
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Maps With Prescribed Tension Fields

by

Wenyi Chen and Jürgen Jost

Preprint no.: 26 2003





Maps With Prescribed Tension Fields

Wenyi Chen Jürgen Jost

Abstract: We consider maps into a Riemannian manifold of nonpositive sec-
tional curvature with prescribed tension field. We derive a priori estimates and
solve a Dirichlet problem.

Key Words: Tension Field, Jacobi Fields, Heat Flow.
MR Classification: 58E20, 53C22.

§1. Introduction

Elliptic regularity theory is traditionally concerned with functions f : Ω → IR,Ω being
some domain in some Euclidean space IRm, or, more generally, in a Riemannian manifold
M . f is assumed to solve some elliptic PDE, and the regularity theory derives estimates of
various norms of f in terms of some data (boundary conditions, geometry of the domain)
and some structural constants of the elliptic operator. The prototype here is the Laplace
operator, and the elliptic equation in the simplest case then reduces to the Poisson equation

∆f = v,

for some prescribed v, plus some boundary condition. The idea of elliptic regularity theory
then is to control some Sobolev or Hölder norm of f ,

‖f‖W k,p , or ‖f‖Ck,α

in terms of the corresponding norm of ∆f for k− 2 in place of k plus some terms depend-
ing on the data. This may then be applied to estimate a solution of the Poisson equation
through the prescribed right hand side v. As is well-known, such estimates provide the
basis for the existence theory for solutions of elliptic equations and a guide for the con-
struction of numerical approximation schemes (for a detailed presentation, see e.g. [5]).

We are interested here not in functions, but in maps f : Ω → N into some Riemannian
manifold N . This will make the problem genuinely nonlinear. Nevertheless, the Laplace
operator ∆f naturally generalizes to the tension field τ(f), given in local coordinates by

τ(f)k =
1√
γ(x)

∂

∂xα

(
γαβ(x)

√
γ(x)

∂fk(x)
∂xβ

)
+ γαβ(x)Γi

jk(f(x))
∂f i(x)
∂xα

∂f j(x)
∂xβ

,

with the standard notation:
(γαβ(x))α,β=1,...,m is the Riemannian metric tensor on the domain Ω ⊂ M w.r.t. local

coordinates x = (x1, . . . , xm), (γαβ)α,β=1,...,m its inverse, γ = det(γαβ). Γi
jk(f) are the

Christoffel symbols of the Riemannian metric tensor (gij(f))i,j=1,...,n on N , where we take
the liberty to identify f with its local coordinate representation (f1, . . . , fn).
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Those local coordinates can be chosen in such a manner that the Christoffel symbols
Γi

jk(f) vanish precisely if N is flat, and in that case, the tension field reduces to the
Laplacian of the domain Ω. In general, however, a Riemannian manifold is not flat, and
so the tension field then is a nonlinear elliptic operator.

In more abstract terms, τ(f) is a section of the bundle T ∗M ⊗ f−1TN, and therefore
fundamentally nonlinear as this bundle itself depends on the map f .

This tension field is the negative gradient field of the energy functional

E(f) =
1
2

∫
|df(x)|2 dvol (M) =

1
2

∫
γαβ(x)gij(f(x))

∂f i

∂xα

∂f j

∂xβ

√
γ(x)dx1 . . . dxm

in the same way that the Laplace operator is the negative gradient field of the Dirichlet
integral. Critical points of the energy integral, i.e. solutions of

τ(f) = 0,

are called harmonic maps and have been intensively studied.

More generally, given some function Φ : N → IR, one may look for critical points of
the integral

EΦ(f) :=
1
2

∫
|df(x)|2 dvol (M) +

∫
Φ(f(x)) dvol (M).

Solutions solve a system of type
τ(f) = V (f),

for some vector field V on N , and are called harmonic maps with potential, see e.g. [1],
[9], [3].

In the present paper, we shall be concerned with the system

τ(f(x)) = V (x, f(x)),

for some given V , without assuming a variational structure, however. Since τ(f) is a
section of T ∗M ⊗ f−1TN , also the right hand side naturally has to depend on f , in
contrast to the linear Poisson equation where V is a function of x only.

The existence problem has been studied by von Wahl [11] in case of a domain Ω with
boundary and prescribed boundary values, and by Jost-Yau [6] for this case as well as
for the more subtle one of a closed manifold M . In particular, it turns out that, without
a variational structure, on a closed manifold M , the above problem need not possess a
solution. This is in contrast to the Dirichlet problem on Ω that has a solution under
general circumstances, as shown in those papers.

Actually, all these results need some curvature assumptions on the target N , and,
without imposing a size restriction, one needs the assumption that N have nonpositive
sectional curvature. Therefore, we shall assume throughout this paper that N has non-
positive sectional curvature. Under this assumption, we wish to study the above
problem as a nonlinear generalization of the Poisson equation. Still, while we no longer
have a linear structure, the curvature assumption implies that there exists an underlying
convex geometry as has been explored in more abstract terms in [4].
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The first part of our paper is concerned with extending elliptic regularity theory to the
present nonlinear setting. The guiding idea is that the tension field τ should assume the
role of the Laplacian ∆. An additional feature, however, is that not only the geometry
is nonlinear, but also that the topology is nontrivial. Therefore, our estimates will also
involve a topological datum, namely the homotopy class of the map in question. With that
addition, we are able to generalize the fundamental elliptic W 2,2 estimate to our setting.
In Theorem. 2.2, we shall estimate the L2-norms of the first and second derivatives of any
map f : M → N solely in terms of the L2-norm of its tension field plus a topological term
that only depends on the homotopy class [f ] of f .

Of course, the constants in those estimates will depend on the underlying geometry,
in particular on a bound for the Ricci curvature of M .

In the second part of our paper, we study the Dirichlet problem for

τ(f) = V.

Our result will need some bound on V depending on the first eigenvalue of Ω. The result
as well as the method are different from those obtained by von Wahl and Jost-Yau.

§2. A nonlinear W 2,2− estimate

A continuous map f : M :→ N induces a homeomorphism

ρ = f# : π1(M) → π1(N)

of fundamental groups and at the same time a lift

f̃ : M̃ → Ñ .

We shall need the ρ−equivariance of the lift map f̃ , i.e.

f̃(λx) = ρ(λ)f̃(x)

for all x ∈ M̃ , λ ∈ π1(M) where the fundamental groups π1(M) and π1(N) act isomet-
rically on M̃ and Ñ by deck transformations respectively so that M = M̃/π1(M) and
N = Ñ/π1(N). There is a correspondence between the ρ−equivariant maps from M̃ to Ñ
and maps from M to N .

For the complete simply connected Riemannian manifold of nonpositive sectional cur-
vature Ñ , the distance function

d : Ñ × Ñ → IR, d(u, v) = the distance from u to v

is well defined and we have a smooth function d2 on the manifold Ñ×Ñ . Let f1, f2 : M̃ →
Ñ be ρ−equivariant maps, then the function d2(f1, f2) is also smooth on the manifold M
because deck transformations are isometric. For (u, v) ∈ Ñ×Ñ , we choose an orthonormal
basis e1, e2, · · · , en for TuÑ . By parallel translation along the shortest geodesic from u to
v on Ñ , we get a basis e1, e2, · · · , en for TvÑ . Take e1, e2, · · · , en, e1, e2, · · · , en as a local
orthonomal frame for T(u,v)N × N . Let θ1, θ2, · · · , θm be an orthonormal coframe in a
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neighbourhood of x ∈ M̃ , we then write the differentials of the maps f1, f2 : M̃ → Ñ as
df1 = f i

1αei ⊗ θα, and df2 = f i
2αei ⊗ θα. We use the Einstein summation convention.

Now we define E(f1, f2), the energy of the difference of the two maps f1, f2 by

E(f1, f2) =
1
2

∫
M

n∑
i=1

m∑
α=1

(
f i
1α − f i

2α

)2
dvol(M)

where the integral is calculated on a fundamental domain of M in M̃ . The isometricity of
the parallel transformation gives us a triangle inequality∣∣∣√E(f1, f3) −

√
E(f3, f2)

∣∣∣ ≤ √
E(f1, f2),

Inparticular, the energy of the difference is symmetric, and for the energy of a map f ,

E(f) =
1
2

∫
M

n∑
i=1

m∑
α=1

(
f i

α

)2
dvol(M),

we then have ∣∣∣√E(f1) −
√
E(f2)

∣∣∣ ≤ √
E(f1, f2).

Putting Xα = f i
1αei + f i

2αei, we then are able to express the Laplacian of d2(f1, f2) as

∆d2(f1, f2) = (d2)XαXα + d{dif
i
1αα + dif

i
2αα}

where τ(f1)1 = f i
1αα and τ(f1)2 = f i

2αα are the components of the tension fields of the
maps f1, f2 respectively. It was shown in [10] that if KN ≤ 0 then

(d2)XαXα ≥ 2
∑

i

(
f i
1α − f i

2α

)2
.

Hence
∆d2(f1, f2) ≥ 2

∑
i

(
f i
1α − f i

2α

)2 − d{|τ(f1)| + |τ(f2)|}. (2.1)

We have also
∆d(f1, f2) ≥ −{|τ(f1)| + |τ(f2)|}. (2.2)

Let f1 and f2 be maps from a domain Ω of the manifold M , smooth enough in Ω and on
the boundary ∂Ω. If two maps f1 and f2 coincide on the boundary ∂Ω, we then have by
(2.2) ∫

Ω

|∇d(f1, f2)|2dvol ≤
∥∥∥d(f1, f2)

∥∥∥
L2(Ω)

{∥∥∥τ(f1)
∥∥∥

L2(Ω)
+

∥∥∥τ(f2)
∥∥∥

L2(Ω)

}
.

Therefore ∥∥∥d(f1, f2)
∥∥∥

L2(Ω)
≤ λ(Ω)−1

{∥∥∥τ(f1)
∥∥∥

L2(Ω)
+

∥∥∥τ(f2)
∥∥∥

L2(Ω)

}
(2.3)

where the constant λ(Ω) is the first eigenvalue of the Laplacian on Ω, see [2].
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On the other hand, the integral of (2.1) over Ω gives

E(f1, f2) ≤ 2−1
∫
Ω

∆d2(f1, f2) + d(f1, f2){|τ(f1)| + |τ(f2)|}.

Notice that d2(f1, f2) ≥ 0 in Ω and d2(f1, f2) = 0 on ∂Ω, the derivative of d2(f1, f2) along
the outer normal vector of Ω at ∂Ω will be nonpositive. Hence the Stokes formula gives∫

Ω

∆d2(f1, f2) ≤ 0.

We then obtain an energy estimate for two maps that have the same boundary values and
belong to the same homotopy class, with (2.3)

E(f1, f2) ≤ λ(Ω)−1
{∥∥∥τ(f1)

∥∥∥2

L2(Ω)
+

∥∥∥τ(f2)
∥∥∥2

L2(Ω)

}
. (2.4)

For the case of a compact manifold M without boundary, we need a deeper analysis.
Integrating the inequality (2.1) over a fundamental domain, we get

E(f1, f2) ≤ 1
4

∥∥∥d(f1, f2)
∥∥∥

L2(M)

{∥∥∥τ(f1)
∥∥∥

L2(M)
+

∥∥∥τ(f2)
∥∥∥

L2(M)

}
. (2.5)

A direct corollary of the triangle inequality and the inequality (2.2) is that if h1, h2

are two homotopic harmonic maps, then E(h1, h2) = 0 and E(f, h1) = E(f, h2) whenever
[f ] = [h1].

Lemma 2.1: Let f0, f1 : M̃ → Ñ be ρ−equivariant maps. Define ft : M̃ → Ñ by
exponential map

ft(x) = expf0(x){t exp−1
f0(x) f1(x)},

then ft is also ρ−equivariant and
√
E(ft) is a convex function of t.

Proof: Let γx be the geodesic on Ñ from f0(x) to f1(x), then γx is also ρ−equivariant.
Hence, ft is ρ−equivariant. Fix α ∈ {1, 2, · · · , n}, we claim that ∇αft(x) is a Jacobi
field along the geodesic γx. In fact, let να ∈ TxM̃ be the vector dual to θα, c(s) be
the geodesic on M̃ with c(0) = x, c′(0) = να, C : (0, 1) × (−δ, δ) → Ñ , C(t, s) =
expf0(c(s)){t exp−1

f0(c(s))
f1(c(s))}, then for any fixed s, C(·, s) is a geodesic. On the other

hand
∇αft(x) =

∂

∂s
C(t, s)

∣∣∣
s=0

.

By the Jacobi field equation, we have

∂2

∂t2

√
E(ft) =

−1√
E(ft)

∫
M

〈R(∇αft(x),
·
γ)

·
γ,∇αft(x)〉dvol(M)

+
1√
E(ft)

∫
M

∑
α

∣∣∣ ∂
∂t

∇αft(x)
∣∣∣2dvol(M)

− 1

E(ft)
3
2

∣∣∣ ∫
M

∇αft(x)∇α
∂

∂t
ft(x)dvol(M)

∣∣∣2
≥ 0.

As required.
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Lemma 2.2: There exists a constant C which depends only on the homotopy class [f ]
such that ∥∥∥d(f, h)∥∥∥2

L2(M)
≤ CE(f, h) (2.6)

holds for a harmonic map in the homotopy class [f ].
Proof We prove the Lemma by contradiction. If there were a homotopy class such that

the inequality (2.3) did not hold, we then could find a sequence fk of maps and harmonic
maps hk in the same homotopy class such that∥∥∥d(fk, hk)

∥∥∥2

L2(M)
= inf

τ(h)=0

∥∥∥d(fk, h)
∥∥∥2

L2(M)
≥ k2E(fk, hk) (2.7)

with
∥∥∥d(fk, h)

∥∥∥2

L2(M)
≥ 1. Notice that the energy of the difference E(fk, h) is independent

of the choice of the harmonic map h. Define

f t
k(x) = exphk(x){t exp−1

hk(x) fk(x)}.
We have ∥∥∥d(f t

k, hk)
∥∥∥2

L2(M)
= t2

∥∥∥d(fk, hk)
∥∥∥2

L2(M)
≥ k2t2E(fk, hk)

≥ k2t2
(√

E(fk) −
√
E(hk)

)2
.

It follows from the convexity of the energy E(f t
k) that∥∥∥d(f t

k, hk)
∥∥∥

L2(M)
≥ k

∣∣∣√E(fk) −
√
E(hk)

∣∣∣. (2.8)

Choose t = tk such that
∥∥∥d(f t

k, hk)
∥∥∥

L2(M)
= 1. From (2.8), f tk

k is a minimizing sequence

for the energy. Therefore the sequence f tk
k converges strongly to a harmonic map h, i.e.∥∥∥d(f tk

k , h)
∥∥∥

L2(M)
→ 0. (2.9)

Notice that ∥∥∥d(fk, f
tk
k )

∥∥∥
L2(M)

=
∥∥∥d(fk, hk) − d(hk, f

tk
k )

∥∥∥
L2(M)

=
∥∥∥(1 − tk)d(fk, hk)

∥∥∥
L2(M)

=
∥∥∥d(fk, hk)

∥∥∥
L2(M)

− tk
∥∥∥d(fk, hk)

∥∥∥
L2(M)

=
∥∥∥d(fk, hk)

∥∥∥
L2(M)

− 1.

Hence for k large enough, ∥∥∥d(fk, h)
∥∥∥

L2(M)

≤
∥∥∥d(fk, f

tk
k )

∥∥∥
L2(M)

+
1
2

=
∥∥∥d(fk, hk)

∥∥∥
L2(M)

− 1
2
.
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This is a contradiction to the choice of the harmonic maps hk. This proves that the

inequality (2.3) holds for infτ(h)=0

∥∥∥d(f, h)∥∥∥2

L2(M)
≥ 1. Notice that the harmonic map and

the inequality (2.3) are invariant under the rescaling of the metric on N , the inequality
(2.3) holds for all maps in the same homotopy class. Now we summarize the above as:

Theorem 2.1: Let M be a compact Riemanian manifold with or without boundary, N
a compact Riemannian manifold of nonpositive sectional curvature. For a given homotopy
class of maps from M to N , with prescibed boundary values when the boundary of M is
not empty, there is a constant C such that for any map f in this homotopy class there is
a harmonic map h in the homotopy class such that

( ∫
M

|df |2
) 1

2 ≤
( ∫

M

|dh|2
) 1

2 + C
( ∫

M

|τ(f)|2
) 1

2 (2.10)

where τ(f) is the tension field.
The first term on the right hand side depends only on the homotopy class of f , because

all harmonic maps in the same homotopy class have the same -minimal- energy.
Recall the Bochner formula ([6], Ch. 8)

∆e(f)(x) = |∇df |2 + 〈∆(df), df〉 + 〈df(RicM (eα)), df(eα)〉
− 〈RN (df(eα), df(eβ))df(eβ), df(eα)〉.

Integrating it on the domain M and making use of the inequality (2.10) under the assump-
tion of nonpositive curvature, we get the main result of this section, namely an estimate
for the L2− norm of the first and second derivatives of a map in a given homotopy class
in terms of its tension field.

Theorem 2.2: Let M be a compact Riemanian manifold without boundary, N a
compact Riemannian manifold of nonpositive sectional curvature. For a given homotopy
class of maps from M to N , let h be a harmonic map in that homotopy class. We then
have, for any map f in that homotopy class,∫

M

|df |2dvol(M) +
∫
M

|∇df |2dvol(M) ≤ C1

∫
M

|τ(f)|2dvol(M) + C2

∫
M

|dh|2dvol(M)

where the constant C1 depends only on the homotopy class of the map f and the constant
C2 is 1 + ‖RicM‖∞, where RicM is the Ricc curvature of M .

We point out once more that the last term on this inequality depends only on the
homotopy class (and on the geometry of M and N), but not in any way on the map f in
that homotopy class that we are estimating here.

By differentiation, we may then also obtain higher order estimates in a standard man-
ner.

§3. Boundary value problems
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We now let Ω be a domain in a manifold M with a nonempty boundary ∂Ω and
compact closure Ω. For the moment, we assume that the map g : Ω → N is of class C2,α.

Consider the parabolic system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ(f) − ∂f

∂t
= V (f),

f(x, 0) = g(x), x ∈ Ω,
f(x, t) = g(x), x ∈ ∂Ω,
f : Ω × [0,∞) → N.

(3.1)

Remark: If there is an underlying variational structure, as for harmonic maps with
potential, namely,

Eϕ(f) =
1
2

∫
Ω

|df |2dvol(M) +
∫
Ω

ϕ(f(x))dvol(M),

for some function ϕ : N → R, we have the Euler-Lagrange equation as

τ(f)(x) = ∇ϕ(f(x)).

We have
∂

∂t
Eϕ(f(·, t)) = −

∫
Ω

∣∣∣ ∂
∂t
f(x, t)

∣∣∣2dvol(M),

for a solution of the associated parabolic problem

∂f

∂t
= τ(f) −∇ϕ(f),

and therefore, if we assume that Eϕ(f) is bounded from below, i.e.,

Eϕ(f) ≥ C

for some C ∈ IR and all f , then ∂
∂tf(·, t) subconverges to zero in L2 for t → ∞, and the

analysis becomes easy. This has been explained in the literature, see e. g., [3]. Without a
variational structure, however, the problem is more difficult.

The smoothness of the map g and the theory of linear parabolic systems give us a
short time solution of the parabolic problem (3.1), i.e., there is a positive T so that there
is a C2,α solution on Ω × [0, T ). The condition we impose on the vector field is that

∇V (X,X) ≥ −µ|X|2, X ∈ Γ(TΩ). (3.2)

We also let λ(Ω) be the first nontrivial eignvalue for the Dirichlet problem on Ω.
Lemma 3.1: Let f satisfy the parabolic system (3.1) where the vector field V satisfies

(3.2) with µ ≤ 3
4λ(Ω), then ∫

Ω
| ∂
∂tf(·, t)|4 ≤ ∫

Ω
|τ(g) − V (g)|4. (3.3)
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Proof: A direct computation gives that

(∆ − ∂
∂t)〈∂f

∂t ,
∂f
∂t 〉 = 2∇V (∂f

∂t ,
∂f
∂t ) + 2〈∇νi

∂f
∂t ,∇νi

∂f
∂t 〉

−2〈RN (f∗νi,
∂f
∂t )f∗νi,

∂f
∂t 〉.

(3.4)

With the assumptions of the Lemma and the nonpositivity of the sectional curvature of
the manifold N , it follows from the above identity

(∆ − ∂
∂t)

∣∣∣∂f
∂t

∣∣∣2 ≥ −3
2λ(Ω)

∣∣∣∂f
∂t

∣∣∣2 + 2
∣∣∣∇∂f

∂t

∣∣∣2. (3.5)

Notice that
2
∣∣∣∇∂f

∂t

∣∣∣2 · ∣∣∣∂f
∂t

∣∣∣2 ≥ 1
2

∣∣∣∇|∂f
∂t

|2
∣∣∣2.

Multiplying the two sides of the inequality (3.4) by
∣∣∣∂f

∂t

∣∣∣2 and then integrating over Ω, one
obtains

−1
2
∂

∂t

∫
Ω

∣∣∣∂f
∂t

∣∣∣4 ≥ 3
2

∫
Ω

∣∣∣∇|∂f
∂t

|2
∣∣∣2 − 3

2
λ(Ω)

∫
Ω

∣∣∣∂f
∂t

∣∣∣4.
Because ∂f

∂t = 0 on the boundary of the domain Ω, the right side of the above inequality
is nonnegative. Hence

∂

∂t

∫
Ω

∣∣∣∂f
∂t

∣∣∣4 ≤ 0.

This proves Lemma 3.1.
Let us return to the inequality (3.5)

(∆ − ∂

∂t
)〈∂f
∂t
,
∂f

∂t
〉 ≥ −C〈∂f

∂t
,
∂f

∂t
〉.

Set ψ(x, t) = exp{Ct}〈∂f
∂t ,

∂f
∂t 〉, then

(∆ − ∂
∂t)ψ ≥ 0. (3.6)

and ψ = 0 on the boundary of Ω. By Moser iteration (cf [8]), one obtains that

ψ2(x, t1) ≤ C
(
1 +

1
t1 − t0

) ∫
Ω×(t0,t1)

ψ2(x, t)

with the constant C independent of t. It follows from Lemma 3.1 and the above inequality
that ∣∣∣∂f

∂t

∣∣∣4 ≤ C

∫
Ω

|τ(g) − V (g)|4.

Therefore we get a uniform bound for |∂f
∂t |. Now we have

∆d(f(·, t), g(·)) ≥ −C (3.7)

where the constant C comes from the uniform bound of |∂f
∂t | and the vector field V by

(2.2) and the parabolic system (3.1). A direct corollary of the inequality (3.7) is that the
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distance function d(f(·, t), g(·)) has a uniform bound which is independent of t. Indeed
applying the weak maximum principle to the elliptic inequality (3.7) one gets

sup
Ω
d(f(·, t), g(·)) ≤ sup

∂Ω
d(f(·, t), g(·)) + C|Ω| 1

m .

Consider the Dirichlet problem for the inhomogeneous Laplace equation in Ω{ ∆u = −C, in Ω;
u = 0, on ∂Ω,

(3.8)

where the constant comes from (3.7).
Let u be the solution of problem (3.8), then

∆{d(f(·, t), g(·)) − u(·)} ≥ 0.

Hence
sup
Ω

{d(f(·, t), g(·)) − u(·)} ≤ sup
∂Ω

{d(f(·, t), g(·)) − u(·)}.

Therefore
d(f(·, t), g(·)) ≤ u(·). (3.9)

The solution of the problem (3.8) is of class C2,α if the boundary ∂Ω smooth enough.
So we have

u(x) ≤ Cd(x, ∂Ω).

This implies
d(f(·, t), g(·)) ≤ Cd(x, ∂Ω). (3.10)

Take ν1, · · · , νm to be a local orthonomal frame at z0 ∈ ∂Ω with ν1, · · · , νm−1 the tangent
vectors of ∂Ω and νm the normal direction of the boundary. At the point z0 ∈ ∂Ω we then
have

∂f(·, t)
∂νj

=
∂g(·)
∂νj

, 1 ≤ j ≤ m− 1,

by the boundary condition, and ∣∣∣∂f(·, t)
∂νm

∣∣∣ ≤ C

because of (3.10). Therefore we obtain a uniform bound for the gradient of the maps
f(·, t), i.e.,

e(f)(x) ≤ C, x ∈ ∂Ω

where the constant C is independent of t.

From the above argument we know there is a constant R so that

d(f(·, t), g(·)) ≤ R on Ω.

Let F = 2R2 − d2(f(·, t), g(·)), then F ≥ R2. Set

A(x, t) =
e(f)(x, t)

F 2
.
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We have

(∆− ∂

∂t
)A(x, t) =

(∆ − ∂
∂t)e(f)
F 2

− 2e(f)(∆ − ∂
∂t)F

F 3
− 4∇e(f) · ∇F

F 3
+

6e(f)|∇F |2
F 4

. (3.11)

By the Bochner formula, (cf [6], Ch. 8),

(∆ − ∂
∂t)e(f) = 〈(∆ − ∂

∂t)
∂

∂xi
f, ∂

∂xi
f〉

= 〈∇f∗νi
V, f∗νi〉 + 〈∇νiνjf,∇νiνjf〉

−〈RN (f∗νi, f∗νj)f∗νi, f∗νj〉 + 〈f∗RicMνi, f∗νi〉
≥ |B(f)|2 − Ce(f),

(3.12)

where B(f) = ∇νiνjf is the Hessian of the maps f(·, t). On the other hand,

(∆ − ∂
∂t)F = ∇2

NF (f∗νi, f∗νi) − 〈∇NF, τ(f) − ∂f
∂t 〉

= ∇2
NF (f∗νi, f∗νi) − 〈∇NF, V 〉.

By Jacobi field estimates, (see, e.g. [6], Ch. 4)

∇2
NF (f∗νi, f∗νi) ≤ −2e(f).

Hence
(∆ − ∂

∂t
)F ≤ −2e(f) + 2R|V |.

Here we have used the property that |∇NF | = 2d(f(·, t), g(·)) ≤ 2R. Returning to (3.11),
we have

(∆ − ∂

∂t
)A(x, t) ≥ 4

F 3
e2(f) − C

F 2
e(f) − 4R|V |

F 3
e(f) + I, (3.13)

where
I =

1
F 2

|B(f)|2 − 4
F 3

∇e(f) · ∇F +
6e(f)
F 4

|∇F |2.
Because

∇A =
F∇e− 2e∇F

F 3
,

we have
I =

1
F 2

|B(f)|2 − 2
F 3

|∇e(f) · ∇F +
2e(f)
F 4

|∇F |2 − 2∇A · ∇F
F

.

Notice that

|B(f)|2 − 2
F
|∇e(f) · ∇F +

2e(f)
F 2

|∇F |2 ≥
(
|B(f)| − |df ||∇F |

)2
,

we have
I ≥ −2∇A · ∇F

F
.

Therefore (
∆ − ∂

∂t

)
A(x, t) ≥ 4

F 3
e2(f) − C

F 2
e(f) − 4R|V |

F 3
e(f) − 2∇A · ∇F

F
.
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Or
(∆ − ∂

∂t
)A(x, t) ≥ 4FA2 − CA− 4R|V |

F
A− 2∇A · ∇F

F
. (3.14)

Let
A(t) = max

x∈Ω
A(x, t),

and assume that A(t) = A(xt, t) for some point xt. If xt ∈ ∂Ω for some t, we have

e(f)(x, t) ≤ 2R2A(x, t) ≤ 2R2A(xt, t) ≤ 2e(f)(xt, t).

It follows from (3.11) that
e(f)(x, t) ≤ 2C (3.15)

where the constant C is the same as in (3.11). On the other hand if xt ∈ Ω, we have

− ∂

∂t
A|(xt,t) ≥ 4FA2 − CA− 4R|V |

F
A

Without loss of generality, we may assume that ∂
∂tA|(xt,t) ≥ 0. Hence

4FA2(t) − CA(t) − 4R|V |
F

A(t) ≤ 0.

That is to say

A(x, t) ≤ C

4F
+
R|V |
F 2

.

Therefore
e(f)(x, t) ≤ CR2 +R‖V ‖, (3.16)

where ‖V ‖ = maxy∈N |V (y)|.
Up to now, we have proved
Theorem 3.1: Let the vector field V satisfy the condition (3.2) with µ ≤ 3

4λ(Ω) for
the first eigenvalue λ(Ω) of the Laplacian in Ω. If the maps f(·, t) satisfy the parabolic
system (3.1) for 0 ≤ t < T , then there is a constant C which is independent of t so that

|df(·, t)|, |∂f
∂t

| ≤ C. (3.17)

By linearizing and using the theory of linear parabolic systems and the implicit function
theorem, one gets from (3.17) that (3.1) has a solution for all of t. That is

Corollary 3.1: Let the vector field V satisfy the condition (3.2) with µ ≤ 3
4λ(Ω)

for the first eigenvalue λ(Ω) of the Laplacian in Ω, then the parabolic system (3.1) has a
solution for all time t ∈ [0,∞). Moreover, the solution of the parabolic system (3.1) has a
uniform C2,α bound.

The last claim of Corollary 3.1 means that any sequence tk → ∞ will contain a subse-
quence tn′ → ∞ so that f(·, tk′) converges to a map f in C2. This leads to the existence
for the Dirichlet problem {

τ(f) = V (f),
f(x) = g(x), x ∈ ∂Ω

(3.18)
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under a somewhat stronger condition than Theorem 3.1.
Theorem 3.2: Let the vector field V satisfy the condition (3.2) with µ ≤ 3

4λ(Ω) − ε
for the first eigenvalue λ(Ω) of the Laplacian in Ω, then the Dirichlet problem (3.18) has
a solution.

Proof: By the same calculation as in the proof of Lemma 3.1, one gets that

−1
2
∂

∂t

∫
Ω

∣∣∣∂f
∂t

∣∣∣4 ≥ 3
2

∫
Ω

∣∣∣∇|∂f
∂t

|2
∣∣∣2 − (3

2
λ(Ω) − 2ε

) ∫
Ω

∣∣∣∂f
∂t

∣∣∣4.
The Poincaré inequality gives

∂

∂t

∫
Ω

∣∣∣∂f
∂t

∣∣∣4 ≤ −4ε
∫
Ω

∣∣∣∂f
∂t

∣∣∣4.
That is to say ∫

Ω

∣∣∣∂f
∂t

∣∣∣4 ≤ C0 exp{−4εt}.

Hence, for a sequence tk with f(·, tk) convergent in C2,

lim
tk→∞

∂f

∂t
(x, tk) = 0.

Therefore the limit f of f(·, tk) will solve the problem (3.18).
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