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ABSTRACT: In this note we show that the best constant C in the improved Hardy-Sobolev in-

equality of Adimurthi, Chaudhuri and Ramaswamy [1] for 2 ≤ p < n, is bounded by
p − 1
p2

(
n − p

p

)p−2

≤ C ≤ p − 1
2

(
n − p

p

)p−2

.

1 Introduction

Let Ω be a bounded domain in IRn, n ≥ 2 with 0 ∈ Ω. Adimurthi, Chaudhuri and

Ramaswamy in [1] have obtained the following improved Hardy-Sobolev inequality. Let

1 < p < n and let R ≥ e2/p supΩ |x|, then there exists a constant C > 0 such that

∫
Ω
|∇u|pdx ≥

(
n − p

p

)p ∫
Ω

|u|p
|x|p dx + C

∫
Ω

|u|p
|x|p

(
log

R

|x|
)−2

dx (1.1)

holds for all u ∈ W 1,p
0 (Ω). In his book on Sobolev Spaces [14] (see section 2.1.6) Maz’ja dis-

covered that the classical multidimensional Hardy type inequalities with sharp constant can

be improved by adding different additional positive integrals. However the above inequality

have applications in proving existence, nonexistence and regularity of solutions for differen-

tial equations involving the potential
1

|x|p , see [1, 3, 10, 11, 12, 15]. Adimurthi and Esteban

[2] extended the above inequality for W 1,p functions and found interesting applications to

Schrödinger operator. However, finding the best constant in the inequality (1.1) remains

open. In this article we find an interesting bounds for the best constant C(n, p, R, Ω), de-

fined in (1.4). In [Theorem 1.2, 1], it has been shown that for 0 < µ <

(
n − p

p

)p

, the

eigenvalue problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
(

div(|∇u|p−2∇u) +
µ

|x|p |u|
p−2u

)
= λ

|u|p−2

|x|p
(
log R

|x|
)2 u in Ω

u = 0 on ∂Ω

(1.2)
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admits a positive weak solution u ∈ W 1,p
0 (Ω) corresponding to the eigenvalue λ = λ1

µ > 0.

Moreover, λ1
µ → C(n, p, R, Ω), as µ →

(
n − p

p

)p

. Thus the bounds on the best constant in

the inequality (1.1) gives bounds on the limiting behaviour of the first eigenvalue for the

eigenvalue problem (1.2). In [1], the following n-dimensional version of the Hardy-Sobolev

inequality is also been established. For any bounded domain Ω ⊂ IRn, n ≥ 2 with 0 ∈ Ω,

∫
Ω
|∇u|ndx ≥

(
n − 1

n

)n ∫
Ω

|u|n
|x|n

(
log

R

|x|
)−n

dx (1.3)

holds for every u ∈ W 1,n
0 (Ω). Adimurthi and Sandeep [3] proved that the best constant is

indeed
(

n−1
n

)n
. For some interesting improvements of the classical Hardy-Sobolev inequality

and their applications see [5, 6, 7, 8, 9, 13].

Before stating our theorem we define the best constant C(n, p, R, Ω) in the inequality (1.1)

by

C(n, p, R, Ω) := inf
u∈W 1,p

0 (Ω)

u �= 0

QΩ,R(u), (1.4)

where ,

QΩ,R(u) :=

∫
Ω |∇u|p dx −

(
n−p

p

)p ∫
Ω

|u|p
|x|p dx∫

Ω
|u(x)|p
|x|p

(
log R

|x|
)−2

dx
. (1.5)

It is also known (see [1]) that the best constant in C(n, p, R, Ω) is not achieved. In this

article we prove the following theorem.

Theorem 1.1 The constant C(n, p, R, Ω) defined by (1.4) is independent of the domain Ω

and the choice of R. For 2 ≤ p < n

p − 1

p2

(
n − p

p

)p−2

≤ C(n, p) ≤ p − 1

2

(
n − p

p

)p−2

. (1.6)

It appears to me that for the case 2 ≤ p < n, the constant C(n, p) is indeed p−1
p2

(
n−p

p

)p−2
.

2 Proof of Theorem 1.1

PROOF : We prove the independence and the bounds for the best constant through the

following steps.

Step 1. We first prove that if B1 and B2 are concentric balls centered at origin of radii T1

and T2 respectively then C(n, p, R1, B1) = C(n, p, R2, B2), where Ri = αTi with α ≥ e2/p ,
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i = 1, 2. Take u ∈ W 1,p
0 (B2) and define, v(x) = u

(
T2

T1
x
)

for |x| < T1. Then

QB1,R1(v) =

∫
B1

|∇v|pdx −
(

n−p
p

)p ∫
B1

|v|p
|x|p dx∫

B1

|v|p
|x|p

(
log αT1

|x|
)−2

dx

=

∫
B2

|∇u|pdx −
(

n−p
p

)p ∫
B2

|u|p
|x|p dx∫

B2

|u|p
|x|p

(
log αT2

|x|
)−2

dx

= QB2,R2(u), (2.7)

and hence C(n, p, R1, B1) = C(n, p, R2, B2).

Step 2. Now we prove that C(n, p, R, Ω) = C(n, p, R, Ω∗), where Ω∗ = B(0, T ) is the ball of

radius T =
( |Ω|
|B(0,1)|

)1/n
, |.|n denotes the n-dimensional Lebesgue measure. Take Ω∗ as above,

then for any u ∈ W 1,p
0 (Ω), |u|∗ ∈ W 1,p

0 (Ω∗), where |u|∗ be the symmetric decreasing rearrange-

ment of the function |u|. By the standard symmetrization arguments, see [4] we conclude

that for any u ∈ W 1,p
0 (Ω), QΩ,R(u) ≥ QΩ∗,R(u∗) and hence C(n, p, R, Ω) ≥ C(n, p, R, Ω∗).

To prove the other inequality, take s > 0 such that the ball Bs = B(0, s) ⊆ Ω. Then clearly,

C(n, p, R, Ω) ≤ C(n, p, R, Bs) and hence by step 1, C(n, p, R, Ω) = C(n, p, R, Ω∗).

Now if Ω1 and Ω2 are two bounded domains with Ri ≥ e2/p supΩi
|x|, by step 1 and step 2,

C(n, p, R1, Ω1) = C(n, p, R2, Ω2) and hence the constant is independent of the domain and

the choice of R. We shall denote this constant simply by C(n, p).

Step 3. Lower Bound: The lower bound for the best constant C(n, p) essentially follows

from the proof of Theorem 1.1 in [1]. But for the sake of completeness we include a proof.

Since C(n, p) is independent of the domain, without loss of generality we assume Ω to be

the unit ball B := B(0, 1). Let R ≥ e2/p. For u ∈ C2
0(B), u > 0, radially nonincreasing, we

define

v(r) := u(r) r(n−p)/p , r = |x|. (2.8)

Here without loss of generality we as well assume u′(r) < 0, ( replacing u by u + ε(1− r) for

ε > 0, sufficiently small). Now we observe that

∫
B
|∇u|pdx −

(
n − p

p

)p ∫
B

|u(x)|p
|x|p dx = ωn

∫ 1

0

∣∣∣∣∣n − p

p
r−n/pv(r) − r1−n/pv′(r)

∣∣∣∣∣
p

rn−1dr

−
(

n − p

p

)p

ωn

∫ 1

0

vp(r)

r
dr

= ωn

(
n − p

p

)p ∫ 1

0
vp(r)

{∣∣∣∣∣1 − pv′(r) r

(n − p)v(r)

∣∣∣∣∣
p

− 1

}
dr

r
,
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where ωn be volume of the (n-1)-dimensional sphere. Since u is a decreasing function, we have

from (2.8), v′(r) − (n − p)v(r)

p r
< 0 and we call x(r) := − pv′(r) r

(n − p)v(r)
so that, x(r) > −1.

By using (1 + x)p ≥ 1 + px + (p − 1)x2, for all x ≥ −1 and for all p ≥ 2, we obtain.

∫
B
|∇u|p −

(
n − p

p

)p ∫
B

|u(x)|p
|x|p ≥ ωn(p − 1)

(
n − p

p

)p−2 ∫ 1

0
vp−2(r)|v′(r)|2r dr

− ωnp

(
n − p

p

)p−1 ∫ 1

0
vp−1(r)v′(r)dr

=
4ωn(p − 1)

p2

(
n − p

p

)p−2 ∫ 1

0

∣∣∣∣(vp/2(r)
)′∣∣∣∣2 r dr ,(2.9)

since v ∈ C1
0(0, T ). By applying the n-dimensional Hardy inequality (1.3) with n = 2 for the

function vp/2, we obtain

∫ 1

0

∣∣∣∣(vp/2(r)
)′∣∣∣∣2 r dr ≥ 1

4

∫ 1

0

(
vp/2(r)

r log R/r

)2

r dr

=
1

4

∫ 1

0

up(r)

rp
(log R/r)−2 rn−1dr

=
1

4ωn

∫
B

|u(x)|p
|x|p (log R/|x|)−2 dx . (2.10)

Hence for all u ∈ C2
0(B), u > 0, radially nonincreasing functions, we have

∫
B
|∇u|p −

(
n − p

p

)p ∫
B

|u(x)|p
|x|p ≥ (p − 1)

p2

(
n − p

p

)p−2 ∫
B

|u(x)|p
|x|p (log R/|x|)−2 dx . (2.11)

Now by standard approximation and symmetrization the inequality (2.11) holds for all u ∈
W 1,p

0 (B) and hence C(n, p) ≥ (p − 1)

p2

(
n − p

p

)p−2

.

Step 3. Upper Bound: Here our idea is to construct a family of functions in W 1,p
0 (B),

where B := B(0, 1) is the unit ball and then estimate QB,R for such a family. We take the

following family of functions similar to the one found in [1], in the following manner. For

any 0 < ε < 1 and for k ≥ 2, an integer we define

uε,k(r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for r ≤ εk ,

log r/εk

(k − 1)r(n−p)/p log 1/ε
, for εk ≤ r ≤ ε ,

log 1/r

r(n−p)/p log 1/ε
, for ε ≤ r ≤ 1 .

(2.12)
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Clearly, uε,k ∈ W 1,p
0 (B) is continuous and differentiable a.e. and its derivative is given by

u′
ε,k(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for 0 ≤ r ≤ εk ,

1

(k − 1)rn/p log 1/ε

[
1 − n − p

p
log r/εk

]
, for εk ≤ r ≤ ε ,

− 1

rn/p log 1/ε

[
1 +

n − p

p
log 1/r

]
, for ε ≤ r ≤ 1 .

Since ε > 0 is sufficiently small, we have the following estimates, after a change of variables

and the use of Neumann series:∫
B
|∇uε,k|pdx =

ωn

(log 1/ε)p

[
1

(k − 1)p

∫ ε

εk

∣∣∣∣∣n − p

p
log

r

εk
− 1

∣∣∣∣∣
p
dr

r
+
∫ 1

ε

∣∣∣∣∣1 +
n − p

p
log

1

r

∣∣∣∣∣
p
dr

r

]

=
λn,pωn

(p + 1)
(log 1/ε)

[
(k − 1)

(
1 − p

(k − 1)(n − p) log 1/ε

)p+1

+

(
1 +

p

(n − p) log 1/ε

)p+1]

=
λn,pωn

(p + 1)
(log 1/ε)

[
(k − 1) − p(p + 1)

(n − p) log 1/ε

+
p(p + 1)

2(k − 1)

(
p

(n − p) log 1/ε

)2

+ O

(
1

(k − 1)2(log 1/ε)3

)

+ 1 +
p(p + 1)

(n − p) log 1/ε
+

p(p + 1)

2

(
p

(n − p) log 1/ε

)2

+ O

(
1

log 1/ε

)3]

=
k λn,pωn

(p + 1)
log 1/ε +

k p ωn

2(k − 1)

(
n − p

p

)p−2

(log 1/ε)−1

+ O

(
1

(k − 1) log 1/ε

)2

+ O

(
1

log 1/ε

)2

. (2.13)

Then we have∫
B

|uε,k|p
|x|p dx =

ωn

(log 1/ε)p

[
1

(k − 1)p

∫ ε

εk

(
log r/εk

)p dr

r
+
∫ 1

ε
(log 1/r)p dr

r

]

=
ωn

(p + 1) (log 1/ε)p

[
1

(k − 1)p

∫ ε

εk

d

dr

(
log r/εk

)p+1
dr −

∫ 1

ε

d

dr
(log 1/r)p+1 dr

]

=
k ωn

(p + 1)
(log 1/ε) . (2.14)

Thus (2.13) and (2.14) yields

∫
B
|∇uε,k|p −

(
n − p

p

)p ∫
B

|uε,k|p
|x|p =

kpωn

2(k − 1)

(
n − p

p

)p−2

(log 1/ε)−1 + O

(
1

log 1/ε

)2

.(2.15)
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Finally, let us try find a“good” estimate of the following integral

Ip : =
∫

B

|uε,k|p
|x|p (log R/|x|)−2 dx

=
ωn

(log 1/ε)p

[
1

(k − 1)p

∫ ε

εk

(
log r/εk

)p

r (log R/r)2
dr +

∫ 1

ε

(log 1/r)p

r (log R/r)2
dr
]
.

Now by change of variable, r 	→ log R/r and denoting, aε := log R/ε, bε := log R/εk and

c := log R, we have

Ip =
ωn

((k − 1) log 1/ε)p

∫ bε

aε

(
log R e−r/εk

)p

r2
dr +

ωn

(log 1/ε)p

∫ aε

c

(log er/R)p

r2
dr . (2.16)

We now call the first and second integral of (2.16) by I1
p and I2

p respectively and we do the

following estimations:

I1
p =

∫ bε

aε

(
log R/εk − r

)p dr

r2

= bp
ε

∫ bε

aε

(
1 − r

bε

)p dr

r2

≥ bp
ε

∫ bε

aε

(
1 − pr

bε
+

(p − 1)r2

b2
ε

)
dr

r2

=
bp
ε

aε

[(
1 − aε

bε

)(
1 + (p − 1)

aε

bε

)
− p aε

bε
log

bε

aε

]
, (2.17)

and

I2
p =

∫ aε

c
(r − log R)p dr

r2

=
∫ aε

c
rp−2

(
1 − c

r

)p

dr

≥
∫ aε

c
rp−2

(
1 − pc

r
+

(p − 1)c2

r2

)
dr

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aε

[(
1 − c

aε

)
− 2

c

aε

log
aε

c
+ o(1)

]
, for p = 2 ,

a2
ε

[
1

2

(
1 − (

c

aε

)2
)

+ 2
(

c

aε

)2

log
aε

c
+ o(1)

]
, for p = 3 ,

ap−1
ε

[
1

p − 1

(
1 − (

c

aε

)p−1
)

+ o(1)

]
for p �= 2, p �= 3

= ap−1
ε

[
1

p − 1
+ o(1)

]
, (2.18)
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where o(1) → 0 as ε → 0. Thus from (2.17) and (2.18) we obtain

Ip ≥ Jk,ε : =
ωn

((k − 1) log 1/ε)p

bp
ε

aε

[(
1 − aε

bε

)(
1 + (p − 1)

aε

bε

)
− p aε

bε

log
bε

aε

]

+
ωn

(log 1/ε)pap−1
ε

[
1

p − 1
+ o(1)

]
,

and hence from (2.15), we obtain

QB,R(uε,k) ≤ p k

2(k − 1)

(
n − p

p

)p−2

(log 1/ε)p−1

×
[

bp
ε

(k − 1)paε

{(
1 − aε

bε

)(
1 + (p − 1)

aε

bε

)}
+ ap−1

ε

{
1

p − 1
+ o(1)

}]−1

+ J−1
k,ε

⎡
⎣O

(
1

log 1/ε

)2
⎤
⎦

=
p k

2(k − 1)

(
n − p

p

)p−2

×
⎡
⎢⎣ (k − 1)−pbp

ε

aε

(
log 1

ε

)p−1

{(
1 − aε

bε

)(
1 + (1 − p)

aε

bε

)}
+

(
aε

log 1
ε

)p−1 {
1

p − 1
+ o(1)

}⎤⎥⎦
−1

+ J−1
k,ε

⎡
⎣O

(
1

log 1/ε

)2
⎤
⎦ . (2.19)

Here we note that bp
ε/aε(log 1/ε)p−1 → kp as ε → 0 and hence

J−1
k,ε

⎡
⎣O

(
1

log 1/ε

)2
⎤
⎦→ 0 as either ε → 0 or k → ∞. Thus we have

QB,R(uε,k) → p k

2(k − 1)

(
n − p

p

)p−2

×
[(

k

k − 1

)p {(
1 − 1

k

)(
1 +

p − 1

k

)
+

p

k
log

1

k

}
+

1

p − 1

]−1

, as ε → 0

→ p

2

(
n − p

p

)p−2 [
1 +

1

p − 1

]−1

, as k → ∞

=
p − 1

2

(
n − p

p

)p−2

.

Since C(n, p) ≤ QB,R(uε,k), for all k ≥ 2 and for any sufficiently small ε > 0, we have by

passing through the limits as ε → 0 and k → ∞,

C(n, p) ≤ p − 1

2

(
n − p

p

)p−2
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and hence the theorem.
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V. Maz’ja [14] on improved Hardy-Sobolev inequality.

References

[1] Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality

and its application. Proc. Amer. Math. Soc. 130 (2002), 489–505.

[2] Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in W 1,p and its

applications to Schrödinger operator. Preprint (2002).

[3] Adimurthi and K. Sandeep, Existence and non-existence of the first eigenvalue of the

perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002),

1021–1043.

[4] C. Bandle, Isoperimetric inequalities and applications. Pitman, Boston, (1980).
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