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GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS FOR A HYPERBOLIC
CHEMOTAXIS MODEL AND ITS PARABOLIC LIMIT

H.J. HWANG, K. KANG, AND A. STEVENS

Abstract. We consider a one dimensional hyperbolic system for chemosensitive movement, especially
for chemotactic behavior. The model consists of two hyperbolic differential equations for the chemo-
tactic species and is coupled with either a parabolic or an elliptic equation for the dynamics of the
external chemical signal. The speed of the chemotactic species is allowed to depend on the external
signal and the turning rates may depend on the signal and its gradients in space and time, as observed
in experiments. Global classical solutions are established for regular initial data and a parabolic limit
is proved.

1. Introduction

Changes in the pattern of movement in dependence of external chemical signals is a common mecha-
nism for biological organisms to respond to their environment. The directed motion to higher concen-
trations of chemical signals is described by positive chemotaxis. Chemosensitivity describes the more
general changes of speed of motion and orientation of the individuals in dependence of the chemical
environment. This behavior can lead to different states of pattern formation and self-organization.
Well known examples are the bacteria Escherichia coli and the slime mold amoebae Dictyostelium
discoideum

The classical chemotaxis model discussed by Keller and Segel, [14] is a parabolic system. A related
one dimensional hyperbolic model for chemotaxis was introduced in [17]. It is based on the Goldstein-
Kac model [8, 13] for one-dimensional correlated random walks. In [9] the following hyperbolic model
for chemotaxis with suitable boundary conditions was analyzed

u+
t + γu+

x = −µ+(sx)u+ + µ−(sx)u−,

u−
t − γu−

x = µ+(sx)u+ − µ−(sx)u−,

τst = Dsxx + u+ + u− τ ≥ 0, t > 0, x ∈ (−1, 1)
where γ is the constant speed of the right and left moving cells u+ and u−, and µ+, µ− are the turning
rates, which in this case depend linearly on the spatial gradient of the given chemical signal s. In [9]
the gradient of s was expressed by a quasistationary approximation in the asymptotic limit τ → 0 and
thus a quasilinear hyperbolic conservation law for U(x, t) =

∫ x
−1 u(ξ, t)dξ resulted.

Here we are concerned with the original and more general hyperbolic models for chemosensitive
movement. Again, the density for the right moving particles is denoted by u+, for the left moving
particles by u− and the external signal is s:

(1.1) u+
t + (γ(s)u+)x = −µ+(s, st, sx, sxx)u+ + µ−(s, st, sx, sxx)u−,

(1.2) u−
t − (γ(s)u−)x = µ+(s, st, sx, sxx)u+ − µ−(s, st, sx, sxx)u−,
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(1.3) τst = Dsxx + f(s, u+ + u−), τ ≥ 0, t > 0, x ∈ R

(1.4) u±(0, x) = u±
0 (x), s(0, x) = s0(x)

where u±
0 are assumed to have compact support, and s0 and u0 satisfy a compatibility condition.

Typically f is given as follows:

f(s, u+ + u−) = α(u+ + u−) − βs.

The diffusion rate of the external signal s and its production, and degradation rate are denoted by
D > 0, α > 0, and β ≥ 0, respectively. Here we study the fully parabolic equation (1.3) for the
external signal s, and the turning rates µ± in (1.1 ,1.2) depend not only on the spatial derivatives
of s but also on its time derivative and s itself. This is reasonable to assume since in Soll’s studies
[18] it turned out that the turning behavior and the speed of the slime mold amoebae Dictyostelium
discoideum are dependent on both, the temporal and the spatial gradient of the cAMP concentration.
Chen et al. [4, 5] analyzed data of E.coli and found out that the bacterial speed is close to constant,
whereas the turning frequencies depend on the temporal gradient of the external signal. Their model
was set into context with a one-dimensional projection of a 3D model for chemosensitive movement
given by Alt, [1].

A general model of the kind described above, also with γ = γ(s, sx, st) was already introduced in
[12] and a formal parabolic limit was derived. Local and global existence of solutions was proved for a
simplified version of this system, namely for constant speed γ and turning rates µ± = µ±(s, sx). The
dynamics for the chemical s were discussed for both cases, τ = 0 and τ �= 0.

In [11] the case γ = γ(s) and, as before µ± = µ±(s, sx) was discussed. For τ = 0, which means
elliptic dynamics for the chemical signal, existence of weak solutions could be proved.

In this paper we extend this result further in several ways. We consider µ± = µ±(s, sx, st, sxx). So
also the dependency of the turning rates on chemical gradients in time are taken into account. The
dynamics of the chemical can be considered to be parabolic (τ �= 0) as well as elliptic (τ = 0), and
global existence of classical solutions is proved. The results in [11] are a special case of our discussion
here.

Our main result reads

Main Theorem Let u±
0 ≥ 0, s0 ≥ 0 be smooth and bounded, and u±

0 be compactly supported and
not identically zero. Let u±

0 and s0 satisfy some compatibility condition. Then there exists a unique
smooth solution u± and s of (1.1,1.2,1.3) with (1.4).

This paper is arranged as follows. We start with assumptions and notations in Section 2. A
priori estimates on Lp are derived in Section 3, followed by the estimates of higher derivatives W k,p

in Section 4. Finally, we attain global classical solutions for the hyperbolic chemotaxis model and
rigorously derive a parabolic limit for the system.

2. Assumptions and Notations

Here we introduce notations which will be used throughout this article and give assumptions on the
initial data, turning rates, and speed.

NOTATIONS:
(1) By Γ we denote the fundamental solution of the differential operator ∂t − ∂xx + β in R × R

Γ (x, t) =
1√
4πt

exp
(
−x2

4t
− βt

)
.
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(2) For 1 ≤ p ≤ ∞, Lp (R) denotes the Banach space of measurable functions with the finite norms

‖f‖Lp(R) =
(∫

R

|f (x)|p dx

)1/p

, p < ∞ and ‖f‖L∞(R) = ess sup
R

|f | .

Let W k,p (R) denote the usual Sobolev space with its norm ‖f‖W k,p(R), i.e.,

W k,p (R) = {f |∂αf ∈ Lp (R) , 0 ≤ |α| ≤ k} .

(3) For 0 < δ < 1, Cδ (R) denotes the Banach space of functions that are Hölder continuous with
exponent δ and by Ck,δ (R) we denote the space of all functions whose derivatives up to k-th
order are Hölder continuous with exponent 0 < δ < 1.

(4) Let Ωt = R × (0, t) for t ∈ [0, T ] . For 1 ≤ p ≤ ∞, Lp (Ωt) denotes the Banach space of all
measurable functions with the finite norms

‖f‖Lp(Ωt)
=
(∫ t

0

∫
R

|f (x, t)|p dxdt

)1/p

, p < ∞ and ‖f‖L∞(Ωt)
= ess sup

Ωt

|f | .

W k,p (Ωt) , Cδ (Ωt) , and Ck,δ (Ωt) denote the usual Sobolev and Hölder spaces in Ωt.
(5) By ‖f‖Lp(R) for 1 ≤ p ≤ ∞, we denote the Lp norm of f with respect to x for fixed time t and

sup0≤τ≤t ‖f‖Lp(R) denotes the L∞ norm of ‖f‖Lp(R) with respect to time in [0, t] .
(6) By C = C (α, β, ...) we denote a constant depending on the prescribed quantities α, β, ... .

ASSUMPTIONS:
(A1): The initial values u±

0 ∈ C∞ (R) have compact support and u±
0 ≥ 0. We use the following

compatibility condition: s0 ∈ C∞ (R) is the unique solution of

(2.1) 0 = Ds0,xx − βs0 + α
(
u+

0 + u−
0

)
, s0 (±∞) = 0.

(A2): The turning rates are nonnegative and symmetric with respect to sx

µ+, µ− ≥ 0, µ+(s, st, sx, sxx) = µ−(s, st,−sx, sxx).

(A3): The turning rates satisfy µ± ∈ C∞ (
R

4
)

and are bounded

||D(κ)µ±||L∞ ≤ C|κ|, ,where κ is a multi-index

0 ≤ µ±(s, st, sx, sxx) ≤ C(1 + ||s||W 1,∞(R)).
(A4): The speed function satisfies γ = γ (s) ∈ C∞ (R) with

||γ(k)||L∞ ≤ Ck, ,where k ∈ N+.

From (A4), it follows that ||γ(s)||L∞(R) ≤ C(1 + ‖s‖L∞(R)).
The existence of a unique solution of (2.1) is clear from standard arguments for elliptic equations.

The maximum principle for elliptic equations together with the positivity of u±
0 leads to s0(x) ≥ 0 for

all x ∈ R. Using the method of vanishing viscosity, we consider the following model

(2.2) uε+
t − εuε+

xx = −(γ(sε)uε+)x − µ+(sε, sε
t, s

ε
x, sε

xx)uε+ + µ−(sε, sε
t, s

ε
x, sε

xx)uε−,

(2.3) uε−
t − εuε−

xx = (γ(sε)uε−)x + µ+(sε, sε
t, s

ε
x, sε

xx)uε+ − µ−(sε, sε
t, s

ε
x, sε

xx)u
ε−,

(2.4) τsε
t = Dsε

xx − βsε + α(uε+ + uε−),
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(2.5) uε+(0, ·) = u+
0 , uε−(0, ·) = u−

0 , sε(0, ·) = s0,

where u±
0 and s0 satisfy the compatibility condition (A1). Introducing the total population density

uε = uε+ + uε− and the density flow vε = uε+ − uε−, the system reads:

(2.6) uε
t − εuε

xx = −(γ(sε)vε)x,

(2.7) vε
t − εvε

xx = −(γ(sε)uε)x − ξ(sε, sε
t, s

ε
x, sε

xx)uε − η(sε, sε
t, s

ε
x, sε

xx)v
ε,

(2.8) τsε
t = Dsε

xx − βsε + αuε,

where
uε(0, ·) = u0 = u+

0 + u−
0 , vε(0, ·) = v0 = u+

0 − u−
0 , sε(0, ·) = s0

and ξ = µ+ − µ−, η = µ+ + µ−.

3. A priori estimates on Lp

Lemma 1. Let a (t) and b (t) be positive functions. Let y (t) > 0 be differentiable in t and satisfy

y′ ≤ a (t) y ln y + b (t) y.

Then

y (t) ≤
[
y (0) exp

(∫ t

0
b (s) e−

R s
0

a(τ)dτds

)]exp(
R t
0 a(s)ds)

.

Proof. Dividing both sides of the inequality by y, we get a typical Gronwall inequality for z = ln y

z′ ≤ a (t) z + b (t) .

Therefore, we deduce the lemma. �

Lemma 2. [Gronwall’s inequality] Let g and h be positive functions. Suppose that f is an integrable
function in t and satisfies

f (t) ≤ g (t) + h (t)
∫ t

0
f (s) ds.

Then we have

f (t) ≤ g (t) + h (t)
∫ t

0
g (s) exp

(∫ t

s
h (τ) dτ

)
ds.

Proof. Computations are straightforward and hence we omit details (see e.g. [7]). �

Throughout this paper we consider only the case β > 0, for simplicity. We remark, however, our
main result can be easily extended to the case β = 0 (see Remark 3 for more details). For convenience,
we will use u± without ε for uε± from now on. Without loss of generality, we assume that τ = 1 and
D = 1. Let 1 < p < ∞. For given u ∈ Lp(Ωt), we study the parabolic equation:

(3.1) st − sxx = −βs + αu.

Using potential estimates similar to the heat kernel, we have:
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Lemma 3. Let u ∈ Lp (Ωt) and 1 < p < ∞. Then there exists a constant Cp = C (α, β, p) such that
the following estimate holds

‖st‖Lp(Ωt)
+ ‖sxx‖Lp(Ωt)

+ ‖s‖Lp(Ωt)
≤ Cp ‖u‖Lp(Ωt)

.

Proof. Since the above estimate is standard (e.g. see [15] and [16]), we omit the details. �
Next we estimate ‖s‖W 1,∞(R).

Lemma 4. If u ∈ L∞ ([0,∞) : L1 (R) ∩ L2(R)
)
, then the solution s in (3.1) satisfies

‖s‖L∞(R) ≤ C (α, β) sup
0≤τ≤t

‖u‖L1(R) = C (α, β) ‖u0‖L1(R) ,

‖sx‖L∞(R) ≤ C (α, β)
[
1 + ‖u0‖L1(R)

(
1 + (ln t)+ +

∣∣∣∣ln
(

sup
0≤τ≤t

‖u‖L2(R)

)∣∣∣∣
)]

,

where (·)+ means the positive part and

lim
|x|→∞

s (x, t) = 0 for all t.

Proof. The fundamental solution of the operator ∂t − ∂xx + β is

Γ (x, t) =
1√
t
exp

(
−x2

4t
− βt

)
and its Fourier transform is

Γ̂ (ξ, t) = exp
(−t

(
4ξ2 + β

))
.

By Duhamel’s principle, we obtain

s (x, t) =
∫ t

0
(Γ ∗ αu) (x, t − τ) dτ

=
∫ t

0

∫ ∞

−∞

1√
t − τ

exp

(
− (x − y)2

4 (t − τ)
− β (t − τ)

)
αu (y, τ) dydτ.

Next we estimate ∫ ∞

−∞
|ŝ (ξ, t)| dξ =

∫ ∞

−∞

∣∣∣∣
∫ t

0
Γ̂αûdτ

∣∣∣∣ dξ

≤ α sup
0≤τ≤t

‖û‖L∞(R)

∫ ∞

−∞

∫ t

0
e−(t−τ)(4ξ2+β)dτdξ

≤ α sup
0≤τ≤t

‖û‖L∞(R)

∫ ∞

−∞

1
4ξ2 + β

dξ

≤ C (α, β) sup
0≤τ≤t

‖û‖L∞(R) ,

and we have

(3.2) |ŝ (ξ, t)| ≤ α sup
0≤τ≤t

‖û‖L∞(R)

1
4ξ2 + β

.

Therefore, using the inverse Fourier-transform for ŝ, we have lim|x|→∞ s (x) = 0 and

‖s‖L∞(R) ≤ ‖ŝ‖L1(R) ≤ C (α, β) sup
0≤τ≤t

‖û‖L∞(R) ≤ C (α, β) sup
0≤τ≤t

‖u‖L1(R) .
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Next, we estimate ‖sx‖L∞(R) :

‖sx‖L∞(R) ≤ ‖ξŝ‖L1(R) =
∫ ∞

−∞

∫ t

0
|ξ|
∣∣∣Γ̂αû

∣∣∣ (ξ, t − τ) dτdξ

= α

∫ t

0

∫ ∞

−∞
|ξ| exp

(−τ
(
4ξ2 + β

)) |û (ξ, τ)| dξdτ.

The integration is done by splitting the time integration into two:∫ t

0

∫ ∞

−∞
|ξ| exp

(−τ
(
4ξ2 + β

)) |û (ξ, τ)| dξdτ =
∫ r

0
· · · +

∫ t

r
· · · = I1 + I2,

where r > 0 will be chosen later.
(1) For 0 < τ < r, we use Hölder’s inequality with p = q = 2 :∫ ∞

−∞
|ξ| exp

(−τ
(
4ξ2 + β

)) |û (ξ, τ)| dξ ≤
(∫ ∞

−∞
ξ2 exp

(−2τ
(
4ξ2 + β

))
dξ

)1/2

‖û‖L2(R)

=
(

2
∫ ∞

0
ξ2 exp

(−2τ
(
4ξ2 + β

))
dξ

)1/2

‖u‖L2(R) ,

where we used the Plancherel’s equality for L2. By integration by parts, we have∫ ∞

0
ξ2 exp

(−2τ
(
4ξ2 + β

))
dξ =

1
16τ

∫ ∞

0
exp

(−2τ
(
4ξ2 + β

))
dξ

=
√

π

64
√

2
τ−3/2e−2βτ .

Hence, we obtain

I1 ≤ π1/4

4 4
√

23
sup

0≤τ≤t
‖u‖L2(R)

∫ r

0
τ−3/4e−βτdτ ≤ π1/4

4
√

23
r1/4 sup

0≤τ≤t
‖u‖L2(R) .

(2) For r ≤ τ ≤ t, we use Hölder’s inequality with p = 1, q = ∞ :∫ ∞

−∞
|ξ| exp

(−τ
(
4ξ2 + β

)) |û (ξ, τ)| dξ

≤ ‖û‖L∞(R)

∫ ∞

−∞
|ξ| exp

(−τ
(
4ξ2 + β

))
dξ

=
1
4τ

e−βτ ‖û‖L∞(R) .

So, we have

I2 ≤ 1
4

sup
0≤τ≤t

‖û‖L∞(R)

∫ t

r

1
τ
e−βτdτ ≤ 1

4
sup

0≤τ≤t
‖u‖L1(R) |ln t − ln r| .

Therefore, we get

‖sx‖L∞(R) ≤ Cα

(
r1/4 sup

0≤τ≤t
‖u‖L2(R) + sup

0≤τ≤t
‖u‖L1(R) |ln t − ln r|

)
.
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We optimize the upper bound for the above inequality by choosing

r = min

{(
sup

0≤τ≤t
‖u‖L2(R)

)−4

, t

}
.

If r = t and for t ≤ 1 we have t ≤
(
sup0≤τ≤t ‖u‖L2(R)

)−4
and ‖sx‖L∞(R) ≤ Cα.

If r =
(
sup0≤τ≤t ‖u‖L2(R)

)−4
, then 4

∣∣∣ln(sup0≤τ≤t ‖u‖L2(R)

)∣∣∣ ≥ |ln t| and

‖sx‖L∞(R) ≤ Cα

[
1 + sup

0≤τ≤t
‖u‖L1(R)

∣∣∣∣ln
(

sup
0≤τ≤t

‖u‖L2(R)

)∣∣∣∣
]

.

For t ≥ 1, we have |ln t − ln r| ≤ C
(
|ln t| +

∣∣∣ln(sup0≤τ≤t ‖u‖L2(R)

)∣∣∣) .

Finally sup0≤τ≤t ‖u‖L1 (R) = ‖u0‖L1 (R) since the total population size is preserved, namely∫
R

u(x, t)dx =
∫

R

u0(x)dx =
∫

R

(u+
0 + u−

0 )(x)dx for all t.

because
d

dt

∫
R

u(x, t)dx =
∫

R

[−(γ(s)u+ (x, t))x + (γ(s)u− (x, t))x]dx = 0.

This completes the proof. �
Lemma 5. Let U0 =

∫
R

u (x, t) dx < ∞ and S0 =
∫

R
s0 (x) dx, then s ∈ Lp (Ωt) for 2 ≤ p ≤ ∞ and

sx ∈ L2 (Ωt) in (3.1) with

‖s‖Lp(Ωt)
≤ C (α, β) t

1+2p
2p U0, ‖sx‖L2(Ωt)

≤ C (α, β) t
1
2 U0

(3.3)
∫

R

s (x, t) dx =
αU0

β
+
(

S0 − αU0

β

)
e−βt,

where
lim

|x|→∞
sx (x, t) = 0 for all t.

Proof. From (3.2), we easily see that ‖s‖L2(Ωt)
= ‖ŝ‖L2(Ωt)

≤ C (α, β) t
1
2 U0 and

‖sx‖L2(Ωt)
= ‖ŝx‖L2(Ωt)

= ‖ξŝ‖L2(Ωt)
≤ C (α, β) t

1
2 U0

with lim|x|→∞ sx (x, t) = 0.

Since ‖s‖L∞(Ωt)
≤ C (α, β) U0 by Corollary 4, we have ‖s‖Lp(Ωt)

≤ C (α, β) t
1
p U0 for 2 ≤ p ≤ ∞ by

interpolation. From (1.3), we have,∫
R

s (x, τ) dx + β

∫ t

0

∫
R

s (x, τ) dxdτ =
∫

R

s0 (x) dx + tα

∫
R

u0 (x) dx = S0 + tαU0.

For convenience, we set S (t) =
∫

R
s (x, t) dx. Then we have

(3.4) S′ (t) = −βS (t) + αU0.

Solving the ordinary differential equation (3.4), we obtain∫
R

s (x, t) dx = S0e
−βt + αU0

∫ t

0
eβ(τ−t)dτ.
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By integrating the last term, we have (3.3). The proof is complete. �

We have the invariance of positivity of u± and s.

Lemma 6. Assume u± ≥ 0 in Ωt. Then s ≥ 0 in Ωt.

Proof. This is an easy consequence of the parabolic maximum principle (e.g. see [7] or [16]). �

Lemma 7. If u±
0 ≥ 0, then the solution (u+, u−, s) of (2.3)-(2.5) satisfies u± ≥ 0 as long as (u+, u−, s)

exists.

Proof. Assumption (A2) on the non-negativity of the turning rates ensures our lemma from the
concept of invariant regions for parabolic systems (e.g. see [6] ). �

Remark 1. For the conserved total population density U0, we have s ∈ L1 (Ωt) . Indeed, since s ≥ 0,
we have by (3.3)

‖s‖L1(Ωt)
=
∫ t

0

∫
s (x, τ) dxdτ =

∫ t

0

αU0

β
+
(

S0 − αU0

β

)
e−βτdτ

=
αU0t

β
+

1
β

(
S0 − αU0

β

)(
1 − e−βt

)
< ∞.

So, combining the results of Lemma 5, we have s ∈ Lp (Ωt) for all 1 ≤ p ≤ ∞. �
Now let K = L2(R) ∩ C2

0(R), where

C0 = {u ∈ L∞ (R) : lim
|x|→∞

u(x) = 0}, Ck
0 = {u : Dju ∈ C0, j = 0, ..., k}

We state the local existence result for u±:

Lemma 8. For initial values u±
0 ∈ K there exists a unique solution of (2.2), (2.3) with(

u+, u−) ∈ C ([0, T0] ,K)

for some time T0 > 0.

Proof. Theorem can be proved by following a similar procedure as in Corollary 3.1 and Theorem 3.1
in [11, see page 180-182]. Therefore, details are omitted. �

Next we give growth rates for the L2-norms of u± which ensure global existence. For simplicity, we
denote uε± and sε in (2.2-2.4) by u± and s, respectively, in case no confusion is to be expected.

Lemma 9. Let u±
0 ∈ L1 ∩ L2 with

∫
R

u+
0 + u−

0 = U0. Assume (A1)-(A4). Then the solution (u+, u−)
of (2.2,2.3) exists globally in C

(
[0,∞), L1 ∩ L2

)
and there exist constants K = K (α, β, U0) and

C = C (α, β, U0) which are independent of ε > 0 such that for all t ≥ 0,

(3.5)
∥∥(u+, u−)∥∥

L2(R)
≤
[
C
∥∥(u+

0 , u−
0

)∥∥
L2(R)

]eKt

.
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Proof. Using (2.2), (2.3) and applying Hölder’s inequality, we have

d

dt

(∥∥u+
∥∥2

L2(R)
+
∥∥u−∥∥2

L2(R)

)
= 2

∫
R

(
u+u+

t + u−u−
t

)
dx

= −2ε
∫

R

[∣∣u+
∣∣2 +

∣∣u−∣∣2] dx + 2
∫

R

[
− (γu+

)
x
u+ − µ+

∣∣u+
∣∣2 + µ−u−u+

]
dx

+
∫

R

[(
γu−)

x
u− + µ+u+u− − µ− ∣∣u−∣∣2] dx

≤ 2
∫

R

[− (γu+
)
x
u+ + µ−u−u+

]
dx + 2

∫
R

[(
γu−)

x
u− + µ+u+u−] dx

≤ ‖γx‖L∞

∫
R

[∣∣u+
∣∣2 +

∣∣u−∣∣2] dx +
(∥∥µ+

∥∥
L∞ +

∥∥µ−∥∥
L∞
) ∫

R

[∣∣u+
∣∣2 +

∣∣u−∣∣2] dx

≤ C
(
1 + ‖s‖W 1,∞(R)

)(∥∥u+
∥∥2

L2(R)
+
∥∥u−∥∥2

L2(R)

)
.

Therefore, by Lemma 4, we have

d

dt

(∥∥u+
∥∥2

L2(R)
+
∥∥u−∥∥2

L2(R)

)
≤

C (α, β, U0)
(

1 + (ln t)+ +
∣∣∣∣ln
(

sup
0≤τ≤t

[∥∥u+
∥∥2

L2(R)
+
∥∥u−∥∥2

L2(R)

])∣∣∣∣
)(∥∥u+

∥∥2

L2(R)
+
∥∥u−∥∥2

L2(R)

)
.

Setting y (t) = sup0≤τ≤t

(
‖u+‖2

L2(R) + ‖u−‖2
L2(R)

)
, we obtain

y′ ≤ K (α, β, U0) y |ln y| + K (α, β, U0) y
(
1 + (ln t)+

)
.

Hence, applying Lemma 1 with a (t) = K, b (t) = K
(
1 + (ln t)+

)
, we complete the proof. �

An easy consequence of the above result is the following.

Corollary 1. Let s be the solution of (2.8). Then s satisfies

‖sx‖L∞(R) ≤ C (α, β, U0) eKt,

where K = K (α, β, U0) .

Proof. This is a combination of the a priori estimate for ||sx||L∞(R) in Lemma 4 and the estimate (3.5)
in Lemma 9. �

Next we prove Lp estimates. For convenience, we denote (u±)p by u±,p.

Lemma 10. Let u±
0 ∈ L1(R) ∩ L∞(R) with

∫
R

u+
0 + u−

0 = U0. Assume (A1)-(A4). Then there exist
constants C1 = C1

(
u±

0

)
, C2 = C2

(
u±

0 , α, β, U0

)
and K = K (α, β, U0) such that

∥∥u+
∥∥

Lp(R)
+
∥∥u−∥∥

Lp(R)
≤ C1 exp

(
C2

∫ t

0
eKsds

)
≤ C1 exp (C2 exp Kt) .

for all 2 ≤ p < ∞ and 0 ≤ t < ∞.
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Proof. Multiplying p (u+)p−1 and p (u−)p−1 to (2.2) and (2.3), we have

d

dt

∥∥u+
∥∥p

Lp(R)
+
∫

R

(
γu+,p

)
x
dx +

∫
R

(p − 1) γxu+,pdx

= p

∫
R

(
−µ+u+,p + µ−u−u+,(p−1)

)
dx − εp (p − 1)

∫
R

u+,p−2
(
u+

x

)2
dx,

d

dt

∥∥u−∥∥p

Lp(R)
−
∫

R

(
γu−,p

)
x
dx −

∫
R

(p − 1) γxu−,pdx

= p

∫
R

(
µ+u+u−,p−1 − µ−u−,p

)
dx − εp (p − 1)

∫
R

u−,p−2
(
u−

x

)2
dx,

where u±,p denotes (u±)p and we have used

p
(
γu±)

x
u±,p−1 =

(
γu±,p

)
x

+ (p − 1) γxu±,p.

Therefore, applying the Hölder’s inequality we deduce

d

dt

∥∥u+
∥∥p

Lp(R)
≤ Cp

(
1 + ‖s‖W 1,∞(R)

)(∥∥u+
∥∥

Lp(R)
+
∥∥u−∥∥

Lp(R)

) ∥∥u+
∥∥p−1

Lp(R)

≤ CpeKt
(
1 +

∣∣∣ln(∥∥(u+
0 , u−

0

)∥∥
L2(R)

)∣∣∣) (∥∥u+
∥∥

Lp(R)
+
∥∥u−∥∥

Lp(R)

)∥∥u+
∥∥p−1

Lp(R)
.

A similar estimate holds for ||u−||Lp(R). Therefore, we have

d

dt

(∥∥u+
∥∥

Lp(R)
+
∥∥u−∥∥

Lp(R)

)
≤ C

(
1 +

∣∣∣ln(∥∥(u+
0 , u−

0

)∥∥
L2(R)

)∣∣∣) eKt
(∥∥u+

∥∥
Lp(R)

+
∥∥u−∥∥

Lp(R)

)
.

Then the standard Gronwall inequality, Lemma 2, implies

∥∥u+
∥∥

Lp(R)
+
∥∥u−∥∥

Lp(R)
≤
(∥∥u+

0

∥∥
Lp(R)

+
∥∥u−

0

∥∥
Lp(R)

)
exp

(
C
∣∣∣ln(∥∥(u+

0 , u−
0

)∥∥
L2(R)

)∣∣∣ ∫ t

0
eKsds

)
.

Since the initial data u0 are estimated as follows

||u+
0 ||Lp(R) + ||u−

0 ||Lp(R) ≤ ||u0||Lp(R) ≤ ||u0||
p−1

p

L∞(R)||u0||
1
p

L1(R)
≤ ||u0||

p−1
p

L∞(R)U
1
p

0 ,

we have ∥∥u+
∥∥

Lp(R)
+
∥∥u−∥∥

Lp(R)
≤ C1 exp

(
C2

∫ t

0
eKsds

)
≤ C1 exp (C2 exp Kt) ,

where C1 ≡ (||u0||L∞(R) + 1)(U0 + 1) and C2 ≡ C(1 + |ln C1|). This completes the proof. �

We also have L∞ estimates.

Lemma 11. Let u±
0 ∈ L1(R)∩L∞(R) with

∫
R

u+
0 +u−

0 = U0. Assume (A1)-(A4). There exist constants
C1 = C1

(
u±

0

)
, C2 = C2

(
u±

0 , α, β, U0

)
and K = K (α, β, U0) such that for all t ≥ 0,

(3.6)
∥∥u+

∥∥
∞ +

∥∥u−∥∥
∞ ≤ C1 exp (C2 exp Kt) .

Proof. In the Lp-estimate of the previous lemma, the constants C1, C2 and K are uniformly bounded
and independent of p. Thus, (3.6) is obvious. �
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4. W k,p
-estimates

In this section, we study Lp-estimates for all higher derivatives of u±. We first present standard
regularity estimates for parabolic equations without proof. For conveninence, we denote u+

x = v+ and
u−

x = v−.

Lemma 12. There exists a constant C = C (p) such that for all 1 < p < ∞,

‖stx‖Lp(Ωt)
+ ‖sxxx‖Lp(Ωt)

+ ‖sx‖Lp(Ωt)
≤ C(||v+||Lp(Ωt) + ||v−||Lp(Ωt)).

Lemma 13. Let u±, s be solutions of (2.2)-(2.5) and let the initial data fulfill u±
0x ∈ L2 Then (u+

x , u−
x )

exists globally in C
(
[0,∞), L2 (R)

)
and (u+

x , u−
x ) satisfies∥∥(u+

x , u−
x

)∥∥
L2(R)

≤ ∥∥(u+
0x, u−

0x

)∥∥
L2(R)

+ C exp (C exp (C exp Kt)) ,

where C = C (α, β, U0) , K = K (α, β, U0) .

Proof. From (2.2) and (2.3), we obtain

(4.1) v+
t − εv+

xx + (γv+)x = −(γxu+)x + (−µ+u+ + µ−u−)x

(4.2) v−t − εv−xx − (γv−)x = (γxu−)x + (µ+u+ − µ−u−)x

Multiplying v+ and v− to (4.1) and (4.2) respectively, we have

1
2

∫
R

|v+(·, t)|2dx =
1
2

∫
R

|v+(·, 0)|2dx +
∫ t

0

∫
R

v+
t v+dx

=
1
2

∫
R

|v+(·, 0)|2dx +
∫ t

0

∫
R

γv+v+
x dx −

∫ t

0

∫
R

(γxu+)xv+dx

+
∫ t

0

∫
R

(−µ+u+ + µ−u−)xv+dxds − ε

∫ t

0

∫
R

∣∣v+
x (·, s)∣∣2 dxds

=
1
2

∫
R

|v+(·, 0)|2dx +
∫ t

0

∫
R

−γx
|v+|2

2
dxds −

∫ t

0

∫
R

[
γxxu

+v+ + γx|v+|2] dxds

+
∫ t

0

∫
R

[−µ+|v+|2 + µ−v−v+ − µ+
x u+v+ + µ−

x u−v+
]
dxds − ε

∫ t

0

∫
R

∣∣v+
x (·, s)∣∣2 dxds

≤ 1
2

∫
R

|v+(·, 0)|2dx + C
∥∥γ′∥∥

L∞ ‖sx‖L∞(R)

∫ t

0

∫
R

|v+|2dxds

+ C
(∥∥µ+

∥∥
L∞ +

∥∥µ−∥∥
L∞
) ∫ t

0

∫
R

[|v+|2 + |v−|2] dxds

+ C
(∥∥u+

∥∥
L∞(R)

+
∥∥u−∥∥

L∞(R)

)∫ t

0

∫
R

[|v+|2 + |γxx|2 + |µ+
x |2 + |µ−

x |2
]
dxds.

Note that

|γxx| ≤
∥∥γ′∥∥

L∞ |sxx| +
∥∥γ′′∥∥

L∞ |sx|2 ,

|µ+
x | ≤ ‖Djµ‖L∞ (|sx| + |sxx| + |sxxx| + |stx|) .

Here, as in Lemma 12, we use the following L2-estimate for s.

||stx||L2(Ωt) + ||sxxx||L2(Ωt) + ‖sx‖L2(Ωt)
≤ C

(||v+||L2(Ωt) + ||v−||L2(Ωt)

)
.
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For sxx, we have from Lemma 3 and Lemma 10,

‖sxx‖L2(Ωt)
≤ C ‖u‖L2(Ωt)

≤ C exp (C exp Kt) .

By Corollary 1 and Lemma 11, we have

‖sx‖L∞(R) ≤ CeKt,
∥∥u±∥∥

L∞(R)
≤ C exp (C exp Kt) .

Therefore ∫
R

|v+(·, t)|2dx ≤
∫

R

|v+(·, 0)|2dx + C exp (C exp Kt)

+ C exp (C exp Kt)
∫ t

0

∫
R

[|v+|2 + |v−|2] dxds.

In a similar manner, we deduce∫
R

|v−(·, t)|2 ≤
∫

R

|v+(·, 0)|2 + C exp (C exp Kt)

+ C exp (C exp Kt)
∫ t

0

∫
R

[|v+|2 + |v−|2] dxds.

Gronwall’s inequality, Lemma 2, implies that∥∥(u+
x , u−

x

)∥∥
L2(R)

≤ ∥∥(u+
0x, u−

0x

)∥∥
L2(R)

+ C exp (C exp (C exp Kt)) .

This completes the proof. �
Next we show W 1,p estimates.

Lemma 14. Let 2 ≤ p < ∞. Let u±, s be solutions of (2.2)-(2.5) and u±
0x ∈ Lp. Then (u+

x , u−
x ) from

(2.2,2.3 ,2.4) exist globally in C ([0,∞), Lp (R)) and satisfy∥∥(u+
x , u−

x

)∥∥
Lp(R)

≤ ∥∥(u+
0x, u−

0x

)∥∥
Lp(R)

+ Cp exp (Cp exp (C exp Kt)) ,

where K = K (α, β, U0), C = C (α, β, U0) and Cp = C (α, β, U0, p) .

Proof. We multiply pv+,p−1 and pv−,p−1 to (4.1) and (4.2) respectively. Then we have

||v+||pLp(R) = ||v+ (0) ||pLp(R) −
∫ t

0

∫
R

[
(γv+,p)x − (p − 1)γxv+,p

]
dxds

−
∫ t

0

∫
R

(γxxu+ + γxv+)pv+,p−1dxds +
∫ t

0

∫
R

(µ+
x u+ + µ−

x u−)pv+,p−1dxds

+
∫ t

0

∫
R

(µ+v+ + µ−v−)pv+,p−1dxds.

Using the following estimates

||γxx||Lp(Ωt) + ||µ+
x ||Lp(Ωt) + ||µ−

x ||Lp(Ωt) ≤ Cpe
Kt(||v+||Lp(Ωt) + ||v−||Lp(Ωt) + ‖u‖Lp(Ωt)

) ,

‖γx‖L∞(R) ≤ CeKt,
∥∥u±∥∥

L∞(R)
≤ C exp (C exp Kt) ,

we have

||v+||pLp(R) ≤ ||v+ (0) ||pLp(R) + Cp exp (C exp Kt)

+ Cp exp (C exp Kt)
∫ t

0
||v+||pLp(R) + ||v−||pLp(R)ds.
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Similarly, we get the same estimate for v−, and thus

||v+||pLp(R) + ||v+||pLp(R) ≤ ||v+ (0) ||pLp(R) + ||v− (0) ||pLp(R) + Cp exp (C exp Kt)

+ Cp exp (C exp Kt)
∫ t

0

[
||v+||pLp(R) + ||v−||pLp(R)

]
ds.

Gronwall’s inequality, Lemma 2, implies v± = u±
x is Lp. Thus the proof is complete. �

For simplicity, we denote by wk the k-th spatial derivative of w. We present W k,p−estimates of u±
where k ≥ 2 is an integer and 2 ≤ p < ∞.
Lemma 15. Let 2 ≤ p < ∞. Let u±, s be solutions of (2.2)-(2.5) and initial data u±

0k ∈ Lp(R). Then(
u+

k , u−
k

)
exists globally in C ([0,∞), Lp (R)) and (u+

k , u−
k ) satisfies

∥∥(u+
k , u−

k

)∥∥
Lp(R)

≤ ∥∥(u+
0k, u

−
0k

)∥∥
Lp(R)

+ Cp exp

⎛
⎝ · · ·︸︷︷︸

k

C exp Kt

⎞
⎠ ,

where K = K (α, β, U0) and C = C (α, β, U0, k) and Cp = C (α, β, U0, p, k) .

Proof. We take the k-th derivative repeatedly of equations (1.1) -(1.2) and obtain

u+
k,t = − (γu+

)
k+1

+
(−µ+u+ + µ−u−)

k
(4.3)

= −
k+1∑
l=0

(
k + 1

l

)
γlu

+
k+1−l ∓

k∑
l=0

(
k

l

)
µ±

l u±
k−l,

u−
k,t = (γu−)k+1 +

(
µ+u+ − µ−u−)

k

= −
k+1∑
l=0

(
k + 1

l

)
γlu

−
k+1−l ±

k∑
l=0

(
k

l

)
µ±

l u±
k−l.

We note that

‖γx‖L∞(R) ≤ C
(
1 + ‖s‖W 1,∞(R)

)
≤ C exp Kt,

‖µ‖L∞(R) ≤ C
(
1 + ‖s‖W 1,∞(R)

)
≤ C exp Kt.

By induction we deduce for l ≥ 2,

‖γl‖Lq(Ωt)
≤ C

l∑
j=1

‖s‖j
l+1−j,jq ≤ C exp

⎛
⎝ · · ·︸︷︷︸

l−2

C exp Kt

⎞
⎠ .

Similarly, we get for l ≥ 1,

(4.4)
∥∥µ±

l

∥∥
Lq(Ωt)

≤ C

⎛
⎝‖ul‖Lq(R) + exp

⎛
⎝ · · ·︸︷︷︸

l−1

C exp Kt

⎞
⎠
⎞
⎠ .

The estimate in (4.4) is obtained from the dependence of µ on derivatives of s up to sxx and from
(3.1). Multiplying pu±,p−1

k to (4.3), integrating with respect to x and t and using induction on k, the
left-hand-side reads

∫
R
|u+

k (·, t)|2dx − ∫
R
|u+

k (·, 0)|2dx. We now estimate the right-hand-side term by
term:
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• l = 0 :

p

∫ t

0

∫
γu+

k+1u
+,p−1
k dxds = −

∫ t

0

∫
γx

∣∣u+
k

∣∣p dxds ≤ C exp (Kt)
∥∥u+

k

∥∥p

Lp(R)
,

p

∫ t

0

∫
µ±u±

k u+,p−1
k dxds ≤ C exp (Kt)

∥∥(u+
k , u−

k

)∥∥p

Lp(R)
.

• l = 1 :

p

∫ t

0

∫
γ1u

+
k u+,p−1

k dxds ≤ C exp (Kt)
∥∥u+

k

∥∥p

Lp(R)
,

p

∫ t

0

∫
µ±

1 u±
k−1u

+,p−1
k dxds ≤ C

∥∥µ±
1

∥∥
L2p(R)

∥∥u±
k−1

∥∥
L2p

∥∥∥u+,p−1
k

∥∥∥
Lp/(p−1)

(4.5)

≤ C exp

⎛
⎝ · · ·︸︷︷︸

k−1

C exp Kt

⎞
⎠∥∥u+

k

∥∥p−1

Lp(R)
,

where we used the induction on k − 1 with 2p.
• 2 ≤ l ≤ k − 1 : the same method as in (4.5) applies
• l = k : For the term with γk, the same method applies. For the term with µ±

k , we have

p

∫ t

0

∫
µ±

k u±u+,p−1
k dxds ≤ C

∥∥u±∥∥
L∞(R)

∥∥µ±
k

∥∥
Lp(R)

∥∥∥u+,p−1
k

∥∥∥
Lp/(p−1)

≤ C exp

⎛
⎝ · · ·︸︷︷︸

k−1

C exp Kt

⎞
⎠∥∥(u+

k , u−
k

)∥∥p−1

Lp(R)

+ C
∥∥(u+

k , u−
k

)∥∥p

Lp(R)
.

• l = k + 1 : We can deal with this case in a similar way.

The terms with u− can be estimated similarly. Therefore, by applying Gronwall’s inequality, we
complete the proof. �

Taking a similar procedure as given in [11, see page 188-190] we can also obtain W 1,1 estimates. The
difference is that we use boundedness of ‖u±‖L2 and the L2 norms of the derivatives of the chemical
signal s, which are bounded by ‖u±‖W 1,2 . Similarly, we can have W k,1 estimates. To sum up, we have

Lemma 16. Let u±, s be solutions of (2.2)-(2.5) and the initial data u±
0k ∈ Lp(R). Let 1 ≤ p < ∞.

There exists a constant C = C (α, β, U0, k, p, T ) such that for all t ∈ [0, T ]∥∥u+
k

∥∥
Lp(R)

+
∥∥u−

k

∥∥
Lp(R)

≤ C.

By standard embedding arguments, we finally have

Theorem 1. Let 0 < T ≤ ∞ and ΩT = R × (0, T ) . Suppose that u±
0 ∈ W k,p (R) for all k ≥ 0 and

all 1 ≤ p ≤ ∞. Then we have for (2.2)-(2.5) a solution (uε+, uε−, sε) ∈ [C ([0, T ),W k,p (R)
)]3 for all

k ≥ 0 and 1 ≤ p ≤ ∞, where the bound is independent of ε in
[
C
(
[0, T ),W k,p (R)

)]3 for each k and
p.
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5. The Vanishing Viscosity Limit, ε → 0

Now we are back to the notation uε+, uε−, sε.
Lemma 17. Let 0 < T < ∞ and ΩT = R × (0, T ) then there exists a s (x, t) ∈ Ck,δ

(
Ω̄T

)
with

st (x, t) ∈ Ck−2,δ
(
Ω̄T

)
for any small δ > 0 and all k ≥ 2 such that

sεm (x, t) → s (x, t) in Ck,δ
(
Ω̄T

)
,

sεm
t (·, t) → st (·, t) in Ck−2,δ

(
Ω̄T

)
for some sequence εm → 0 with s (x, t) ∈ W k+1,p

(
Ω̄T

) ∩ W k,∞ (Ω̄T

)
and st (x, t) ∈ W k−1,p

(
Ω̄T

) ∩
W k−2,∞ (Ω̄T

)
for all 1 ≤ p ≤ ∞ and all k ≥ 2.

Proof. By Theorem 1, {sε (x, t)} is bounded in W k+1,p
(
Ω̄T

)
and {sε

t (x, t)} in W k−1,p
(
Ω̄T

)
, 1 ≤ p < ∞,

and 0 < ε ≤ 1. Since the embeddings W k+1,p → Ck,δ and W k−1,p → Ck−2,δ are compact, there is a
convergent subsequence. Moreover, all the previous estimates, which are independent of ε imply the
spaces which s and st belong to. �

Now we are ready to prove our main result:

Proof of Main Theorem By Theorem 1, we have for all 0 < ε ≤ 1 and all T > 0 a classical
solution (uε+, uε−, sε) of the parabolic-parabolic Cauchy problem (2.2)-(2.4). We consider for m ∈ N

a sequence εm as in the previous Lemma . Similar arguments apply to {uεm±} which are bounded
in W k,p for all k ≥ 0 and 1 ≤ p ≤ ∞. Since for any small δ > 0 the embedding W k,p ⊂ Ck−1,δ is
compact, we further extract a subsequence εmk

with εmk
→ ∞ from {εm} such that uεmk

± → u± in
Ck−1,δ

(
Ω̄T

)
. For convenience, we denote {uεm+, uεm−, sεm} as the convergent subsequence. We now

show that the limit {u+, u−, s} of {uεm+, uεm−, sεm} is the desired classical solution of the original
hyperbolic-parabolic Cauchy problem (1.1)- (1.4). By the smoothness of γ, µ± and the convergence of
uεm± and sεm to u± and s respectively in the Hölder spaces Ck,δ

(
Ω̄T

)
, (u+, u−, s) clearly satisfies (1.1)-

(1.3). Since uεm± and sεm converge in Cδ to u± and s, u± and s satisfy the initial conditions (1.4) and
(2.1). A priori estimates imply that (u+, u−, s) ∈ [W k,p

(
Ω̄T

)]3 for all k ≥ 0 and all 1 ≤ p ≤ ∞. �
Remark 2. Every estimate works in a similar way for the stationary case with dependence of the
turning rates µ± = µ± (s, st, sx, sxx) also on the highest derivative sxx and the temporal gradient st of
s. Thus we also have global classical solutions in the case, which covers and is even a stronger result
than in [11]. �
Remark 3. So far we have considered the system (1.1)-(1.4) for β > 0. As mentioned at the beginning,
the case β = 0 can be proved by slight modification of our arguments. One minor change, in case β = 0,
will be the L∞-estimate of s in Lemma 4, which should be replaced by

(5.1) ‖s‖L∞(R) ≤ C (α) t
1
2 ‖u0‖L1(R) .

Indeed, using the Fourier transform of the heat kernel, we have∫ ∞

−∞
|ŝ (ξ, t)| dξ ≤ α sup

0≤τ≤t
‖û‖L∞(R)

∫ t

0

∫ ∞

−∞
e−(t−τ)4ξ2

dξdτ ≤ C (α) t
1
2 sup

0≤τ≤t
‖û‖L∞(R) ,

where we used the change of variables in the last inequality. The above calculation automatically
implies (5.1). To prove our main result for the case β = 0 needs simple modifications, like the one
above. But since these are obvious, we omit the details. �
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6. The Parabolic limit

In [12] a formal parabolic limit was derived from the general hyperbolic model for chemotaxis.
Similar to considerations done for higher dimensional analoga of this model, compare [2, 3, 10], in this
section we rigorously derive a parabolic Keller-Segel type system in one dimension from the kinetic
model where γ is assumed to be constant.

u+
t + γu+

x = −µ+(s, st, sx, sxx)u+ + µ−(s, st, sx, sxx)u−

u−
t − γu−

x = µ+(s, st, sx, sxx)u+ − µ−(s, st, sx, sxx)u−

coupled with the equation for the chemotactic signal (1.3). Using a diffusive scaling of time and space,
the kinetic equations in non-dimensional form become

(6.1) uε
t
+ + ε−1γuε+

x = −ε−2µ+(sε, sε
t, s

ε
x, s

ε
xx)uε+ + ε−2µ−(sε, sε

t, s
ε
x, sε

xx)u
ε−

(6.2) uε
t
− − ε−1γuε−

x = ε−2µ+(sε, sε
t, s

ε
x, sε

xx)uε+ − ε−2µ−(sε, sε
t, s

ε
x, sε

xx)uε−

(6.3) sε
t − ∆sε = −βsε + αuε.

(6.4) uε(·, 0) = u0, sε(·, 0) = s0,

where ε is a non-dimensional small parameter. Here we note that uε is regular for each fixed ε > 0
under the assumptions (A2) and (A3). Let ξ = µ+ − µ− and η = µ+ + µ−. Then by adding and
subtracting (6.1) and (6.2), we obtain

(6.5) uε
t + ε−1γvε

x = 0, vε
t + ε−1γuε

x = −ε−2ξuε − ε−2ηvε,

where uε = uε+ +uε− and vε = uε+−uε−. The following analysis is based on an asymptotic expansion
of the turning rates µ± = µ(0)± + εµ(1)± + ε2µ(2)± + O(ε3). Our goal is, to derive equations for
the leading order terms of uε = u(0) + εu(1) + ε2u(2) + O(ε3), vε = v(0) + εv(1) + ε2v(2) + O(ε3), and
sε = s(0) + εs(1) + ε2s(2) +O(ε3). Due to our definition, we have ξ = ξ(0) + εξ(1) + ε2ξ(2) +O(ε3), where
ξ(0) = 0, ξ(1) = 2µ(1)+, ξ(2) = µ(2)+ −µ(2)−, and η = η(0) + εη(1) + ε2η(2) + O(ε3), where η(0) = 2µ(0)+,
η(1) = 0, η(2) = µ(2)+ + µ(2)−. Before proceeding further, we give some structure conditions on the
turning rates µ±.
Assumption 1. The leading order terms µ(0)± are balanced and strictly positive, and the first order
term µ(1)± have opposite sign

µ(0)+ = µ(0)− > C > 0, µ(1)+ = −µ(1)−,

where C is a positive constant. Moreover, there exist constants C1, C2 > 0 such that

(6.6) 0 < C1 ≤ µ±(s, sx, sxx, st) ≤ C2(1 + s(x, t) + s(x + εγ, t) + s(x − εγ, t) + |sx(x, t)|)
for any (x, t) ∈ R × R

+ and s ∈ L∞
loc(W

1,∞(R)). �
We first derive the Keller-Segel type system formally from (6.1) and (6.2) for ε → 0. For convenience

we define µ0 ≡ µ(0)+ and µ1 ≡ µ(1)+. Comparing the coefficients of ε−2 in the second equation of
(6.5), we have

−ξ(0)u(0) − η(0)v(0) = 0.
Therefore, since ξ(0) = 0 and η(0) = 2µ0 > 0, we have v(0) = 0. Comparing the coefficients of ε−1 in
the second equation of (6.5), we get

(6.7) v(1) = − ξ(1)

η(0)
u(0) − γ

η(0)
u(0)

x .
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Now we consider the zero order terms in both equations of (6.5). After simple computations, we have

(6.8) 0 = u
(0)
t + γv(1)

x , η(0)v(2) = −ξ(2)u(0) − ξ(1)u(1) − γu(1)
x .

Due to (6.7) and the first equation in (6.8), the diffusion limit reads

0 = u
(0)
t + γv(1)

x = u
(0)
t − γ(

ξ(1)

η(0)
u(0) +

γ

η(0)
u(0)

x )x = u
(0)
t − γ(

µ1

µ0
u(0) +

γ

2µ0
u(0)

x )x.

For the second equation in (6.8) we use u
(1)
t + γv

(2)
x = 0 from (6.5). By taking the derivative with

respect to x of the second equation of (6.8), we have

v(2)
x = −

(
ξ(2)

η(0)
u(0)

)
x

−
(

ξ(1)

η(0)
u(1)

)
x

−
(

γ

η(0)
u(1)

x

)
x

.

Using γv
(2)
x = −u

(1)
t , we obtain

u
(1)
t = γ

(
ξ(2)

η(0)
u(0)

)
x

+ γ

(
ξ(1)

η(0)
u(1)

)
x

+ γ2

(
u

(1)
x

η(0)

)
x

.

Note that this equation is non-degenerate second order parabolic equation with smooth coefficients,
because we proved that uε and sε are regular for each ε > 0 in the previous sections and η(0) > 0, see
Assumption 1. Therefore, u(1) can be solved, which implies that v(2) can be automatically recovered
from (6.8). Equation (6) compares exactly to (6) in case ξ(2) = 0.
To sum up, the formal parabolic limit leads to

(6.9) u
(0)
t = (Du(0)

x )x + (Hu(0))x,

where the diffusion coefficient D and the drift coefficient H are

D =
γ2

η(0)(s(0), s
(0)
t , s

(0)
x , s

(0)
xx )

=
γ2

2µ0(s(0), s
(0)
t , s

(0)
x , s

(0)
xx )

,(6.10)

H = γ
ξ(1)(s(0), s

(0)
t , s

(0)
x , s

(0)
xx )

η(0)(s(0), s
(0)
t , s

(0)
x , s

(0)
xx )

= γ
µ1(s(0), s

(0)
t , s

(0)
x , s

(0)
xx )

µ0(s(0), s
(0)
t , s

(0)
x , s

(0)
xx )

(6.11)

which compares to the formulations given in [12], for γ = const. . How H relates to the chemotactic
sensitivity χ times sx, which is the classical parabolic formulation used for chemotaxis, we will see
later in an example. The formal limit of (6.1) and (6.2) is (6.9), coupled to chemo-attractant equation
for s(0)

s
(0)
t − ∆s(0) = αu(0) − βs(0).

Now we rigorously prove the convergence. First, under Assumption 1, we show uniform estimates,
independently of ε.
Lemma 18. Let Ψ ∈ L∞

loc([0,∞)) be a measurable function satisfying the linear growth condition at
infinity, e.g. |Ψ(x)| ≤ C(1 + |x|). Suppose Assumption 1 holds and u0 ∈ L1(R) ∩ L2(R). Assume
further that there exists C, independent of ε, such that

(6.12) µ+ + µ− = η ≥ C(1 − εΨ(||s||W 1,∞)), |µ+ − µ−|2 = |ξ|2 ≤ Cε2Ψ(||s||W 1,∞).

Then the solution (uε, sε) in (6.1)-(6.4) satisfies, uniformly in ε,

uε ∈ L∞
loc((0,∞);L2(R)), sε ∈ L∞

loc((0,∞);Lp(R) ∩ C1,α(R)),

where 1 ≤ p < ∞ and 0 < α ≤ 1/2.
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Proof. First we note that mass is conserved

||uε(·, t)||L1(R) = ||u0||L1(R).

Multiply uε and vε to the first and second equation in (6.5), respectively, then we have

(
|uε|2

2
)t + ε−1γvε

xuε = 0, (
|vε|2

2
)t + ε−1γuε

xvε = −ε−2ξuεvε − ε−2η|vε|2.
Adding together and integrating in space and time, we obtain

1
2

∫
R

(|uε|2 + |vε|2)dx +
∫ t

0

∫
R

ε−2η|vε|2dxdt =
1
2

∫
R

(|u0|2 + |v0|2)dx −
∫ t

0

∫
R

ε−2ξuεvεdxdt.

Since |ξ| ≤ 2−1η + 2−1|ξ|2η−1, we have∫
R

(|uε|2 + |vε|2)dx ≤
∫

R

(|u0|2 + |v0|2)dx +
∫ t

0

∫
R

ε−2 |ξ|2
η

|uε|2dxdt.

Due to (6.12), we have∫
R

|uε(·, t)|2dx ≤ 4
∫

R

|u0|2dx + CΨ(||sε||W 1,∞)
∫ t

0

∫
R

|uε|2dxdt.

Finally, according to Lemma 4, we have∫
R

|uε(·, t)|2dx ≤ 4
∫

R

|u0|2dx + C(1 + log(||uε||L2))
∫ t

0

∫
R

|uε|2dxdt,

where we used the linear growth condition of Ψ. Since the above estimate is independent of ε, we have
an L2-estimate of uε independently of ε by Gronwall’s inequality. For the chemo-attractant we also
have, uniformly in ε

(6.13) ||sε
t||L2(R) + ||sε||W 2,2(R) ≤ C||uε||L2(R).

Therefore, combining potential estimate and embedding argument, we obtain

(6.14) ||sε||Lp(R) + ||sε||C1,α(R) ≤ C sup
0≤τ≤t

||uε||L2(R), 1 ≤ p < ∞, 0 < α ≤ 1
2
.

This completes the proof. �

Theorem 2. Let the assumption of Lemma 18 hold. Assume that

µ±(sε, sε
t, s

ε
x, sε

xx) −→ µ±(s(0), s
(0)
t , s(0)

x , s(0)
xx ) as ε → 0.

Then the solution (uε, sε) (6.1)-(6.4) satisfies, after choosing appropriate subsequences

uε −→ u(0) in L∞
loc([0,∞), L1(R) ∩ L2(R)) weakly,

sεx −→ s(0)
x in Lp

loc([0,∞) × R) 1 ≤ p < ∞ weakly,

sεt, sεxx −→ s
(0)
t , s(0)

xx in L∞
loc([0,∞);L2(R)) weakly.

In addition,
sε −→ s(0) in Lp

loc([0,∞) × R) 1 ≤ p < ∞,

sε −→ s(0) in L∞
loc([0,∞); C1,α(R)) 0 < α <

1
2
.
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Proof. Mass conservation and uniform boundedness of the L2−norm of uε confirm the weak con-
vergence of uε to u(0). Moreover, the estimate (6.13) immediately implies the third statement. In
addition, due to the potential estimate, one can see that sx ∈ L1(R), again independently of ε, and
therefore sx ∈ Lp(R) for all 1 ≤ p ≤ ∞, uniformly in ε. Here we used (6.14) and an interpolation
argument. The last two assertions can be achieved by compactness results due to standard embedding
arguments. This completes the proof. �

Example:
We consider the following class of turning rates which is similar to those suggested in [2] and [3].

(6.15) µ±
ε = φ(s(x, t), s(x ± εγ, t), s(x ∓ εγ, t), st(x, t), sx(x, t)sxx(x, t)).

Note, that φ is an even function with respect to the the variable sx. Additionally φ is strictly
positive, decreasing in the second and increasing in the third argument, and we assume the structure
condition (6.6) for µ±

ε . Biological experiments for positive chemotaxis reveal that individuals moving
up gradients of the chemical signal do turn less often than individuals moving down gradients. This
fits exactly to our growth conditions assumptions on the growth of φ with respect to its second and
third argument. We can easily see that the turning rates µ± have the asymptotic expansion

µ±
ε = µ(0)± + εµ(1)± + ε2µ(2)± + O(ε3)

where

µ(0)± = φ(s, s, s, st, sx, sxx), µ(1)± = ±∂2φ(s, s, s, st, sx, sxx)γsx ∓ ∂3φ(s, s, s, st, sx, sxx)γsx,

µ(2)± =
1
2

(∂2∂2φ(s, s, s, st, sx, sxx) ± 2∂2∂3φ(s, s, s, st, sx, sxx) + ∂3∂3φ(s, s, s, st, sx, sxx)) γ2sxx.

Here ∂2 and ∂3 indicate differentiation with respect to the second and third argument. As before, we
set µ0 = µ(0)+ and µ1 = µ(1)+. One can easily see that the turning rates (6.15) satisfy Assumption 1.
Substituting the expansions u±

ε = u(0)±+εu(1)±+ε2u(2)±+O(ε3) and sε = s(0) +εs(1) +ε2s(2)±+O(ε3)
into (6.1) and (6.2) and comparing coefficients of ε−1 and ε−2, we have u(0)+ = u(0)− and obtain as
before

0 = ut + γ(u+
1 − u−

1 )x = ut + γ(−µ1

µ0
u − γ

2µ0
ux)x = ut − (Dux)x + (χsxu)x,

where the diffusion coefficient D and the chemotactic sensitivity χ are

D =
γ2

2φ(s, s, s, st, sx, sxx)
, χ = −2[∂2φ(s, s, s, st, sx, sxx) − ∂3φ(s, s, s, st, sx, sxx)]D.

So H = χsx in this case. In particular, if we take as a specific φ

φ(s(x, t), s(x ± εγ, t), s(x ∓ εγ, t), st(x, t), sx(x, t), sxx(x, t)) = ϕ(s(x ± εγ, t) − s(x ∓ εγ, t))

where

ϕ(x) = −C1
x√

1 + x2
+ C2, C2 > C1 > 0,

then we obtain both constant diffusion coefficient D = γ2/2C2 and chemotactic sensitivity χ = 4C1D,
which is the classical version of the Keller-Segel model in one space dimension.
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