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This paper deals with the H2-matrix approximation of matrices that arise
from a Galerkin boundary element (BEM) discretization in the context of
the E-based eddy current model. The BEM operators are dense, thus need
to be compressed. They are of complicated structure, i.e., some kernels
and basis functions are vector valued, and test and basis functions are not
always identical. The H2-matrix approximation technique is applied to the
kernels of the four different relevant boundary integral operators. Numerical
experiments demonstrate the significant acceleration of an iterative solution
procedure by means of matrix compression.
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1 Introduction

We consider the simulation of the induction heating process. In this process, a slowly
rotating conduction workpiece is exposed to an oscillating electromagnetic field generated
by applying an alternating current to an inductor, usually a coil (cf. Figure 1). The field
penetrates the workpiece and creates eddy currents due to Faraday’s law. Ohmic losses
of these currents heat the workpiece.

At the relevant frequency range of 10–40 kHz and in the presence of high conductivities,
we can simplify Maxwell’s equations governing the electromagnetic processes to get the
eddy current model, which neglects the displacement current [3, 1].
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Figure 1: Typical setting for induction heating: Inductor, workpiece and two plates

In the frequency domain, i.e., for time-harmonic excitations with a constant angular
frequency ω ∈ R>0, it takes the form

divE = 0, in Ω+, (1)

curl
1
µ

curlE = −iω(σE + j0) in R
3, (2)

[n × E] = [n× 1
µ

curlE] = 0 in ∂Ω−, (3)

E(x) = O(|x|−2), curlE(x) = O(|x|−2) for |x| → ∞, (4)

if a formulation based on the electric field E is used. Here µ is the magnetic permeability,
and σ is the conductivity. The interior of the items, i.e. workpiece, inductor, and plates,
is denoted by Ω−, the exterior vacuum is denoted by Ω+ = R

3 \ Ω−, and j0 is the
exciting current density in the inductor. The jump conditions (3), which are chosen at
the interface of the items and the vacuum, are the transmission conditions of normal
and tangential component of the electric field.

The domain Ω− is equipped with a triangulation Ωh arising from CAD data files con-
sisting of tetrahedra. This triangulation also induces a surface mesh Γh of the boundary
Γ := ∂Ω− consisting of flat open triangles.

Finding a viable numerical scheme for solving the eddy current model is not an easy
task. One important reason is that one has to cope with the unbounded exterior of a
rotating workpiece with general, genuinely three-dimensional geometry.

An appropriate approach is introduced in [8], where the author presents a FEM/BEM-
coupled scheme based on edge elements. The FEM part is used in Ω− and the BEM
part, which is needed for the exterior vacuum Ω+, consists of boundary integrals over
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∂Ω−. So this scheme uses only elements on ∂Ω− and inside Ω− and can easily be applied
to a moving Lagrangian mesh.

For a simply connected domain Ω−, the discretized version of the BEM part of the
corresponding system of equations is given by⎛

⎜⎜⎝
M� −M� −B� 0
−M� −M� 0 B�

−B 0 −Q 0
0 B 0 Q

⎞
⎟⎟⎠
⎛
⎜⎜⎝

E�
E�
ϕ�
ϕ�

⎞
⎟⎟⎠ = right hand side, (5)

see also [9].
If the workpiece is not simply connected, i.e., if there are holes in it, one needs addi-

tional matrices that are small enough to remain uncompressed, thus are of minor interest
here.

The right hand side of the equation arises from the exciting current in the inductor.
The unknows E� and E� ∈ R

E are the real (�) and imaginary (�) parts of the electric
field, discretized by surface edge elements (cf. Subsection 2.2). The unknows ϕ� and
ϕ� ∈ R

N are the real and imaginary parts of a scaled scalar magnetic potential gradφ =
µ0

µ curlE, discretized by standard nodal basis functions on the surface.
Here, N denotes the set of surface nodes, E denotes that of surface edges, and the set

of surface triangles is denoted by T .
All these functions and the BEM matrices M� ∈ R

E×E , M� ∈ R
E×E , Q ∈ R

N×N and
B ∈ R

N×E will be defined more precisely in the next section.
A direct solver cannot be used for equation (5) because it needs too much storage and

is too slow. Instead, a fast iterative solver is applied, where matrix-vector multiplications
dominate the total complexity.

The triangulation of the boundary Γ must be fine enough to meet two different de-
mands. First, the geometry of the items must be described in a satisfactory way, and
second, the desired precision of the solution must be achieved. For our application, this
means that a number #T ≥ 10000 of surface triangles must be used for typical work-
pieces. The occuring BEM operators of equation (5) are dense. A matrix-vector multi-
plication for n unknowns needs O(n2) operations, and the amount of storage is of the
same order. Parts with #T = 10000 surface triangles have approximately #E = 15000
edges and #N = 5000 nodes. For the storage requirements of the matrices in (5) this
means:

• Storing M� requires 150002 × sizeof(double) = 1.67 GBytes,

• storing M� requires 150002 × sizeof(double) = 1.67 GBytes,

• storing B requires 15000 × 5000 × sizeof(double) = 0.56 GBytes and

• storing Q requires 50002 × sizeof(double) = 0.18 GBytes.

We see that more than 4 GBytes are needed, an amount of memory beyond the capacity
of current desktop computers. Therefore, a compression technique must be applied to
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the four different boundary integral operators. This can be done by using the H2-matrix
approximation [2].

We remark that there is a close relationship of H2-matrices to the panel clustering
technique [7] and the fast multipole method for integral operators [10, 5]. The main
advantages of our algorithm are that its implementation is relatively simple, that it
leads to quasi-optimal complexity in memory and time and that it does not require
specialized expansion systems but can deal with any type of asymptotically smooth (cf.
(12)) kernel function.

The following section sketches several aspects of the implementation of our method
and demonstrates its properties by numerical experiments.

2 Boundary Element Formulation

2.1 Bilinear forms

For our discrete method, we replace the boundary Γ by a polygonal approximation Γh

given by the triangulation T :

Γh =
⋃{

t : t ∈ T
}
.

The question of how to choose a suitable triangulation, and therefore approximation Γh

of Γ, is not a subject of this paper.
The matrices M�, M�, Q and B occurring in (5) are Galerkin discretizations of bound-

ary integral operators corresponding to the bilinear forms

m�(U,E) :=
∫

Γh

∫
Γh

C1〈γDU(y), γDE(x)〉dy dx (6)

+
∫

Γh

∫
Γh

〈curlΓ U(y), curlΓ E(x)〉Φ(x,y) dy dx,

m�(U,E) :=
∫

Γh

∫
Γh

C2〈γDU(y), γDE(x)〉dy dx, (7)

q(η, φ) :=
∫

Γh

∫
Γh

〈curlΓ η(y), curlΓ φ(x)〉Φ(x,y) dy dx, (8)

b(η,E) := −1
2

∫
Γh

〈curlΓ η(x), γDE(x)〉dx (9)

+
∫

Γh

∫
Γh

〈curlΓ η(y), γDE(x)〉〈gradx Φ(x,y),n(x)〉dy dx,

−
∫

Γh

∫
Γh

〈curlΓ η(y),n(x)〉〈gradx Φ(x,y), γDE(x)〉dy dx,

where C1, C2 ∈ R>0 are constants, n is the outer normal of the surface Γ, E is an
electric field and U a corresponding test function, while φ is the scalar magnetic potential
mentioned above and η is the corresponding test function.
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Figure 2: Setting for the definition of basis functions

Φ is the fundamental solution of the Laplace operator in three space dimensions given
by

Φ(x,y) :=
1
4π

1
|x− y| , x,y ∈ R

3, x 
= y. (10)

γD is the tangential trace operator on Γh, curlΓ and curlΓ are the vector-valued and
scalar-valued surface curls. These three operators are given by

γDE := n× ( lim
ε→+0

E(x + εn) × n),

curlΓ φ := γD(gradφ) × n,

curlΓ E := 〈n, curl E〉.

2.2 Discretization

We want to use a piecewise polynomial conforming Galerkin approach to discretize the
problem, so we need appropriate discrete spaces. This implies that the discretized poten-
tials η and φ have to be continuous at the edges of the triangulation, while the discretized
vector fields U and E have to have a continuous tangential component.

Further details on the discretization and the properties of the boundary integral op-
erators are given in [8].

Let us consider a triangle T = ABC ∈ T . The surface measure of the triangle ABC
is given by S := ‖(B−A)× (C−A)‖/2. We suppose that the vertices A,B and C are
ordered counter-clockwise, so that the outer normal vector of T is given by

n :=
(B −A) × (C − A)

2S
.

We introduce the vectors

f := B − C and t :=
n× f
‖n× f‖

(cf. Figure 2).
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The local edge element basis function corresponding to the edge e := BC is given by

bT,e(x) :=
(x − A) × n

2S
.

For x = C + α(B − C), we have

〈bT,e(x), f〉 =
〈(x − A) × n, f〉

2S
=

det(x − A,n,B − C)
2S

=
det(C −A,n,B − C)

2S

=
det(B − A,C − A,n)

2S
=

〈(B − A) × (C − A),n〉
2S

= 〈n,n〉 = 1,

i.e., the tangential component of bT,e on the edge e is constant and equal to 1. Similar
computations reveal that the tangential component on bT,e on the other edges AB and
CA are constant and equal to zero. This implies that we can build a global edge element
basis function be for each edge e ∈ E by combining the local edge element basis functions
bT,e corresponding to the triangles touching e.

The local nodal basis function corresponding to the vertex v := A is given by

φT,v(x) := −‖f‖〈x − C, t〉
2S

.

We have

φT,v(A) = −‖f‖〈A − C, t〉
2S

= −‖f‖〈n × f ,A− C〉
2S‖n × f‖ = −det(n,B − C,A− C)

2S

=
det(n,B − A,C −A)

2S
=

det(B − A,C − A,n)
2S

= 〈n,n〉 = 1.

It is obvious that φT,v(B) = φT,v(C) = 0 holds. Since φT,v is affine, we can build a
global nodal basis function φv for each vertex v ∈ N by combining the local nodal basis
functions φT,v corresponding to the triangles touching v.

Discretizing the bilinear forms (6)-(9) leads to the matrices M� ∈ R
E×E , M� ∈ R

E×E ,
Q ∈ R

N×N and B ∈ R
N×E defined by

M�,ij := m�(bi,bj), M�,ij := m�(bi,bj),
Qικ := q(ψι, ψκ) and Bιj := b(ψι,bj)

for i, j ∈ E and ι, κ ∈ N .

2.3 Properties of the discretized matrices

The amount of work involved in assembling the matrices can be significantly reduced by
making use of the fact that

m�(U,E) = (C1/C2)m�(U,E) + g(curlΓ U, curlΓ E) and

q(η, φ) =
3∑

l=1

g((curlΓ η)l, (curlΓ φ)l)
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hold for
g(ζ, θ) :=

∫
Γh

∫
Γh

ζ(y)θ(x)Φ(x,y) dy dx. (11)

An important property of the basis functions φv for v ∈ N and be for e ∈ E is that
(curlΓ φv)|t and (curlΓ be)|t are constant for each triangle t ∈ T . This implies that we
can represent the non-sparse part of m�(·, ·) and q(·, ·) by discretizing g(·, ·) by piecewise
constant functions (χt)t∈T . This does not hold for the discretization of b(·, ·), where we
have to use the piecewise linear basis functions be.

All bilinear forms are double integrals with differential operators (namely curlΓ and
curlΓ), the trace operator γD and the fundamental solution Φ(·, ·) and its derivatives as
integrands. The differential operators and the trace operator do not increase the support
of the basis function and can therefore be considered “harmless”, which leaves us with
the problem of discretizing the integral operators involving the non-local function Φ(·, ·),
namely those that correspond to the bilinear forms g(·, ·) and b(·, ·).

3 Matrix approximation

The integral kernels in (6)-(9) describe long range interactions between the boundary
regions at x and y. Their strength depends on the inverse of the distance |x − y|. A
common strategy for compression of the matrices is to approximate the kernels in the
so-called far-field, i.e., in regions that are far away from each other, whereas one sticks
to exact kernels in the near-field.

Panel clustering methods are widely used [7, 11]. They are based on degenerate ap-
proximations of the kernel function in the far-field. We construct the approximation by
using an interpolation instead of the more traditional Taylor expansion. This leads to
fast algorithms, see [4], that can be stated in the context of H2-matrix techniques [2, 6].

We replace the singularity function Φ by its Chebyshev interpolation, so we need
only pointwise evaluations of Φ instead of the derivatives required by Taylor-based ap-
proaches. Since the interpolation of Φ on the entire domain Γh × Γh would not lead
to good results due to the singularity at x = y, we consider sub-domains of the form
τ × σ and apply the interpolation locally. If a constant order m of the interpolation is
used, then the resulting approximation is an H2-matrix (cf. [2]). Using this structure,
we can perform the matrix-vector multiplication and the discretization of the far-field
in O(nm3) operations, where n is the number of the degrees of freedom.

In the H2-matrix approximation method consists of two main parts: The preparation
phase of the compressed matrix representation, which needs to be performed only once
even for several matrix-vector multiplications, and the matrix-vector multiplication itself.
The preparation phase consists of three parts: we have to find a suitable splitting of
Γh × Γh into sub-domains, we have to compute the matrices corresponding to the H2-
representation of the far-field blocks and we have to compute the coefficients of the
near-field blocks.
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3.1 Motivation

3.1.1 Approximation

The kernel function Φ is asymptotically smooth, i.e., there are constants Cas, c0, d ∈ R>0

such that
|∂α

x ∂
β
y Φ(x,y)| ≤ Casc

|α|+|β|
0 (α+ β)!‖x − y‖−d−|α|−|β| (12)

holds for all x,y ∈ R
3 with x 
= y and all multi-indices α, β ∈ N

3
0. In the case of the

Laplace kernel, we have c0 = 1 and d = 1.
Let τ, σ ⊆ R

d be sub-domains of Γh such that dist(τ, σ) > 0. We introduce the local
bilinear form gτ,σ given by

gτ,σ(ζ, θ) :=
∫

τ

∫
σ
ζ(y)θ(x)Φ(x,y) dy dx.

The equation (12) implies that the function Φ is smooth on τ×σ, so we can approximate
it on this sub-domain by polynomials and use the approximation of the kernel function
to define an approximation of the bilinear form gτ,σ.

In order to keep our algorithm simple, we will not work with τ and σ directly, but
use axis-parallel boxes: Let Bτ and Bσ be minimal d-dimensional axis-parallel boxes
satisfying τ ⊆ Bτ and σ ⊆ Bσ.

We apply m-th order tensor product interpolation operators Iτ
m and Iσ

m given by

Iτ
m[u](x) =

∑
ν∈M

u(xτ
ν)Lτ

ν(x) and Iσ
m[v](y) =

∑
µ∈M

v(xσ
µ)Lσ

µ(y),

where (xτ
ν)ν∈M and (xσ

µ)µ∈M are interpolation points in Bτ and Bσ and (Lτ
ν)ν∈M and

(Lσ
µ)µ∈M are the corresponding Lagrange polynomials.
We approximate Φ by

Φ̃τ,σ(x,y) := (Iτ
m ⊗ Iσ

m)[Φ](x,y) =
∑
ν∈M

∑
µ∈M

Φ(xτ
ν ,x

σ
µ)Lτ

ν(x)Lσ
µ(y). (13)

3.1.2 Low-rank representation

Replacing Γh by τ and σ and Φ by Φ̃τ,σ in (11), we get

g̃τ,σ(ζ, θ) :=
∫

τ

∫
σ
ζ(y)θ(x)Φ̃τ,σ(x,y) dy dx (14)

=
∑
ν∈M

∑
µ∈M

Φ(xτ
ν ,x

σ
µ)︸ ︷︷ ︸

=:Sτ,σ
ν,µ

∫
τ
θ(x)Lτ

ν(x) dx︸ ︷︷ ︸
=:V τ

ν (θ)

∫
σ
ζ(y)Lσ

µ(y) dy︸ ︷︷ ︸
=:V σ

µ (ζ)

=
∑
ν∈M

∑
µ∈M

Sτ,σ
ν,µV

τ
ν (θ)V σ

µ (ζ), (15)

i.e., the bilinear form can be expressed in terms of a, typically small, matrix Sτ,σ and a
small number of functionals (V τ

ν )ν∈M and (V σ
µ )µ∈M .
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The advantage of the new representation becomes obvious if we discretize the new
bilinear form g̃τ,σ by introducing

G̃τ,σ
ts := g̃τ,σ(χt, χs), Vτ

tν := V τ
ν (χt) and Vσ

sµ := V σ
µ (χs).

The equation (15) now takes the form

G̃τ,σ = VτSτ,σ(Vσ)�. (16)

We set

nτ := #{t ∈ T : τ ∩ t 
= ∅}, nσ := #{s ∈ T : σ ∩ s 
= ∅} and k := #M

and find that storing G̃τ,σ as a dense matrix requires nτnσ units of memory, while storing
Vτ , Vσ and Sτ,σ requires nτk + nσk + k2 units of memory. Typically k is much smaller
than nτ and nσ, so the factorized representation is much more efficient.

3.1.3 Precision

We have seen that replacing the kernel function Φ by its interpolant Φ̃τ,σ leads to an
efficient representation of the discretized matrix. In order to be able to use this rep-
resentation, we have to ensure that the error introduced by the interpolation can be
controlled, i.e., that an estimate of the form

|Φ̃τ,σ(x,y) − Φ(x,y)| ≤ εm

holds for x ∈ τ , y ∈ σ, where εm ∈ R>0 depends favorably on the interpolation order m.
If we use Chebyshev interpolation for Iτ

m and Iσ
m, we have a constant Cin ∈ R>0 such

that

‖Φ − Iτ
m ⊗ Iσ

m[Φ]‖∞,Bτ×Bσ

≤ Cin
3−m

(m+ 1)!
diam(Bτ ×Bσ)m+1‖Dm+1

xy Φ‖∞,Bτ×Bσ (17)

holds for all m and all functions u ∈ Cm+1(Bτ × Bσ) (cf. the Appendix of [2]), where
diam(Bτ × Bσ) denotes the Euclidean diameter of the axis-parallel box Bτ × Bσ and
Dm+1Φ is the total derivative of order m+ 1 of Φ.

Combining this estimate with (12), we find

‖Φ − Φ̃τ,σ‖∞,Bτ×Bσ ≤ CinCas

dist(Bτ , Bσ)d
3−m

(
c0 diam(Bτ ×Bσ)

dist(Bτ , Bσ)

)m+1

.

This implies that we have to be able to bound the diameter by the distance in order
to reach a uniform bound for the approximation error, i.e., we require the admissibility
condition

diam(Bτ ×Bσ) ≤ η dist(Bτ , Bσ) (18)

to hold for a parameter η ∈]0, 3/c0[ and find

‖Φ − Φ̃τ,σ‖∞,Bτ×Bσ ≤ εm :=
CinCasη

d+1

diam(Bτ ×Bσ)d
(c0η/3)m, (19)

so the interpolant converges exponentially on Bτ ×Bσ ⊇ τ×σ if the order m is increased.
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3.2 Decomposition of Γh × Γh

In the previous section, we have seen that we can efficiently approximate the local
interpolants Φ̃τ,σ if the sub-domains τ, σ of Γh satisfy the admissibility condition (18).

3.2.1 Block partition

Obviously, the pair (Γh,Γh) does not satisfy this condition, so we have to split Γh × Γh,
the domain of integration of the bilinear form g(·, ·), into a collection P of sub-domains
that either satisfy this condition or are so small that we can treat them directly without
compromising the efficiency.

The family P ⊆ {(τ, σ) : τ, σ ⊆ T } has to satisfy the following conditions:⋃
{τ × σ : (τ, σ) ∈ P} = Γh × Γh,

(τ1 × σ1) ∩ (τ2 × σ2) 
= ∅ ⇒ (τ1, σ1) = (τ2, σ2) for all (τ1, σ1), (τ2, σ2) ∈ P.
According to the admissibility condition, we split P into the set Pfar of far-field blocks
and the set Pnear of near-field blocks:

Pfar := {(τ, σ) ∈ P : diam(Bτ ×Bσ) ≤ η dist(Bτ , Bσ)}, Pnear := P \ Pfar.

For each (τ, σ) ∈ Pfar, we can construct a local approximation g̃τ,σ(·, ·) of the form (11),
(15). For the remaining blocks (τ, σ) ∈ Pnear, we use the original local bilinear form
gτ,σ(·, ·). The approximation of the global bilinear form g(·, ·) is then given as the sum
of the local bilinear forms:

g̃(ζ, θ) =
∑

(τ,σ)∈Pfar

g̃τ,σ(ζ, θ) +
∑

(τ,σ)∈Pnear

gτ,σ(ζ, θ). (20)

This corresponds to replacing the kernel function Φ by its piecewise m-th order inter-
polant given by

Φ̃(x,y) :=

{
Φ̃τ,σ(x,y) if (x,y) ∈ τ × σ for (τ, σ) ∈ Pfar,

Φ(x,y) otherwise.

The estimate (19) implies
|Φ(x,y) − Φ̃(x,y)| ≤ εm

for all x,y ∈ Γh, so we find

|g(ζ, θ) − g̃(ζ, θ)| =
∣∣∣∣
∫

Γh

∫
Γh

ζ(y)θ(x)
(
Φ(x,y) − Φ̃(x,y)

)
dy dx

∣∣∣∣
≤ ‖Φ − Φ̃‖∞,Γh×Γh

∫
Γh

|ζ(y)|dy
∫

Γh

|θ(x)|dx

≤ εm‖ζ‖L1‖θ‖L1 ≤ εm |Γh| ‖ζ‖L2(Γh)‖θ‖L2(Γh).

The construction of a good partition, i.e., a partition where the number of non-admissible
blocks is small, is not trivial. Therefore, we will start by constructing a hierarchy of
partitions of Γh, i.e., of the set of triangles, and then use this hierarchy to create a
partition of Γh × Γh.
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3.2.2 Cluster tree

We will construct the hierarchy of partitions of Γh by successively splitting domains.
Since a pair (τ, σ) of sub-domains of Γh is admissible if the diameter of Bτ × Bσ is
smaller than the distance of these boxes (recall that Bτ and Bσ are the minimal axis-
parallel boxes containing τ and σ), a good strategy is to split domains in such a way
that the diameters of the newly created sub-domains are decreased as much as possible.

In order to keep the implementation simple, we consider only sub-domains τ that are
the union of a set τ̂ ⊆ T of triangles, and we identify the sub-domain τ with the set τ̂ .
Then successive splitting of domains, starting with the set T of all triangles, leads to a
tree structure, the cluster tree:

Definition 1 A tree C is called a cluster tree for a set T of triangles if

• the set of all triangles is the root of C, i.e., root(C) = T , and

• if a node τ ∈ C is not a leaf, then it is the disjoint union of its sons, i.e.,

τ =
⋃̇{

τ ′ : τ ′ ∈ sons(τ)
}
.

Each node τ ∈ C is called a cluster.

A cluster tree can be constructed from an arbitrary set of triangles by binary space
partitioning : We start with the root cluster containing all the triangles, split it into two
son clusters and repeat the procedure recursively until the clusters contain less than a
fixed number Clf ≥ 1 of triangles.

The splitting strategy is based on the geometry: We denote the center of each triangle
t ∈ T by µt ∈ R

3, choose a suitable coordinate axis and split the set along this axis.
This leads to the algorithm in Figure 3.

Remark 2 (Geometric balancing) If the surface triangulation is not quasi-uniform,
e.g., if it is the result of an adaptive refinement strategy, then a different splitting tech-
nique than that given in Figure 3 is to be applied: Instead of splitting the cluster τ into
two clusters τ1, τ2 that are of similar cardinality, we use the middle of the coordinate
interval [il, sl] in order to determine which son of τ has to contain which triangles

τ1 := {t ∈ τ : µt,l ≤ (sl + il)/2}, τ2 := {t ∈ τ : µt,l > (sl + il)/2},

with l still denoting the longest edge.

3.2.3 Construction of a block partition

The definition of the axis-parallel boxes Bτ carries over to clusters:

Definition 3 (Bounding boxes) Let τ ∈ C. The minimal axis-parallel box B ⊆ R
3

satisfying t ⊆ B for all t ∈ τ is called the bounding box of the cluster τ and denoted by
Bτ .
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procedure GeometricBisection(τ);
begin
if #τ ≥ Clf then begin
for j := 1 to 3 do begin { find splitting coordinate }
sj := max{µt,j : t ∈ T }; ij := min{µt,j : t ∈ T }; δj := sj − ij

end;
Choose l ∈ {1, 2, 3} such that δl = max{δj : j ∈ {1, . . . , 3}};
Split τ = τ1 ∪ τ2 with |#τ1 − #τ2| ≤ 1 and µt1,l ≤ µt2,l for t1 ∈ τ1, t2 ∈ τ2;
GeometricBisection(τ1); GeometricBisection(τ2);
sons(τ) := {τ1, τ2}

end else sons(τ) := ∅
end

Figure 3: Cardinality (#) balanced geometric bisection

We will use the following simplified admissibility condition:

Remark 4 (Simplified admissibility condition) In some applications, the admissi-
bility condition (18) is replaced by the condition

max{diam(Bτ ),diam(Bσ)} ≤ 2η′ dist(Bτ , Bσ). (21)

By setting η := 2
√

2η′, we find

diam(Bτ ×Bσ) ≤
√

2 max{diam(Bτ ),diam(Bσ)} ≤ 2
√

2η′ dist(Bτ , Bσ),

so the simplified admissibility condition implies the original condition. If η′ < 3/(2
√

2c0),
then we get η < 3/c0 and therefore exponential convergence.

Based on the criteria (18) or (21) and a cluster tree, we can find a partition of Γh × Γh

by calling the algorithm BlockPartition(Γh, Γh, ∅) of Figure 4.

3.3 Matrix-vector multiplication

The matrix-vector multiplication v = G̃u with a vector u ∈ R
T corresponds to the

evaluation of equation (20). We split this evaluation into four parts:

• Forward Transformation: We transform u into cluster coefficients uσ := Vσ�u ∈
R

M .

• Transformed Multiplication: We evaluate the sum vτ :=
∑

σ∈row(τ) Sτ,σuσ ∈
R

M for row(τ) := {σ ∈ C : (τ, σ) ∈ Pfar}.
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procedure BlockPartition(τ , σ, var P );
begin
if (τ, σ) is admissible then P := P ∪ {(τ, σ)}
else if sons(τ) = ∅ or sons(σ) = ∅ then P := P ∪ {(τ, σ)}
else for τ ′ ∈ sons(τ) and σ′ ∈ sons(σ) do BlockPartition(τ ′, σ′, P)

end

Figure 4: Construction of a partition of Γh × Γh

• Backward Transformation: We transform the coefficients vτ back into the
standard base in order to find vfar :=

∑
τ∈C Vτvτ .

• Near-field Computation: We conclude the computation by adding the near-field
part v := vfar +

∑
(τ,σ)∈Pnear

Gτ,σu.

Due to

G̃u =
∑

(τ,σ)∈Pnear

Gτ,σu +
∑

(τ,σ)∈Pfar

VτSτ,σVσ�u

=
∑

(τ,σ)∈Pnear

Gτ,σu +
∑

(τ,σ)∈Pfar

VτSτ,σuσ

=
∑

(τ,σ)∈Pnear

Gτ,σu +
∑
τ∈C

Vτvτ = v,

this four-step procedure indeed computes the matrix-vector product.
In order to find a fast algorithm for the matrix-vector multiplication, we will now

introduce an alternative representation of the matrices Vτ : Let τ ∈ C be a cluster with
sons(τ) 
= ∅. Since we use the same order of interpolation for all clusters, we have

Lτ
ν = Iτ ′

[Lτ
ν ] =

∑
ν′∈M

Lτ
ν(x

τ ′
ν′)Lτ ′

ν′ =
∑

ν′∈M

Tτ ′,τ
ν′ν L

τ ′
ν′

with transfer matrices Tτ ′,τ ∈ R
M×M defined by

Tτ ′,τ
ν′ν := Lτ

ν(x
τ ′
ν′). (22)

This alternative representation implies

Vτ
tν =

∫
τ
χt(x)Lτ

ν(x) dx =
∑

τ ′∈sons(τ)

∫
τ ′
χt(x)Lτ

ν(x) dx

=
∑

τ ′∈sons(τ)

∑
ν′∈M

Lτ
ν(x

τ ′
ν′)
∫

τ ′
χt(x)Lτ ′

ν′(x) dx

13



procedure FastForward(σ, u, var (uσ)σ∈C);
begin
if sons(σ) = ∅ then uσ := Vσ�u
else begin
for σ′ ∈ sons(σ) do FastForward(σ′, u, (uσ));
uσ :=

∑
σ′∈sons(σ) Tσ′,σ�uσ′

end
end;

procedure FastBackward(τ , (vτ )τ∈C , var v);
begin
if sons(τ) = ∅ then v := v + Vτvτ

else
for τ ′ ∈ sons(τ) do begin

vτ ′
:= vτ ′

+ Tτ ′,τvτ ; FastBackward(τ ′ , (vτ ), v)
end

end

Figure 5: Fast forward and backward transformations

=
∑

τ ′∈sons(τ)

∑
ν′∈M

Lτ
ν(x

τ ′
ν′)Vτ ′

tν′ =
∑

τ ′∈sons(τ)

∑
ν′∈M

Tτ ′,τ
ν′ν Vτ ′

tν′ =

⎛
⎝ ∑

τ ′∈sons(τ)

Vτ ′
Tτ ′,τ

⎞
⎠

tν

.

We recall that χt is the characteristic function of the triangle t. Using these equations,
we find the recursive procedures for the computation of uτ and vfar given in Figure 5.
Combining these procedures, we can derive the fast matrix-vector multiplication algo-
rithm that is given in Figure 6.

Remark 5 (Storage) The introduction of the transfer matrices Tτ ′,τ leads to a sig-
nificant reduction in the amount of memory needed to store the H2-approximation of
the matrix G: Since we are able to construct Vτ for all non-leaf clusters τ by using the
transfer matrices, we need to store Vτ only for leaf clusters.

This reduces the amount of storage required to store the H2-matrix approximation to
O(nm3) (cf. [2]).

3.4 Treatment of b(·, ·)
Since the bilinear forms m�(·, ·), m�(·, ·) and q(·, ·) can be expressed by g(·, ·), we only
have to treat b(·, ·) (cf. (9)) in order to be able to compress all matrices occurring in our
boundary element formulation.

14



procedure MatrixVectorMultiplication(u, var v);
begin

FastForward(T , u, (uσ));
for τ ∈ C do vτ :=

∑
σ∈row(τ) Sτ,σuσ;

FastBackward(T , (vτ ), vfar);
v := vfar +

∑
(τ,σ)∈Pnear

Gτ,σu
end

Figure 6: Matrix-vector multiplication

Since this bilinear form is based on gradΦ instead of Φ, we have to find a degenerate
approximation of the derivatives of the kernel function. In order to keep our algorithm
simple, we use the derivatives of the approximation Φ̃ of Φ, i.e., replace gradΦ by
grad Φ̃. Please note that grad Φ̃ exists almost everywhere, since the local interpolants
Φ̃τ,σ are polynomials and therefore differentiable.

We ignore the sparse parts of the bilinear form and use the same approach as before
on the remainder, i.e., we replace the singularity function Φ by its local approximations
Φ̃τ,σ for (τ, σ) ∈ Pfar. This leads to the following local bilinear forms:

b̃τ,σ(η,E) =
∫

τ

∫
σ
〈curlΓ η(y), γDE(x)〉〈gradx Φ̃τ,σ(x,y),n(x)〉dy dx

−
∫

τ

∫
σ
〈curlΓ η(y),n(x)〉〈gradx Φ̃τ,σ(x,y), γDE(x)〉dy dx

=
∑
ν∈M

∑
µ∈M

Sτ,σ
νµ

∫
Γτ

∫
Γσ

(
3∑

l=1

(curlΓ η)l(y)(γDE)l(x)〈gradLτ
ν(x),n(x)〉Lσ

µ(y)

−
3∑

l=1

(curlΓ η)l(y)nl(x)〈gradLτ
ν(x), γDE(x)〉Lσ

µ(y)

⎞
⎠ dy dx

=
3∑

l=1

∑
ν∈M

∑
µ∈M

Sτ,σ
νµ

∫
σ
(curlΓ η)l(y)Lσ

µ(y) dy

·
∫

τ
(γDE)l(x)〈gradLτ

ν(x),n(x)〉 − nl(x)〈gradLτ
ν(x), γDE(x)〉dx.

Apart from the summation over l, this representation is similar to that in (16), so we
introduce matrices Vτ,l ∈ R

E×M and Wσ,l ∈ R
N×M by setting

Vτ,l
eν :=

∫
τ
(γDbe)l(x)〈gradLτ

ν(x),n(x)〉 − nl(x)〈gradLτ
ν(x), γDbe〉dx,
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Wσ,l
vµ :=

∫
σ
(curlΓ φv)l(y)Lσ

µ(y) dy

and find

B̃τ,σ =
3∑

l=1

Vτ,lSτ,σWσ,l�,

where B̃τ,σ is the Galerkin discretization of the local bilinear form b̃τ,σ(·, ·). Using this
representation, we can treat the approximation of b(·, ·) by exactly the same techniques
as that of g(·, ·).

4 Implementation

4.1 Interpolation

We use tensor product Chebyshev interpolation, i.e., the interpolation points (xτ
ν)ν∈M

and (yσ
µ)µ∈M in equation (13) are the Chebyshev points for the axis-parallel boxes Bτ

and Bσ.
The computation of these points is straightforward: The m-th order Chebyshev points

(xi)mi=0 for the interval [−1, 1] are given by

xi := cos
(
π

2i+ 1
2m+ 2

)
.

For a given interval [a, b] ⊆ R, the transformed Chebyshev points (x[a,b]
i )mi=0 are

x
[a,b]
i :=

b+ a

2
+
b− a

2
xi,

and the corresponding one-dimensional Lagrange polynomials have the form

L[a,b]
i (x) :=

∏
j �=i

x− x
[a,b]
j

x
[a,b]
i − x

[a,b]
j

.

The axis-parallel box Bτ can be written as Bτ = [a1, b1]× [a2, b2]× [a3, b3], so the tensor
product Chebyshev points are given by

xτ
ν := (x[a1,b1]

ν1
, x[a2,b2]

ν2
, x[a3,b3]

ν3
)

for ν = (ν1, ν2, ν3) ∈ M := {ν ∈ N
3
0 : ‖ν‖∞ ≤ m}. The corresponding Lagrange

polynomials are
Lτ

ν := L[a1,b1]
ν1

⊗ L[a2,b2]
ν2

⊗ L[a3,b3]
ν3

,

so they can be evaluated efficiently for x = (x1, x2, x3) ∈ R
3 due to

Lτ
ν(x) = L[a1,b1]

ν1
(x1)L[a2,b2]

ν2
(x2)L[a3,b3]

ν3
(x3).
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4.2 Setup of the H2-matrices

In order to set up the H2-matrix approximation, we have to create the coefficient matrices
Sτ,σ for (τ, σ) ∈ Pfar, the basis matrices Vτ for τ ∈ C with sons(τ) = ∅, the transfer
matrices Tτ ′,τ for τ ∈ C with sons(τ) 
= ∅, and the near-field matrices Gτ,σ for (τ, σ) ∈
Pnear.

The computation of Sτ,σ is straightforward: Using the interpolation points (xτ
ν)ν∈M

and (xσ
µ)µ∈M defined in Subsection 4.1, we have to evaluate the kernel function Φ:

Sτ,σ
νµ = Φ(xτ

ν ,x
σ
µ).

The matrices Vτ satisfy

Vτ
tν =

∫
τ
χt(x)Lτ

ν(x) dx =
∫

t
Lτ

ν(x) dx,

since χt is the characteristic function of the triangle t. This integral can be computed
by standard quadrature techniques, since the integrand Lτ

ν is a polynomial.
Let Bτ = [a1, b1] × [a2, b2] × [a3, b3] and Bτ ′

= [c1, d1] × [c2, d2] × [c3, d3]. Then the
transfer matrix Tτ ′,τ is given by

Tτ ′,τ
ν′ν = Lτ

ν(x
τ ′
ν′) = L[a1,b1]

ν1
(x[c1,d1]

ν′
1

) L[a2,b2]
ν2

(x[c2,d2]
ν′
2

) L[a3,b3]
ν3

(x[c3,d3]
ν′
3

),

i.e., is the Kronecker product of three matrices computed by evaluating one-dimensional
Lagrange polynomials. This allows us to compute the matrices Tτ ′,τ efficiently. Alterna-
tively, we can reduce the memory requirements by storing the Kronecker factors instead
of the full matrix.

The near-field matrices Gτ,σ are computed by a semi-analytical approach1 for the dou-
ble integrals with singular kernels, where the interior integral is calculated analytically
and the exterior integral is evaluated by a Gaussian quadrature scheme. Some of the
analytical integrations can be looked up in [9].

Remark 6 (Compact storage) Let t ∈ T and τ ∈ C. If suppχt ∩ Γτ = ∅ holds, we
have Vτ

tν = 0 for all ν ∈ K.
Let t, s ∈ T and (τ, σ) ∈ Pnear. If suppχt ∩ Γτ = ∅ or suppχs ∩ Γσ = ∅ hold, we have

Gτ,σ
ts = 0.
This means that only the small number of non-zero entries of Gτ,σ and Vτ has to be

computed and stored.

4.3 Preconditioning

A conjugate residual method (CR) is used for solving equation (5), which needs to be
preconditioned. We use the block diagonal preconditioner P given by

P :=

⎛
⎜⎜⎝

M� + M� 0 0 0
0 M� + M� 0 0
0 0 Q 0
0 0 0 Q

⎞
⎟⎟⎠ , (23)

1Private communication with Dr. Olaf Steinbach, University of Stuttgart.
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Figure 7: Test geometries A and B

which is approximately inverted by applying a conjugate gradient method. In the stan-
dard method, P is preconditioned by a Jacobi preconditioner.

All the operators of P, namely M�, M� and Q, are also part of equation (5), thus
are already compressed if the H2-matrix approximation is applied. So the H2-matrix
approximation also pays for the preconditioner.

The near-field part Qnear of the operator Q can be inverted by a sparse Gaussian
elimination scheme as long as the dimensions are moderate, giving us a preconditioner
for the third and forth row of P.

5 Numerical experiments

The predicted behavior of the H2-matrix approximation method was tested for the three
operators M�, Q, and B of equation (5) by using the typical geometry of the induction
heating setting, as shown in Figure 7. The storage and cpu-time requirements for solv-
ing equation (5) with the uncompressed standard method and the interpolation-based
H2-method were compared. The order of interpolation was set to be 2 and the simpli-
fied admissibility condition (21) with η′ = 0.99 was used. This turned out to lead to
sufficiently small approximation errors.

Differently from standard H2-techniques, degrees of freedom located in the edges and
nodes can appear multiple times during the course of the matrix-vector multiplication
due to the fact that our clustering technique is based on the triangles of the grid, not on
the degrees of freedom. The compression rates in Figure 8 show that the performance
of our method is still good.

The diagonal part of M� consists of scalar products of linear edge functions, and it
does not need to be compressed, because the functions have local support. The non-
diagonal part is the scalar single layer potential of equation (11) with constant basis
functions.

The functions appearing in the single layer potential of Q are vector-valued and con-
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stant, but an adaptation of the matrices V to this fact is straightforward. The transfer
matrices of equation (22) are identical for all occurring operators and therefore have to
be calculated and stored only once.

The operator B is the most complicated one. It consists of a diagonal part, a double
layer potential, and a slightly modified double layer potential. The basis functions are
vector-valued and mixed, so we have to adapt the corresponding V-matrices once more.

All in all, the elaborate operators can be compressed without major difficulties by the
H2-matrix approximation technique. A large number of matrices must be calculated
only once and can be reused for different operators. This automatically saves a lot of
storage and enhances the efficiency of the algorithm.

Table 8 shows the performance of the H2-matrix approximation compared with the
use of dense matrices. The solver was stopped when the residual had decreased to a
value below 0.0001 times the residual in the first step. The documented time is the
time needed for filling the matrices and solving the system. The number of unknowns is
defined as

n := 2 × (#E + #N + number of holes in the workpiece),

and for the storage requirements one finds

Standard storage = (2 × (#E)2 + (#E × #N ) + (#N )2) × sizeof(double) Bytes,

H2 storage = Storage needed for the H2 approximation.

The relative error is defined as the difference between the surface current γDj := σ ·γDE
of the H2-solution and that of the solution obtained without compression

relative error :=
∫

Γ

‖γDjH2(x) − γDjst.(x)‖
‖γDjst.(x)‖ dSx ,

because the current is the most important entity for the calculation of the inductive
heating.

The first four rows were produced by interpolation on the geometry A of Figure 7 and
the last on geometry B. Storage requirements and calculation times are strongly reduced,
and geometries consisting of 20000 surface faces can be calculated. In each case the time
for filling the matrices amounts to 90% of the total time. The experiments were made
on a Sun Ultra 450 computer with a 300 MHz Ultrasparc II processor.

A special feature is implemented due to the fact that the workpiece rotates. This
means that the current has to be calculated for several positions of the workpiece per
rotation. Therefore, it is desirable to find a clever way for reusing entities, which have
already been calculated:

The BEM operators change only for items that are moving relative to each other.
Parts of the operators which describe workpiece/workpiece interactions (w/w) or induc-
tor/inductor interactions (i/i) need to be calculated only once. But how to reach this
goal in the H2 context where everything is linked together in the tree? The option chosen
here is to apply the geometric bisection algorithm (cf. Figure 3) separately to workpiece
and inductor. Then each cluster consists exclusively of workpiece triangles or inductor
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triangles. In this case, the matrices V, W and T do not change during the rotation and
have to be calculated only once (except for the useless T of the root). After merging the
two resulting trees under one big root, one finds the situation of Figure 9. If the block
partition algorithm (cf. Figure 4) is now applied to this new tree, each pair of admissible
clusters belongs either to w/w or i/i or to the interaction w/i between workpiece and
inductor. The near-field and the matrices S have to be refreshed only for the w/i pairs.
This is a big advantage because the interesting part with the biggest number of triangles
is the workpiece, and w/w does not have to be refreshed.
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n Standard storage H2 storage Standard time H2 time Relative error
2948 22.7 MB 15.5 MB 19.75 min 15.0 min 0.00139
6916 125.3 MB 35.0 MB 1.9 h 43.3 min 0.00250
11420 342.0 MB 71.0 MB 6.7 h 1.6 h 0.00146
23840 954.1 MB 93.4 MB 14.6 h 2.4 h 0.00218
46724 5725.0 MB 333.0 MB - 9.0 h -

Figure 8: Time, storage, and errors for the impedance model
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Figure 9: Cluster tree for the inductor/workpiece domain
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