
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Maximizing Multi-Information

by

Nihat Ay and Andreas Knauf

Preprint no.: 42 2003





MAXIMIZING MULTI-INFORMATION

NIHAT AY AND ANDREAS KNAUF

Abstract. We investigate the structure of the global maximizers of stochas-

tic interdependence, which is measured by the Kullback-Leibler divergence of

the underlying joint probability distribution from the exponential family of

factorizable random fields (multi-information). As a consequence of our struc-

ture results, it comes out that random fields with globally maximal multi-

information are contained in the topological closure of the exponential family

of pair interactions.

Index Terms — Multi-information, exponential family, Kullback-Leibler di-

vergence, pair-interaction, infomax principle, Boltzmann machine, neural net-

works.

1. Introduction

The starting point of this article is a geometric interpretation of the interdepen-

dence of stochastic units. In order to illustrate the basic idea, we consider two

units with the configuration sets Ω1 = Ω2 = {0, 1}. The configuration set of the

whole system is just the Cartesian product Ω1 ×Ω2 = {(0, 0), (1, 0), (0, 1), (1, 1)}.
The set of probability distributions (states) is a three-dimensional simplex P(Ω1×
Ω2) with the four extreme points δ(ω1,ω2), ω1, ω2 ∈ {0, 1} (Dirac measures). The

two units are independent with respect to p ∈ P(Ω1 × Ω2) iff

p(ω1, ω2) = p1(ω1) p2(ω2) for all (ω1, ω2) ∈ Ω1 × Ω2.(1.1)

The set of factorizable distributions (1.1) is a two-dimensional manifold F . Fig-

ure 1 shows the simplex P(Ω1 × Ω2) and its submanifold F .
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Figure 1: The simplex of probability distributions.

Given an arbitrary probability distribution p, we quantify the interdependence of

the two units with respect to p by its Kullback-Leibler distance from the set F .

In our two-unit case, this distance is nothing but the well known mutual infor-

mation, which has been introduced by Shannon [Sh] as a fundamental quantity

that provides a measure of the capacity of a communication channel. Motivated

by so-called Infomax principles within the field of neural networks [Li, TSE],

we have investigated maximizers of the interdependence [Ay1, Ay2] of stochastic

units. In our two-unit example, these are the distributions

1

2

(
δ(0,0) + δ(1,1)

)
, and

1

2

(
δ(1,0) + δ(0,1)

)
(see Figure 1).

This article continues our work by providing some information about the struc-

ture of maximizers of stochastic interdependence. In particular, this leads to

some answers to the question on the existence and the structure of a natural low

dimensional manifold that contains all maximizers of the stochastic interdepen-

dence ([Ay1], Section 3.4, problem (ii); [Ay2], Section 4.2, Problem 4.2.3).
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2. Preliminaries

2.1. Notations and Definitions. Let Ω be a nonempty and finite set. In the

corresponding real vector space R
Ω, we have the canonical basis eω, ω ∈ Ω, which

induces the natural scalar product 〈·, ·〉.
The set of probability distributions on Ω is denoted by P(Ω):

P(Ω) =
{
p =

(
p(ω)

)
ω∈Ω

∈ R
Ω : p(ω) ≥ 0 for all ω, and

∑
ω∈Ω p(ω) = 1

}
.

3.5 For a probability distribution p, we consider its support supp p := {ω ∈ Ω :

p(ω) > 0}. The strictly positive distributions P(Ω) have maximal support Ω:

P(Ω) = {p ∈ P(Ω) : supp p = Ω}.

A subset E of P(Ω) is called exponential family if there exist a point p0 ∈ P(Ω)

and a subspace T of R
Ω such that E is the image of the map T → P(Ω),

X =
(
X(ω)

)
ω∈Ω

�→
∑
ω∈Ω

p0(ω) exp
(
X(ω)

)∑
ω′∈Ω p0(ω′) exp

(
X(ω′)

) eω.

We say that E contains p0 and is generated by T . In this article, we are mainly

interested in the “distance” of probability distributions from a given exponential

family E . More precisely, we use the Kullback-Leibler (KL) divergence D : P(Ω)×
P(Ω) → R+,

(p, q) �→ D(p ‖ q) :=

⎧⎨⎩
∑

ω∈supp p p(ω) ln p(ω)
q(ω)

, if supp p ⊂ supp q,

∞ , otherwise
,

to define DE : P(Ω) → R+,

p �→ DE(p) := inf
q∈E

D(p ‖ q).

If there exists a probability distribution p′ ∈ E that satisfies

DE(p) = D(p ‖ p′),

then we say that p is projectable onto E . The set of projectable elements of P(Ω)

is denoted by dom E .
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2.2. Previous Results. In this section we present some previous results from

[Ay1] on maximizing the KL-divergence from an exponential family.

Theorem 2.1. (Prop. 3.2 of [Ay1]) Let E be an exponential family in P(Ω), and

let p be a probability distribution in dom E that locally maximizes the function DE .

Then the following bound on the support of p holds:

|supp p| ≤ dim E + 1.

Theorem 2.2. (Thm. 3.5 of [Ay1]) Let E be an exponential family in P(Ω) with

dimension d. Then there exists an exponential family E∗ ⊂ P(Ω) with dimension

less than or equal to 1
2
(d2 +7d+4) such that the topological closure of E∗ contains

all projectable points in P(Ω) that locally maximize the function DE .

Theorems 2.1 and 2.2 are quite general. In this article we are interested in

applications and generalizations of these statements within the setting of random

fields where the set Ω has a product structure. More precisely, we consider the

set V := {1, . . . , N} of units, N ≥ 2, and corresponding sets Ωi, i ∈ V , of

configurations. The number |Ωi| of configurations of a unit i is denoted by ni.

Without restriction of generality we assume

2 ≤ n1 ≤ n2 ≤ · · · ≤ nN .

For a subsystem S ⊂ V , the set of configurations on S is given by the product

ΩS := ×i∈SΩi. The elements of P(ΩS) are the random fields on S. One has the

natural restriction

XS : ΩV → ΩS , (ωi)i∈V �→ (ωi)i∈S,

which induces the projection

P(ΩV ) → P(ΩS) , p �→ pS,
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where pS denotes the image measure of p under the variable XS. For i ∈ V we

write pi instead of p{i}. A probability distribution p ∈ P(ΩV ) is called factorizable

if it satisfies

p(ω1, . . . , ωN) = p1(ω1) · . . . · pN (ωN) for all (ω1, . . . , ωN) ∈ ΩV .

It is well known that the set F of strictly positive and factorizable probability

distributions on ΩV is an exponential family in P(ΩV ) with

dimF =

N∑
i=1

(ni − 1).

Now let us consider the function DF , which measures the distance from F . If we

have a strictly positive and factorizable probability distribution p, that is p ∈ F ,

then of course DF(p) = 0. Thus, this distance function can be interpreted as a

measure that quantifies the stochastic interdependence of the units in V . The

following entropic representation of DF is well known (see [Am]):

I(p) := DF(p) =
N∑

i=1

Hi(p) − H(p).

Here, the Hi’s denote the marginal entropies and H is the global entropy. This

measure of stochastic interdependence of the units is a generalization of the mu-

tual information, which is called multi-information. The application of the The-

orems 2.1 and 2.2 to the exponential family F leads to the following statements

on local maximizers of the multi-information I = DF :

Corollary 2.3. Let p ∈ domF be a probability distribution that locally maxi-

mizes the multi-information. Then

|supp p| ≤
N∑

i=1

(ni − 1) + 1.
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Corollary 2.4. There exists an exponential family F∗ with

dimF∗ ≤ 1

2

(
N∑

i,j=1

(ni − 1)(nj − 1) + 7

N∑
i=1

(ni − 1) + 4

)

that contains all local maximizers of I that are projectable onto F in its topological

closure. In particular, in the case N ≥ 8, and ni = 2 for all i, dimF∗ ≤ N2.

This article improves the upper bounds that appear in the Corollaries 2.3 and 2.4

by considering not the local maximizers of I but certain global maximizers (we

will frequently use the term maximizer without any specification instead of global

maximizer). Furthermore, we will obtain a characterization of the structure of

such maximizers. The general theory is presented in the following Section 3.

3. Global Maximizers of Multi-Information –

General Theory

The maximal value of I is of course bounded as

I(p) =

N∑
i=1

Hi(p) − H(p) ≤
N∑

i=1

ln(ni).

In fact, it turns out that (in contrast to the quantum setting) this upper bound

is never reached. The following theorem gives an upper bound that is sharp in

some interesting as well as important cases.

Theorem 3.1. Let p be a probability distribution on ΩV . Then:

I(p) ≤
N−1∑
i=1

ln(ni).(3.1)

In the following, the set of probability distributions that satisfy I(p) =
∑N−1

i=1 ln(ni)

is denoted by M(Ω1, . . . , ΩN ). In the case Ωi = {1, . . . , ni} for all i we also use

the notation M(n1, . . . , nN). From Theorem 3.1 we know that M(Ω1, . . . , ΩN)
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coincides with the set of maximizers of I if it is nonempty. The next theorem

characterizes the probability distributions in M(Ω1, . . . , ΩN).

Theorem 3.2. Let p be a probability distribution on ΩV . Then p ∈ M(Ω1, . . . , ΩN )

if and only if there exist a probability distribution p(N) ∈ P(ΩN ) and surjective

maps πi : ΩN → Ωi, i = 1, . . . , N − 1, with

p(N) {πi = ωi} =
1

ni

, ωi ∈ Ωi,(3.2)

such that for all (ω1, . . . , ωN) ∈ ΩV

p(ω1, . . . , ωN) =

⎧⎨⎩ p(N)(ωN), if ωi = πi(ωN), i = 1, . . . , N − 1,

0 , otherwise.
(3.3)

We have the following implications of Theorem 3.2:

Corollary 3.3.

(1) M(Ω1, . . . , ΩN) �= ∅ if the least common multiple

lcm (n1, . . . , nN−1) ≤ nN .(3.4)

For example this is the case if

- there are only N = 2 units or

- all units are identical (n1 = . . . = nN).

We will consider these important cases in more detail.

(2) Condition (3.4) is not necessary for having M(Ω1, . . . , ΩN) �= ∅. For exam-

ple N = 3 units with n2 = n1 + 1 and n3 ≥ 2 n2 pass this test.

(3) In the case M(Ω1, . . . , ΩN) �= ∅, a probability distribution p globally maxi-

mizes the multi-information if and only if it maximizes the mutual information

between i and N for all i = 1, . . . , N − 1.

(4) If ni divides ni+1 for all i = 1, . . . , N − 2 then there exists a probability dis-

tribution p that maximizes the mutual information between i and j for all i �= j.
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In this case, p is an element of M(Ω1, . . . , ΩN), and therefore it also maximizes

the multi-information.

(5) In the case nN−1 = nN , the set M(Ω1, . . . , ΩN) is non-empty if and only if

each ni divides nN .

Examples 3.4.

(1) The set M(2, 3) is non-empty. In Section 4.1, we will prove that this set is

homeomorphic to S1.

(2) Consider identical units 1, . . . , N with Ωi = {1, . . . , n} for all i, and partition

the set V = {1, . . . , N} into non-empty subsets V1, . . . , Vr, with V = V1
· · ·
Vr,

|V1| ≤ · · · ≤ |Vr|. Then by Corollary 3.3 (4) M(ΩV1 , . . . , ΩVr) �= ∅. Furthermore,

each probability distribution that maximizes the mutual informations of Vj and

Vj+1, for all j = 1, . . . , r − 1, also maximizes the multi-information of the parts

V1, . . . , Vr. The maximization of the mutual informations of Vj and Vj+1 is related

to Linsker’s [Li] Infomax principle, which is known in the field of neural networks

as a first principle for the learning in the early visual system of mammals. In

Linsker’s model, the Vj’s are given by the layers of a feed-forward network.

(3) By Corollary 3.3 (1) resp. (2) M
(
2, 4, 4

)
and M(2, 3, 4) are non-empty

whereas by (5) M
(
3, 4, 4

)
is empty.

In the Section 4.1 we will discuss the two situations of Corollary 3.3 (1) more

precisely. In this section, without specifying the configuration sets Ωi we assume

M(Ω1, . . . , ΩN ) �= ∅ and derive some refinements of the Corollaries 2.3 and 2.4

for the global maximizers of stochastic interdependence. First we note that the

support of a probability distribution p with the structure that is described in

Theorem 3.2 is bounded as

nN−1 ≤ |supp p| ≤ nN .
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This reduces the upper bound nN +
∑N−1

i=1 (ni − 1) from Corollary 2.3. In the

following, we explicitly define an exponential family that contains all elements of

M(Ω1, . . . , ΩN ) in its topological closure. The main idea behind our construction

is to interpret the probability distributions with the structure that is described

in Theorem 3.2 as the limits of the Gibbs distributions

p(m)(ω) :=
exp E(m)(ω)∑

ω′∈Ω exp E(m)(ω′)
,

with the energies E(m) ∈ R
ΩV ,

E(m)(ω) := ln
(
p(N)(ωN) + 1/m

)
+ m

N−1∑
i=1

δωi,πi(ωN ).(3.5)

One obtains p = limm→∞ p(m) as

(
lim

m→∞
p(m)

)
(ω1, . . . , ωN) = p(N)(ωN)

N−1∏
i=1

δωi,πi(ωN ).

We are now going to show that M(Ω1, . . . , ΩN) lies in the closure of a low di-

mensional exponential family F∗ containing the center c(ω) = 1
|ΩV | , ω ∈ ΩV , of

P(ΩV ). But first we discuss the local geometry in the “tangent space” at c. Given

a subset S ⊂ V = {1, . . . , N}, we write ω ∈ ΩV in the form ω = (ωS, ωV \S)

with ωS ∈ ΩS, ωV \S ∈ ΩV \S. The conditional expectation ES ∈ End(RΩV ) with

respect to c is then given by

(ESf)(ωS, ωV \S) :=
1

|ΩV \S|
∑

ω′
V \S

∈ΩV \S

f(ωS, ω′
V \S).

ES is the orthogonal projection onto the |ΩS|–dimensional subspace IS of func-

tions on ΩV that are XS-measurable.

In a statistical mechanics interpretation, for each k ∈ {0, 1, . . . , N} the functions

in the subspace

I(k) :=
∑
|S|=k

IS
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are interactions of order at most k, and the inclusions

R ∼= I(0) ⊂ . . . ⊂ I(k−1) ⊂ I(k) ⊂ . . . ⊂ I(N) = R
ΩV

allow us to decompose the function space orthogonally into the direct sum

R
ΩV =

N⊕
k=0

Ĩ(k),

Ĩ(k) ⊂ I(k) denoting the orthogonal complement of I(k−1) (with I(−1) := {0}).
We let F (k) be the exponential family through c generated by I(k), and similarly

F̃ (k) the one generated by Ĩ(k). Identifying the units Ωi with the abelian groups

Zni
, we obtain a basis of Ĩ(k) (depending on the bijections Ωi → Zni

) by taking

all products of characters of the units of which exactly k are nontrivial.

In this terminology, we have the following hierarchy of exponential families:

F (0) ⊂ F (1) ⊂ · · · ⊂ F (N),

where

F (0) = {c}, F (1) = F , F (N) = P(Ω).

The multi-information vanishes exactly on F (1). We are interested in the lowest

order k such that the set M(Ω1, . . . , ΩN ) is contained in the topological closure

of F (k). Of course, the first possible candidate for this is given by k = 2. On the

other hand, from Theorem 3.5 below it immediately follows that k = 2 is also

sufficient.

In order to obtain all probability distributions p ∈ M(Ω1, . . . , ΩN ) as limit points

of one exponential family, we introduce for i = 1, . . . , N − 1 the subspaces

Mi :=
{
F ∈ Lin(RΩi, RΩN ) : F (1li) = 0, and if ni = nN then F ad(1lN ) = 0

}
,

where 1li ∈ R
Ωi is the vector with unit entries, and F ad is the adjoint of F with

respect to 〈·, ·〉. We have

dim Mi = (nN − δni,nN
)(ni − 1).
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Then for F := (F1, . . . , FN−1) ∈
⊕N−1

i=1 Mi =: M we define the energy

EF : Ω → R, EF (ω) =

N−1∑
i=1

〈eωN
, Fi(eωi

)〉 .(3.6)

Obviously EF is in the space I(2) of pair interactions. The linear map

E : M → R
ΩV , F �→ EF

has rank

rank E = dim M =

N−1∑
i=1

(nN − δni,nN
)(ni − 1).

More precisely, we have the following theorem:

Theorem 3.5. Let F∗ be the exponential family containing the center c of P(ΩV )

and generated by the image space of E. Then

dimF∗ = rank E, and M(Ω1, . . . , ΩN) ⊂ F∗.

Furthermore, F∗ ⊂ F (2).

Remarks 3.6.

(1) Note that for fixed nN , the dimension of F∗ increases linearly in dimF . This

improves the quadratic dimension bound in Corollary 2.4.

(2) For N equal units, N ≥ 2, we have F∗ ⊂ F̃ (2), and

dimF∗ = (N − 1)(n − 1)2 ≤ 1

2
N(N − 1)(n − 1)2 = dim

(
F̃ (2)

)
.(3.7)

Note that the difference between the right-hand side and the left-hand side of

inequality (3.7) increases quadratically in N .

(3) For each F ∈ M, the energy (3.6) is induced from the potential UF
S : ΩV → R,

S ⊂ V , given by UF
{i,N}(ω) = 〈eωN

, Fi(eωi
)〉, i = 1, . . . , N − 1, and US ≡ 0 if
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S /∈ {{i, N} : i = 1, . . . , N − 1}. This potential is a neighbour potential with

respect to the following star-like spanning tree on the vertex set V :

∂(N) = {1, . . . , N − 1}, ∂(i) = {N}, i = 1, . . . , N − 1.(3.8)

Theorem 3.5 implies that the set M(Ω1, . . . , ΩN) is in the topological closure of

the exponential family of Gibbs distributions relative to the neighborhood system

(3.8). But obviously, in the case of N equal units, for any other spanning tree

on V , the exponential family of Gibbs distributions relative to the corresponding

neighborhood system also contains M(Ω1, . . . , ΩN ) in its topological closure.

4. Examples

4.1. The Case of Two Units. We now discuss the case of two units, i.e. N = 2.

In this case, the set

M(Ω1, Ω2) =
{
p ∈ P(Ω1 × Ω2) : I(p) = ln(n1)

}
is non-empty and therefore consists of all global maximizers of the mutual in-

formation of the two units. We want to describe the structure of M(Ω1, Ω2) by

stratifying it into a disjoint union of relatively open faces. In order to do that,

we consider for Ω∗
1 := Ω1 ∪ {0} the following set of maps

S := {π : Ω2 → Ω∗
1 : π(Ω2) ⊃ Ω1}.(4.9)

The relation

σ � π :⇐⇒ σ−1(ω1) ⊂ π−1(ω1) for all ω1 ∈ Ω1

on S is a partial order which makes S a poset.

Example 4.1. For Ω1 = {1, 2} and Ω2 = {1, 2, 3} we get a poset S of 12 maps.

The right graphics in Figure 2 shows the cover graph of the poset with vertex set
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S. On the left we show four of these maps. We have σ � π if σ is in the lower

line and connected to π in the upper line (so-called Hasse diagram).
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Figure 2: The posets for Ω1 = {1, 2}, Ω2 = {1, 2, 3}.

We call a poset connected iff its cover graph is connected.

Lemma 4.2. The poset (4.9) is connected if and only if n1 < n2.

Given π ∈ S we consider the set

Mπ(Ω1, Ω2) :=

{
p ∈ P(Ω1 × Ω2) : for all ω1 ∈ Ω1,

∑
ω2∈π−1(ω1)

p(ω1, ω2) =
1

n1
and p(ω1, ω2) > 0 iff π(ω2) = ω1

}
.

We denote by Sm,n the Stirling numbers of the second kind (see for example [Ai]).
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Theorem 4.3.

(1) The set of global maximizers of the mutual information is a disjoint union

M(Ω1, Ω2) =
⊎

π∈S
Mπ(Ω1, Ω2)

of relatively open faces Mπ(Ω1, Ω2).

(2) These faces have dimension

dimMπ(Ω1, Ω2) = |π−1(Ω1)| − |Ω1|,

and there are n1!
(

n2

l

)
Sl,n1 faces Mπ(Ω1, Ω2) of dimension l − n1.

(3) The inclusion Mσ(Ω1, Ω2) ⊂ Mπ(Ω1, Ω2) holds if and only if σ � π, and the

set M(Ω1, Ω2) is connected if and only if n1 < n2.

Example 4.4. Continuing Example 4.1, for n1 = 2 and n2 = 3 the set M(2, 3) is

the disjoint union of six points and six open intervals (see Figure 3, left), combined

in the form of a hexagon (see Figure 3, right). So M(2, 3) is homeomorphic to

S1 in this case.
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Figure 3: The structure of M(2, 3).
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4.2. The Case of N Equal Units. This section deals with the important ex-

ample of N units that have identical configuration sets: Ω1 = · · · = ΩN =

{0, 1, . . . , n − 1}. In that situation, Theorem 3.2 has the following direct impli-

cation. To simplify notation, we set

M(N × n) := M(Ω1, . . . , ΩN).

Theorem 4.5. The set M(N × n) consists of all probability distributions

1

n

∑
ωN∈ΩN

δ(π1(ωN ),...,πN−1(ωN ),ωN ),

where πi, i = 1, . . . , N − 1, are permutations of {0, 1, . . . , n − 1}. This implies

|M(N × n)| = (n!)N−1,(4.10)

and for all p ∈ M(N × n),

I(p) = (N − 1) · ln(n),

|supp p| = n.(4.11)

Thus according to (4.10), the number of the maximizers of the multi-information

grows exponentially in N . In particular, for binary units the set M(N × 2) has

2N−1 elements. In view of this fact, it is interesting that according to the following

theorem, for all N there exists an exponential family with dimension less than or

equal to 5 that approximates all 2N−1 elements of M(N × n).

Theorem 4.6. There exists an exponential family G∗ of dimension less than or

equal to 1
2
(n2 + 3n) with M(N × n) ⊂ G∗.
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This existence theorem should be compared with the explicitly constructed expo-

nential family F∗ of Theorem 3.5, which has dimension (N −1)(n−1)2. Theorem

4.6 provides another exponential family G∗ of N–independent dimension. How-

ever in this article, we are guided by ideas from physics and biology insofar we

prefer to use two-body interactions like the ones leading to the definition of F∗

instead of the multi-body interactions associated with the exponential family G∗.

Example 4.7. For N = n = 2, the exponential family F∗ of Theorem 3.5, that

approximates the distributions with maximal mutual information, has dimension

one. In Figure 1, we obtain this family by simply taking the convex combinations

of the two maximizers:

F∗ =

{
1 − λ

2

(
δ(0,0) + δ(1,1)

)
+

λ

2

(
δ(1,0) + δ(0,1)

)
: 0 < λ < 1

}
.

The tangent space of this exponential family is spanned by the characteristic

function of the set {(0, 0), (1, 1)}.

As stated in Theorem 3.5, pair interactions of the units are sufficient for globally

maximal multi-information. For N binary units with Ωi = {0, 1} ⊂ R, the

probability distributions p ∈ F (2) on {0, 1}N , which are given by pair interactions,

have the following energy expansion:

ln p(ω1, . . . , ωN) = const +
N∑

i=1

θi ωi +
N∑

i,j=1
i<j

θij ωi ωj, (ω1, . . . , ωN) ∈ {0, 1}N .

(4.12)

In the field of neural networks, this exponential family is known as family of

Boltzmann machines ([AHS], [AKN]). The units are interpreted as neurons that

have the two configurations “0 = not active” and “1 = active”. The parameter θij

is usually interpreted as the synaptic strength between the neurons i and j, and

the parameter θi is the threshold value of neuron i. Note that this interpretation,



MAXIMIZING MULTI-INFORMATION 17

which requires the symmetry of θij , is biologically not justified. Nevertheless,

Boltzmann machines represent an important example of artificial neural networks

that turned out to be very fruitful for the conceptual understanding of cognitive

systems. Furthermore, there are many applications to discrete optimization that

are not directly related to neural networks (see [AK]).

We have the following special case of the Theorem 3.5.

Corollary 4.8. The exponential family of Boltzmann machines approximates the

global maximizers of the multi-information.

Note that the dimensionality of the Boltzmann exponential family is of order

N2, whereas according to Theorem 3.5 the (N − 1)-dimensional subfamily F∗ is

sufficient for approximating the maximizers of the multi-information.

Remark 4.9. Not the probability distribution itself but the corresponding Glauber

dynamics is associated with the name “machine”. It is defined as the following

inhomogeneous Markov chain:

• Initialization:

– Choose an initial configuration ω(0)

• Transition t → t + 1:

– Step 1 : Choose one unit i(t) with probability 1
N

– Step 2 : Compute

hi(t)

(
ω(t)

)
:=

N∑
j=1

θi(t) j ωj(t) + θi(t).

– Step 3 : Set

ωi(t)(t + 1) :=

⎧⎨⎩ 1 with probability 1
1+exp(−hi(t)(ω(t)))

0 with probability 1 − 1
1+exp(−hi(t)(ω(t)))
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It is well known that the Glauber dynamics converges to the stationary distri-

bution (4.12). Thus, Corollary 4.8 states that the Glauber dynamics is able

to generate probability distributions arbitrarily close to the maximizers of the

multi-information.

5. Proofs

We fix the following notations: For V ′ ⊂ V , HV ′ denotes the entropy of the

random variable XV ′. Obviously HV = H , and H{i} = Hi. For two sub-

sets V ′, V ′′ ⊂ V , H(V ′′ | V ′) is the conditional entropy of XV ′′ given XV ′. For

V ′ = {a1, . . . , aL} and V ′′ = {b1, . . . , bM} we also write H(b1,...,bM | a1,...,aL) instead

of H(V ′′ |V ′) = H({b1,...,bM} | {a1,...,aL}). Now let V1, . . . , Vr be a set of disjoint sub-

sets of V = {1, . . . , N}. The multi-information of these subsystems is given by

I{V1,... ,Vr} =
∑r

j=1 HVj
− HV1�···�Vr . In the case where the subsets of V have car-

dinality one, we also write I{i1,...,ir} instead of I{{i1},...,{ir}}. We obviously have

IV = I.

In order to prove Theorem 3.1 we need the following proposition:

Proposition 5.1. Let V1, . . . , Vr be a partition of {1, . . . , N}. Then

I = I{V1,...,Vr} +
r∑

j=1

IVj
.(5.1)

Proof. Let p be a probability distribution on ΩV . Then

I(p) =

N∑
i=1

Hi(p) − H(p)

=
r∑

j=1

⎛⎝∑
i∈Vj

Hi(p) − HVj
(p)

⎞⎠ +
r∑

j=1

HVj
(p) − H(p)

=
r∑

j=1

IVj
(p) + I{V1,...,Vr}(p).
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�

Proof of Theorem 3.1. In order to prove the estimate (3.1) we choose the

partition {1}, {2, . . . , N} of {1, . . . , N} and apply equation (5.1):

I = I{{1},{2,...,N}} + I{2,...,N}

= H1 − H(1 | 2,...,N) + I{2,...,N}

≤ H1 + I{2,...,N}

≤ ln(n1) + I{2,...,N}.

Iterating this procedure implies

I =
N−2∑
i=1

ln(ni) + I{N−1,N}

≤
N−2∑
i=1

ln(ni) +
(
HN−1 − H(N−1|N)

)
≤

N−2∑
i=1

ln(ni) + ln(nN−1).

�

Proof of Theorem 3.2. If a probability distribution p on ΩV has the form (3.3)

with a distribution p(N) ∈ P(ΩN ) and surjective maps πi : ΩN → Ωi that satisfy

(3.2), then I(p) =
∑N−1

i=1 ln(ni):
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I(p) =
N∑

i=1

Hi(p) − H(p)

=
N∑

i=1

Hi(p) − HN(p)

−H(1|N)(p) − H(2|1,N)(p) − · · · − H(N−1|1,2,...,N−2,N)(p)︸ ︷︷ ︸
=0

=
N−1∑
i=1

ln(ni).

Now we prove the opposite implication. Therefore we assume I(p) =
∑N−1

i=1 ln(ni).

This gives us

Hi(p) = ln(ni), i = 1, . . . , N − 1.(5.2)

Otherwise the existence of an i0 ∈ {1, . . . , N − 1} with Hi0(p) < ln(ni0) would

imply the following contradiction

I(p) =

N∑
i=1

Hi(p) − H(p)

=
N−1∑
i=1

Hi(p) + HN(p) −
(
HN(p) + H(1,...,N−1 |N)(p)

)
≤

N−1∑
i=1
i�=i0

Hi(p) + Hi0(p) <
N−1∑
i=1

ln(ni).

From (5.2) we have

H(p) =
N∑

i=1

Hi(p) − I(p) =

(
N−1∑
i=1

ln(ni) + HN(p)

)
−

N−1∑
i=1

ln(ni) = HN(p).

(5.3)
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Now we set p(N) := pN , and define a Markov kernel K : (Ω1×· · ·×ΩN−1)×ΩN →
[0, 1] by

K(ω1, . . . , ωN−1 |ωN) :=

⎧⎨⎩
p(ω1,...,ωN )

pN (ωN )
, if pN (ωN) > 0

1
n1···nN−1

, if pN (ωN) = 0
.

In these definitions we get

H(p) − HN (p)

=
∑

ωN∈ΩN
pN (ωN )>0

pN (ωN)

(
ln pN(ωN) −

∑
(ω1,...,ωN−1)∈
Ω1×···×ΩN−1

K(ω1, . . . , ωN−1 |ωN) ln
(
pN(ωN) K(ω1, . . . , ωN−1 |ωN)

))

=
∑

ωN∈ΩN
pN (ωN )>0

pN (ωN) H
(
K(· |ωN)

)
≥ 0.

From (5.3) this implies H
(
K(· |ωN)

)
= 0 for all ωN with pN(ωN) > 0. This

implies the existence of maps πi : ΩN → Ωi with

p(ω1, . . . , ωN) = p(N)(ωN)
N−1∏
i=1

δωi,πi(ωN ).

Because of Hi(p) = ln(ni) for all i ∈ {1, . . . , N − 1}, these maps must be surjec-

tive. �

Proof of Corollary 3.3.

(1) W.l.o.g. we set Ωi := {0, 1, . . . , ni − 1} and use the surjections πi : ΩN → Ωi,
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ωN �→ ωN(modni). Defining the probability distribution p by (3.3) with

p(N)(ωN) :=

⎧⎨⎩ 1
L
, if ωN < L

0 , if ωN ≥ L
and L := lcm (n1, . . . , nN−1)

shows p ∈ M(Ω1, . . . , ΩN).

(2) Set π1(ωN) := ωN(modn1) and

π2(ωN) :=

⎧⎨⎩ ωN , if 0 ≤ ωN ≤ n1

n1 , if n ≤ ωN ≤ n3.

We use p given by (3.3) with

p(N)(ωN) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

n1+1
, if 0 ≤ ωN < n1

1
n2

1+n1
, if n1 ≤ ωN < 2n1

0 , if 2n1 ≤ ωN .

(3) This is an immediate consequence of (3.3) as p ∈ P(Ω1, . . . , ΩN) is of the

form

p(ω1, . . . , ωN) = p(N)(ωN)

N−1∏
i=1

δωi,πi(ωN )

if for all j = 1, . . . , N−1 the image measures w.r.t. the projections Ω1×. . .×ΩN →
Ωj × ΩN have distributions p(N)(ωN)δωj ,πj(ωN ).

(4) For the distribution p defined in (1) the image measure w.r.t. to the projection

Ω1 × . . . × ΩN → Ωi × Ωj

with 1 ≤ i < j ≤ N − 1 has distribution

(ωi, ωj) �→

⎧⎨⎩ 1
nj

, if ωi = ωj(mod ni)

0 , otherwise

and thus mutual information ln(ni).

(5) If nN−1 = nN , πN−1 is a bijection so that

p(N)(ωN) =
1

nN

and p(N)(π−1
i (ωi)) =

|π−1
i (ωi)|
nN

.
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Thus (3.2) implies |π−1
i (ωi)| = nN

ni
. �

Proof of Theorem 3.5. We show that p ∈ M(Ω1, . . . , ΩN) is the limit point

of the sequence

p(m) :=
∑
ω∈Ω

exp
(
EF (m)

(ω)
)∑

ω′∈Ω exp
(
EF (m)(ω′)

) eω, m ∈ N,

of probability distributions p(m) ∈ F∗ ⊂ P(ΩV ), with F (m) = (F
(m)
1 , . . . , F

(m)
N−1) ∈

M. Setting Ψi ∈ End (RΩi), Ψi(eωi
) := eωi

− 1
ni−1

∑
ω′

i �=ωi
eω′

i
, we have Ψi(1li) = 0,

so that in the case ni < nN

F̃i ◦ Ψi ∈ Mi if F̃i ∈ Lin(RΩi, RΩN ).

Similarly in the case ni = nN

ΨN ◦ F̃i ◦ Ψi ∈ Mi if F̃i ∈ Lin(RΩi , RΩN ).

We set F
(m)
i := F̃

(m)
i ◦Ψi if ni < nN and F

(m)
i := ΨN ◦ F̃

(m)
i ◦Ψi if ni = nN with

F̃
(m)
i (eωi

) := m
∑

ωN∈π−1
i (ωi)

eωN
(i = 1, . . . , N − 2)

and

F̃
(m)
N−1(eωN−1

) :=
∑

ωN∈π−1
N−1(ωN−1)

(
m + ln

(
p(N)(ωN) +

1

m

))
eωN

.

For ω, ω′ ∈ supp p 〈
eωN

, F̃
(m)
i (eωi

)
〉
−

〈
eω′

N
, F̃

(m)
i (eω′

i
)
〉

=
〈
eωN

, F
(m)
i (eωi

)
〉
−

〈
eω′

N
, F

(m)
i (eω′

i
)
〉

since∑
eω′

i �=ω′
i

1lπ−1
i (eω′

i)
(ω′

N) −
∑

eωi �=ωi

1lπ−1
i (eωi)

(ωN) = 1lπ−1
i (ωi)

(ωN) − 1lπ−1
i (ω′

i)
(ω′

N) = 0.
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So

p(m)(ω)

p(m)(ω′)
= exp

(
EF (m)

(ω) − EF (m)

(ω′)
)

= exp
(
E

eF (m)

(ω) − E
eF (m)

(ω′)
)

= exp

([
m(N − 1) + ln

(
p(N)(ωN) +

1

m

)]
−
[
m(N − 1) + ln

(
p(N)(ω′

N) +
1

m

)])
=

p(N)(ωN) + 1
m

p(N)(ω′
N) + 1

m

,

in accordance with (3.3).

On the other hand if ω′ ∈ supp p but ω �∈ supp p, then there is an i ∈ 1, . . . , N−1

with ωN �= π−1
i (ωi) or p(N)(ωN) = 0. In both cases

lim
m→∞

p(m)(ω)

p(m)(ω′)
= 0,

again in accordance with (3.3). As the p(m) are probability distributions, we have

shown that p(m) → p. �

Proof of Lemma 4.2. If n1 = n2 then the maps π ∈ S are isomorphisms

π : Ω2 → Ω1, so that σ � π only for σ = π. Thus in that case S is connected iff

|S| = 1, i.e. n1 = n2 = 1. This contradicts our assumption n1, n2 ≥ 2.

If n2 > n1 and |π−1(ω1)| > 1 for π ∈ S and some ω1 ∈ Ω1, say π(ω′
2) = ω1, then

σ � π for

σ ∈ S, σ(ω2) :=

⎧⎨⎩ π(ω2), if ω2 �= ω′
2

0 , if ω2 = ω′
2

.

So we need only show that any π′, π′′ ∈ S which are injective onto Ω1 are indeed

connected.

1. In the first step we move π′ along the poset graph in order to decrease the

cardinality of the symmetric difference (π′)−1(0)∆(π′′)−1(0). So we assume

that there exist

ω′ ∈ (π′)−1(0)\(π′′)−1(0) and ω′′ ∈ (π′′)−1(0)\(π′)−1(0)
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and set

π ∈ S, π(ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if ω = ω′′

π′(ω′′), if ω = ω′

π′(ω) , otherwise.

Both π′ and π are covered by

ρ ∈ S, ρ(ω) :=

⎧⎨⎩ π′(ω′′), if ω = ω′

π′(ω) , otherwise,

and

|π−1(0)∆(π′′)−1(0)| = |(π′)−1(0)∆(π′′)−1(0)| − 2.

By iterating the argument we can assume w.l.o.g. that (π′)−1(0) = (π′′)−1(0).

2. In fact it is sufficient to treat the case where the permutation

π′′ ◦ (π′)−1 |Ω1 : Ω1 → Ω1

is a transposition, as the transpositions generate the symmetric group. So

there exist ωI �= ωII ∈ Ω2 with

π′′(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π′(ωI) , if ω = ωII

π′(ωII), if ω = ωI

π′(ω) , otherwise,

and we choose ω̂ ∈ Ω2 so that π′(ω̂) = π′′(ω̂) = 0.

Defining ρ, ρ′′ ∈ S by

ρ′(ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π′(ωII), if ω = ω̂

0 , if ω = ωII

π′(ω) , otherwise

resp. ρ′′(ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π′′(ωI), if ω = ω̂

0 , if ω = ωI

π′′(ω) , otherwise,



26 NIHAT AY AND ANDREAS KNAUF

π′ and ρ′ are covered by σ′ ∈ S and similarly π′′ and ρ′′ are covered by

σ′′ ∈ S with

σ′′(ω) :=

⎧⎨⎩ π′(ωII), if ω = ω̂

π′(ω) , otherwise
resp. σ′′(ω) :=

⎧⎨⎩ π′′(ωI), if ω = ω̂

π′′(ω) , otherwise.

Now as π′(ωII) = π′′(ωI), both ρ′ and ρ′′ are covered by

τ ∈ S, τ(ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π′(ωII), if ω = ω̂

π′(ωI) , if ω = ωII

π′(ω) , otherwise.

This shows that the poset graph is connected. �

Proof of Theorem 4.3. To simplify notation, we set M := M(Ω1, Ω2), and

Mπ := Mπ(Ω1, Ω2) for π ∈ S.

(1) We have Mπ ⊂ M since for the elements of Mπ the characterisation of

Theorem 3.2 hold true. Furthermore for σ, π ∈ S with σ �= π there exists

(ω2, ω1) ∈ graph(π) with (ω2, ω1) �∈ graph(σ) or vice versa. Thus for p ∈ Mπ

we have p(ω1, ω2) > 0 but for p ∈ Mσ we have p(ω1, ω2) = 0 showing that

Mπ ∩Mσ = ∅.
Finally for p ∈ M by Theorem 3.2 there exists a surjective map π̃ : Ω2 → Ω1

with p(ω1, ω2) = 0 whenever π̃(ω2) �= ω1. Given π̃, we construct π ∈ S by setting

π(ω2) :=

⎧⎨⎩ π̃(ω2), if p(π̃(ω2), ω2) > 0

0 , if p(π̃(ω2), ω2) = 0.

As by Theorem 3.2 we have
∑

ω2∈π̃−1(ω1) p(ω1, ω2) = 1
n1

> 0, the function π :

Ω2 → Ω∗
1 so constructed has the property π(Ω2) ⊃ Ω1 making it an element of S.

(2) Given ω1 ∈ Ω1, the simplex of |π−1(ω1)| numbers p(ω1, ω2) > 0 with ω2 ∈
π−1(ω1) meeting

∑
ω2∈π−1(ω1) p(ω1, ω2) = 1

n1
has dimension |π−1(ω1)|−1, implying

the formula for dimMπ.

If dimMπ = l − n1, the surjective map π̂ : Ω̂2 → Ω1 with Ω̂2 := π−1(Ω1) ⊂ Ω2
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and π̂ := π |Ω̂2
is defined on a subset Ω̂2 ⊂ Ω2 of size l. There are precisely

(
n2

l

)
such subsets, and there are precisely n1!Sl,n1 such surjective maps from Ω̂2 onto

Ω1, see Aigner [Ai], Chapter 3.1.

(3) If n1 = n2 then S coincides with the set of bijections π : Ω2 → Ω1, and

|Mπ| = 1. Thus in this case M is not connected for n1 ≥ 2. If, however n2 > n1,

the poset S, seen as a graph, is connected.

The topological closure of the face Mπ is given by

Mπ =

⎧⎨⎩p ∈ P(Ω1 × Ω2) :
∑

ω2∈π−1(ω1)

p(ω1, ω2) =
1

n1
, p(ω1, ω2) = 0 if π(ω2) �= ω1

⎫⎬⎭ .

Thus Mπ =
⊎

σ�πMσ. �

Proof of Theorem 4.5. All statements directly follow from Theorem 3.2 . �

Proof of Theorem 4.6. We choose a map φ = (φ1, . . . , φn) : Ω → R
n such

that the points φ(ω), ω ∈ Ω, are in general position; that is, each k elements of

φ(Ω) with k ≤ n + 1 are affinely independent. This property guarantees that for

each set Σ ⊂ Ω, |Σ| = n, there exist real numbers a1, . . . , an, b such that{
ω ∈ Ω :

n∑
i=1

ai φi(ω) = b

}
= Σ(5.4)

holds. We consider the exponential family G∗ that is generated by c and

φ1, . . . , φn , φi φj , 1 ≤ i ≤ j ≤ n.

We have

dimG∗ ≤ n2 + 3n

2
.

Now let p be an element of M(N×n). From Theorem 4.5 we know that |supp p| =

n. We prove that there exists a sequence in G∗ that converges to p. We choose a
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sequence βm ↑ ∞ and real numbers a1, . . . , an, b satisfying (5.4) with Σ = supp p.

Then with

E(m) := −βm

(
n∑

i=1

ai φi − b

)2

,

the sequence

exp E(m)∑
ω′∈Ω exp E(m)(ω′)

∈ G∗

converges to p. �
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