 2.3 so that the same accuracy can be obtained
with less storage and shorter CPU times for the matrix operations.

The partitionings shown in Figures 2.1 and 2.3 belong to one spatial dimension (or an integral operator
defined over a curve). The present considerations are even more relevant when we turn to 2D or 3D problems.
In these cases the involved constants are much larger than in 1D. Therefore a reduction of the constant is
essential. A generalisation to higher space dimensions is the subject of a forthcoming paper [14].
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1.1 Overview

In Section 2 we introduce the hierarchical matrices (H-matrices). However, we simplify the explanations
by concentrating on a critical model case described in §2.1. The definition of the set MH,k(I × I,P) of
H-matrices in §2.2.4 makes use of a cluster tree T (I) (see §2.2.1), a block cluster tree T (I × I) (see §2.2.2)
and a partitioning P (see §2.2.3).

The standard admissibility condition (now called ‘strong admissibility condition’) used in the all previous
papers and corresponding to Figure 2.1 is recalled in §2.3.

The so-called sparsity constant Csp (P) is introduced in §2.4. We show that the storage estimate involves
Csp (P) (see §2.4.2). The dependence on the spatial dimension d is discussed in §2.4.3.

As a remedy for a possibly too large constant Csp (P), we introduce a ‘weak admissibility condition’ in
§2.5 corresponding to Figure 2.3.

The purpose of both admissibility conditions is to construct a partitioning P , which guarantees an error
bound for ‖A − Ak‖ (A: exact dense matrix, Ak ∈ MH,k(I × I,P)). Such an error estimate in discussed in
§3.1 for the strong admissibility condition. In the case of the weak admissibility condition (§3.2), we first
show that an H-matrix with local rank increased from k to 3Lk (L = log2 n, see §3.2.1) can lead to the same
error bound as in the case of strong admissibility. The number 3Lk can even be reduced to Lk, as shown in
§3.2.2.

In Subsection 3.4 we collect approximation results and their theoretical estimations. Unfortunately, they
do not prove our conjecture but lead to weaker bounds.

The behaviour of the error ‖A − Ak‖ with respect to k can also be observed by numerical computations.
This is done in Subsection 3.3. The best approximation of a BEM matrix (corresponding to a Nyström
discretisation) is computed by means of singular value decomposition (SVD) in §3.3.1. The discussion of the
results in §3.3.2 and §3.4 leads to Conjecture 3.2, which is the core of this paper. It claims that even with the
weak admissibility condition we get almost the same error behaviour as usually obtained by the strong one.
In §3.3.3 similar results are presented for a collocation discretisation instead of the Nyström method used
before. In practice, the singular value decomposition is replaced by simpler methods which are explained in
§3.3.4.

The observed properties inspire the definition of matrix families Mk,τ and Mk(ε) in Section 4. The
Conjecture 3.2 implies that BEM matrices corresponding to a one-dimensional manifold belong to Mk(ε)
(defined in §4.4) with k = O (log(1/ε)). The interesting properties of matrices from Mk(ε) are that

i) they can be approximated by matrices from MH,k(I × I,PW ) corresponding to the weak admissibility
(see Theorem 4.16) and

ii) products and inverse matrices remain in this class (exact statement in Theorem 4.17). This allows to
state that meromorphic functions f(·) applied to a matrix A can be approximated in MH,k′(I × I,PW ) for
certain local ranks.

A particular application of the last result is the inversion of H-matrices. In Section 5 we describe the
inversion algorithm (see §5.1) and require certain stability assumptions (see §5.2). Then we are able to show
that ABEM ∈ Mk(cηk) has an inverse in the same class and that the inversion algorithm determines an
approximation of the desired accuracy (Theorem 5.2).

Finally, we show in Section 6 a similar result for the product of hierarchical matrices (see Theorem 6.2).

2 H-Matrices

In the Sections §§2-3 we consider the case of only one spatial dimension. Furthermore, we restrict the
discussion to a model case. This simplifies the following definitions and helps to concentrate on the main
topic.

2.1 Model Problem (BEM)

We consider an integral equation Au = f or (λI −A)u = f with the integral operator

(Au) (x) :=
∫ 1

0

s(x, y)u(y)dy for x ∈ [0, 1], (2.1)
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where a typical kernel function may be

s(x, y) = log |x − y| for x, y ∈ [0, 1]. (2.2)

A Galerkin discretisation leads to the fully populated matrix

A = (aij)i,j∈I with aij =
∫ 1

0

∫ 1

0

s(x, y)φi(x)φj(y)dxdy, (2.3)

where B = {φi : i ∈ I} is the finite-element basis. We may consider two different examples of B based on an
equidistant grid xν = νh (ν = 0, . . . , N) for the step size h = 1/N.

Standard examples are the piecewise constant elements

φi(x) =
{

1 if x ∈ (xi, xi+1)
0 otherwise

}
for i ∈ I := {0, . . . , N − 1}, (2.4)

as well as the piecewise linear elements

φi(x) linear on each interval (xν−1, xν) and φi(xν) = δiν for i, ν ∈ I := {0, . . . , N}. (2.5)

The index set I is different in both cases. Its cardinality is denoted by n := #I (n = N for (2.4) and
n = N + 1 for (2.5)). To simplify the discussion, we assume that n is a power of 2,

n = 2L. (2.6)

The support of the basis functions is denoted by

X(i) := supp(φi) for i ∈ I. (2.7)

In the case of (2.4) the supports are essentially disjoint (i.e., intersection of measure zero is neglected),
whereas in the case of (2.5) X(i) ∩ X(i + 1) = [xi, xi+1] .

2.2 Definition of Hierarchical Matrices

In the considered 1D-case, the definitions are as simple as in the introductory paper [8]. To define the
matrix set MH,k(I × I,P) – hierarchical matrices of local rank k based on the partitioning P – we have
to consider the cluster tree T (I) (see §2.2.1), the block cluster tree T (I × I) (see §2.2.2), the admissibility
condition and the corresponding partitioning P2 (see §2.2.3). This defines the set MH,k(I ×I,P) introduced
in §2.2.4. Since the admissibility condition is not yet fixed in §2.2.3, we introduce the traditional admissibility
condition (standard admissibility or S-admissibility) in §2.3. The discussion in §2.4 will lead us to a weaker
admissibility condition (weak admissibility or W-admissibility) which is introduced in §2.5.

2.2.1 Cluster Tree T (I)

The vertices of the cluster tree T (I) are called ‘clusters’ and are subsets of the index set I. I is the root of
the tree and sons σ1, . . . , σs of a cluster τ are disjoint subsets of τ so that τ = ∪s

i=1σi. Furthermore, the
leaves τ satisfy #τ = 1 (for the formal definition of the hierarchical cluster tree T (I) we refer to [8]).

We give a concrete example for our model case from §2.1. The level introduced in the following example
is the distance of the vertex from the root.

Example 2.1 Let I = {0, ..., n− 1} and n = 2L. The clusters of level L are the one-element subsets

τL
1 = {0}, τL

2 = {1}, . . . , τL
n = {n − 1}.

On level L − 1, two subsets from level L are combined:

τL−1
1 = {0, 1}, τL−1

2 = {2, 3}, . . . , τL−1
n/2 = {n− 2, n − 1}.

Similarly, we obtain 4-element subsets τL−2
i of level L−2, etc. Finally, at level 0, the whole index set τ0

1 = I
is the only cluster. This defines a binary tree T (I) with the vertices (‘clusters’) {τ �

i : 0 ≤ 	 ≤ L, 1 ≤ i ≤ 2�},
where

τ �
i =

{
(i − 1) ∗ 2L−�, (i − 1) ∗ 2L−� + 1, . . . , i ∗ 2L−� − 1

}
.

I is the root. The vertices at level L are leaves. The sons of τ �
i (	 < L) are τ �+1

2i−1 and τ �+1
2i .
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For later use, the supports X(i) from (2.7) are generalised to clusters by the definition

X(τ) :=
⋃

i∈τ
X(i) for τ ∈ T (I). (2.8)

Obviously, we have

X(τ �
i ) =

⎧⎨
⎩

[
(i − 1) ∗ 2L−�h, i ∗ 2L−�h

] ⊂ [0, 1] for the case of (2.4),

[(
(i − 1) ∗ 2L−� − 1

)
h,

(
i ∗ 2L−� + 1

)
h
] ∩ [0, 1] for (2.5).

(2.9)

The upper index of τ �
i refers to the level number, which may be regarded as distance from the root in

the tree. This gives rise to the notation

T �(I) =
{
τ �
i : 1 ≤ i ≤ 2�

}
. (2.10)

2.2.2 Block Cluster Tree T (I × I)

While the vector components are indexed by i ∈ I, the entries of a (square) matrix have indices from the
index set I × I. The block-cluster tree is nothing but the cluster tree for I × I instead of I. In a canonical
way (cf. [11]), the block-cluster tree T (I × I) can be constructed from T (I), where all vertices (‘blocks’)
b ∈ T (I × I) are of the form b = τ × σ with τ, σ ∈ T (I). The construction starts with stating that I × I is
the root of T (I × I). Then the sons of b = τ × σ ∈ T (I × I) form the set of all blocks b′ := τ ′ × σ′, where τ ′

(σ′) are the sons of τ (σ) provided that these exist.
In the case of the tree T (I) from Example 2.1, the block cluster tree T (I × I) is

T (I × I) =
{
τ �
i × τ �

j : 0 ≤ 	 ≤ L, 1 ≤ i, j ≤ 2�
}

. (2.11)

The leaves of the tree T (I × I) are the 1 × 1-blocks τL
i × τL

j = {(i − 1, j − 1)} .
By definition, both clusters τ, σ in b = τ × σ ∈ T (I × I) must belong to the same level, so that T (I × I)

decomposes into the sets T �(I × I) corresponding to the respective level 	:

T �(I × I) =
{
τ �
i × τ �

j : 1 ≤ i, j ≤ 2�
}

(0 ≤ 	 ≤ L) . (2.12)

2.2.3 Partitioning P
The blocks of T (I×I) are not disjoint (each index pair (ν, µ) belongs to L+1 different blocks of different size).
A partitioning P of I × I is a disjoint decomposition of I × I into blocks bι, ι ∈ J, such that

⋃
ι∈J bι = I × I.

Moreover, we require bι ∈ T (I × I) for all ι ∈ J, i.e., P ⊂ T (I × I).
The finest partitioning is P =

{
τL
i × τL

j : 1 ≤ i, j ≤ n
}

which corresponds to the format of standard full
matrices. The coarsest partitioning is P = {I × I} consisting of only one block. Since later we shall fill
the blocks by low-rank matrices, the size of the block must be controlled by a criterion called ‘admissibility
condition’. The concrete description will be given in §2.3 and modified in §2.5. Here, we only need some
Boolean function

Adm : T (I × I) → {true, false} (2.13)

with the consistency requirement Adm (b) ⇒ Adm (b′) for all sons b′ of b ∈ T (I × I) and the property
Adm (b) = true for all leaves b ∈ T (I × I).

A partitioning P is admissible if Adm (b) = true for all b ∈ P .
Since we are interested in a partitioning with as few blocks as possible, we define the minimum admissible

partitioning as the admissible partitioning Pmin with smallest cardinality. It can be obtained by the following
procedure: Start with P = {I × I} and replace the blocks b ∈ P by their sons as long as Adm (b) = false
(cf. [11, Algorithm 3.8]).
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2.2.4 Hierarchical Matrices MH,k(I × I,P)

For some partitioning P and a natural number k, we define the set MH,k(I × I,P) ⊂ R
I×I of (real)

hierarchical matrices by

MH,k(I × I,P) := {M ∈ R
I×I : rank(M |b) ≤ k for all b ∈ P}.

Here, M |b = (mij)(i,j)∈b denotes the matrix block of M = (mij)i,j∈I corresponding to b ∈ P . The matrices
from MH,k(I × I,P) are implemented by means of the list {M |b : b ∈ P} of matrix blocks, where each1 M |b
(b = τ × σ with τ, σ ∈ T (I)) is represented by

∑k
ν=1 aνb�ν with vectors aν ∈ Rτ , bν ∈ Rσ. The number k is

called the local rank.
We remark that besides the matrix-vector multiplication, also the matrix-matrix addition and multipli-

cation as well as the inversion can be performed approximately (see [8]).
There are two conflicting issues to be satisfied. First, it must be possible to approximate the true full

matrix A (e.g., from (2.3)) sufficiently well by some AH ∈ MH,k(I × I,P), i.e.,

‖A − AH‖ ≤ ε (2.14)

must be reachable (at least for an appropriate k). Second, the related costs should be as small as possible.
The most important costs are Nst (number of storage) and NMV (number of arithmetic operations for the
matrix-vector multiplication). For P resulting from the admissibility conditions discussed in §2.3 and §2.5,
we obtain for both costs the respective order

Nst,NMV = O (kn log n) and O (kn log n log(log n)) . (2.15)

2.3 Standard Admissibility

We recall that any cluster τ is associated with a set X(τ) defined in (2.8). This allows the notations

diam(τ) := diamX(τ), dist(σ, τ) := dist(X(σ), X(τ)). (2.16)

The admissibility condition (2.13) already introduced in [8] reads as follows, where η > 0 is some parameter:

Admη (b) = true for b = τ × σ ∈ T (I × I) :⇐⇒ (2.17)
(b is a leaf) or min{diam(σ), diam(τ)} ≤ 2 η dist(σ, τ).

Sometimes the minimum in (2.17) is replaced by a maximum (i.e., max{diam(σ), diam(τ)} ≤ 2 η dist(σ, τ)).
In general, this is a stronger condition, but for the present 1D-model case both conditions coincide.

A simple choice of η > 0 is η = 1/2 leading to Adm1/2. In the 1D-model case (2.4), we have

diam(τ �
i ) = 2L−�h, dist(τ �

i , τ �
j ) = max {0, |i − j| − 1} 2L−�h. (2.18)

Hence a block b = τ �
i ×τ �

j is admissible if 	 = L (i.e., b is a leaf) or if |i − j| ≥ 2. The partitioning P generated
by Adm1/2 is shown in Figure 2.1.

2.4 Sparsity Constant

In the following we investigate the fine-structure of the cost functions Nst,NMV . Instead of the asymptotic
description (2.15) we want information about the constant CP in

max {Nst,NMV } ≤ CP ∗ knL, (2.19)

where L = log2(n) is the dual logarithms and also the depth of the tree T (I).

1In practice, one uses a standard full-matrix representation for blocks of small enough size (see [6]).
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Figure 2.1: Partitioning by the standard admissibility condition Adm1/2

2.4.1 Definition

The key quantity is the so-called sparsity constant

Csp (P) := max
{

maxτ∈T (I)\T L(I) #{σ ∈ T (I) : τ × σ ∈ P},
maxσ∈T (I)\T L(I) #{τ ∈ T (I) : τ × σ ∈ P}

}
(2.20)

(see [6] or slightly different definitions of the same quantity in [12, 15]). The number #{σ ∈ T (I) : τ×σ ∈ P}
counts how often the cluster τ is used as row block, while #{τ ∈ T (I) : τ × σ ∈ P} counts how often σ is
used as column block.

A look at Figure 2.1 shows that the number of σ with τ ×σ ∈ P is 2, if we restrict to the upper triangular
part; e.g., the two biggest blocks at the upper right corner share the same τ. In general (not for the biggest
blocks), there are also up to 2 blocks in the same row belonging to the lower triangular part of the matrix.
However, one observes that 2 blocks in the right part correspond to at most 1 block in the left part so that
the sum is always ≤ 3. The resulting conjecture Csp (P) = 3 is true as stated in

Remark 2.2 Consider the 1D-model case (2.4). Then the partitioning P generated by Adm1/2 has the
sparsity constant Csp(P) = 3.

i−2 i−1 i i+1 i+2

��������������������

������������

i/2−2 i/2 i/2+2

i−4 i−3 i−2 i+2 i+3 level l

l−1

i

Figure 2.2: Left: The closest admissible neighbours are i+2 and i− 1. Right: The neighbours i+3 and i− 4
are contained in admissible blocks of level 	 − 1.

Proof. Take τ = τ �
i with 	 > 0. σ with τ × σ ∈ P must belong to the same level, i.e., σ = τ �

j . We check the
various cases for j.

Case j = i, i + 1, i − 1: Since dist(X(τ �
i ), X(τ �

j )) = 0 (cf. (2.18)), b = τ × σ is not admissible; hence,
τ × σ /∈ P (see left part of Figure 2.2).

Case j > i + 1 or j < i − 1: Since dist(τ �
i , τ �

j ) ≥ diam(τ �
i ), b = τ × σ is admissible (Adm1/2(b) = true).

However, we have to check whether b is contained in a bigger admissible block of level < 	. For this purpose,
we assume first that i is even, i.e., τ ′ = τ �−1

i/2 is the father of τ �
i and the interval X(τ �

i ) is the right half of

X(τ �−1
i/2 ) (see right part of Figure 2.2). Let σ′ = τ �−1

i/2+δ be the father of σ = τ �
j . τ ′×σ′ is admissible if |δ| ≥ 2.

One checks that this happens for j ≥ i + 3 and j ≤ i − 4, but not for j = i − 3, i − 2, i + 2. Hence, we have
identified the three clusters σ = τ �

j of the set {σ ∈ T (I) : τ × σ ∈ P}. If j /∈ [
1, 2�

]
, there are even less than

Csp(P) = 3 elements.
For an odd index i, one finds that τ × σ = τ × τ �

j ∈ P for j = i− 2, i+ 2, i + 3, so that again Csp(P) = 3.
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Definition (2.20) excludes τ, σ ∈ T L(I), since for the leaves the property τ × σ ∈ P does not require the
inequality min{diam(σ), diam(τ)} ≤ 2η dist(σ, τ). We compensate this by the extra constant

CL
sp (P) := max

{
max

τ∈T L(I)
#{σ ∈ T (I) : τ × σ ∈ P}, max

σ∈T L(I)
#{τ ∈ T (I) : τ × σ ∈ P}

}
.

Remark 2.3 Consider the 1D-model case (2.4). Then the partitioning P generated by Adm1/2 has the
L-level sparsity constant CL

sp (P) = 6.

Proof. In addition to the j’s found in the proof of Remark 2.2, also j = i, i + 1, i− 1 lead to τ �
i × τ �

j ∈ P .

2.4.2 Cost Estimates

The interesting fact is that the storage cost is directly connected with the sparsity constant (cf. [5]). The
following lemma is not restricted to the 1D-case.

Lemma 2.4 Let n = #I. Then (a) and (b) hold.
(a) The number of blocks is bounded by nCL

sp (P) + (n − 1)Csp (P).
(b) The storage requirements Nst for an H-matrix M ∈ MH,k(I × I,P) is bounded by

Nst ≤
[
2k (L − 1)Csp (P) + CL

sp (P)
]
n.

Whenever CL
sp (P) ≤ 2kCsp (P), which happens at least if k is sufficiently large, the storage can be estimated

by
Nst ≤ 2kLCsp (P)n. (2.21)

Proof. a) The tree T (I) has at most 2n − 1 vertices, in particular, #T (I)\T L(I) ≤ n − 1 and #T L(I) = n.
Therefore,

#P =
∑

τ×σ∈P
1 =

∑
τ∈T (I)

#{σ ∈ T (I) : τ × σ ∈ P}

≤
∑

τ∈T L(I)

CL
sp (P) +

∑
τ∈T (I)\T L(I)

Csp (P) ≤ nCL
sp (P) + (n − 1)Csp (P) .

b) The storage needed for a block b = τ × σ is k (#τ + #σ), since k vectors from Rτ and k vectors from
R

σ are to be stored. An exception holds for level L, where only one number is to be stored; hence, storage
size = 1.

In the following, the symbol
∑∗ refers to the summation restricted to level < L. Furthermore, we exclude

the level L, since P cannot contain an admissible block from level L. We have

N ∗
st =

∑∗
τ×σ∈P k (#τ + #σ) ≤ k

(∑∗
τ×σ∈P #τ +

∑∗
τ×σ∈P #σ

)

≤ Csp (P)k

(∑∗
τ∈T (I)

#τ +
∑∗

σ∈T (I)
#σ

)
≤ 2Csp (P) k

∑∗
τ∈T (I)

#τ.

Since
∑∗

τ∈T (I) #τ =
∑L−1

�=1

∑
τ∈T �(I) #τ and

∑
τ∈T �(I) #τ = n for all 	, the result N ∗

st ≤ 2Csp (P)k (L − 1)n
follows.

For level L, we obtain NL
st =

∑level=L
τ×σ∈P 1 ≤ CL

sp (P)n.

In the case of a dense matrix stored in the usual way, the matrix-vector multiplication requires one mul-
tiplication and one addition per matrix element, i.e., the cost for a matrix-vector multiplication is bounded
by twice the storage cost. The same holds for hierarchical matrices:

Lemma 2.5 Nst ≤ NMV ≤ 2Nst, where NMV is the number of arithmetic operations for the multiplication
of a matrix from MH,k(I × I,P) by a vector.

We mention the costs NMM and Ninv for the matrix-matrix multiplication and the inversion only quite
briefly. As can be seen from [6], another constant is involved which we are not going to explain. The
dependence on Csp, however, is given by

NMM ,Ninv = O (
C2

spk2n log2 n
)
. (2.22)
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2.4.3 Dependence on the Spatial Dimension d

Instead of the 1D case (2.4), one can also consider model cases in 2D and 3D (then the simplest trees are
no more binary, but quad-trees (d = 2) or octree (d = 3), respectively). Due to a result from [12] for
tensor-grids, we have a bound of the sparsity constant by

C(P , d, η) = (2d − 1)(1 +
√

d/η)d, (2.23)

which yields C(P , 1, η) = 3, C(P , 2, η) = 27 and C(P , 3, η) = 189 for η =
√

d
2 .

Obviously, we recover Csp (P) = 3 from Remark 2.2. But the annoying fact is that the sparsity constant
increases significantly with the dimension d.

We remark that a similar dimensional dependence holds for another sparsity constant: When we deal
with usual sparse matrices, we may define Csp(A) by the maximum or average number of non-zero entries
per row. A FE method in a tensor grid leads to Csp = 3 for d = 1, Csp = 9 for d = 2, and Csp = 27 for
d = 3. Again the increase is exponential like 3d, but not as dramatic as for C(P , d, η) from above.

2.5 Weak Admissibility

In order to get a simpler partitioning P , we have to weaken the admissibility condition Admη. Instead of
(2.17), we define

AdmW (b) = true for b = τ × σ ∈ T (I × I) :⇐⇒ ((b is a leaf) or σ = τ) , (2.24)

where τ, σ are assumed to belong to the same level. Note that the definition of AdmW does not depend on
kind of basis functions ((2.4) or (2.5)).

We call (2.24) the ‘weak admissibility’ and say that a block is ‘W-admissible’.

Figure 2.3: Partitioning PW corresponding to the weak admissibililty.

Remark 2.6 a) Let Admη and AdmW be as in (2.17) and (2.24). Then for all τ × σ ∈ T (I × I) it holds
that Admη (b) =⇒ AdmW (b) (independently of η > 0).

b) Let Pη and PW be the respective partitionings generated by Admη and AdmW . Then PW has fewer
and bigger blocks in the sense that if b ∈ Pη then there is a block b′ ∈ PW with b ⊂ b′.

c) In the case of Example 2.1, b = τ �
i × τ �

j is W-admissible if i = j or 	 = L. In the case of piecewise
constant basis functions (see (2.4)), a block b = τ × σ ∈ T (I × I) is W-admissible if the intervals X(τ) and
X(σ) intersect at most in a point.

Remark 2.7 Note that in the case of piecewise linear basis functions (see (2.5)), X(τ) and X(σ) may
overlap by more than a point: X(τ �

i ) ∩ X(τ �
i+1) =

[(
i ∗ 2L−� − 1

)
h,

(
i ∗ 2L−� + 1

)
h
]
. The clusters τ �

i , τ �
i+2

overlap in the point
(
i ∗ 2L−� + 1

)
h, while for |i − j| > 2 the clusters τ �

i , τ �
j are disjoint.

The coarse partitioning observed in Remark 2.6 can be expressed by means of the sparsity constant.
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Lemma 2.8 The partitioning PW has the minimum sparsity constant Cst (PW ) = 1. Further, CL
st (PW ) = 2.

This implies Nst ≤ [2k (L − 1) + 2] n ≤ 2kLn for the storage size.

The generalisation to the 2D and 3D case will be considered in a forthcoming paper [14].

3 Accuracy

The purpose of the hierarchical matrix format is the approximation of a dense matrix A as in (2.3) by a
matrix Ak ∈ MH,k(I × I,P). The typical dependence of ‖A − Ak‖ on the local rank k is discussed below.

3.1 Standard Case

For the integral operator (2.3) with the kernel (2.2), it is shown in [8] that

‖A − Ak‖ = O (
ηk

)
(3.1)

with η = 1/2 in the case of the partitioning of Figure 2.1. In [11] and [12] it is proved that (3.1) holds
for asymptotically smooth kernels. A similar estimate is true for Green’s functions corresponding to ellip-
tic differential operators (cf. [3]). The proof is based on the fact that the kernel function s(x, y) can be
approximated by a degenerate kernel

sk,b(x, y) =
k∑

i=1

Φi,b(x)Ψi,b(y), (3.2)

in the sense that |s(x, y) − sk,b(x, y)| = O (
ηk

)
for x ∈ X(τ) and y ∈ X(σ), where b = τ × σ is an Admη-

admissible cluster (cf. (2.17)).
Estimate (3.1) ensures exponential convergence for increasing k. In particular,

‖A − Ak‖ ≤ ε

can be obtained by the choice k = O (|log ε|). Usually, we want to have ε smaller than the discretisation
error, which is expected to be of the size O (n−κ) with κ > 0 depending on the consistency order of the
discretisation. Therefore, the practical choice of k is

k = O (log n) . (3.3)

Estimate (3.1) has a theoretical and a practical aspect. Both are discussed below.
Theoretical aspect: If we use the Frobenius norm, there is a projection from the set of (dense) matrices onto
hierarchical ones,

πk : R
I×I → MH,k(I × I,Pη). (3.4)

For any A|b, b ∈ P , the singular-value decomposition (SVD) defines2 the optimal truncation to a block
matrix (πkA)|b of rank ≤ k (see [8]). Hence, the estimate (3.1) can be understood in the sense that
‖A − πkA‖ = O (

ηk
)

holds for best approximation Ak := πkA in MH,k(I × I,Pη).
Practical aspect: In particular for BEM applications, one must avoid the set-up of the matrix A, since this
costs at least O(n2) operations. Therefore the projection πk cannot be applied. Instead one needs efficient
methods to determine Ak ∈ MH,k(I × I,Pη) directly. There are at least two different approaches.

The first approach starts from the kernel approximation (3.2), which can, e.g., be obtained either by Taylor
expansion or interpolation (e.g., see [13, 10]). Integration of sk,b(x, y) multiplied by the basis functions yields
the desired candidate Ak ∈ MH,k(I × I,Pη). An exception is a leaf b (1× 1 block), in which case the entries
aij of Ak are the original entries of A (in the 1D model case this happens only for |i − j| ≤ 1).

A second approach is described in [2], [4]. It uses the information of few entries aij of A to construct
Ak ∈ MH,k(I × I,Pη).

2Let A|b = UΣV � be the SVD, i.e., U, V unitary, Σ = diag {σ1, . . . , σn} with σ1 ≥ σ2 ≥ . . . ≥ σn. Set Σk :=
diag {σ1, . . . , σk , 0, . . . , 0} . Then (πkA) |b is defined by UΣkV �.
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3.2 Case of Weak Admissibility

Now we consider the partitioning PW due to the weak admissibility condition of §2.5. The obvious advantage
of PW is the fact that the partitioning is simpler (fewer and bigger blocks). However, this makes sense only
if we can obtain the same accuracy ‖A − Ak‖ ≤ ε by a similar local rank k as before. Here, a problem arises
which may be formulated as follows. Let πk : RI×I → MH,k(I × I,PW ) be the projection defined via SVD
(3.4). The critical question is

How does εk := ‖A − πkA‖ behave for increasing local rank k ? (3.5)

An equivalent question is:

What is the minimum k = k(ε) to ensure ‖A − πkA‖ ≤ ε ? (3.6)

A second question is how to determine Ak practically.
In the case of Admη, one could use Taylor’s expansion of s(x, y) = log |x − y| for x ∈ X(τ) and y ∈ X(σ).

The distance between X(τ) and X(σ) enables an estimate of the Taylor remainder. Now, in the case of
AdmW , the intervals X(τ) and X(σ) may touch as, e.g., X(τ1

1 ) = [0, 1/2] and X(τ1
2 ) = [1/2, 1] for the case

(2.4). But then the Taylor remainder becomes unbounded at x = y = 1/2 and the standard proof does not
work.

3.2.1 Blockwise Agglomeration

Due to Remark 2.6b, any block b ∈ PW is a (disjoint) union of blocks bι ∈ P1/2. Figure 3.1 shows on the
right side the block b = τ1

1 × τ1
2 ∈ PW (upper right quarter in Figure 2.3) and on the left the blocks bι ⊂ b

from P1/2. One sees that the blocks bι consists of three blocks of the levels 2, 3, . . . , L− 1 and four blocks of
level L. Hence, the number of blocks is 3 (L − 2) + 4 < 3L.

Figure 3.1: Left: the blocks from P1/2 contained in b = τ1
1 × τ1

2 ∈ PW . Right: block b ∈ PW

Next, we consider question (3.6). Let πs
k be the projection (3.4) associated with P1/2, while πW

k refers
to the partitioning PW . For a given ε, we choose k such that ‖A − πs

kA‖ ≤ ε for πs
kA ∈ MH,k(I × I,P1/2).

From (3.1) we know that k = ks(ε) = O (|log ε|). Now consider the block b = τ1
1 × τ1

2 ∈ PW discussed above.
The block matrix (πs

kA)|b consists of less than 3L block matrices (πs
kA)|bι (bι ∈ P1/2) which have a rank ≤ k

due to the definition of MH,k(I × I,P1/2). Hence, (πs
kA) |b is a sum of not more than 3L matrices of rank

≤ k and therefore has a rank bounded by 3Lk. Since this bound holds also for the other blocks of PW , this
proves

πs
kA ∈ MH,3Lk(I × I,PW ). (3.7)

Because of
∥∥A − πW

3LkA
∥∥ ≤ ‖A − πs

kA‖, (3.6) holds for the rank

k(ε) := 3Lks(ε), (3.8)

where ks(ε) = O(|log ε|) refers to the (strong) admissibility Adm1/2. However, the question concerning a
minimum k(ε) in (3.6) is not yet answered.
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The result (3.8) is not sufficient to encourage the use of the weak admissibility, since we pay with a
logarithmic factor L = log2 n for an improvement of the constant Csp. But Section 3.3 will show that the
bound 3Lks(ε) is too pessimistic.

The following Section 3.2.2 shows that the bound 3Lks(ε) can be replaced by Lks(ε). It will be explained
why the gain by the factor 3 is remarkable (cf. Remark 3.1 below).

3.2.2 Improved Agglomeration

The standard admissibility condition Adm1/2 in (2.17) involves the minimum of the diameters. This allows to
define a completely anisotropic block subpartitioning3 for the block b = τ1

1 ×τ1
2 ∈ PW discussed in Figure 3.1.

We let σ = τ1
2 unchanged but partition τ1

1 into τ2
1 , τ3

1 , . . . , τL
1 , τL

2 . Note that the union of these clusters yield
τ1
1 and that all blocks τ �

1 × τ1
2 (	 = 2, . . . , L) and τL

2 × τ1
2 are (strongly) admissible in the sense of Adm1/2.

The left side of Figure 3.2 shows this partitioning. Similar constructions can be defined for the other parts of

Figure 3.2: Left: anisotropic subpartitioning of b = τ1
1 × τ1

2 ∈ PW . Right: block b ∈ PW

the matrix. Denote the resulting subpartitioning by Panisotropic. Since Adm1/2 = true for the new blocks, we
get the same error estimate of ‖A − Ak‖ for Ak = πanisotropic

k A ∈ MH,k(I ×I,Panisotropic) as for the previous
partitioning P1/2. The number of the blocks

{
τ2
1 × τ1

2 , . . . , τL
1 × τ1

2 , τL
2 × τ1

2

}
(see Figure 3.2) is L. Hence,

rankAk|b ≤ Lk holds and proves that the best approximation πanisotropic
k A ∈ MH,k(I × I,Panisotropic) with

local rank k can be regarded as hierarchical matrix with local rank Lk with respect to the weak admissibility
condition:

πanisotropic
k A ∈ MH,Lk(I × I,PW ).

Remark 3.1 (a) Although the gain by a factor 3 compared with (3.7) seems to be quite modest, the result
becomes more significant when we look for generalisations to more than one spatial dimension. The factor 3
in 3Lk from the 1D case becomes a ‘constant’ Caggl(d) which increases with the dimension d. On the other
hand, the factor 1 in Lk = 1Lk remains unchanged when d increases.

(b) The derivation from above shows that the rank of (πanisotropic
k A)|b for b = τ �

i × τ �
i+1 ∈ PW is even

bounded by (L − 	 + 1)k.

We recall that the storage cost given in (2.21) is Nst ≤ 2kLCsp (P)n. In the case of P = P1/2 we get
Nst ≤ 2kLCsp(P1/2)n with L = log2 n, while PW yields a comparable accuracy with k′ = Lk so that the
storage cost is Nst ≤ 2kL2Csp(PW )n (or even Nst ≤ L (L + 1)Csp(PW )n due to Remark 3.1b). Hence,
Csp(P1/2) has to be compared with 1

2Csp(PW ) log2 n. Since 2Csp(P1/2)/Csp(PW ) is rather large for d ≥ 2,
the inequality Csp (PW ) log2 n ≤ 2Csp(P1/2) can be expected to be valid for realistic sizes of n.

Nevertheless, the foregoing bounds are too pessimistic as shown next by means of numerical examples.

3.3 Numerical Results

The previous constructions can only yield upper bounds for the true rank k(ε), which can be computed
exactly by means of SVD.

3This partitioning is not used in practice, since this format is less efficient for matrix operations.
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3.3.1 A Numerical Study by SVD

We consider the kernel log |x − y| = log (|x| + |y|) for x ∈ I1 := [−1, 0] and y ∈ I2 := [δ, 1 + δ]. If δ > 0, the
intervals I1, I2 are (strongly) admissible in the sense of Adm1/(2δ); in particular, Adm1/2 = true holds for
δ ≥ 1. On the other hand, for δ = 0 the intervals I1 and I2 are only weakly admissible.

The Nyström discretisation (cf. [1] for more details) leads to the submatrix

A = (log |ξi − ηj |)n
i,j=1 with ξi = − i − 1/2

n
, ηj = δ +

j − 1/2
n

corresponding to I1, I2. The argument closest to the singularity is |ξ1 − η1| = δ + 1
n .

The following results corresponding to n = 128 show the singular values σk of A for various values of δ.
The relation to the question (3.5) is given by the following result. Let A = UΣV � be the SVD of A and
define Ak := UΣkV � with Σk := diag {σ1, . . . , σk, 0, . . . , 0} . Then rank (Ak) = k and ‖A − Ak‖ = σk+1 hold
with respect to the spectral norm. Hence, εk = σk+1 are the corresponding errors and can be seen from
Table 3.1.

k 1 2 3 4 5 10 15 20 25 30
n = 128, δ = 0 10.1 4.69 6.2-01 9.7-02 1.8-02 2.2-06 1.2-10 2.7-15 1.3-16 1.1-16
n = 128, δ = 0.1 7.4 5.42 1.9-01 1.1-02 8.6-04 4.4-09 2.6-14 1.4-16 1.2-16 1.1-16
n = 128, δ = 1 14.3 1.10 5.8-03 6.4-05 8.3-07 2.3-15 2.9-16 1.9-16 1.7-16 1.5-16
n = 256, δ = 0 20.3 9.38 1.26 0.21 4.5-02 1.7-05 3.2-09 3.7-13 2.8-16 2.3-16

Table 3.1: Singular values σk of the matrix A for different values of δ

We see that in all cases the approximant Ak converges to A exponentially with respect to k, but the
coefficients in the exponents depend on the distance parameter δ (see also Figure 3.3).

The next result corresponds to a BEM application in 2D, where the integration is performed over a curve
Γ ⊂ R2. We assume that Γ contains two straight lines joining at 0 ∈ R2 by a 90◦ angle:

I1 := {(x, y) ∈ R
2 : y = 0, x ∈ [0, 1]}, I2 := {(x, y) ∈ R

2 : x = 0, y ∈ [δ, 1 + δ]}.

Again, A = (log ‖ξi − ηj‖)n
i,j=1 with ξi =

(
(i − 1

2 )h, 0
) ∈ I1 and ηj =

(
0, δ + (j − 1

2 )h
) ∈ I2 is the Nyström

approximation with step size h = 2/n, where n = 128.

1 10 19
10

−15

10
−10

10
−5

10
0

1 10 19
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−15

10
−10

10
−5

10
0

Figure 3.3: Singular values of a Nyström matrix A (left: δ = 0, right: δ = 1)

The comparison of the numbers for δ = 0 (corresponding to AdmW ) and δ = 1 (corresponding to
Adm1/2) seems to show that a certain accuracy ε is obtained for the choice kδ(ε), where the kδ for δ = 0, 1
are proportional (see Figure 3.3):

k0(ε) ∼ cpk1(ε) with cp ≈ 2. (3.9)
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3.3.2 Decay of Singular Values

A constant of size cp ∈ [2, 3] would be much more desirable than the logarithmic factor from (3.8). In
particular, a constant factor would imply that the singular values decay with the same speed as in the
strongly admissible case, namely σk � exp (−ck) (cf. (3.1), where −c = log(η)).

The relation (3.9) is almost true, as the following proposition is stating.

Conjecture 3.2 a) For discretisations of the 1D single layer potential operator, the partitioning PW is
appropriate in the following sense: All submatrices A|b, b ∈ PW , have singular values decaying like σk �
C1 exp (−ck) independent of the matrix size. As a consequence, the answer to question (3.6) would be
k(ε) = O(| log ε|).

Proposition 3.3 b) The local ranks kW (ε), ks(ε) for the blocks of the respective partitioning PW ,P1/2 are
related by kW (ε) ≤ c′ks(ε) with a moderate constant c′ independent of n and ε (the experiments indicate a
value of about c′ ∈ [2, 3.5]).

In §3.4 we list several approaches which, unfortunately, do not prove our conjecture. Instead they yield
either σk � exp(−c

√
k ) or σk � exp(−ck/ log (1/h) )

3.3.3 Example of a Collocation Method

To observe the behaviour of σk more carefully, we consider a simple model problem. Let A be the matrix
arising from a collocation BEM in Ω = [0, 1] with the kernel function s(x, y) := log |x − y|. We use the
piecewise constant elements from (2.4). The entries of A are

aij =
∫ jh

(j−1)h

log
∣∣(i − 1

2

)
h − y

∣∣ dy for i, j = 1, . . . , n,

where h = 1/n. The matrix AH is computed using the best approximation of the matrix blocks of A by
SVD. The integrals needed for aij are evaluated exactly.

The hierarchical matrix approximating A is denoted by AH. The upper part of Table 3.2 compares AH
obtained by Adm1/2 and AH obtained by AdmW . The storage size of AH is given in Megabyte.

Adm1/2 AdmW

n k ||A−AH||F
||A||F storage k ||A−AH||F

||A||F storage
256 2 2.010-5 0.1 5 9.110-6 0.1
512 2 1.510-5 0.3 5 1.110-5 0.3

1024 2 1.010-5 0.7 5 1.110-5 0.7
2048 2 7.410-6 1.7 5 8.810-6 1.5
4096 2 5.310-6 3.8 5 6.710-6 3.3
8192 2 3.710-6 8.3 5 5.010-6 7.4
8192 2 3.810-6 8.3 5 5.010-6 7.4

16384 2 2.810-6 18.2 5 3.710-6 16.1
32768 2 2.010-6 39.5 5 2.710-6 34.8

Table 3.2: Accuracy and storage size in the strongly and weakly admissible case

We see that the storage size is less in the case of weak admissibility. This is due to the fact that
Csp(PW ) = 1 = Csp(P1/2)/3 holds for the sparsity constants, while the ratio 5/2 of the involved local ranks
is ≤ 3.

We consider the blocks depicted in Figure 3.4, which are the biggest strongly or respectively weakly
admissible blocks. The respective dimension is chosen such that the blocks b from Figure 3.4 have identical
sizes nb × nb. In Figure 3.5, we present the first singular values σk of these weakly and strongly admissible
blocks for increasing size nb.

13



n

n

n

n

W−adm. blockS−adm. block

b

b

b

b

Figure 3.4: Admissible blocks used in Figure 3.5

In the strongly admissible case, the σk values are near independent of nb (see left part of Figure 3.5). The
exponential decay σk ∼ exp (−ck) corresponds to the linear decrease shown in Figure 3.6 (label “standard”)
because of the logarithmic scaling.

In the weakly admissible case, for fixed k, the σk values increase as nb → ∞ (see right part of Figure 3.5).
Obviously, for smaller nb the singular values decay faster as k → ∞ than for larger nb. If we fix an error
bound ε, kW (ε) increases as nb → ∞: whenever the graph of some σk crosses the horizontal line σ = ε, kW (ε)
increases by one. However, kW (ε) must remain bounded, since the provable inequality σk � exp(−ck/ log(k))
implies kW (ε) � log | log ε| · | log ε| independent of nb. But even for the size nb = 4096, the σk’s show the
behaviour σk ∼ exp(−ck) due to the linear graph in Figure 3.6 (with label “weak”). On the other hand,

First Singular Values (Standard)

32 64 128 256 512 1024 2048 4096
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First Singular Values (Weak)

32 64 128 256 512 1024 2048 4096
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1e−1
1e0 σ1

σ13

Figure 3.5: Singular values of S-admissible (left) and W-admissible (right) blocks for different blocksizes.

the constant c in σk ∼ exp(−ck) seem to increase with nb → ∞. For a closer analysis, we make the
ansatz σk = C1 exp (−ckα) with constants C1, c, α and consider the ratios σ1/σk = exp (c(kα − 1)) , i.e.,
log (σ1/σk) = c(kα − 1). The determination of the remaining constants c, α is done by minimising

J∑
k=1

(
log

σ1

σk
− c(kα − 1)

)2

.

In the weakly admissible case with n = 256, the least squares minimisation leads to c = 1.56, α = 1.02, while
the strongly admissible case yields c = 4.3, α = 1.05. The corresponding results for n = 4096 are c = 1.23,
α = 1.05 (W-admissibility) and c = 4.2, α = 1.05 (S-admissibility). The ratio c′ mentioned in Conjecture
3.2b corresponds to the ratios of the c-values: 4.3/1.56 = 2.74 and 4.2/1.23 = 3.4 confirm c′ ∈ [2, 3.5] .

The fit of the points (k, log σ1
σk

) by ϕc,α(k) = c(kα − 1) with the values c, α from above is presented in
Figure 3.7. The perfect match is a clear indication that the Conjecture 3.2 might be true with small enough
constant c in the exponent.
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Singular Values (Standard and Weak)
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Figure 3.6: Comparison of the singular values of S- and W-admissible blocks (right) from Figure 3.5

Adm1/2 AdmW

n k
∥∥I − AA−1

H
∥∥

F
CPU k

∥∥I − AA−1
H

∥∥
F

CPU
256 2 8.010-5 0.2 5 1.810-5 0.04
512 2 8.110-5 0.4 5 3.410-5 0.1

1024 2 8.110-5 1.1 5 4.610-5 0.3
2048 2 8.110-5 2.8 5 1.410-4 0.7
4096 2 8.110-5 6.7 5 1.510-4 1.8
8192 2 8.010-5 15.9 5 1.510-4 4.4

16384 2 8.010-5 37.3 5 1.510-4 10.5
32768 2 8.110-5 86.0 5 1.510-4 25.2

Adm1/2 AdmW

n k CPU k CPU ‖AH,s − AH,w‖2 / ‖AH,s‖2
131072 4 1031 12 475 110 − 6

Table 3.3: Error of the inverse and CPU time needed

The hierarchical matrix technique enables an approximate inversion (see [8]). We perform this inversion
with respect to the different formats. Table 3.3 shows the relative error

∥∥I − AA−1
H

∥∥ and the computing
time in seconds.

Table 3.3 indicates two remarkable facts. First it shows that comparable starting errors ||A − AH|| lead
to comparable errors

∥∥I − AA−1
H

∥∥ (this norm bounds the relative error ||A−1 − A−1
H ||/||A−1||) although the

computation is performed in different formats. Second, the CPU time is much better in the case of the weak
admissibility. The reason is that the CPU time has a bound where Csp appears quadratically (see (2.22)).
This explains a gain of more than a factor 3 = Csp(P1/2)/Csp(PW ).

The upper part of Table 3.3 can be completed by results for the higher dimension n = 217. Since the
computation of the SVD is too expensive, we give only the relative error ‖AH,s − AH,w‖2 / ‖AH,s‖2 .

3.3.4 Practical Implementation

For BEM matrices, it remains to explain how to compute the blocks A|b, b ∈ PW .
First, we consider Adm1/2: Instead of using SVD to fill the rank-k-matrices, we use an algorithm described

in [2], [4], which approximates the respective low-rank blocks by evaluating few block entries. In order to
increase the accuracy, the procedure is used to produce a local rank k′ > k (standard choice in later examples
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Figure 3.7: Least square fitting of singular values for W - and S-admissible blocks (n = 256, 4096)

is k′ = 3k) followed by an optimal truncation to rank k.
This procedure (as well as the proof of its accuracy) applies only to the S-admissible case.
In the case of the W -admissibility, consider a block b ∈ PW . It is the union b = ∪̇ibi of S-admissible blocks

bi ∈ P1/2. While the agglomeration in §3.2.1 maps rank-k-matrices A|bi into A|b with rank ≤ 3Lk without
loss of information, the following computation of A|b uses a recursive truncation, where k is a given positive
input number. The following algorithm actually generalises the so-called ACA-approximation (cf. [2, 4] and
[18]) to the case of W -admissibility. It will be called the weak adaptive cross approximation (WACA) and it
can be implemented as follows.

1. Compute A|bi with rank ≤ k for all bi ∈ P1/2, bi ⊂ b ∈ PW , as described above.

Let 	 := level(b). Then the blocks bi belong to the levels 	 + 1, . . . , L; more precisely, there are four bi’s of
level L, and three bi’s for the levels 	 + 1, . . . , L − 1.

2. For m = L, L − 1, . . . , 	 + 1 do: Agglomerate the four blocks of level m into one block of rank 4k
(belonging to level m + 1) and truncate to rank k.

Note that Step 2 produces a new block of level m + 1 so that in the next step of the loop, 4 blocks of level
m + 1 are available. When the loop finishes, A|b with rank ≤ k is computed.

The accuracy of the H-matrix obtained by this procedure is almost identical to the accuracy of the exact
singular value decomposition. The second part of the tables 3.2 and 3.3 shows the results of the approximate
algorithm for larger problem sizes. Although the accuracy is the same, it comes with a much smaller cost,
because the complexity of the present method is only O(k′n log n) compared to the complexity O(n3) of the
exact SVD.
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3.4 Approximation Results

In this section, we consider the case of the kernel s(x, y) for x ∈ I1, y ∈ I2 in two intervals with one common
end point, say I1 = [−1, 0] and I2 = [0, 1]. Since only a constant number of basis functions contains the
common end point 0 in their support, we are allowed to reduce the intervals to I1 = [−1,−h] and I2 = [h, 1],
where h is the local step size (here we assume that O(log 1/h) = O(log n)). The omitted degrees of freedom
can increase the rank of the corresponding block only by a constant.

Problem 3.4 The resulting problem is the separable approximation (3.2) for log (x + y) in x, y ∈ [h, 1].

Remark 3.5 Instead we can also look for a separable approximation of 1/ (x + y) for x, y ∈ [h, 1]. A sepa-
rable approximation of the latter kernel yields a separable approximation of log (x + y) after integration with
respect of one of the unknowns x or y.

Let ε > 0 be a given accuracy. We are looking for a separable approximation (3.2) with k = k(ε) such
that the error is below ε. There are various approaches via interpolation, which however have not yet led to
the desired accuracy, i.e., the asymptotic of k(ε) is clearly worse than log(1/ε), which is the Conjecture 3.2.
Here we list several approaches together with their results.

(1) The hp-adaptive piecewise polynomial interpolation leads to k(ε) = O(log2(1/ε)) terms. This estimate
is independent of h.

(2) The optimal rational approximation of 1/ (x + y) (see Remark 3.5) is (implicitly) used for the optimal
ADI parameters (see [7, Section 7.5.3]) and leads to k(ε) = O(log(1/h) · log(1/ε)) terms.

(3) The sinc interpolation needs a mapping φ from R onto [0, 1], e.g., φ(ζ) := 1/ cosh(ζ). Then
φα(ζ) log (φ(ζ) + y) with α > 0 can be interpolated by sinc functions w.r.t. ζ. Due to the fast decay of φ as
|ζ| → ∞, the infinite sum can be replaced by a finite one with k(ε) = O(log2(1/ε)) term (see [17]).

(4) The quadratic behaviour in the previous approach is due to the fact that φ decays “only” expo-
nentially. The function φ(ζ) := 1/ cosh(sinh(ζ)) used in [16] decays twice exponentially so that a function
like φα(ζ) log (φ(ζ)) can be interpolated by k(ε) = O(log(1/ε) · log log(1/ε)) sinc terms. Unfortunately,
log (φ(ζ) + y) with small but positive y leads to singularities quite close to the real axis. An involved
analysis then leads to k(ε) = O (log(1/ε) · min{log(1/ε), log(1/h)}) (cf. [9]).4

(5) The agglomeration technique from §§3.2.1-3.2.2 yields the rank k(ε) = O (log(1/ε) · log(n)) .

Although the results of these five approaches look different, they all coincide with k(ε) = O( log2 n) for
the usual choice log(1/ε) = O( log n) because of log(1/h) = O( log n). Interestingly, the approaches (1) and
(3) work for h = 0, in particular, the separable approximation can be used for the continuous problem.

Finally, we discuss a further approach by sinc quadrature:

(6) The integrand in 1
r =

∫ ∞
−∞ esinh(x) − resinh(x)

cosh(x)dx is of the form erF (t)G(t)dt. The sinc quadra-
ture (with step size h) yields the sum

∑
ν∈Z

erF (νh)G(νh) (cf. [17]). Since erF (t)G(t) is decaying very fast
for t → ±∞, one gets a finite sum 1/r ≈ ∑

ν erF (νh)G(νh). Setting r = x + y, we obtain the separable
approximation 1

x+y ≈ ∑
ν G(νh)exF (νh)eyF (νh). Although the numerical results prove to be rather accurate,

the theoretical estimate does not imply the desired estimate.

4 The Matrix Families Mk,τ and Mk(ε)

The previous results give rise to the following definitions of matrix sets Mk,τ and Mk(ε). The relation to
the hierarchical matrix sets MH,k(I × I,PW ) and MH2,k(I × I,PW ) will be mentioned in §§4.2-4.3. The
interesting properties can be used to describe approximations to meromorphic functions of A.

4.1 The Set Mk,τ

Definition 4.1 Let τ ∈ T (I) be a cluster and k ∈ N. Set τ ′ := I\τ. A matrix A belongs to Mk,τ (I) if
rank (A|τ×τ ′) ≤ k and rank (A|τ ′×τ ) ≤ k. If I is fixed, we write Mk,τ instead of Mk,τ (I).

4Numerical tests show a much better behaviour than indicated by the theoretical error bounds.
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For an illustration, we may numerate the indices of τ first. Then we get the partitioning

A =

τ τ ′ = I\τ
A11 A12 τ
A21 A22 τ ′

(4.1)

and Definition 4.1 states rankA12 ≤ k and rankA21 ≤ k.
The following simple results are of importance. Note that the operations ∗,−1 , + are exact without any

truncation.

Lemma 4.2 (a) Let A ∈ MkA,τ and B ∈ MkB ,τ . Then A ∗ B ∈ Mk,τ for k = kA + kB.
(b) Let A ∈ Mk,τ be invertible. Then A−1 ∈ Mk,τ holds with the same k.
(c) Let A ∈ Mk,τ . Then A + aI ∈ Mk,τ for any a ∈ C.
(d) Let A ∈ Mk,τ (I) and τ ⊂ I ′ ∈ T (I), where I ′ ⊂ I is a proper subset. Then the principal submatrix A|I′×I′

belongs to Mk,τ (I ′). The same holds for the Schur complement SI′ = A|I′×I′−A|I′×I′′∗(A|I′′×I′′)−1∗A|I′′×I′

(I ′′ := I\I ′), provided that (A|I′′×I′′)−1 exists.

Proof. a) Using the notation (4.1) for A, B and C := AB correspondingly, we have C12 = A11B12 +A12B22.
From rank (A11B12) ≤ rank (B12) ≤ kB and rank (A12B22) ≤ rank (A12) ≤ kA we conclude that rank(C12) ≤
kA + kB. Similarly for rank(C21).

b1) Assume that the block matrix A11 is invertible, too. Then the Schur complement S = A22 −
A21A

−1
11 A12 is also invertible and the inverse of A from (4.1) is given by

A−1 =
[

A−1
11 + A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
. (4.2)

Obviously, rank(A−1|τ×τ ′) = rank(−A−1
11 A12S

−1) ≤ rank(A12) ≤ k as well as rank(A|τ ′×τ ) ≤ rank(A12) ≤ k
proving A−1 ∈ Mk,τ .

b2) If A11 is singular, the matrix Aε := A + εI is regular for ε = 0 sufficiently small. Since
rank

(
A−1

ε |τ×τ ′
) ≤ rankA12 independently of ε, it follows that A−1

ε ∈ Mk,τ . The limit limε→0 A−1
ε is

A−1, since by assumption A is regular. The rank satisfies rank
(
A−1|τ×τ ′

)
= rank

(
limε→0 A−1

ε |τ×τ ′
) ≤

limε→0 rank
(
A−1

ε |τ×τ ′
) ≤ rank (A12) ≤ k. Together with the similar estimate rank

(
A−1|τ ′×τ

) ≤ k, the
statement A−1 ∈ Mk,τ follows.

c) The operation A �→ A + aI does not change the parts ∗|τ×τ ′ and ∗|τ ′×τ .
d) Restricting a matrix to I ′× I ′ ⊂ I × I, one can only reduce the rank. Due to Part b), A−1 ∈ Mk,τ (I).

Note that (SI′)−1 is the principal I ′ × I ′-submatrix of A−1 implying (SI′)−1 ∈ Mk,τ (I ′). Applying again
Part b) yields SI′ ∈ Mk,τ (I ′).

A consequence is the following

Theorem 4.3 Let R(x) be the rational function R(x) = P I(x)/P II(x), where P I , P II are polynomials of
the respective degrees dI , dII ∈ N0. Let A ∈ Mk,τ be a matrix with eigenvalues distinct from the poles of R.
Then R(A) belongs to MkR,τ with kR = k ∗ dR, where dR := max (dI , dII) is the degree of R.

Proof. For theoretical reasons we may factorise P I , P II into P I(x) = aI

∏dI

i=1

(
x − xI

i

)
and P II(x) =

aII

∏dII

i=1

(
x − xII

i

)
with possibly complex xI

i , x
II
i . For i ≤ min (dI , dII) , the rational factors x−xI

i

x−xII
i

equal

1 +
(
xII

i − xI
i

)
/

(
x − xII

i

)
. Replacing x by A ∈ Mk,τ , we get I +

(
xII

i − xI
i

) (
A − xII

i I
)−1 ∈ Mk,τ by

Lemma 4.2c. Hence R(A) is a product of min (dI , dII) rational factors and max (dI , dII) − min (dI , dII)
linear factors which all belong to Mk,τ . Due to Lemma 4.2a, the product is in MkR,τ with kR = kdR.

4.2 Relation to the H-Matrix Format with Weak Admissibility

Remark 4.4 Let A ∈ Mk,τ for all clusters τ ∈ T (I). Then A ∈ MH,k(I × I,PW ).
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Proof. Let τ ′, τ ′′ be the sons of I. Then A|τ ′×τ ′′ coincides with the submatrix A12 of (4.1) proving
rank (A|τ ′×τ ′′) ≤ k. To check the further hierarchical structure, we consider the structure of the princi-
pal submatrix A|τ ′×τ ′ . Let τ̇ and τ̈ be the sons of τ ′. We have to prove that rank(A|τ̇×τ̈ ) ≤ k. This,
however, is a simple consequence of A ∈ Mk,τ̇ and τ̈ ⊂ I\τ̇ implying rank(A|τ̇×τ̈ ) ≤ rank(A|τ̇×(I\τ̇)) ≤ k.

Note that, in general, the reverse statement of Remark 4.4 is not valid. Instead, we have

Lemma 4.5 Let A ∈ MH,k(I × I,PW ). Then A ∈ M�·k,τ for all clusters τ ∈ T �(I) of level 	 (cf. (2.10)).

Proof. Let τ ∈ T �(I) and τ ′ = I\τ. Then τ × τ ′ has an intersection with 	 blocks b ∈ PW , for which by
definition rankA|b ≤ k. Thus, the rank of A|τ×τ ′ is bounded by 	 · k. Similar for A|τ ′×τ .

A stronger result holds for the more special class of H2-matrices discussed in §4.3.
A trivial case, where A ∈ Mk,τ holds for all τ ∈ T (I), is stated below.

Remark 4.6 Any band matrix belongs to Mk,τ for all τ ∈ T (I), where k is the band width (i.e., aij = 0
for |i − j| > k).

In the following, we consider a generalisation of the format MH,k(I × I,PW ). Replace the constant k by
a function k : PW → N0, i.e., the condition rankA|b ≤ k is replaced by rankA|b ≤ k(b) for all b ∈ PW . This
defines the set MH,k(·)(I × I,PW ).

A particular choice of k (·) is

k(b) := k� for all b ∈ T �(I × I) (4.3)

(cf. (2.12)), i.e., the value k(b) depends only on the level number 	 = level(b). Introducing the vector
k = (k�)

L
�=1, we can define

MH,k(I × I,PW ) = MH,k(·)(I × I,PW ) for k (·) from (4.3).

Note that MH,k(I × I,PW ) = MH,k(I × I,PW ) for the (constant) choice k� = k.
A conclusion from Lemmata 4.2b and 4.5 is

Corollary 4.7 Set k = (k�)
L
�=1 with k� := 	k. Let A ∈ MH,k(I × I,PW ). Then A−1 ∈ M�·k,τ for all

clusters τ ∈ T �(I). In particular, A−1 ∈ MH,k(I × I,PW ) holds.

4.3 Relation to the H2-Matrix Format

In [15] (see also [10]) the H2-matrices are introduced. Here, we need families (Vτ )τ∈T (I), (Wτ )τ∈T (I) of
subspaces Vτ , Wτ ⊂ Rτ with the consistency condition Vτ |τ ′ ⊂ Vτ ′ and Wτ |τ ′ ⊂ Wτ ′ for any son τ ′ of τ .
Then, we say that A ∈ MH2,k(I × I,PW ) if

dim Vτ ≤ k, dim Wσ ≤ k for all τ, σ ∈ T (I),
A|b ∈ Vτ ⊗ Wσ for all blocks b = τ × σ ∈ PW

(the tensor space Vτ ⊗Wσ is the span of all matrices vw� with v ∈ Vτ and w ∈ Wσ). Note that this implies
A ∈ MH,k(I × I,PW ); hence, MH2,k(I × I,PW ) ⊂ MH,k(I × I,PW ).

Remark 4.8 Let A ∈ MH2,k(I × I,PW ). Then A ∈ Mk,τ holds for all τ ∈ T (I).

Proof. First, one finds that for all τ ∈ T (I), the block τ × (I\τ) is the (disjoint) union of blocks bi = τ ×σi ⊂
τi × σi ∈ PW . By consistency, the restriction of the tensor space Vτi ⊗Vσi to τ ⊂ τi is contained in Vτ ⊗Vσi .
Hence, all blocks A|bi have an image contained in Vτ so that this holds also for the sum A|τ×(I\τ) implying
rankA|τ×(I\τ) ≤ dim Vτ ≤ k.

The reverse statement is also true.

Remark 4.9 Let A ∈ Mk,τ for all τ ∈ T (I). Then A ∈ MH2,k(I × I,PW ) holds with subspaces Vτ as
constructed in the proof.
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Proof. a) We remark that B ∈ Vτ ⊗ Wσ is equivalent to image(B) ⊂ Vτ and image(B�) ⊂ Wσ, where
image(·) is the image space, i.e., the span of the columns of the matrix.

b) For τ ∈ T (I) set Vτ := image(A|τ×τ ′) and Wτ := image((A|τ ′×τ )�), where τ ′ := I\τ . We have
dim Vτ = rankA|τ×τ ′ ≤ k and dimWτ ≤ k. Let τ̇ be a son of τ with the complement τ̇ ′ = I\τ̇ . Then
Vτ |τ̇ = image(A|τ×τ ′)|τ̇ = image(A|τ̇×τ ′). Since τ̇ ⊂ τ implies τ ′ ⊂ τ̇ ′, we have Vτ |τ̇ ⊂ image(A|τ̇×τ̇ ′) = Vτ̇ .
Similarly, Wτ |τ̇ ⊂ Wτ̇ holds, proving the consistency conditions.

c) Let b = τ × σ ∈ PW and set τ ′ := I\τ, σ′ := I\σ. Since σ ⊂ τ ′, image(A|b) ⊂ image(A|τ×τ ′) = Vτ .

Analogously, image((A|b)�) ⊂ Wσ holds, proving A|b ∈ Vτ ⊗ Wσ and thus A ∈ MH2,k(I × I,PW ).
Combining the Remarks 4.8 and 4.9, we obtain

Lemma 4.10 Let A ∈ MH2,k(I ×I,PW ) with respect to the subspace families {Vτ , Wτ : τ ∈ T (I)}. Assume
that all principal submatrices A|τ×τ are invertible. Then A−1 ∈ MH2,k(I × I,PW ) holds with respect to the
subspace families {V̂τ := (A|τ×τ )−1 Vτ , Ŵτ := (A|τ×τ )−� Wτ : τ ∈ T (I)}.
Proof. Let τ ∈ T (I) and represent A−1|τ×τ ′ as in (4.2) by −A−1

11 A12S
−1 (note that A11 = A|τ×τ and A12 =

A|τ×τ ′). Hence, V̂τ = image(A−1|τ×τ ′) ⊂ image(A−1
11 A12) = A−1

11 image(A12) = (A|τ×τ )−1
image(A|τ×τ ′) =

(A|τ×τ )−1
Vτ .

Corollary 4.11 Remarks 4.8, 4.9 and Lemma 4.10 are easily generalisable to MH2,k(I × I,PW ) with any
vector k = (k�)

L
�=1 .

4.4 The Set Mk(ε)

The previous results use the property that A satisfies A ∈ Mk,τ simultaneously for all τ ∈ T (I). For other
considerations it suffices to find for all τ ∈ T (I) different Aτ ∈ Mk,τ which are close to a matrix A ∈ CI×I .

Let ‖·‖ be a suitable matrix norm. Assume that a cluster tree T (I) is given. Due to the result of
Corollary 4.7, we are interested in a level-dependent rank k = (k�)

L
�=1 .

Definition 4.12 Let k = (k�)
L
�=1 . A matrix A ∈ CI×I belongs to Mk(ε) with ε ≥ 0, if for all clusters

τ ∈ T (I) there exists a matrix Aτ ∈ Mk�,τ (	 = level(τ)) with ‖A − Aτ‖ ≤ ε.

The following statements are trivial:

Remark 4.13 (a) If A ∈ Mk(ε1) and ‖A − A′‖ ≤ ε2, then A′ ∈ Mk(ε1 + ε2).
(b) If A ∈ Mk(0), then A ∈ Mk�,τ for all τ ∈ T �(I).

Applications to BEM matrices are mentioned in the parts a,b of

Remark 4.14 (a) Assume that Conjecture 3.2 applies to the kernel of an integral operator on a curve (i.e.,
on a one-dimensional manifold). Then the BEM matrices belong to Mk(ε) with constant k� = k = O (|log ε|) .

(b) Consider BEM matrices as in (a). Without use of Conjecture 3.2, the agglomeration technique used
in Remark 3.1b yields an approximation in Mk(ε), where

k = (k�)
L
�=1 , k� = (L − 	 + 1) k (4.4)

and k = O(|log ε|).
(c) Another example is the Fredholm integral equation (λI + K)u = f with a kernel κ(x, y) of K being

sufficiently smooth in the two triangular parts 0 ≤ x < y ≤ 1 and 0 ≤ y < x ≤ 1. Due to the assumed
smoothness, the discretised problem leads to a matrix in the set Mk(ε) with constant k� = k.

We notice that also a Volterra integral equation with a smooth kernel satisfies the assumptions of Re-
mark 4.14c. Moreover, Green’s kernels also possess a similar property.

Due to (3.1), the stiffness matrix ABEM of a boundary element problem in R2 (i.e., the boundary is a
curve) can be approximated by Ak ∈ MH,k(I × I,Pη) such that ‖A − Ak‖ ≤ c′ηk for all 0 < η ≤ η0 with
some constant c′. We can use the construction of the agglomeration technique from Remark 3.1b. Then
Remark 4.14b with ε = cηk yields ABEM ∈ Mk(cηk) with k� = (L − 	 + 1) k and proves part (a) of
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Corollary 4.15 (a) Set k = (k�)
L
�=1 with k� := (L − 	 + 1)}k. Let ABEM be the stiffness matrix of a bound-

ary element problem in R2. Then for all 0 < η ≤ η0 there is a constant c such that ABEM ∈ Mk(cηk).
(b) If Conjecture 3.2 applies, ABEM ∈ Mk(cηk) holds even for the constant choice k� = k.

Proof. For part (b) use Remark 4.14a.
An important property of A ∈ Mk(ε) is the approximability by a B ∈ MH,k(I × I,PW ).

Theorem 4.16 Let ‖·‖ be the Frobenius norm and let A ∈ Mk(δ) with k := (k�)
L
�=1. Then there is

B ∈ MH,k(I × I,PW ) with

‖A − B‖ ≤ δ
√

nP/2, where nP := #
{
b ∈ PW : b = τ × σ with min(#τ, #σ) > klevel(b)

}
. (4.5)

Proof. For blocks b = τ × σ ∈ T �(I × I) ∩ PW of size min {#τ, #σ} ≤ k�, we may set B|b := A|b causing
no approximation error. Consider a block b = τ × σ of a size exceeding k�. Due to A ∈ Mk(δ), there
is some Aτ ∈ Mk�,τ with ‖A − Aτ‖ ≤ δ. We set B|b := Aτ |b. This shows B ∈ MH,k(I × I,PW ) and
‖A|b − B|b‖2 + ‖A|b′ − B|b′‖2 ≤ ‖A − Aτ‖2 ≤ δ2, where b′ := σ × τ is the transposed block. Summation
over all blocks yields ‖A − B‖2 ≤ δ2nP/2, from which the statement follows.

We have used the Frobenius norm, since then blockwise estimates turn easily into a global estimate.
Here, improvements of the estimation may be possible. If we are interested in the exponentially asymptotic
behaviour δ = C exp (−βk), a factor

√
nP/2 = O(#I1/2) with polynomial dependence on the dimension #I

is irrelevant.

4.5 Approximation of Meromorphic Functions of A

Next we make use of the exact representation of rational functions in Theorem 4.3.

Theorem 4.17 Let k := (k�)
L
�=1 . Let ‖·‖ be the Frobenius norm and fix ε ≥ 0. Further, let R be a rational

function of degree dR which has no poles on the spectrum of the matrix A. Furthermore, assume A ∈ Mk(δ)
with δ such that ‖R(A) − R(Aδ)‖ ≤ ε for all Aδ with ‖A − Aδ‖ ≤ δ. Set kR = k ·dR := (k�dR)L

�=1 . Then (a)
R(A) ∈ MkR(ε) and (b) there is a matrix B with

B ∈ MH,kR(I × I,PW ) such that ‖R(A) − B‖ ≤ ε
√

nP/2 (nP from (4.5))

Proof. Due to A ∈ Mk(δ), for any τ ∈ T (I) there is Aτ ∈ Mk�,τ with ‖A − Aτ‖ ≤ δ. Hence
‖R(A) − R(Aτ )‖ ≤ ε and R(Aτ ) ∈ Mk�dR,τ due to Theorem 4.3. This proves part (a): R(A) ∈ MkR(ε).
Finally, Theorem 4.16 implies part (b).

The approximation of a meromorphic function by a rational one is considered in

Remark 4.18 Let A be a matrix with spectrum σ(A) and f a meromorphic function defined on Ω ⊃ σ(A).
Assume that there is a rational function R of degree dR such that ‖f(A) − R(A)‖ ≤ εR. Then, under the
assumptions of Theorem 4.17, there is a matrix B ∈ MH,kR(I × I,PW ) with ‖R(A) − B‖ ≤ εB. Together,
we obtain ‖f(A) − B‖ ≤ ε with ε = εR + εB.

5 Accuracy of the H-Inversion in MH,k(I × I,PW )-Format

A simple example of a rational function is f(x) = 1/x, so that Theorem 4.17 can be applied to the inverse
A−1. In [8], the inverse is computed by means of the block-Gauss elimination in the case of a general partition
P generated by a binary tree T (I). Here, we analyse the inversion algorithm in the case of the partitioning
PW . Due to the special format MH,k(I × I,PW ), we modify the algorithm from [8]. We start from the

representation of the inverse of A =
[

A11 A12

A21 A22

]
by (4.2). In [8], we recursively computed approximations

X11 ≈ A−1
11 and T ≈ S−1 and evaluated (4.2) with these replacements using the formatted addition and

multiplication. Now we treat the inversion of the Schur complement S differently.
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5.1 Inversion Algorithm

The approximate inversion procedure Inv is defined recursively. On level 	 = L the inversion is done exactly
(since #τL

i = 1, level L corresponds to 1 × 1 matrices!).
Assume that Inv is defined for all levels > 	 and let A ∈ MH,k(τ × τ,Pτ

W ) with level(τ) = 	. Here, we
use the notation Pτ

W = {b ∈ PW : b ⊂ τ × τ} for the partitioning restricted to τ × τ.
The submatrices A11, A22 (corresponding to the two sons τ1, τ2 of τ) belong to level 	 + 1. Therefore,

X11 := Inv(A11) and Inv(A22) are defined, provided that the inverses exist. The Schur complement S =
A22 − A21A

−1
11 A12 is approximated by S̃ = A22 − A21X11A12 and is of the form A22 + UV �, e.g., with

U := −B21 and V � := X11B12. Due to the assumption A ∈ MH,k(τ × τ,Pτ
W ), the off-diagonal blocks B21

and B12 have rank ≤ k�+1 implying that also U, V have rank ≤ k�+1. The Sherman-Morrison-Woodbury
formula yields S̃−1 = A−1

22 −A−1
22 U(I + V �A−1

22 U)−1V �A−1
22 . Replacing A−1

22 by X22 := Inv(A22), we obtain

Y22 := X22 − X22U(I + V �X22U)−1V �X22. (5.1)

The inversion (I + V �X22U)−1 is done explicitly, since it is a matrix of the small size k�+1 × k�+1. Finally,
we obtain

X =
[

X11 + X11A12Y22A21X11 −X11A12Y22

−Y22A21X11 Y22

]
(5.2)

as approximation of A−1. Inv∗(A) := X is the intermediate result, where all multiplications and additions are
performed exactly. Next we have to project the diagonal blocks of X to the desired format MH,k(τi×τi,Pτi

W ),
i = 1, 2, resulting in

Inv(A) := truncation ◦ Inv∗(A) ∈ MH,k(τ × τ,Pτ
W ). (5.3)

Note that the off-diagonal blocks are already of the required rank. This completes the recursive definition
of Inv on level 	.

Next we study the error Inv(A) − A−1. Note that a possible error is only caused by the truncation.
Obviously, the error would be large if the inverse cannot be well represented by some Z ∈ MH,k(τ × τ,Pτ

W ).
However, the previous results guarantee the existence of some Z ∈ MH,k(τ × τ,Pτ

W ) approximating A−1.
This property enables the main Theorem 5.2 below that is based on quite natural stability and approximation
assumptions explained next.

5.2 Stability Assumptions

Let the matrix A be the argument of Inv(A). The later assumptions must be valid not only for A but also
for its principal submatrices. Accordingly, we define the set A = {A|τ×τ : τ ∈ T (I)}.

The stability assumptions (5.4a,b) are restricted to errors ‖E‖ , ε small enough:
a) if B ∈ A, then for any perturbation E :

‖ (B + E)−1 − B−1‖ ≤ CS ‖E‖ . (5.4a)

b) Let B ∈ A and B =
[

B11 B12

B21 B22

]
∈ Rτ×τ (block partitioning with respect to S(τ) = {τ1, τ2}). Then

for any X11 ∈ Rτ1×τ1 and X22 ∈ Rτ2×τ2 with
∥∥X11 − B−1

11

∥∥ ≤ ε,
∥∥X22 − B−1

22

∥∥ ≤ ε,

the approximation of B−1 by X = Inv∗(B) (X from (5.2)) satisfies
∥∥X − B−1

∥∥ ≤ Cinvε. (5.4b)

5.3 Approximability in MH,k(I × I,PW )

Let ABEM be the stiffness matrix of a boundary element problem in R
2. We claim that

ABEM ∈ Mk(cηk) and A−1
BEM ∈ Mk(CScηk) for k from (4.4) (5.5)
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for some constants c, CS and all 0 < η ≤ η0. Indeed, ABEM ∈ Mk(cηk) is stated in Corollary 4.15a. Applying
Theorem 4.17 with δ = cηk and R(A) = A−1, we conclude from (5.4a) that A−1

BEM ∈ Mk(CScηk).
In addition to ABEM ∈ Mk(cηk) from (5.5), let A be an approximation satisfying ‖A − ABEM‖ ≤ O(ηk).

Then Remark 4.13a states that A ∈ Mk(cηk) for another constant c. Applying Theorem 4.17 with δ = cηk

and R(A) = A−1, we conclude from (5.4a) that A−1 ∈ Mk(CScηk). We summarise:

Lemma 5.1 Let (5.5) hold and choose any A ∈ MH,k(I × I,PW ) with ‖A − ABEM‖ ≤ cηk. Assume (5.4a)
for B := A. Then there is a matrix Z ∈ MH,k(I × I,PW ) with

∥∥A−1 − Z
∥∥ ≤ C(I) cηk for some Z ∈ MH,k(I × I,PW ) (5.6)

with C(I) := CS

(
1 +

√
nP/2

)
with nP from (4.5).

Proof. ‖A − ABEM‖ ≤ cηk and (5.4a) imply
∥∥A−1 − A−1

BEM

∥∥ ≤ CScηk. Furthermore, by Theorem 4.16 there
is some Z ∈ MH,k(I × I,PW ) with

∥∥Z − A−1
BEM

∥∥ ≤ CScηk
√

nP/2. Together, we get (5.6).

5.4 Approximation to A−1

In this section, we study the error of the approximate matrix operation Inv(A) for A ∈ MH,k(I × I,PW ).

Theorem 5.2 For a given A ∈ MH,k(I × I,PW ) with k from (4.4) define the family A = {A|τ×τ : τ ∈
T (I)}. Assume the stability property (5.4b) and the approximation property (5.6) for all B ∈ A. Then, with
η small enough, the approximate H-matrix inverse Inv(A) ∈ MH,k(I × I,PW ) obtained by the algorithm
from §5.1 satisfies

∥∥Inv(A) − A−1
∥∥ ≤ 2C(I) c

(
1 + Cinv + C2

inv + ... + CL−�−1
inv

)
ηk, (5.7)

with C(I) from (5.6), Cinv from (5.4b) and 	 such that A ∈ R
τ×τ with τ ∈ T �(I). The computational cost

of Inv(A) has the standard bound
NInv = O(k2

1L2n).

Proof. The matrices of A belong to Rτ×τ for some τ ∈ T �(I), 	 ∈ {0, . . . , L}. We prove the assertion by
induction over the level number 	 = L down to 0. The induction hypothesis reads

∥∥Inv(B) − B−1
∥∥ ≤ ζ� for all B ∈ A associated with τ ∈ T �(I), where

ζ� = 2C(I) c ηk
(
1 + Cinv + C2

inv + ... + CL−�−1
inv

)
. (5.8)

Since for 	 = L the inversion is performed exactly, the induction hypothesis is trivially valid: ζL = 0.
Let the hypothesis be valid for 	 + 1 and consider B ∈ A, B ∈ Rτ×τ , τ ∈ T �(I). S(τ) = {τ1, τ2} induces

the block structure B =
[

B11 B12

B21 B22

]
. By induction

∥∥Xii − B−1
ii

∥∥ ≤ ζ�+1 for Xii := Inv(Bii), i = 1, 2,

holds. The approximation of the Schur complement B22 − B21B
−1
11 B12 by Y22 from (5.1) produces the

intermediate approximation X = Inv∗(B) defined in (5.2). Now, condition (5.4b) can be applied with
ε = ζ�+1 and yields ∥∥Inv∗(B) − B−1

∥∥ ≤ Cinvζ�+1.

By the approximability assumption (5.6), there is Z ∈ MH,k(I × I,PW ) with
∥∥Z − B−1

∥∥ ≤ C(I) cηk.
Let Π be the truncation from (5.3) onto MH,k(I × I,PW ). Then Inv(B) = ΠInv∗(B) and

∥∥Inv(B) − B−1
∥∥ ≤ ‖ΠInv∗(B) − Z‖ +

∥∥Z − B−1
∥∥ = ‖Π(Inv∗(B) − Z)‖ +

∥∥Z − B−1
∥∥

≤ ‖Inv∗(B) − Z‖ +
∥∥Z − B−1

∥∥ ≤ ∥∥Inv∗(B) − B−1
∥∥ + 2

∥∥Z − B−1
∥∥

≤ 2C(I) cηk + Cinvζ�+1 = ζ�.
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This completes the induction step.
The complexity estimate can be derived similarly to [8].
The condition “η small enough” from Theorem 5.2 has three purposes. First, it implies that η ≤ η0

(see Corollary 4.15). Second, the perturbation sizes ‖E‖ and ε in (5.4a,b) must be small enough. Third, it
is needed to interpret (5.7) in a positive sense. Note that Cinv is not necessarily bounded by 1. Assuming
Cinv > 1, the right-hand side in (5.7) behaves like O(CL−�−1

inv ηk) ≤ O(CL
invηk). Since L = log2 n and

k = c′ log2 n (see (3.3)), O(CL
invη

k) = O((Cinvηc′)L) = O(nlog2(Cinvηc′ )) describes the behaviour as n → ∞.
Choosing η small enough, Cinvη

c′ < 1 ensures convergence.
So far, we have not made use of our Conjecture 3.2 which now allows stronger implications.

Corollary 5.3 Assume that Conjecture 3.2 applies. Then Theorem 5.2 holds when k from (4.4) is replaced
by the constant choice k� = k. In particular, Inv(A) ∈ MH,k(I × I,PW ) has the standard format.

Proof. Now we can apply Remark 4.14a.

6 Accuracy of the H-Matrix Product

In this section we study the error of an approximate H-matrix product within the PW -format. First we give
results about the exact product, which are easy to derive by induction from

AB =
[

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
, (6.1)

where A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
∈ MH,k(τ × τ,Pτ

W ) according to the block structure corre-

sponding to the sons S(τ) = {τ1, τ2}.
Remark 6.1 (a) Let A, B ∈ MH,k(I × I,PW ) (constant k). Then AB ∈ MH,kAB(I × I,PW ) with kAB =
(k�)

L
�=1 , k� = (	 + 1)k.
(b) Let A, B ∈ MH,k(I × I,PW ) with k from (4.4). Then AB ∈ MH,kAB(I × I,PW ) with kAB =

(k�)
L
�=1 , k� =

{
1 + (	 + 1) (L − 1

2	)
}

k.

Proof. In the case of (b), set kL
� :=

{
1 + (	 + 1) (L − 1

2	)
}

k (1 ≤ 	 ≤ L) for matrices of size 2L×2L. Assume

by induction that A11B11 ∈ MH,kL−1
AB

(I × I,PW ) with kL−1
AB =

(
kL−1

�

)L−1

�=1
. Since A12B21 has rank ≤ L, we

get the conditions kL
� ≤ kL−1

�−1 + L for 	 ≥ 2. The off-diagonal blocks in (6.1) belong to level 	 = 1 and give
the condition kL

1 ≤ 2L. Since the bound kL
� defined above satisfies these inequalities, the assertion is proved.

The maximal values of k� in Remark 6.1 are of size O(Lk) (part a) or O(L2k) (part b), i.e., the bounds
for the local ranks increase by a factor O(L), whereas a factor 2 would be more natural. Below we show
that an approximation of AB in a format with double rank is possible.

6.1 Multiplication Algorithm

Again, the approximate matrix product A � B is defined recursively. On level 	 = L the product is done
exactly (since #τL

i = 1, i.e., level L corresponds to 1 × 1 matrices). Assume that the product is defined for
all levels > 	 and let A, B ∈ MH,k(τ × τ,Pτ

W ) with τ ∈ T �(I) and k from (4.4). S(τ) = {τ1, τ2} leads to the

block structure A =
[

A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
. The submatrices Aii, Bii belong to level 	 + 1.

Therefore, Xii := Aii � Bii (i = 1, 2) are already defined. We define the intermediate result C by

C :=
[

X11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + X22

]
. (6.2)

Next we have to project the diagonal blocks of A � B to the desired format MH,2k(τi × τi,PW ), i = 1, 2,
resulting in

A � B := truncation ◦ C ∈ MH,2k(τ × τ,PW ). (6.3)
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Note that the off-diagonal blocks are already of the required rank. This completes the recursive definition
of A � B on level 	.

6.2 Stability and Approximability for the Matrix Product

The following stability assumptions must be valid not only for the original matrix A but also for its principal
submatrices. Accordingly, we define the set A = {A|τ×τ , B|τ×τ : τ ∈ T (I)}.

Let
A, B ∈ A, ‖A′ − A‖ , ‖B′ − B‖ ≤ ε ⇒ ‖A′B′ − AB‖ ≤ C0ε (6.4)

hold for ε > 0 small enough. The second assumption reads as follows. If A, B ∈ A, and A =
[

A11 A12

A21 A22

]
,

B =
[

B11 B12

B21 B22

]
∈ Rτ×τ . Then for any X11 ∈ Rτ1×τ1 and X22 ∈ Rτ2×τ2 (S(τ) = {τ1, τ2}) with

‖X11 − A11B11‖ ≤ ε, ‖X22 − A22B22‖ ≤ ε,

the approximation of AB by X := A � B (cf. (6.2), (6.3)) satisfies

‖X − AB‖ ≤ CMε. (6.5)

Next, we need an approximability result of AB in MH,2k(I×I,PW ). By Remark 4.14b 2D-BEM matrices
satisfy ABEM, BBEM ∈ Mk(cBEMηk) with k from (4.4) for some 0 < η ≤ η0. Let A, B be approximations of
order O(ηk). Then by Remark 4.13a, A, B ∈ Mk(cηk) holds for another constant c.

Although Theorem 4.17 covers only the product AA (for the function R(x) = x2), an analogous result
holds for AB. Therefore, AB ∈ Mk(C0cη

k) with C0 from (6.4). As in Lemma 5.1, we get the following
approximability result with a similar quantity C(I) = O(

√
#I):

A, B ∈ Mk(cηk) ⇒ ∃X ∈ MH,2k(I × I,PW ) : ‖AB − X‖ ≤ C(I) cηk. (6.6)

6.3 Approximation to AB

Theorem 6.2 Assume that A, B ∈ Mk(cηk) with k� = (L − 	 + 1) k for some η < 1 (see Remark 4.14b).
Suppose that the stability and approximability assumptions (6.5) and (6.6) are valid. Then the approximate
H-matrix product A � B ∈ MH,2k(I × I,PW ) defined in §6.1) satisfies

‖AB − A � B‖ ≤ 2C(I)
(
1 + CM + C2

M + ... + CL−�−1
M

)
cηk,

with C(I) defined via (5.6) and with CM from (6.5).
The complexity of multiplication is bounded by NA	B = O(k2

1L2n) = O(k2L4n).

Proof. Again, we prove the result by induction over the level number 	 = L down to 0. The induction
hypothesis is ‖A � B − AB‖ ≤ ζ� for all A, B ∈ A associated with τ ∈ T �(I), where

ζ� = 2C(I) cηk
(
1 + CM + C2

M + ... + CL−�−1
M

)
. (6.7)

Since for 	 = L the product � is exact, the induction hypothesis is valid: ζL = 0. Let the hypothesis be valid

for 	 + 1 and consider A, B ∈ A, A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
∈ Rτ×τ , τ ∈ T �(I). By induction

hypothesis
‖A11 � B11 − A11B11‖ ≤ ζ�+1 and ‖A22 � B22 − A22B22‖ ≤ ζ�+1

hold, which produce the intermediate approximation C from (6.2). Now, condition (6.5) can be applied with
ε = ζ�+1 and yields

‖C − AB‖ ≤ CMζ�+1.

Furthermore, due to the approximability assumption, there is X ∈ MH,2k(I × I,PW ) with ‖X − AB‖ ≤
C(I) cηk. Let Π be the truncation in (6.3). Then A � B = ΠC ∈ MH,2k(I × I,PW ) and

‖A � B − AB‖ ≤ ‖Π(C − X)‖ + ‖X − AB‖ ≤ ‖C − X‖ + ‖X − AB‖
≤ ‖C − AB‖ + 2 ‖X − AB‖ ≤ 2C(I) cηk + CMζ�+1 = ζ�,
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completing the induction step. Again, the complexity bound can be derived similarly to [8].
Again we improve the result by using Conjecture 3.2.

Corollary 6.3 Assume that Conjecture 3.2 applies. Then Theorem 6.2 holds when k from (4.4) is replaced
by the constant choice k� = k.
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