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Abstract

In this note we prove certain necessary and sufficient conditions
for the existence of embedding of statistical manifolds. In particu-
lar we prove that any C3-bounded smooth statistical manifold can be
embedded into a space of probability measures on the finite set and
any statistical manifold can be embedded into the space of probabil-
ity measure on the infinite set. As a result we get positive answers
to the question of Amari on the existence of embedding of exponen-
tial families and to the Lauritzen question on realization of statistical
manifolds as statistical models.
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1 Introduction

In the program of geometrization of mathematical statistics one likes to un-
derstand geometric structures on families of probability distributions. These
structures must not only be natural in mathematical categorical languages,
but they must also have a clear statistical meaning. Such structures are the
Fisher metrics and the Centsov-Amari connections which are of fundamental
role in the information geometry - the established domain in the geometriza-
tion program of mathematical statistics.

The Fisher metric was invented by Rao [R1] and has been systematically
studied by Chentsov [C], Morozova-Centsov [M-C], Amari [Am-N] and others
([L], [R2], [Ay], [J], ect.) in the field of geometric aspects of statistics and
information theory. The Fisher metric is a Riemannian metric on a family M
of probability measures which can be considered as a differentiable manifold.
Such a family is called a statistical model. Centsov and Amari indepen-
dently also dicovered a natural structure on statistical models, namely a
1-parameter family of invariant connections which includes the Levi-Civita
connection of the Fisher metric. This family of invariant connections is de-
fined by a 3-symmetric tensor T together with the Levi-Civita connection of
the Fisher metric. Thus we shall called a Riemannian manfold (M, g) with
a 3-symmetric tensor T a statistical manifold. Since two 3-symmetric
tensors T and k · T , k �= 0, define the same family of Centsov-Amari con-
nections, we shall say that two statistical manifolds (M, g, T ) and (M, g, kT )
are conformal equivalent.

A natural and important question in the mathematical statistics is to un-
derstand, if a given family M of probability distributions can be considered
as a subfamily of another given one N . In our geometric language it can be
formulated as a problem of embedding of a statistical manifold (M, g, T ) into
another one (N, g′, T ′).This problem includes the Lauritzen question [L], if
any statistical manifold is a statistical model. It also concerns the following
important problem posed by Amari [Am], if any finite dimensional statistical
model can be embedded into the space CapN of probability distributions of
the sample space ΩN of N elementary events for some finite N . First we
note that if we consider statistical models equipped only with the Fisher
metric, then the answer is positive. Actually it is a simple consequence
of the Nash embdeding theorem (see Proposition 5.1). But the problem
is more complicated, if we consider also the Fisher metric together with a
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3-symmetric tensor T . We shall construct a class of invariants of statisti-
cal manifolds which present obstructions to embedding of given statistical
manifolds. These invariants measure certain relations between the metric
tensor g and the 3-symmetric tensor T . In particular using these inviariants
we show that no statistical manifold which is conformal equivalent to the
space CapN can be C1-embedded into the product of m copies of the normal
Gaussian manifolds for any N > 3 and any finite m. (This example points
out the difference between our embedding problem with the embedding of
Riemannian manifolds, where the large size of the target manifold is a suffi-
cient condition for the existence of an embedding.) We also prove that any
smooth statistical manifold Mm can be embedded to a the space CapN for
N = 4(m + 1)[(2m(m + 1) − 1)m(m + 1) + 2 + m) + (m + 2)(m + 3)] (see
Theorem 5.2). If Mm is compact (or C3-bounded), then we can lower N
by dividing factor (m + 1). Thus we can say that any statistical manifold
is a statistical model. As a consequence we get a new proof of Matumoto
theorem on the existence of the contrast function for a statistical manifold.

Acknowledgement. I thank Nyhat Ay and Jürgen Jost for introducing
me into the information geometry and many helpful discussions on the ob-
jects. My thanks are also due to Qing Han and Kaoru Ono for stimulating
discussions.

2 Fisher metric, Centsov-Amari connections

and potential functions.

In this section we recall the notions of statistical models (and statistical
manifolds), their Fisher metric and the Centsov-Amari connections on these
spaces. We show the existence of hiarachy of different (weak) potential func-
tions for statistical models (resp. statistical manifolds). At the end of the
section we discuss the problem, if a given statistical manifold is a statistical
model.

The notion of statistical models and their Fisher (information) metric
was introduced by Rao [R1].

A statistical model is a (possibly immersed) submanifold M (a family)
in the space Cap(Ω) of all probability measures on a sample space Ω which
is usually (and in our note) assumed to be a differentiable manifold. A
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statistical model is usually considered with the Fisher metric gF (x) defined
as follows. For any V,W ∈ TxM we put

gF (V,W )x = Ex((∂V ln p(x, ω))(∂W ln p(x, ω)) =

(2.1)
∫
Ω
(∂V ln p(x, ω))(∂W ln p(x, ω))p(x, ω),

where Ex denotes the expectation w.r.t the measure p(x, .). For simplicity
we shall consider families of Borel measures on a finite dimensional manifold
Ω, and if dim Ω ≥ 1 then our family must consist of mutually absolutely
continous measures. In these cases we represent the measure p(x, ω) as a
nonnegative density function on a discrete sample space ΩN of N elemen-
tary events, or as p(x, ω)dω with p(x, ω) considered as an almost everywhere
positive density function and with dω being a specified Borel measure. The
function under integral in (2.1) is well defined, if p(x, ω) is positive. Thus we
have two conditions on p(x, ω), namely

(2.1.a) p(x, ω) > 0 ∀(x, ω) ∈M × Ω,

(2.1.b)
∫
Ω
p(x, ω) dω = 1 ∀x ∈M.

Since the density function p(x, ω) defines uniquely the mappingM → Cap(Ω)
we shall call p(x, ω) a probability potential of the metric gF . We shall
see in Proposition 2.2 that for a given Riemannian metric gF on a smooth
manifold M there exist many probability potentials f(x, ω) for gF even if we
fix the space (Ω, dω).

Some time it is useful to consider functions p(x, ω) which satisfy (2.1)
and (2.1.a) but not neccesary (2.1.b). In this case the Riemannian metric gF

will be called weak Fisher metric and the function p(x, ω) will be called a
weak probability potential of gF .

If Ω = ΩN - the set of N elementary events, then (2.1) becomes

gF (V,W )(x) =
N∑

i=1

pi(x)
∂V pi(x)

pi(x)

∂Wpi(x)

pi(x)
=

(2.1.1) =
N∑

i=1

1

pi(x)
∂V pi(x)∂W pi(x).
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Before considering some examples of Fisher metrics and weak probability
potentials which shall be used later in this note, we list some simple properties
of the Fisher metric as well as of weak Fisher metrics.

2.2. Proposition. (see also [A-N], [C], [J]). a) We denote by V and
W two vector fields on M . The Fisher metric (2.1) can be computed by the
following formula:

(2.2.a) gF (V,W )x = 4
∫
Ω
(∂V

√
p(x, ω))(∂W

√
p(x, ω))dω.

The formula holds also for weak Fisher metrics.
b) For a statistical model with parameters (xi) in an open domain of Rn

we can compute its Fisher metric via the following formula

(2.2.b) gF
ij(x) =

∫
Ω

∂2 ln p(x, ω)

∂i∂j

p(x, ω) dω.

c) If D is a diffeomorphism of Ω then the function p(x,D(ω)) is also a
probability potential of the Fisher metric gF , or generally, p(x,D(ω)) is a
weak potential for weak Fisher metric gF .

d) Suppose that (M, g) is a Riemannian manifold which admits a weak
probability potential P (x, ω) of g and (N, g|N) is a Riemannian submanifold
of M . Then the restriction of Pg to N ×Ω is a weak probability potential for
the induced metric g|N .

Proof. The first formula (2.2.a) and the third statement follow from the
rule of integration under the change of variables (see [A-N], [C], [J].) Thus
they also hold for weak probability potentials. The second formula (2.2.b) is
a consequence of (2.1.b) and integration by part.

The last statement follows immediately from the definition (2.1). �

2.3. Examples.

2.3.1. The standard Euclidean metric g0 on the positive quadrant
RN

+ (xi > 0) admits a weak probability potential {pi(x) = 1
4
x2

i , i = 1, N.}.
Indeed we have from (2.2.a)

gF (V,W )(x1,···,xN ) =
N∑

i=1

(∂V xi)(∂Wxi) =
N∑

i=1

V iW i = g0(V,W )

2.3.2. We denote by (CapN)+ the space of positive probability distribu-
tions on ΩN (see also [A-N],[ J], [C]) Then ((CapN)+, g

F ) can be identified
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with the positive quadrant SN−1
+ (2) of the sphere SN−1(2) of radius 2 with

the standard metric of constant curvature as follows. By definition we have

CapN
+ := {(p1, · · · , pn)|pi > 0 for i = 1, n&

∑
pi = 1}.

We define the embedding map

f : CapN
+ → SN−1(2)

(p1, · · · , pN) �→ (q1 = 2
√
p1, · · · , qN = 2

√
pN ).

The Fisher metric in the new coordinates (qi) is

g(q1,···,qN )(V,W ) =
N∑

i=1

(∂V qi)(∂W qi).

Comparing this with (2.3.1) and using (2.2.d) we see immediately that the
Fisher metric on (CapN )+ = SN−1

+ (2) is the standard metric of constant
postive curvature on the sphere SN−1(2). This metric is of course can be
extended smoothly on the whole space CapN .

2.3.3. The exponential family ( see [A-N], [J], [L]): M = Rk(θ) has
the probability potential

p(θ, ω) = exp[C(ω) + θifi(ω)− φ(θ)],

here

φ(θ) = ln
∫
Ω

exp[C(ω) +
n∑

i=1

θifi(ω)]dω.

The exponential family includes the following Gaussian models.

2.3.3.a. The normal distribution (also the univariate Gaussian
model): M2 = R2(µ, σ), (Ω, dω) = (R(x), dx).

p(µ, σ)(x) =
1√
2π σ

exp(
−(x− µ)2

2σ2
)

Here we put ω = x and new coordinates

θ1 =
µ

σ2
, θ2 = − 1

2σ2
.
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In these coordinates (x, θ) we have

C(x) = 0, f1(x) = x, f2(x) = x2,

φ(θ) =
µ2

2σ2
+ ln(

√
2π σ) = −(θ1)2

4θ2
+

1

2
ln
−π
θ2
.

2.3.3.b. The inverse Gaussian model: M = R2
+(χ, ψ), (Ω, dω) =

(R+, dx).

p(χ, ψ, x) =

√
χ

2π
x3/2 exp(

√
χψ − 1

2
(
χ

x
+ χx)).

Using (2.2.b) we get the following expression for the Fisher metric of an
exponential family (2.3.3)

gij(x) =
∂2φ(x)

∂i∂j
.

In coordinates (µ, σ) of the normal distribution we have ([L])

g(∂µ, ∂µ) =
1

σ2
,

g(∂µ, ∂σ) = 0,

g(∂σ, ∂σ) =
2

σ2
.

2.3.4. Poissonsverteilung: M = R+(ξ), Ω = {0, 1, 2, · · ·} � x.

p(x, ξ) = e−ξ ξ
x

x!

2.4. Divergence potential. (see [A-N], [R2]) A (weak) Fisher metric
(2.1) on M can be derived from a divergence function ρ on M ×M , i.e. a
function ρ with the following properties

(2.4.1) ρ(x, y) ≥ 0 with equality iff x = y

A divergence function ρ is called a divergence potential for a metric g, if
g(x) coincides with the the restriction Hess(ρ)|(x,x) on the first factor i1(TM)
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in the orthogonal decomposition T(x,x)(M,M) = (TxM, 0) ⊕ (0, TxM) =
(i1(TxM))⊕ (i2(TxM)).

(2.4.2) g(X, Y )x = Hess(ρ)(i1(X), i1(Y )).

An example of a divergence potential for a Fisher metric is the Jensen
function Jλ,µ

H (x, y) of the entropy function H(x) on M or a Kullback relative
entropy function K(x, y) on M ×M . We recall that the (Shannon’s) entropy
function H(x), the Jensen function J(x, y) and the Kullback relative entropy
function K on Cap(Ω) are defined as follows

H(x) := −
∫
Ω

ln p(x, ω)∂(x, ω) dω,

Jλ,µ
H (x, y) = H(λx+ µy)− λH(x)− µH(y) for λ · µ ≥ 0, λ+ µ = 1,

K(x, y) :=
∫
Ω
[ln p(y, ω)− ln p(x, ω)] p(y, ω) dω.

To see that Hλ,µ andK are divergence potentials for the associated Fisher
metric we apply formula (2.2.b.

We summarize these relations in the following diagram

weak

F isher

tensor

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

←− {weak probability potential f(x, ω) : f > 0}
∪

← {probability potential f(x, ω) : f > 0 &
∫
Ω f(x, ω) = 1}

↓ (relative) entropy
{divergence potential ρ(x, y) : ρ ≥ 0 & ρ(x, x) = 0}

↓ taking Hessian at the diagonal
−−−−−−−−−−−−−− → {Riemannian metrics}.

2.5. Centsov-Amari connections. Let p(x, ω) be a probability poten-
tial for a Riemannian metric g. We define a symmetric 3-tensor T on M as
follows

(2.5.1) T (X, Y, Z) =
∫

(∂X ln p(x, ω))(∂Y ln p(x, ω))(∂Z ln p(x, ω)) p(x, ω) =

=
∫
Ω

1

p2
(∂Xp(x, ω))(∂Y p(x, ω))(∂Zp(x, ω)) dω =

= 8
∫
Ω

1
√
p
(∂X

√
p(x, ω))(∂Y

√
p(x, ω))(∂Z

√
p(x, ω)) dω.
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We denote by ∇F the Levi-Civita connection of the (weak) Fisher metric gF .
We define

(2.5.2) < ∇t
XY, Z >:=< ∇F

XY, Z > +t · T (X, Y, Z).

The connections ∇t are called the Centsov-Amari connections.

2.6. A statistical manifold (M, g, T ) is a Riemannian manifold (M, g)
equipped with a 3-symmetric tensor S (see [L]). The symmetry of the tensor
T is motivated by the formula for T in (2.5.1). If p(x, ω) is a (weak) prob-
ability potential for the metric g, and T is defined from p(x, ω) by (2.5.1),
we shall say that p(x, ω) is probability potential for (M, g, T ). We shall
say that two statistical manifolds (M, g, T ) and (M ′, g′, T ′) are conformal
equivalent, if there is number t �= 0 and a diffeomeorphism f : M → M ′

such that f(g′) = g, f(T ′) = tT . This condition is sufficient and neccesary in
order two manifolds M and M ′ are not only isometric but they have the same
family of Centsov-Amari connections defined by (2.5.2). The symmetry of T
implies that all these connections are torsion-free. Furthermore it is easy to
check that for any statistical manifold (M, g, T ) the connection ∇t and the
connection ∇−t are dual in the sense

∇Z < X, Y >=< ∇t
ZX, Y > + < X,∇−t

Z Y >

for any vector fields X, Y, Z on M . Thus any statistical manifold (M, g, T )
has a natural dual structure (<,>,∇1,∇−1) as defined by Amari [A-N].
Conversely suppose that we are given a 3-tensor T and the connections ∇t

defined by (2.5.2). Then the condition that ∇t are torsion free together
with the duality condition of ∇1 and ∇−1 implies that T is 3-symmetric. If
we are only interested in the geodesics of the connections ∇t, then we can
symmetrize T (if T is not 3-symmetric) in two variables to get new torsion
free connections with the same geodesics (see Prop. 7.9. Chapter III in
[K-N]).

A submanifold N in a statistical manifold (M, g, T ) with the induced
Riemannian metric g|N and induced tensor T|N is called statistical sub-
manifold of (M, g, T ). Clearly if f(x, ω) is a (weak) probability potential
for (M, g, T ), then its restriction to any submanifold N ⊂ M is a (weak)
probability potential for the induced statistical structure.

Now let us compute the tensor T for the Riemannian manifolds with
(weak) Fisher metrics in examples 2.3.1, 2.3.2, 2.3.3.
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- The standard Euclidean metric in (2.3.1) with the weak potential func-
tion {1

2
x2

i , i = 1, N}. A direct computation shows that

(2.6.1) Tijk(x1, · · · , xN ) = δijk
1

xi

.

- The exponential family in (2.3.2). Our computation here can be done by
noticing that the connection ∇1 is flat, i.e. its torsion and curvature tensors
vanish (see [A-N], [J], [L]). Moreover in the coordinates (θi), for which (2.3.2)
holds, all the Christoff symbols Γ1

ijk vanish. In other words {θi} are affine
coordinates for ∇1 and ∂θi are parallel vector fields. Thus our tensor T
coincides with the Christoff symbols Γ0

ijk of the Fisher metric.

(2.6.2) Tijk = Γ0
ijk =

1

2
(gij,k + gjk,i − gij,k) =

1

2
∂i∂j∂kφ.

Applying the formula (2.6.2) to the normal distribution 2.3.3.a (the univari-
ate Gaussian manifold) we get (see [L])

(2.6.3) T (∂µ, ∂µ, ∂µ) = 0 = T (∂µ, ∂σ, ∂σ),

(2.6.4) T (∂µ, ∂µ, ∂σ) =
2

σ3
, T (∂σ, ∂σ, ∂σ) =

8

σ3
.

2.6.5. Remark. ([A-N, [Ma]) Any divergence function ρ(x, y) on M×M
defines a tensor T on M via the following formula
(2.6.5.a)
T (X, Y, Z)x = −∂i2(Z)Hess(ρ)(i1(X), i1(Y ))(x,x)+∂i1(Z)Hess(ρ)(i2(X), i2(Y ))(x,x).

Here i1, i2 is defined as in 2.4 and we use the same notation ij(X), ij(Y ) for
any local vector field on M ×M which coincides with ij(X), ij(Y ) at (x, x).
It is easy to check that the LHS of (2.6.5) is a tensor [E,M]. If g and T are
defined by the same divergence function ρ(x, y) via (2.4.2) and (2.6.5.a) we
shall call ρ(x, y) a divergence potential for the statistical manifold
(M, g, T ). It is a known fact that the Kullback relative entropy funtion is
a divergence potential for the associated statistical model. In a general a
tensor T defined from a divergence function ρ(x, y) will defined a family of
dual connections ∇t (see above) which are not neccesary torsion free. That

10



is the case with the divergence function in quantum statistics ( see section
6). The non-symmetry of a tensor T is a clear obstruction for embedding
the corresponding statistical manifold into a classical (Lauritzen) statistical
manifold.

2.7. Statistical models and statistical manifolds.
Since any probability function p(x, ω) defines a map M → Cap(Ω), we

shall say that a statistical manifold (M, g, T ) is a statistical model, if there
probability potential p(x, ω) for g and T . In particular, if a statistical mani-
fold (M, g, T ) is a statistical model, then it must admit a divergence potential.

2.7.1 Theorem. ([Ma] ) For any statistical manifold (M, g, T ) there
exists a divergence potential ρ for g and for T .

In the section 5 we shall prove that any bounded statistical manifold (in
particular any compact statistical manifold) can be embedded in the space
CapN

+ for some finite N . We can also prove that any statistical manifold
can be embedded into the space Cap∞+ . Thus any statistical manifold is a
statistical model. This gives a positive answer to Lauritzen question [L]. In
this way we also get a new proof of the Matsumoto theorem 2.7.1 [Ma].

3 Embeddings of linear statistical spaces.

An Euclidean space (Rn, g0) equipped with a 3 -symmetric tensor T will
be called a linear statistical spaces. We observe that the problem of
equivalence of linear statistical spaces is the problem of equivalence of 3-
symmetric tensors T under the action of the orthogonal group O(n). This
is a problem of the classical theory of invariants, and in principle it can be
completely solved. In this section we discuss the geometry of these invariants
and we show several neccesary and sufficient conditions for the existence of
embedding of one linear statistical space into another linear statistical space.

First we note that by dimension argument the space Rn which consists
of the following 3-symmetric tensors
(3.1)

T v(x, y, z) =< v, x >< y, z > + < v, y >< x, z > + < v, z >< x, y >,

is an irreducible component of the SO(n)-action on S3(Rn). It is known
(see e.g. [O-V]) that if n ≥ 3, the action of SO(n) on S3(Rn) ⊗ C has two
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irreducible components

(3.2) S3(Rn)⊗C = (R(3π1)⊗C)⊕ (Rn ⊗C),

where π1 denotes the first fundamental weight corresponding to the identity
representation of SO(n). By dimension argument, we conclude that the space
S3(Rn) of the SO(n) action has also two irreducible (real) components:

(3.2.1) S3(Rn) = R(3π1)⊕Rn.

3.3. Remark. We can characterize the space Rn , n ≥ 3, as the space
of all 3-symmetric tensors T such that

(3.3.a) T (x, y, z) = 0, if < x, y >= 0 & < y, z >= 0 & < z, x >= 0.

(It suffices to take into account the fact that any T v satisfies (3.3.a).)

To compute the orthogonal projection of a 3-symmetric tensor T on the
space Rn in the decomposition (3.2.1) we can use the following Lemma. We
denote by π2 the orthogonal projection form S3(Rn) to Rn

3.4. Lemma. We have

(3.4.1) π2(S) =
1

n+ 2
T Tr(S).

Here we identify the 1-form Tr(S) with a vector in Rn by using the Euclidean
metric g0.

Proof. We note that the component R(3π1) in (3.1) is the image of the
symmetrization map

S : (Rn)⊗ (S2
0(R

n))→ S3(Rn),

where S2
0(R

n) denote the set of traceless symmetric bilinear forms on Rn.
Clearly the 1-form Tr(S) vanishes, whenever S ∈ R(3π1). Alternatively we
notice that the linear map defined in RHS of (3.4.1) is SO(n) equivariant
map. The coefficient 1/(n+ 2) is obtained by computing Tr(T v). �

Thus we shall call any tensor T ∈ Rn of trace type.
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We note that

(3.4.2) dimS3(Rn) = C3
n + 2C2

n + n =
n(n + 1)(n+ 2)

6
.

Thus the dimension of the quotient S3(Rn)/SO(n) is at least C3
n +C2

n +n. A
direct computation shows that the dimension of the orbit SO(n)([

∑n
i=1 aiv

3
i ])

is C2
n = dimSO(n), if Πai �= 0. Here {vi} is an orthonormal basis in Rn.

Hence the dimension of S3(Rn)/O(n) = C3
n + C2

n + n. This dimension is ex-
actly the number of complete invariants of pairs of a positive definite bilinear
form g and a 3-symmetric tensor T .

Since the dimension of Gk(R
n) = k(n − k), it follows that generically

it is impossible to embed a linear statistical space (Rk, g0, T ) into a given
statistical linear space (Rn, g0, T ), unless k(n − k) ≥ C3

k + C2
k + k. Clearly

the dimension condition is not sufficient as the following proposition shows.

3.5. Proposition. A linear statistical space (Rk, g0, T ) can be embedded
into a linear statistical space (RN , g0, T v), if and only if N ≥ k and T is also
a trace type: T = Tw with |w| ≤ |v|.

Proof. The neccesary condition follows from (3.1) which implies that the
restriction of T v on Rk equals T v̄, where v̄ is the orthogonal projection of
v to Rk. Conversely, if |w| ≤ |v| we can find an orthogonal transformation,
such that w equals the orthogonal projection of v on Rk. �

There are several invariants of a 3-symmetric tensor T which behave well
under linear embeddings. First we note that the metric g extends canonically
on the space S3(Rn). We then can define the absolute norm

||T || :=
√
< T, T >.

Next we define comasses of a 3-symmetric tensor T as follows

M3(T ) := max
|x|=1,|y|=1,|z|=1

T (x, y, z),

M2(T ) := max
|x|=1,|y|=1

T (x, y, y),

M1(T ) := max
|x|=1

T (x, x, x).

Clearly we have

0 ≤M1(T ) ≤M2(T ) ≤M3(T ) ≤ ||T ||.
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3.6. Proposition. The comasses are norms of T , i.e, if M1(T ) = 0,
then T vanishes. They are monotone invariants of T in a sense, that if T is
a restriction of 3-symmetric tensor T̄ on RN , then

(3.6.1). ||T || ≤ ||T̄ ||,Mi(T ) ≤Mi(T̄ ), ∀i = 1, 2, 3.

Proof. To prove the first statement we use the identity

−12T (x, y, z) = T (x+y+z, x+y+z, x+y+z)+T (x+y−z, x+y−z, x+y−z)+

+T (x− y+ z, x− y+ z, x− y+ z) + T (−x+ y+ z,−x+ y+ z,−z+ y+ z)−
2(T (x, x, x) +−T (y, y, y) + T (z, z, z)).

The second statement follows immediately from the definition. �

Now for a space (Rn, g0, T ) and for 1 ≤ k ≤ n we put

λk(T ) := min
Rk⊂Rn

M1(T|Rk).

We can easily check that if T̄ is a restriction of T to a subspace Rm ⊂ Rn,
then

λk(T̄ ) ≥ λk(T ) ≥ 0 for all k ≤ m.

Thus λk(T ) is a monotone invariant of linear statistical manifolds. These
invariants are related by the following inequalities

M1(T ) = λn(T ) ≥ λn−1(T ) · · · ≥ λ2(T ) ≥ λ1(T ) = 0.

The last equality follows from the fact, that the function T (x, x, x) is
anti-symmetric on Sn−1(|x| = 1) ⊂ Rn and Sn−1 is connected. We observe
that if T is of trace type, then λn−1(T ) = · · · = λ1(T ) = 0.

We are going to give a lower bound on the monotone invariant λn−1 of
a linear statistical space of certain type. The equality λn−1(R

n, g0, T ) ≥ A
means that no hyperplan with the norm M1 strcitly less than A can be
embedded in (Rn−1, g0, T ).

3.7. Lemma.a) Let T =
∑n

i=1(N − εi)(x
i)3 be a 3-symmetric tensor on

Rn with n ≥ 4, N ≥ 4 and |εi| ≤ 1/4. Then we have

λn−1(T ) ≥ N√
10
− 1/4.
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b ) Let T = N
∑n

i=1(x
i)3 and H a hyperplan in Rn which is orthogonal to

(kn, 1, 1, · · · , 1) and n ≥ 5, k ≥ 3. Then we have

λn−2(T|H) ≥ N

5
− 1.

c) Let x = ((1 − ε), 1
kn
, · · · , 1

kn
) ∈ Sn(1) ⊂ Rn+1, where n ≥ 4, k ≥ n. We

denote by H the tangential plan TxS
n and we denote by T 0 the standard

3-symmetric tensor on Rn+1 (see (2.6.1)). Then we have

λn−1(T
0
|H) ≥ kn

5
− 1.

Proof. a) We denote by vH = (v1, · · · , vn) the unit vector which is or-
thogonal to H . Clearly vH is defined uniquely up to sign. It suffices to show
that there is a unit vector w such that

(3.7.1) < w, vH >= 0,

(3.7.2) T (w,w,w) ≥ N√
10
− 1/4.

We consider two cases.
Case 1. We assume that not all the coordinates vi are of the same sign.

Without loss of generality we assume that v1 ≤ 0, v2 > 0. Then we choose

w := A(|v2|, |v1|, 0, · · · , 0), where

A := (|v1|2 + |v2|2)−1.

Clearly w is a unit vector and w ∈ H . It is easy to check that

T (w,w,w) ≥ (N − 1/4)A3(|v1|3 + |v2|3) ≥ N − 1/4

2
>

N√
10
− 1/4.

So in this case the equality (3.7.2) holds.

Case 2. We assume that all the coordinates vi are the same sign. With-
out loss of generality we assume that v1 ≥ v2 ≥ · · · ≥ vn ≥ 0. If vn−1 = vn =
0, then we can apply our argument in case 1 to get a unit vector w which sat-
isfies (3.7.1) and (3.7.2)( namely our choosen vector w has zero coordinates
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wi, if i ≤ n − 1). So now, using the condition that n ≥ 4, we shall assume
that v1 ≥ v2 ≥ v3 > 0. We set

w := (−a,−a, λ · a, 0, · · · , 0), where

λ :=
v1 + v2

v3
≥ 2, and

a > 0 such that a2(λ2 + 2) = 1.

Clearly w is a unit vector and w ∈ H . A straighforward computation gives
us

T (w,w,w) ≥ a3(λ3(N − 1/4)− 2(N + 1/4)) ≥
1√

(λ2 + 2)3
((N − 1/4)(λ3 − 2)− 1) >

(3.7.3) (N − 1/4)
λ3 − 3√
(λ2 + 2)3

.

Clearly it suffices to prove the following

3.7.4. Lemma. If λ ≥ 2, then we have

10(λ3 − 3)2 > (λ2 + 2)3.

Proof of Lemma 3.7.4. We write

λ3 − 3 = (λ− 3
√

3)(λ2 + λ
3
√

3 +
3
√

9).

Using the following obvious inequality for λ ≥ 2

(λ2 + λ
3
√

3 +
3
√

9)2 > (λ2 + 2)2,

it suffices to prove for λ ≥ 2

(3.7.5) 10(λ− 3
√

3)2 ≥ (λ2 + 2).

We rewrite (3.7.5) in the following way

(3.7.6). ((
√

10− 1)λ− 3
√

3) · ((
√

10 + 1)λ− 3
√

3) ≥ 2.
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It is easy to see that the function of λ on the LHS of (3.7.6) is monotone.
Thus it suffices to check the equality for λ = 2. This completes our proof.

b) For a given vector v = (v1, · · · , vn) it suffices to find a unit vector
w = (w1, · · · , wn) with the following property

(kn)w1 +
n−1∑
i=2

wi = 0 =
n∑

i=1

viwi,

T (w,w,w) ≥ (N/5)− 1.

Since kn �= 0, without loss of generality we can assume that v1 = 0.
We shall find w by using perturbation of the proof of case a. We shall

normalize v by the condition
∑

(vi)2 = 1.
Case 1. Not all the coordinates vi are of the same sign, so we assume

that v1 = 0, v2 ≤ 0, v3 > 0. We assume that (0, w2, w3, 0 · · · , 0) is the
solution to the case 1 in 3.7.a w.r.t Rn(x2, · · · , xn). In particular we have
(w2)2 + (w3)2 = 1 and w2 > 0, w3 > 0. We choose εi from the following
equations

w := (−ε1, (1− ε2)w
2, (1− ε2)w

3),

(3.7.7) −knε1 + (1− ε2)(w
2 + w3) = 0,

(3.7.8) ε2
1 = (2ε2 − ε2

2).

From (3.7.7) we get

(3.7.7′) ε1 =
(1− ε2)(w

2 + w3)

kn
.

Substituting this into (3.7.8) we get

(3.7.9) (
(w2 + w3)2

(kn)2
+ 1)ε2

2 − (2 +
2(w2 + w3)2

(kn)2
)ε2 + (

w2 + w3

kn
)2 = 0.

Clearly one of solution ε2 of (3.7.9) is

(3.7.10) ε2 = 1 + (
w2 + w3

kn
)2 −

√√√√(1 +
(w2 + w3)2

(kn)2
≤ 1

2n2
(1 +

1

2n2
),
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since 0 < w1 + w2 ≤ 2 and k ≥ 3. We also have from (3.7.7)

ε1 <
1

kn
.

Now it is easy to check that

T (w,w,w) ≥ (
N√
10
− 1/4)(1− 1

3n
)3 − N

(3n)3
≥ N

5
− 1.

Case 2. We also apply our perturbation method above. So now we shall
assume that v1 = 0 and v2 ≥ v3 ≥ v4 > 0, and (0,−a,−a, λa, · · · , 0) is the
solution corresponding to the case 2 in 3.7.a. We set

w := (ε1,−a(1− ε2),−a(1− ε2), λ · a(1− ε2), 0, · · · , 0).

λ :=
v1 + v2

v3
≥ 2, and

a > 0 such that a2(λ2 + 2) = 1.

Our perturbations terms εi satisfy the following equations

(3.7.11) −knε1 + (1− ε2)(λ− 2)a = 0,

(3.7.12) ε2
1 = (2ε2 − ε2

2).

From (3.7.11) we get

(3.7.13) ε1 =
(1− ε2)(λ− 2)a

kn
.

Now substituting (3.7.13) into (3.7.12) we get one of solution ε2

ε2 = (1 + 2A2)−
√

(1 + 2A2)2 −A2(1 + A2),

where

A =
(λ− 2)a

kn
<

1

kn
.

Since 0 < (λ− 2)a < 1 we have ε2 < 1/(kn) and ε1 < 1/(kn) and

T (w,w,w) >
N

5
− 1.
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�

c) The condition here is only δ(small)-differed from the condition in the
statement b. Namely

T 0
|H = (

1

1− ε(x
1)3 + (kn)

n+1∑
i=2

(xi)3)|H .

Now we shall use the same solution w in the statement b for estimate in our
case c. We still keep the notation T for the tensor in the statement b. A
straighforward computation show that for w choosen in case 1(b) we have
now

T 0(w) ≥ T (w) ≥ kn

5
− 1.

For the solution w in case 2 (b) we have ε1 < 1/(kn) and ε2 < 1/(kn). Hence

T 0(w) >
kn

5
− 1.

�

3.7. 14. Proposition. Lemma 3.7.a holds also for n = 3 but not for
n = 2, Lemma 3.7.b holds also for n = 4, but not for n = 3, and Lemma
3.7.c holds also for n = 3 but not for n = 2.

Proof of Proposition 3.7.14. We notice that the condition n = 4 we use in
the proof of Lemma 3.7.a only in the case 2, in order to make an assumption
that the vector (v1, v2, v3, ·) which is orthogonal to our given hyperplan has
all coordinates v1, v2, v2 not zero. Thus this proof is also valid for n = 3
provided our hyperplan is orthogonal to such a vector. Now we observe that
funtion λn−1(T|H), where H is a hyperplan in Rn is a continous function
on RP n−1. The our estimate on λn−1(T|H) also holds for hyperplane whose
coordinates contain a zero. This shows that Lemma 3.7.a also holds for n = 3.
It cannot be valid for n = 2, because λ1(T|H2) always vanishes. We use the
same argument to prove the remained statements of Proposition 3.7.14. �

There are several obvious monotone invariants of T which are not norms.

A1(T ) := max
|x|=|y|=|z|=1,<x,y>=<y,z>=<z,x>=0

T (x, y, z)
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is well-defined for n ≥ 3.

A2(T ) := max
|x|=|y|=1,<x,y>=0

T (x, y, y),

is well-defined for n ≥ 2. From Remark 3.3 we see easily

kerA1 = Rn.

On the other hand we have

kerA2 ⊂ R(3π1).

Thus A1 and A2 are different invariants.
We can also use decomposition (3.2.1) to define a less obvious monotone

invariant.

3.8. Lemma. We denote by π1 the first component of T in decomposition
(3.2.1). Then ||T ||1 := ||π1(T )|| is a monotone invariant of T .

Proof. Let Rk be a subspace of Rn. We denote by πn
kT the restriction

of T to Rk. Clearly

πn
k (T ) = πn

k (π1T ) + πn
k (π2T ).

We have noticed in Proposition 3.5 that the restriction of the trace form
π2T to any subspace is also a trace form. Thus πn

k (π2) is an element in
Rk ⊂ S3(Rk). Hence we have

(3.8.1) π1(π
n
kT ) = π1(π

n
k (π1T )).

Since all the projections π1, π
n
k decrease the norm ||.|| we get

||πn
kT ||1 = ||π1(π

n
kT )|| = ||π1(π

n
k (π1T ))|| ≤ ||π1(T )|| = ||T ||1.

�

3.9. Proposition. For n = 1 all the comasses concide with the abso-
lute norm. A neccesary and sufficient condition, such that a statistical line
(R, g0, T ) can be embedded into (RN , g0, T ′) is that M1(T ) ≤M1(T ′).

Proof. It suffices to show that we can embedd (R, g0, T ) into (RN , g0, T ′)
if we have M1(T ) ≤ M1(T ′). We note that T ′(v, v, v) defines a anti-
symmetric function on the sphere SN−1(|v| = 1) ⊂ RN . Thus there is a
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point v ∈ SN−1 such that T ′(v, v, v) =M1(T ). Clearly the line v⊗R defines
the required embedding. �

Let us consider the embedding problem for 2-dimensional linear statistical
spaces. It is easy to see that

S3(R2) = R2 ⊕R2.

Thus the quotient S3(R2)/SO(2) equals (R2⊕R2)/S1. Geometrically there
are several ways to see this. In the first way we denote components of T ∈
S3(R2) via T111, T112, T122, T222.

3.10. Lemma. There exists an oriented orthonormal basic in R2 such
that T111 = M1(T ) > 0, T112 = 0 for all non-vanishing T . These numbers
(T111, T122, T222) are called canonical coordinates of T . Two tensors T and T ′

are equivalent, if and only if they have the same canonical coordinates.

Proof. We choose an oriented orthonormal basis (v1, v2) by taking as v1

a point on S1(|x| = 1), where the function T (x, x, x) reaches the maximum.
The first variation formula shows that in this case T112 = 0. This shows
the existence of canonical coordinates. Clearly if two tensors have the same
canonical coordinates then they are equivalent. Next if two tensors T and
T ′ are equivalent, then their norms M1 are the same. We need to take care
the case when there are several points x, at which T (x, x, x) reaches the
maximum. In any case they have the same first coordinates. Next we note
that

< Tr(T ), T r(T ) >= (T111 + T122)
2 + T 2

222,

||T ||2 = T 2
111 + T 2

122 + T 2
222.

Thus if two tensors are equivalent and have the same first coordinates they
must have the same third coordinates T122 and the last one is the same up
to sign. The condition on orientation tells us that the sign must by +. This
proves the second statement. �

3.11. Remark. First we note that, if T111 = M1(T ), then T122 =
HessTv1(v2, v2) ≤ 0. Thus not any 3 numbers (T111, T122, T222) can be served
as canonical coordinates of some 3-symmetric tensor T on R2. Next we
observe that v = (x1v1 + x2v2) is a critical point of the function T (v, v, v) on
the circle S1((x1)2 + (x2)2 = 1)), if and only if there is a number λ such that

(3.11.a) T111(x
1)2 + T122(x

2)2 = λx1,
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(3.11.b) 2T122x
1x2 + T222(x

2)2 = λx2.

The equation (3.11.b) has 2 solutions, namely x2 = 0 and 2T122x
1 +cx2−λ =

0. Clearly (x1 = ±1, x2 = 0) are solutions to the system (3.11.a, b). These
solutions correspond to the maximum and minimum of T (v, v, v). Now we
suppose that T222 �= 0. Then substituting x2 = (λ− 2T122x

1)/c into (3.11.a)
and the equation |v| = 1 we get two quadratic equations for x1 and λ

(3.11.c) (x1)2 +
(λ− 2T122x

1)2

c2
= 1,

(3.11.d). T111(x
1)2 +

T122

c2
(λ− 2T122(x

1)2) = λ x1.

It is easy to see that these equations have at most 4 solutions (x1, λ). If T122

is positive, using the fact that T (v1, v1, v1) is a local minimum, we see easily
that in this case the function T (v, v, v) has exactly 6 critical points.

The second way to see invariants of 3-symmetric tensors on R2 is to
decompose S3(R2) into the trace type component and the second component
which is generated by Sym(�(xȳz̄)), Sym(�(xȳz̄)). Here we identify R2 with
C, so x, y, z are complex numbers. (We note that this decomposition is not
orthogonal.)

3.12. Proposition. We can always embed the 2-dimensional statistical
space (R2, g0, 0) into any linear statistical space (Rn, g0, T ), if n ≥ 7.

Proof. It suffices to prove for n = 7. We denote by O(T ) the set of of all
unit vectors v ∈ S6 such that T (v, v, v) = 0. Clearly O(T ) is a set of dimen-
sion 5 in S6. Since T is anti-symmetric, there exists a connected component
O0(T ) of O(T ) which is invariant under the anti-symmetry involution. Now
we consider the following function f on O0(T ). For each v ∈ O0(T ) we de-
note by Av the bilinear symmetric 2-form on the space TxO0(T ) considered
as a subspace in Rn:

Av(y, z) = T (v, y, z).

Then we define f(v) equal to det(Av). Since O(T ) has dimension 5, the func-
tion f(v) is anti-symmetric on O0(T ). Hence the set O0

0(T ) of all v ∈ O0(T )
with f(v) = 0 has dimension 4 and it contains a connected component which
is also invariant under the anti-symmetric involution. For the simplicity we

22



denote this connected component also by O0
0(T ). Now we consider the fol-

lowing two cases.
Case 1. We assume that there is a point v ∈ O0

0(T ) such that the nullity
of Av is at least 2. Then there are two linear independent vectors y, z ∈ Tv

such that the restriction of Av on the plan R2(y, z) vanishes. Since the set
O0(T ) is connected and anti-symmetric and of codimension 1 in Sn−1, the
plan R(y, z) has a non-empty intersection with O0(T ) at a point w. Then
the restriction of T on the plan R2(v, w) is vanished, because

T (v, v, v) = T (w,w,w) = 0

T (v, w, w) = 0 (since Av(w,w) = 0),

T (v, v, w) = 0 (since w ∈ TvO0(T )).

Case 2. We assume that the nullity of Av on O0
0(T ) is constantly 1.

Using the anti-symmetric property of Av we conclude that the restriction of
Av to the the plan R4(v) which is orthogonal to the kernel of Av has index
constantly 2. Thus there exists a vector z which is orthogonal to the kernel
y of Av such that Av(z, z) = 0. Clearly the restriction of Av to the plan
R2(y, z) is vanished. Now we can repeat the argument in the case 1 to get a
vector w such that the restriction of T to R2(v, w) vanished. �

Now let us consider embedding of linear statistical spaces in “standard”
spaces.

3.13. Theorem. a) Any statistical space (Rn, g0, T ) can be embedded

in the statistical space (Rn(n+1), g0, T ′ = 2||T ||∑N(n)
i=1 x3

i ), where xi are the
canonical Euclidean coordinates on Rn(n+1).
b) The trivial space (Rn, g0, 0) can be embedded into (R2n, g0,

∑2n
i=1(dx

i)3) for
all n.

Proof. a) We prove by induction. The statement for n = 1 follows from
Proposition 3.8. Suppose that the statement is valid till n = k.

3.14. Lemma. Suppose that T ∈ S3(Rk+1). Then there are orthonormal
coordinates x1, · · · , xk such that

(3.14.1) T = x1

k+1∑
i=1

aix
2
i +

∑
1<i,j,k

aijkxixjxk.
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Proof of Lemma 3.14. We choose v1 as the unit vector in Rk+1, where
the function T (v, v, v) reach the maximum on the unit sphere Sk. The first
variation formula show that T (v1, v1, w) = 0 for all w which is orthogonal to
v1. Denote by Rk the orthogonal complement to R · v1. Now we consider a
bilinear symmetric form A on Rk defined as follows

A(x, y) = S(v1, x, y).

There is an orthonormal basis on Rk, where we can write A(x, y) =
∑k+1

i=2 aix
2
i .

Clearly in this orthonormal basis we can write T in form of (3.14.1). �

Continuation of the proof of Theorem 3.13.a We shall show explicitely
that that any statistical space (R2, g0, T = a2x1(x2)

2) can be embedded in
(R4, g0,

∑4
i=1(yi)

3), if 0 ≤ |a2| ≤ 1/2. We denote by A(vi) ∈ R4 the image of
the orthonormal basis vector vi in R2. We let

(3.15.1) A(v1) = ±(
1

2
,
1

2
,−1

2
,−1

2
)

(3.15.2) A(v2) = (

√
1 + 2a2

2
,−

√
1 + 2a2

2
,

√
1− 2a2

2
,−

√
1− 2a2

2
).

Here we take the sign + in (3.16.1) if a2 > 0 and we take the sing −, if
a2 < 0. Clearly A define the required embedding.

This together with Proposition 3.8 and the induction assumption com-
plete the proof of Theorem 3.13. a.

Proof of Theorem 3.13. b. We decompose the embedding f : (Rn, g0, 0)
to (R2n, g0,

∑2n
i=1(x

i)3) as follows

f(x1, · · · , xn) = (f 1(x1), · · · , fn(xn))

where f i embeds the line (R, (dxi)2, 0) into (R2, (dx2i−1)2+(dx2i)2, (dx2i−1)3+
(dx2i)3). Clearly f is the required embedding. �

3.16. Further remarks. Let us define the nullity of T as the maximal
dimension of a subspace, where T vanishes. Clearly the nullity of T is the
maximal number k such that λk(T ) = 0. We also define the rank of T as
the minimal number k such that T can obtained by taking the pull back via
the orthogonal projection von the Rn to its subspace of dimension k. Clearly
N(T )+R(T ) ≥ n. We conjecture that the nullity of a linear statistical space
(R2k+1, g0, T ) is at least k for any T .
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4 Monotone invariants and obstructions to

embeddings of statistical manifolds

In this section we shall consider several classes of invariants of statistical
manifolds. These classes behave well under embeddings, and therefore they
give us obstructions of embedding of one statistical manifold into another
one.

An assignment (M, g, T ) �→ A of each statistical manifold (M, g, T ) to
an object A is called invariant of statistical manifolds, if this assigment
depends only on the equivalent class of (M, g, T ).

We now define a subclass of invariants of statistical manifolds which be-
haves well under embeddings. Let K(M, e) denote the category of statistical
manifolds M with morphisms being embeddings. Functors of this category
are called monotone invariants of statistical manifolds. Clearly any mono-
tone invariant is an invariant of statistical manifolds.

It is easy to construct invariants of statistical manifolds from invariant
of linear statistical spaces. We can also construct monotone invariants of
statistical manifolds from monotone invariants of linear statistical spaces.

4.1. Examples.
a) First we show an example of an important invariant of statistical man-

ifolds but not monotone invariants. The trace Tr T shall be called the trace
form of a statistical manifold (M, g, T ). Clearly the trace form is invariant
but not monotone invariant of statistical manifolds. Nevertheless according
to Proposition 3.5 we get that any statistical submanifold of a statistical
manifold of a trace type is also of trace type. Thus the trace type is a mono-
tone invariant. In particular we can not embed the statistical space CapN

and the normal Gaussian space into any statistical space of trace type. On
the other hand, unlike the linear case, we cannot embed a statistical manifold
of trace type into another one of trace type, even if the norm condition is
satisfied. For example if the trace form is closed (or exact), then the trace
form of its submanifolds is also closed (resp. exact). Hence within a class
of statistical manifolds of trace type we get a new mononotone invariants
which can be expressed via the closedness and the cohomology class of the
corresponding trace form.

Furthermore we note that the class of 3-symmetric tensors of trace form is
a subclass of all decomposable tensors T 3 which are a symmetric product
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of 1-forms and symmetric 2-forms. Any statistical submanifold of a statistical
manifold with a decomposable tensor T has also the (induced) decomposable
tensor. Thus the decomposability is also a monotone invariant. The Gaussian
normal 2-dimensional manifold is an example of decomposable type but not
of trace type.

b) We define for any statistical manifold (M, g, T ) the following number

rank(T ) = sup rank(T (x))

||T ||0 = sup
x∈M
||T (x)||.

M1(T )0 = sup
x∈M
M1(T (x)).

||T ||1,0 = sup
x∈M
||T (x)||1.

Clearly these three numbers are monotone invariants of statistical mani-
folds. The second and third numbers are norms, and the last one vanishes, if
and only if (M, g, T ) is of trace type. (Actually these invariants are invariant
of immersions.)

4.2. Proposition. Any statistical manifold which is conformal equiva-
lent to the space CapN cannot be imbedded into the direct product of m copies
of the normal Gaussian statistical manifold 2.3.3.a for any N ≥ 3 and finite
m.

Proof. Using (2.6.1) and Lemma 3.7 we conclude that M1(CapN) = ∞.
Thus any statistical manifold which is conformal equivalent to CaPN has
also the infinite invariant M1. On the other hand we compute easily from
2.3.3 and (2.6.3), (2.6.4) that the normM1 of the Gaussian normal manifold
and any direct product of a finite copies of it is finite, namely the norm
M1(x) is contant on the Gaussian manifold M2 and M1(x) =

√
2. (By the

observation above we can actually replace the “imbedded” statement by a
stronger “immersed” statement.) �

4.3. Diameters of statistical manifolds. For a positive number ρ > 0
and a statistical manifold (M, g, T ) we set

dρ(M, g, T ) := sup{l ∈ R+∪∞ | ∃ an embedding of ([0, l], dx2, ρ(dx)3) to (M, g, T ).}

We shall call dρ(M, g, T ) the diameter with weight ρ of (M, g, T ). Clearly
dρ are monotone invariants for all ρ.
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To estimate the diameter with weight ρ of a given statistical manifold
(M, g, T ) we can proceed as follows. For each point x ∈ M we denote by
Dρ(x) the set of all unit tangential vector v ∈ TxM such that T (v, v, v) = ρ.
We denote by Di

ρ(x) the connected components of Di
ρ(x). We say that a

unite vector v in TxM is ρ-charateristic with weight c(x), if there exists i
such that we have

c(x) = min
w∈Di

ρ(x)
< v,w >> 0.

The definition of diameter dρ uses the embedding. We can also use the
immersion to defined immersion diameter dim

ρ of statistical manifolds.
Clearly immersion diameters are also monotone invariants of statstical man-
ifolds and moreover

dρ(M, g, T ) ≤ dim
ρ (M, g, T ).

In many cases it is easier to compute immersion diameters. We suspect
that in most cases these two diameters coincide.

We shall say that a point x ∈ M is ρ-regular, if there is an open
neighborhood Uε(x) ⊂ M such that Dρ(Uε) = Uε ×Dρ(x). It is easy to see
that the set of ρ-regular points is open and dense in M for any given ρ.

4.4. Proposition. The diameter dρ of (Mm, g, T ) is infinite, if m ≥ 3
and there exists a number ε > 0 such that one of the following 2 conditions
holds:
a)There exists a (ρ + ε)-regular point x ∈ M such that the convex hull
Cov(Di

ρ+ε(x)) of one of connected components Di
ρ+ε(x) contains the origin

point 0 ∈ TxM
m as it interior point.

b) (Mm, g, T ) has a complete Riemannian submanifold (N, ḡ) such that there
exists a smooth section x �→ (Dρ+ε(x) ∩ TN) over N .

Proof. The statement under the first condition a) is based on the funda-
mental Lemma of the convex integration technique of Gromov [ Gr]. Namely
we shall use the Gromov Lemma [2.4.1.A, Gr] in order to prove the following
statement

4.5. Lemma. Under the condition in Proposition 4.4.1 there exists a
small neighborhood Uδ(x) in M and an embedded oriented curve S1 ⊂ Uδ(x)
such that for all point s(t) ∈ S1 we have M1(Ts(t)S

1) ≥ ρ+ (ε/2).

Proof of Lemma 4.5. We denote by Exp the exponential map TxM →M
andDExp the differential of the exponential map restricted to Sm−1×TxM ⊂
T (TxM) to TM . Here we denote by Sm−1 the unit sphere in TxM . The
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space TxM is a linear statistical space, so we denote be M1
x the induced

norm-function on Sm−1 × TxM :

M1
x(l) = Tx(l, l, l).

Since Dexp is a continous function whose restriction to Sm−1 × 0 is the
identity, there exists a ball B(0, δ) with center in 0 ∈ TxM such that

(4.5.1) M1(DExp(l))−M1
x(l)) < ε/4

for all l ∈ Sm−1 × B(δ) ⊂ T (TxM). We can assume thatδ is so small such
that DExp is a homeomorphism on Sm−1 ×B(0, δ).

Now we apply the Gromov Lemma [2.4.1.A, Gr] to get a oriented curve
S1(t) in the linear space TxM such that

(4.5.2) T (
(∂/∂t)S1(t)

|(∂/∂t)S1(t)|) = ρ+ ε

for all t. Next we observe that for all α > 0 the curve α · S1(t) has the same
norm as S1(t), i.e.

M1
x(T|(α·S1)(t)) =M1

x(T|(S1)(t)) = ρ+ ε.

Thus we can assume now that our curve S1(t) which satisfies (4.5.2) lies in
the ball B(0, δ). By our choice of δ ( see (4.5.1)) we get from (4.5.2)

(4.5.3) ρ+
3

4
ε ≤M1(Exp(S1(t))) ≤ ρ+

5

4
ε,

for all t. This curve Exp(S1(t)) is an immersed curve. To get an embedded
curve we perturb it a little such that the condition of Lemma 4.5 is satisfied.
�

Now let us continue the proof of Proposition 4.4.a. We denote by S1(t) the
embedded curve in Lemma 4.5. Next by choosing a tubular neghborhood of
S1(t) we can get a (small, thin) (oriented) embedded solid torus T 3(t, s, r) =
S1(t) × S1(s) × [0, R] in Mm such that our embedded curve is exactly the
mean curve S1(t) × {0} × {0} on the solid torus. We can choose this torus
T 3 so thin, such that for all s, t, r we have

(4.5.4) M1(T 2
r (t, s)) ≥ ρ+

ε

4
.
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Using (4.5.4) we choose a smooth unit vector field V (t, s) on the torus
T 3(t, s, r) which tangential to each torus T 2

r (t, s) such that T (V, V, V ) = ρ.
The integral curve of this vector field is either a cicle or an curve of infinite
length. If there exists an integral curve of infinite length then this curve is our
desired curve for the Proposition 4.5. Assume now that all the integral curves
are cicles. Then there exist an embedding S1(t)× [0, µ]× [0, µ] such that for
all (s, r) ∈ [0, µ]× [0, µ] the circle S1(t)×{s}×{r} is an integral curve of V .
Now we perturb V in a neighborhood [0, α]× [0, µ]× [0, α] with a very small
α such that the perturbed unit vectorfield V ′ satisfies T (V ′, V ′, V ′) = ρ and
the integral curve of vector field V ′ is not any more periodic. This completes
the proof of the first part in Proposition 4.4.

Using the same argument we can prove the second part b) of Proposition
4.4. First we get the existence of an embedded curve S1(t) of arbitrary
length on M such that M1(T|S1(t)) ≥ ρ + (1/4)ε. Now we consider a torus
tubular neighborhood of this curve in M and apply the same argument in
the first part, namely we get on each torus T 2(t, s) an integral curve whose
unit tangential vector V = (∂/∂t)S1(t; s, r) satisfies the condition:

T (V, V, V ) = ρ.

If there exists an inifinite integral curve then we are done. If not, that is
all integral curve are circles, then we apply the perturbation method in the
proof of the first part and get our desired curve. �

4.6. Remark. Using the arugment in the proof of Proposition 4.4 we
get the following monotonicity for diameters of a statistical manifolds. If
dimMm = m ≥ 3 then

dρ(M, g, T ) ≤ dρ′(M, g, T ) if ρ ≥ ρ.

We can also get an upper estimate of diameters of a statistical manifold
by using characterstic vectors. Instead of giving a formal generalization we
shall consider a simple example of the ball (Bn(r), g0,

∑n
i=1(dx

i)3) in the
linear statistical space. First we can easy compute that (e.g. via the first
variational formula as we do it in Remark 3.11) M1(Bn(r)) = 1, moreover,
if v is a unit vector in Rn such that T (v, v, v) = 1, then v must be one of
the coordinate vectors ∂xi. Since we can easily compute all the critical value
of the function T (v, v, v) on the unit sphere Sn−1 we get that for for any
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value c such that (2)−1/2 < c ≤ 1 the set D1−c(x) has exactly n connected
components, each of them is diffeomorphic to Sn−2. We fix such a value c.
We denote by Di

1−c(x) the component whose i-th coordinate has the maximal
value. Clearly the unit coordinate vector ∂xi is (ρ−c)-characterstic with the
weight sinα(c) which is the “larger” solution of the equation

(4.6.1) sin3 α(c) + cos3 α(c) = 1− c, and 0 ≤ α(c) ≤ π/4.

4.7. Lemma. For 2−1/2 < c ≤ 1 the immersion diameter dim
1−c of the ball

Bn(r) of radius r in the standard linear statistical space (Rn, g0,
∑n

i=1(dx
i)3)

is less than r ·(sin−1 α(c)) where sinα(c) is the larger solution of the equation
(4.6). The immersion diameter dimρ of (Rn, g0,

∑
i(dx

i)3) is zero, if ρ > 1.

Proof. We have compute that the coordinate vector ∂xi = (0, · · · , 1i, 0)
are (1 − c) characteristic vector with weight sinα(c). Thus the projection
of any unit tangential vector v of any immersed curve [0, α], (dx)2, (1 −
eps)(dx)3) on the coordinate line (0, · · · ,R, · · · , 0) has a length greater than
or equal to sinα(c). Thus after a time t = r · sin−1 α(c) the integral curve
must quit the ball. Since we rescale the time to equal the length of curve,
we obtain immediately the first statement.

The second statement follows from an easy computation of the normM1

for standard linear statistical spaces. �

4.8. Proposition. For a given ρ the diameter with weight ρ of CapN is
equal to infinity if N ≥ 3.

Proof. Using Proposition 3.7.14 and Lemma 3.7.c we can find a point
x ∈ CapN such that

λN−2(TxCap
N) > 3ρ.

Since λi is a smooth function of tensors T , we can find a very small neigh-
borhood U of a ρ-regular point-x such that all point y in U is also ρ-regular
and moreover

(4.8.1) λN−2(TyCap
N) > 2ρ, if y ∈ U.

Now we embed a small torus TN−2(δ) in this neighborhood U . From (4.8.1)
it follows that for all x ∈ SN−2(δ) we have

(4.8.2) M1(TxT
N−2(δ)) > ρ+ ε1.
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We denote
Dρ+(x) = ∪ρ′≥ρDρ′(x).

We shall find a smooth section of Dρ+(x) ∩ TxT
N−2(δ) over TN−2(δ). Next

we observe that if V (x) ∈ Dρ+(x) then g(x) · V (x) ∈ Dρ+(x). Thus using
the unity partition functions it suffices to find for each x ∈ TN−2 a small
neighoboorhood U(x) ⊂ TN−2 and a smooth section of Dρ+ ∩ T (TN−2) over
U(x). The local existence od such a section follows from (4.8.2) and fom
the continuity of the function M1(x) on TN−2(δ). Once we have a smooth
section of Dρ+ on TN−2(δ) we can get an integral curve of of infinite length
on TN−2(δ). Afeter that we can perturbe this curve as we did in our proof of
Proposition 4.4 in order to get an embedded curve which is an integral curve
of the distribution Dρ on CapN . �

4.9. Remark. We can construct other monotone invariants by look-
ing at the embedding of non-constant 1-dimensional statistical manifolds.
It seems that the most important among these new invariants come from
of 1-dimensional statistical manifolds, whose asymptotical growth M1(x) is
polynomial or exponential.

5 Existence of embeddings into CapN .

We prove in this section the following theorems.

5.1.Proposition. Any Ck-Riemannian manifold (Mn, <,>g), k = 1
or 3 ≤ k ≤ ∞, posseses a probability potential, more precisely there exists
a finite number of N positive functions fi : M → R, i = 1, N, such that
∀x ∈ M we have

∑N
i=1 fi(x) = 1, and moreover for all V,W ∈ TxM the

following equality is satisfied

(5.1.1) < V,W >g (x) =
N∑

i=1

(∂V ln fi(x))(∂W ln fi(x))fi(x).

Theorem 5.1 says that any Riemannian manifold can be considered as a
family of probability distributions on the sample space ΩN of N elementary
events with the natural Fisher (information) metric on it. Refrasing we can
say that any Riemannian metric is a Fisher metric. Theorem 5.1 is actually
a simple consequence of the Nash embedding theorems [N1, N2].
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5.2. Theorem. Suppose that (Mm, g, T ) is a Ck-statistical manifold,
3 ≤ k ≤ ∞. There exists a number u(m) = 4(m+ 1)[((m(m+ 1)− 1)m(m+
1) + 2 + m) + (m + 2)(m + 3)] such that we can embed (Mm, g, T ) into
CapN(m). If Mm, g, T ) is C3-bounded, i.e. |T |C3 < ∞ then we can lower
u(m) by dividing (m+ 1).

5.3. Corollary. Any finite dimensional C3-statistical manifold is a sta-
tistical model. Hence we get a new proof of the Matumoto theorem on the
existence of constrast function for these manifolds [M] (see also section 2).

From Theorem 5.2 follows that any monotone invariant of CapN goes to
infinity as N goes to infinity. This allows CapN to be universal spaces for
statistical manifolds.

The rest of this section is devoted to the proof of Proposition 5.1 and
Theorem 5.2. We also discuss at the end of the section C1- embeddings of
one statistical manifold into another one.

Proof of Proposition 5.1. As we have observed in 2.3.2 the existence
of probability potential functions {fi} for a Riemannian manifold (M, g) is
equivalent to the existence of an isometric embedding (M, g)→ (Sn

+(2), g0).
Here we denote by g0 the canonical metric on positive quadrant Sn

+(2) of the
sphere of radius 2 as in 2.3.2. This existence can be obtained by a general the-
ory of isometric embeddings of Riemannian manifolds devoloped by Gromov
[G] based on the Nash embedding theorem [N]. Here we give a simple ex-
planation, how to get an isometric embedding (Mm, g) → (Sn

+(2), g0), once
we have Nash’s isometric embedding (Mm, g) into the standard Euclidean
space (RN(m), g0). ( The number N(m) can be chosen as (n/2)(3n + 11)
for a compact Riemannian manifold (Mm, g) and (n/2)(n + 1)(3n + 11) for
non-compact (Mm, g) [N1, N2]) (later Gormov [G] showed that we can chose
N(m) = (n + 2)(n + 3)/2 as the best value for the smooth case, for C1-
embedding Nash has shown that wew can take N(m) = 2m = 1 [N1]). First
we note that the image of (Mm, g) can be seen as in lying a ball (BM(n), r)
of radius r for a compact M and also for non-compact M , but in this case
we have to add 1 to the dimension of BM(m). (This follows immediately
from the Nash proof for the non-compact Mm, based on the dividing Mm

to compact subsmanifolds). Next we can decrease r to 1/16 by double the
dimension of the ball, i.e. we embed the ball (BM(n), r) to (B2(M(n), 1/16).
Now we have an isometric imbedding of (Mm, g) to a small region R(1/16)
in the flat torus S1 ×2M(n) S

1. This flat torus can be embedded as a Clifford
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torus in the standard sphere S4M(n)−1(2) such that the small region R(1/16)

lies in the positive quadrant S
4M(n)−1
+ . Thus we get the required isometric

embedding of (Mm, g). �

Proof of Theorem 5.2. We first consider C3-bounded statistical manifold
(M, g, T ), i.e. those such that |T |C3 < infty. Our proof consists of 4 steps.
In the first step we show that for a generic map f we can solve the linearized
problem for the perturbed equations (5.4) and (5.5) at f . In the second step
we apply the Nash-Gromov implicit function theorem to the first step and
prove that our perturbation problem is actually can be solved for small value
g̃ and T̃ and a generic f . In the third step we combine the Nash isometric em-
bedding, the Nash-Gromov approximation theorem and our linear embedding
theorem (Theorem 3.13.b) with our perturbation device in the second step
to get Mm embedded in a linear statistical space (RN(m), g0, A

∑
((dxi)3).

Here A is a positive constant, possibly very big. In the last step we embed
any given bounded domain of the last linear statistical space into a finite
dimensional space CapN . This step is similar to the proof of Proposition 4.8.

Step 1. Linearized problem. Let f be a map Mm → (Rq, g0, T 0). Here
g0 is the standard Euclidean metric and T 0 =

∑q
i=1(dx

i)3). Suppose that
g̃ ∈ S2(T ∗M) is a small symmetric 2-form on M and T̃ ∈ S3(T ∗M) is a
small 3-symmetric tensor on M . We want to find a small perturbation v at
f such that

(5.4) d(f + v) · d(f + v) = df · df + g̃,

(5.5) d(f + v) · d(f + v) · d(f + v) = df · df · df + T̃ .

Before solving (5.4) and (5.5) in the second step, we shall solve the corre-
sponding linearized equations for v at a given map f . The linearized equation
of the system (5.4) +(5.5) is the following system of (5.6) + (5.7)

(5.6) ∂if · ∂jv + ∂jf · ∂iv = g̃ij, for all i, j, k

(5.7) Sijk ◦ T 0(∂if, ∂jf, ∂kv) = T̃ijk for all i, j, k.

Here we denote by Sijk the symmetrization over (ijk), i.e. we permute the
operators (∂i, ∂J , ∂k) in the LHS of (5.7). We shall simplify the form of (5.7)
by introducing the bilinear symmetric map A : Rq ×Rq → Rq as follows

g0(A(v, w), ei) = T 0(ei, v, w).
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Here {ei} is the dual basis to xi on Rq. Then we can rewrite (5.7) as

(5.7′) Sijk < ∂kv, A(∂if, ∂jf) >= T̃ijk.

Following Nash [N2 ] and Gromov [G] we shall consider only deformations
v which are orthogonal to f and T 0-orthogonal to f i.e. we add the following
equations for v

(5.8) < v, ∂if >= 0, for all i,

(5.9) < v,A(∂if, ∂jf) >= 0, for all i, j.

The Nash -Gromov trick makes it possible that under the conditions (5.8)
and (5.9) (namely we apply the differentiation ∂k to (5.8) and (5.9)) the
system of linearized equations (5.6) + (5.7) is equivalent to the following
linear algrbraic system for v

(5.10) < v, ∂i∂jf >= −1

2
g̃ij ,

(5.11) < v,A(∂i∂jf, fk) >= −T̃ijk.

Clearly the system (5.8)+(5.9)+(5.10)+(5.11) has a solution v for any given
g̃ij and T̃ijk, if the (m+m2 +m2 +m3) vectors

{(∂if, ∂ijf, A(∂if, ∂jf), A(∂i∂jf, ∂kf)} for all i, j = 1, q

are linearly independent at all p ∈ M . Following Gromov we shall call
such an embedding (g0, T 0) -free embedding. Thus if f is a (g0, T 0)-
free Ck-embedding, then the linearized equation (5.6)+(5.7) of our pertur-
bation problem (5.4)+(5.5) at f has a solution v, because it can be cho-
sen as a solution of the linear (w.r.t the second derivative of f) system
(5.8)+(5.9)+(5.10)+(5.11).

We also observe that if f is a (g0, T 0)-free embedding, then the composi-
tion f ◦h, where h is an embedding of linear statistical spaces (Rq, g0, T 0)→
(Rp, g0, T 0) is also a (g0, T 0) -free embedding. ( Here we abuse the notion
g0, T 0 for the standard statistical structure on Rq with possible different
dimension q.)

34



Now we shall show that the set of all (g0, T 0)-free, Ck- embeddings is
open, dense in the Ck-topology if q > m(m + 1)2 and k ≥ 2. First we shall
prove the following Lemma.

5.12. Lemma. Suppose that q ≤ m(m− 1) + 2. Then there is an open,
dense set Sq

m of vectors (v1, · · · , vm) ∈ Rq⊕· · ·m times⊕Rq with the following
property (PAq

m)

all vectors v1, · · · , vm, A(vi, vj), i, j = 1, m, are linear independent in Rq.

Proof of Lemma 5.12. We prove by induction on m. The condition P q
1 for

a vector v1 can be expressed by the following (q−1) equations on coordinates
of v1:

(5.12.1) v1
1 = v2

1 = · · · = vq
1.

Thus for m = 1 the set Sq
1 of vectors v1 with (PAq

1) is a complement to a
1-dimensional subset of in Rq.

Next we assume that the Lemma 5.12 is valid for the set Sq
m−1 for all

q ≥ 2. We shall prove that the Lemma 5.12 is also valid for the set Sq
m. It

suffices to show that Sq
m is Sq

m−1 × Dq
m, where Dq

m is the complement of a
closed set Cq

m of codimension (q −m(m+ 1)− 1) in Rq.
The condition PAq

m is the union of the following three conditions. The
first one is that (v1, · · · , vm−1) ∈ Sq

m−1 (the condition P q
m−1 for the first (m−1)

vectors.) The second condition is that the two vectors vm, A(vm, vm) are
linearly independent (the condition PAq

1 for vm). The last condition is that
these two vectors are together linearly indepedendent to the (m−1)+(m−1)2

vectors {vi, A(vi, vj), i, j ≤ m− 1}.
We define Cq

m to be the union of the following 2 sets corresponding to the
last two conditions on vm. The first set consists of vectors vm ∈ Rq whose
coordinates vi

m satisfies the equation (5.12.1). The second set consists of
those vm such that the space generated by vm and A(vm, vm) has a non-trivial
intersection with the linear subspace in Rq generated by (vi, A(vi, vj), i, j =
1, (m − 1)). Clearly the set Cq

m is a closed subset of dimension m(m-1)+1
in Rq. Since q ≤ (m − 1)m + 2 the complement Dq

m von Cq
m in Rq is an

open dense set. It is straightforward to verify that the set Sq
m = Sq

m−1 ⊕Dq
m

satisfies our condition. This completes the induction step and completes the
proof of Lemma 5.12. �
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Continuation of step 1. Clearly the condition that f is a (g0, T 0) -free
mapping is equivalent to the following condition. For each p ∈ M the set of
m(m + 1) vectors (∂if(p), ∂i∂jf(p)) satisfies the condition PAq

m(m+1). The
following Proposition summarizes the main result of step 1.

5.13. Proposition. The set of all Ck, k ≥ 2, and (g0, T 0) -free
embeddings from M to Rq is an open dense set in Ck-topology, if q ≥
(m(m+ 1)− 1)m(m+ 1) + 2 +m. For each Ck- and (g0, T 0)-free embedding
f the linearized equation (5.5)+(5.6) at f has a Ck−2 solution v.

Proof. If f is a free map, then the existence of a solution v follows from
the existence of a solution of the system (5.8) + (5.9)+ (5.10) +(5.11) as
we have shown above. To show that v is of class Ck−2 we need to show a
canonical way to get a unique solution v. We note that for a given f and at
each p the set of all v which satisfies (5.8)+(5.9)+(5.10)+(5.11) is an affine
subspace. Thus we can chose a unique solution v(p) as the minimizer of the
norm |v(p)| (as Nash did for isometric embeddings).

It remains to prove the first statement on the open dense property. We
denote by Γ(2)(M,Rq) the space of 2-jets of Ck-mappings from Mm to Rq

with 2 ≤ k ≤ ∞. The condition of that f is (g0, T 0) -free is equiva-
lent to the following. For each p ∈ M the basis vectors of Tf (M, p) =<
∂if(p), ∂i∂jf(v), i, j = 1, m > satisfy the condition PAq

m(m+1). ( It is easy to
check that this condition does not depend on the choice of coordinates at p).
Lemma 5.12 shows that this condition is an open differential relation on the
jet-space Γ(2)(Mm,Rq) if q ≥ (m(m+ 1)− 1)m(m+ 1) + 2. Thus the space
(g0, T 0) -free mappings is an open map. To show that this space is dense we
use the following corollary of the Thom transversality theorem whose proof
is given in [Gr].

5.13.1. Lemma. ( [Gr, Corollary 1.3.2.D’]). If S ⊂ Γ(r)(Mm,Rq) has
codimension at least m + 1, then for a generic map f ∈ Ck(Mm,Rq) (i.e.
for f in a countable interstion of open dense sets) the jet f r ∈ Γ(r)(Mm,Rq)
has no intersection with S.

We apply this Lemma for the complement S of the open set defined by
properties PAq

m(m+1) in Γ(2)(Mm,Rq). This proves the dense property of

(g0, T 0)-free embeddings. �

Step 2. Implicit function theorem.
Now we can apply the Nash-Gromov implicit function theorem [Gr, 2.3.2]

to show that
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5.14. Proposition. (Perturbation device) Suppose that k ≥ 3. For any
smooth (g0, T 0)-free Ck embedding f : Mm → Rq there exists a number E(f)
such that if (g, T ) is a Ck-statistical structure on Mm with

|g − f ∗(g0)|C3 ≤ E(f) and |T − u∗(T 0)|C3 ≤ E(f),

then there exists a perturbed map f̃ such that ũ∗(g0) = g and ũ∗(T 0) = T .

Proof. It suffices to show that the Nash-Gromov implicit function theo-
rem [Gr, 2.3.2] can be applied in our case. First we recall some neccesary
definitions and notations in [Gr].

Let X → Mm and G → Mm smooth vector bundles over a smooth
manifold Mm. We denote by X(r) the space of (r)-jets of sections of X
and by X α (resp. Gα) the space of Cα sections of X (and of G respectively).
Suppose that D : X r → G0 is a smooth differential operator of oder r, in other
words, there exists a smooth map � : X(r) → G and D(x) = � ◦ Jr

x. Here
J (r)(x) is the extension of the section x : Mm → X to a section Mm → X(r).

For any set A(= Ad) ⊂ X d we denote by Ad+α the intersection A(=
Ad) ∩ X α+d.

A differential operatorD of oder r is called infinitesimal invertible over
a subset A = Ad ⊂ X d, if there exists a family of linear differential operators
(of order s) Mx : Gs → Y y for x ∈ A with the following 3 properties.

(1) A = Ad ⊂ X d consists of Cd-solutions of an open differential relation
A ⊂ X(d). This number d is called the defect of the infinitesimal inverse
M . We require that d ≥ r.

(2) The operator Mx(g) = M(x, g) is a differential operator of oder d in
x. Moreover the global operator

M : Ad × Gs → T 0 = T (X 0)

is also a differential operator , i.e. it is defined via a smooth map from
A⊕G(s) → Tvert(X).

(3) Mx is a right inverse of the linearization LDx of D at x. In other
words LD(x,M(x, g)) = g for all x ∈ Ad and g ∈ Gs.

Nash-Gromov implicit funtion theorem. [Gr, 2.3.2] Suppose that
D : X r → G0 is a smooth differential operator of oder r which admits an
infinitesimal inverse M of oder s and of defect d over an open set A = Ad ⊂
X d. Let us fix a number σ such that

σ > s̄+ 1 = max(d, 2r + s) + 1.
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Then for any x0 ∈ A∞ there exists a fine C s̄+s+1-neighborhood B0 of zero in
G s̄+s+1 such that for each Cσ+s-section g ∈ B0 the equation D(x) = D(x0)+g
has a Cσ-solution.

Now let us verify the condition in the Nash-Gromov implicit function
theorem for our case. In our case X is the trivial fibration Rq ×Mm and
G = S2(T ∗Mm)⊕S3(T ∗Mm). OperatorD : X 1 → G0 with D(f) = f ∗(g0, T 0)
is a smooth differential operator of first oder. Proposition 5.13 states that
operator D is infinitesimal invertible over the set A = A2 ⊂ X 2 consisting of
(g0, T 0)-free embeddings. Indeed this set A = A2 consists of C2-solutions of
an open differential relation A on X2. Thus the condition (1) is satisfied.

For x(= f) ∈ A = A2 and (g) ∈ G0 we denote by M(x, g) the unique so-
lution of (5.8)+(5.9)+(5.10)+(5.11) which satisfies the minimizing property
(in Proposition 5.13 such a map x is denoted by f .) It is straightforward to
check that the global operator

M : A2 × G0 → T 0 = T (X 0)

is a smooth differential operator. Thus the condition (2) is satisfied.
The condition (3) also follows from Proposition 5.13.
This completes also our proof of Proposition 5.14. �

Step 3. Ck-embedding of (Mm, g, T ) into a linear statistical space. We

fix now our free Ck-embedding f : M → RN(m) together with the constant
E := E(f) obtained by applying Proposition 5.14 to f . Here we set N(m) =
(m(m+1)−1)m(m+1)+2−m. Thank to the Nash isometric embedding [N2]
and the dense property of (g0, T 0)-free embeddings, we can assume that f is
sufficient close to an isometric embedding fi : Mm → RN(m) with respect to
the metric (1/2)g. Hence g1 = g − f ∗(g0) ∼ g − fi(g

0) = (1/2)g is a positive
definite form. Such an embedding f is called short w.r.t. g. We compose
f with an embedding h : RN(m) → R2N(m) in Theorem 3.13.b to get a new
map u = h ◦ f , which still free, short w.r.t g and more over u(T 0) = 0. Now
we want to use the Nash approximation trick by adding an extra dimension
q(m) in the target space R2N(m).

5.15. Lemma. We set q(m) = (m + 2)(m + 3). There exists a Ck

embedding u1 : Mm → Rq(m) such that

(5.15.1) |g − u∗(g0)− u1(g0)|C3 ≤ E(u),
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(5.15.2) u1(T 0) = 0.

Proof. We can get the existence of u1 satisifying (5.15.1) by applying
the Nash approximation method [N2, Gr]. Namely we note that the form
g1 = g − u∗(g0) is positiv definite, therefore it can be approximated in Ck-
topology by metrics g1

j which is pull back of g0 via some Cα-embedding

fj : Mm → V 2l(m). Here we always assume that k ≥ 3. This number
2l first was obtained by Nash and then it was estimated from above via
(m + 2)(m + 3)/2 by Gromov [Gr]. We denote by h : Rq(m) → R2q(m) the
isotropic embedding in Proposition 3.13.b. Now we let u1 = h ◦ f1 such that

|f1(g
0)− g1|C3 < E(u).

Clearly u1 satisfies (5.15.1) and (5.15.2). �

We shall combine this approximating Lemma 5.15 with our perturbation
device ( Proposition 5.14) to get the following Ck-embedding into a linear
statistical space. This embedding is the main result of step 3.

5.16. Proposition. For any statistical manifold (Mm, g, T ) there exists
a positive number A and such that (Mm, g, T ) can be embedded into the linear
statistical space (RN(m), g0, A · T 0).

Proof. We fix a (g0, T 0)-free Ck-embedding u and an extra Ck-embedding
u1 as in Lemma 5.15. According to our perturbation device (Proposition
5.14) there exists an Ck-immersion u2 : Mm → R2N(m) such that

u∗2(g
0)− u∗(g0) = g − u∗(g0)− (u1)

∗(g0),

u2 ∗ (T 0)− u∗(T 0) = T · E(u)

|T |C3

.

(This is the only place, where we need the C3-boundedness of T in our proof
of Theorem 5.2).

Now we consider the following Ck-embbedding (u2, u1) : Mm → R2N(m)+q(m).
First we compute that

(u2, u1)(g
0) = (u2)

∗g0 + (u1)
∗g0 = g,

(u2, u1)(T
0) = (u2)

∗(T 0) = T · E(u)

|T |C3

.
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We let A =
|T |C3

E(u)
. Then our embedding (u2, u1) satistifies the condition of

Proposition 5.16. �

Step 4. Embedding into CapN

From Proposition 5.16 we get that for any compact statistical manifold
(Mm, g, T ) there exists an embedding (Mm, g, T ) to (R2N(m)+q(m), g0, [|T |C3/E(u)]·
T 0). Thus the existence of embedding of C3-bounded statistical manifolds
into CapN forN = 4(2N(m)+q(m)) is a consequence of the following Lemma
which can be considered as a generalization of Proposition 4.8.

5.17. Lemma. Any bounded domain in a linear statistical manifold
(Rn, g0, A · T 0) can be realized as a submanifold of Cap4n.

Proof of Lemma 5.17. The same proof as in proof of Proposition 4.8 yields
that the diameter with weight ρ of the positive quadrant part SN−1(λ)+ of
the sphere of radius λ (in RN with T defined by (2.6.1))is equal infinity, if
λ < 1 and N ≥ 4. Now we embed (Rn, g0, A · · ·T 0) into the direct product
of n copies of S3(λ)+ such that n · λ2 = 4. Clearly this product can be
embedded into Cap4n. �

Proof of Theorem 5.2 for the non bounded case. We can deal with this
case by using the compact decomposition ofMm as Nash did for the isometric
embedding in [ N2]. Namely we coverMm by disk neighborhoods Ni in such
a way that we can divide Ni among (m + 1) classes where: No two Ni of
the same class overlap, each Ni overlaps only a finite number of other Ni.
Now we “compactify” Ni via an surjective mapping : φi : Ni → Si, where Si

is a sphere of the same dimension m. The map φi can be extended to the
whole M since it maps the boundary of Ni into the north point of the sphere.
On the other hand, this map φi is injective in a large (enough) subdomain
N̄i ⊂ Ni. We can furthermore use the unity partition function to define
statistical structure on each Si such that the (sum of) pill back via φi is
the given statistical structure on M . In other words we can consider the
statistical structure on M as induced from (infinitely many) spheres Si via
mapping φi.

Now for each class C of coverings Ni we shall define an embedding

ψC : Mm → S4(2N(m)+q(m))(
2√
n+ 1

).

via the embedding of compact Si into these spheres, considered as submani-
folds of Rm with T defined by (2.6.1). The only point we have to modify the
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Nash argument is that, we cannot construct ψC : Si → S4(2N(m)+q(m))( 2√
n+1

)

at the same time (for all i), but we have to construct them inductively to get
them not being overlapped. Now the product mapping ψ = ψ1 × · · · × ψm+1

is the desired imebedding. �

5.18. Remark-Problem. We conjecture that our embedding theorem is
also valid for C1 structures, moreover we can lower dimension of the ambient
space CapN in this case.

5.19. Embeddings into quantum statistical manifolds.
Quantum statistical manifolds are an important class of statistical mod-

els, so we devote a section for consideration of these manifolds.
As we have seen in section 2, we can define a statistical structure (g, T )

on a given manifold M once a divergence funtion ρ is given on M ×M . For
classical statistical models, the divergence function ρ can be taken as the
relative entropy funtion (also the Kullback divergence, the Kulback-Leibler
information) or as the Jensen function of the entropy function. In the quan-
tum world the analog of the entropy funtion is the Neumann entropy and we
also have have the quantum relative entropy.

Let Hn be a Hilbert space. A density operator ρ is a non-negative
defined Hermittian operator on H whose trace is equal to 1. We denote by S
the set of all density operators on H. We define by Sk the subset of operators
ρ in S with rk ρ = k. It is well known that the space S1 can be identified
with the space CP n−1.

A quantum statistical model is a submanifold Mm in a S with a
statistical structure being derived from the Neuman entropy

H(ρ) := tr(ρ ln ρ)

or the quantum relative entropy

D1(σ, ρ) = tr[ρ(ln ρ− ln σ)].

It is known that a metric torsion of a Fisher metric derived from this
quantum relative entropy can be non-zero. In otherword the tensor T may
not be 3-symmetric. We call such a statistical structure true quantum
statistical structure. Clearly no true quantum statsitical manifold can
be realized as a submanifold of a classical statistical manifold (because the
tensor T of a classical statistical manifold is a 3-symmetric tensor). It is also
interesting question to consider the embedding of CapN into a “universal”
quantum statistical manifolds.
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