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1. Introduction

Let Σ ⊂ R3 be a smooth surface. A point p of Σ is called umbilical if the principal
curvatures of Σ at p are equal. A classical theorem in differential geometry states that if Σ
is connected and all points of Σ are umbilical, then either Σ is a subset of a round sphere
or it is a subset of a plane. Thus, if Σ is a compact surface without boundary, then Σ must
be a round sphere and therefore its second fundamental form is a constant multiple of the
identity.

In this paper, we generalize this well–known rigidity result in the following theorem. Here:

A denotes the second fundamental form of Σ;
Id denotes the identity (1, 1)–tensor and the (0, 2)–tensor naturally associated to it;
Å denotes the traceless part of A, i.e. the tensor A− trA

2
Id;

id : S2 ⊂ R3 → R3 is the standard isometric embedding of the round sphere.

Theorem 1.1. Let Σ ⊂ R3 denote a smooth compact connected surface without boundary
and for convenience normalize the area of Σ by ar(Σ) = 4π. Then

‖A− Id‖L2(Σ) ≤ C
∥∥Å

∥∥
L2(Σ)

, (1)

where C is a universal constant. If in addition
∥∥Å

∥∥2

L2(Σ)
≤ 8π, then there exists a conformal

parameterization ψ : S2 → Σ and a vector cΣ ∈ R3 such that

‖ψ − (cΣ + id)‖W 2,2(S2) ≤ C
∥∥Å

∥∥
L2(Σ)

. (2)

Remark 1.2. Note that (1) is a very natural estimate, since ‖Å‖L2(Σ) is scaling invariant.
Indeed (1) can be easily converted into the following scale–invariant estimate

‖A− rΣId‖L2(Σ) ≤ C
∥∥Å

∥∥
L2(Σ)

where rΣ :=

√
ar(Σ)
4π

.

In order to have the second estimate of Theorem 1.1 it is sufficient to assume
∥∥Å

∥∥2

L2 ≤ 16π−ε.
In this case C in (2) must be substituted by C(ε), where C(ε) ↑ ∞ as ε ↓ 0.

In Section 7 we show that these estimates are optimal. More precisely we show a sequence
of smooth connected compact surfaces Σn without boundary such that∥∥Å

∥∥
Lp → 0 for every p < 2,

Σn converges to the union of two spheres with different radii.

The key point for proving Theorem 1.1 is the following remark. Let us fix an orthonormal
frame e1, e2 on Σ and denote by Aij the quantities A(ei, ej) and by ∇Aijk the quantities

1
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[∇ei
A] (ej , ek). The Codazzi equations imply that ∇Aijk = ∇Ajik. Hence the symmetry of

A gives that ∇A is a symmetric tensor. In view of this fact, straightforward algebraic com-
putations give that ∇ei

[A11 + A22] can be written as a linear combination of ∇ej
[A11 − A22]

and ∇ej
[A12] plus some error terms of type A(∇ej

ek, el). Moreover, these error terms can

be written as nonlinear expressions involving Å.
If Å were identically 0, then trA would be constant. Roughly speaking, a control on Å

gives some control on the oscillation of tr A = A11 + A22. Thus, if Å is small in a C1 sense,
then Σ would be close to a round sphere. This remark was used in [HY] to give a definition
of center of mass for isolated gravitating systems in General Relativity. If view of our result,
one should be able to weaken the hypotheses under which Huisken–Yau’s construction is
possible.

In our case the difficulties in getting the bound (1) are considerably increased by the weak-
ness of the right hand side of (1) and the nonlinearity of the error terms of type A(∇ej

ek, el).
The outline of our proof is the following.

• First we show that, when
∥∥Å

∥∥
L2 is sufficiently small, Σ is a sphere and there exists a

good parameterization by a conformal map ψ : S2 → Σ. By “good” we mean that,
after a suitable rescaling, the conformal factor h satisfies uniform L∞ and W 1,2 bounds
(independent of Σ). In order to get these bounds, we derive Hardy space estimates on
the Gauss curvature, using some ideas of [MS]. This is accomplished in Section 3.

• We then perform the computations outlined above in the coordinate charts naturally
induced by ψ. The control on ψ is sufficient to get an L1 bound on the nonlinear error
terms. We use this bound and the regularity theory for the Laplacian to prove the
existence of a universal constant C such that

min
λ∈R

‖trA− λ‖L2,∞(Σ) ≤ C
∥∥Å

∥∥
L2(Σ)

, (3)

where L2,∞ is the weak Marcinkiewicz space (see Appendix B for the precise definition).
This estimate is proved in Proposition 4.1.

• In Section 5 we show that the weak estimate (3) can be improved to the desired stronger
estimate (1). This improvement heavily relies on some algebraic computations which
exploit the special structure of the tensor A. The proof uses Hardy space estimates for
skew–symmetric quantities and the duality between the Hardy space H1 and BMO.

• In Section 6 we use (1) and some of the information derived in the previous sections
to prove (2). The main difficulty here is due to the action of the conformal group of
S2. The existence of the map ψ is proved into two steps: in the first one we prove that
there is a conformal parameterization with conformal factor close to 1. In the second
step we use the formalism of moving frames to show that this map ψ is L2 near to a
smooth isometric embedding of the standard sphere.

Acknowledgments We wish to thank Gerhard Huisken for bringing this problem to our
attention and Eberhard Zeidler for suggesting the use of Cartan formalism in Section 6. We
also thank Daniel Faraco for many interesting discussions. Both authors acknowledge partial
support by the EU Network Hyperbolic and kinetic equations HPRN-CT-2002-00282.
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2. Preliminaries

2.1. Notation. Throughout this paper we will use the following notational conventions:

S2 standard sphere
Σ compact connected smooth surface in R3 without boundary
TpΣ, TΣ tangent space in p, tangent bundle
ar(Σ), g(Σ) area of Σ, genus of Σ
Dr(x), ∂Dr(x) distance disk and distance circle of radius r and center x

in a 2d Riemannian manifold
D1, ∂D1 unit disk and unit circle in R2

g, σ Riemannian metric on Σ, standard metric on S2

δij , A, N Kronecker symbol, second fundamental form, Gauss map
tr B, detB, |B|, Id trace of B, determinant, Hilbert–Schmidt norm, identity matrix
κ1, κ2, KG principal curvatures, Gaussian curvature
Deg (Γ,Σ, u) topological degree of the map u : Γ → Σ
Lp, H1(Ω) Lp spaces, Hardy space
∆Σ Laplace operator on the Riemannian manifold Σ

Let ψ : Σ → Γ be an immersion and g a metric on Γ. Then we denote by ψ∗g the metric
on Σ which is the pull back of g via ψ. That is

(ψ∗g)p(v, w) := gψ(p)(dψ(v), dψ(w)) for every v, w ∈ Tp(Σ).

A system of coordinates on an open set U ⊂ Σ can be regarded as a smooth diffeomorphism
ψ : R2 ⊃ Ω → U . Hence, writing the metric in these coordinates is equivalent to calculate
the pull–back metric ψ∗g.

In the rest of this paper we assume that Σ is compact, connected, and without boundary.
Moreover, we assume that ar(Σ) = 4π and we set

δ2 :=

∫
Σ

∣∣Å∣∣2 . (4)

We will make a frequent use of some elementary relations between differential geometric
quantities, in particular the identities∣∣Å∣∣2 = κ2

1 + κ2
2 − 2κ1κ2 = |A|2 − 2detA = |A|2 − 2KG , (5)

combined with Gauss–Bonnet Theorem:∫
Σ

|A|2 =

∫
Σ

∣∣Å∣∣2 + 2

∫
Σ

KG = δ2 + 2

∫
Σ

KG = δ2 + 8π(1 − g(Σ)) . (6)

Remark 2.1. Note that

‖A− Id‖2
L2 ≤ 2

∫
Σ

|A|2 + 2ar(Σ) .

Since g(Σ) ≥ 0, by (6) for every c > 0 there exists C > 0 such that

‖A− Id‖L2(Σ) ≤ C
∥∥Å

∥∥2

L2(Σ)
for every Σ with δ ≥ c.

Thus it suffices to show (1) for δ sufficiently small.
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2.2. Σ is a sphere. In the following lemma we show that, when δ is sufficiently small, Σ
is a sphere. The proof uses well known elementary facts of differential geometry of surfaces.
We report it for the reader’s convenience.

Lemma 2.2. If δ2 = 16π − η < 16π, then Σ is a sphere.

Proof. Note that∫
Σ

|detA| ≤ 1

2

∫
Σ

|A|2 (6)
= 8π − η

2
+ 4π(1 − g(Σ)) < 4π(3 − g(Σ)) . (7)

Hence g(Σ) is either 0, 1, or 2. Let N : Σ → S2 be the Gauss map, which to every point
x ∈ Σ associates the exterior unit normal to Σ in x. Since A = dN , the area formula gives∫

Σ

|detA| =

∫
S2

#N−1({ξ}) dξ . (8)

Note that N is surjective. Indeed let ξ ∈ S2 and consider the largest real number a such
that the set Ex := {x ∈ Σ : x · ξ = a} is not empty. For any y ∈ Ex we have N(x) = ξ.

This implies that #N−1({ξ}) ≥ 1 and hence gives
∫ |detA| ≥ 4π, which thanks to (7)

rules out the possibility g(Σ) = 2. Moreover, if g(Σ) = 1 (i.e. if Σ were a torus), the degree
Deg (Σ,S2, N) would necessarily be 0, which implies #N−1({ξ}) ≥ 2. Hence (8) and (7) rule
out the possibility g(Σ) = 1. This gives g(Σ) = 0 and completes the proof.

3. Existence of a good conformal parameterization

In this section we show that, if δ is sufficiently small, then the surface Σ has a conformal
parameterization which enjoys good bounds.

Definition 3.1. Denote by σ the metric on the standard sphere S2 and by g the standard
metric on Σ as submanifold of R3. If ψ : S2 → Σ is conformal, then h denotes the unique
function h : S2 → R+ with h2σ = ψ∗g.

Proposition 3.2. If δ2 = 8π − η < 8π, then there exists a constant C(η) and a conformal
parameterization ψ : S2 → Σ such that

(C(η))−1 ≤ h ≤ C(η) ‖dh‖L2 ≤ C(η) (9)

A classical theorem (see for example [Mo]) implies the existence of conformal parameteri-
zations ψ : S2 → Σ. However, we cannot hope to have the bounds of Proposition 3.2 for all
such ψ (due to the action of the conformal group). The choice of a good ψ is based on the
following remark (cf. [MS]). If h = eu, then∫

S2

e2u = 4π − ∆S2u = Ke2u − 1 , (10)

where ∆S2 is the Laplace operator on S2 and K(x) = KΣ(ψ(x)). If we can bound the norm
of the right hand side of (10) in the Hardy space H1, then the proposition follows from the
results of Fefferman and Stein [FS] (for the definition of H1 and for a precise statement of
the result of [FS] needed here, see appendix A). Hence it suffices to show the existence of a
constant C(η) and of a conformal ψ such that ‖Ke2u‖H1(S2) ≤ C(η). To derive this estimate
we will use some ideas of [MS] and the following result of [CLMS]:
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Theorem 3.3. Let u ∈ W 1,n(Rn,Rn). Then there exists a constant c (depending only on
n) such that

‖det du‖H1(Rn) ≤ c‖du‖Ln . (11)

As already pointed out, in order to get the estimates (9) we have to mod out the action
of the conformal group of the sphere. This is accomplished in the following

Lemma 3.4. Assume that δ2 = 8π − η < 8π. Let x1, x2, and x3 be standard coordinates in
R3 and set S±

i := {±xi > 0} ∩ S2. Then there exists a conformal ψ : S2 → Σ such that∫
ψ(Sj

i)
|A|2 = 8π − η

2
for all j ∈ {+,−} and every i ∈ {1, 2, 3}. (12)

Proof. Thanks to Lemma 2.2, Σ is a sphere. Hence, equation (6) implies∫
Σ

|A|2 = 16π − η .

Denote by ei the vectors of the standard basis of R3 relative to the system of coordinates
xi. For each i, we denote by Si : S2 → C ∪ {∞} the stereographic projection which maps ei
to the origin and the equator {xi = 0} ∩ S2 onto the unit circle {|z| = 1}. For each r > 0
we define Or : C ∪ {∞} → C ∪ {∞} by Or(z) = rz. For every i ∈ {1, 2, 3} and r > 0, we
denote by F i

r : S2 → S2 the conformal diffeomorphism (Si)−1 ◦ Or ◦ Si.
Choose a conformal parameterization ϕ : S2 → Σ. Note that

lim
t↑∞

∫
ϕ(F 1

t (S
+
1 ))

|A|2 =

∫
Σ

|A|2 and lim
t↓0

∫
ϕ(F 1

t (S
+
1 ))

|A|2 = 0 .

By continuity there exists a t such that∫
ϕ((F 1

t (S+
1 ))

|A|2 =
1

2

∫
Σ

|A|2 = 8π − η

2
. (13)

Define ψ1 := ϕ ◦ F 1
t and again note that for some τ we have∫

ϕ1(F 2
τ (S+

2 ))
|A|2 =

1

2

∫
Σ

|A|2 = 8π − η

2
. (14)

Note that F 2
τ maps S+

1 onto itself. Thus, we have
∫
ϕ1(F 2

τ (S+
1 )) |A|2 = 8π − η/2. A similar

choice of F 3
σ shows that ϕ ◦ F 1

t ◦ F 2
τ ◦ F 3

σ has the desired properties.

Below we adopt the following convention. Let α be a 2–form on Σ, let β be the standard
volume form of Σ, and denote by f the function such that α = fβ. If H is any function
space, then we write ‖α‖H for ‖f‖H. When H = H1, i.e. the first Hardy space, the maximal
function of f will be sometimes called “maximal function of α”.

Proof of Proposition 3.2. Fix ψ as in Lemma 3.4 and let N : Σ → S2 be the Gauss map. Set
N ′ := N ◦ ψ and note that K ′ := Ke2u is the Jacobian determinant of dN ′.

The proof of the H1 estimate is based on some arguments of Section 3 of [MS]. We first
fix some notation. We denote by ω the standard volume form on S2. Then K ′ω is the
pull–back of ω via the map N ′, that is K ′ω = (N ′)∗ω. Moreover, any disk Dρ(x) ⊂ S2 will
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be identified with a disk Dρ′ = Dρ′(0) in the complex plane via the standard stereographic
projection which maps x onto 0.

We will show that there are constants r and C(η) with the following property. For any
x ∈ S2, there exists a map M : C → S2 such that

(i) M = N ′ on Dr′ (≈ Dr(x));
(ii) M is constant on C \ D(2r)′ ;
(iii)

∫
C
M∗ω = 0;

(iv) ‖M∗ω‖W−1,2 + ‖dM‖L2 ≤ C(η).

Step 1 From (i)–(iv) to the H1 bound.
We first prove that the existence of M as above gives an H1 bound for (N ′)∗ω. We make

the usual identification S2 = P 1(C) and denote by π : C2 ⊃ S3 → P 1(C) the Hopf fibration.
Then, Proposition 3.4.3 of [MS] implies that M lifts to a map F : C → S3 ⊂ C2 (that is
M = π ◦ F ) with

‖dF‖L2 = ‖dM‖L2 + ‖M∗ω‖W−1,2 . (15)

Note that the existence of liftings is guaranteed by condition (iii). If F1 and F2 denote the
components of F in a standard basis of C2, then M∗ω = F ∗π∗ω = idF1 ∧ dF 1 + idF2 ∧ dF 2.
Writing Fj as F re

i + iF im
i , it is easy to see that idF1 ∧ dF 1 + idF2 ∧ dF 2 can be written as

linear combination of forms of type df1 ∧ df2, where f1, f2 ∈ W 1,2(C) = W 1,2(R2). Clearly,
df1 ∧ df2 = (detdf)dx1 ∧ dx2, where x1, x2 are standard coordinates in R2. Hence we can
apply Theorem 3.3 to derive

‖M∗ω‖H1 ≤ C‖dF‖L2
(15)
= C‖dM‖L2 + ‖M∗ω‖W−1,2

(iv)

≤ C(η) .

Let g be the maximal function of M∗ω. Then

‖g‖L1(Dr/2(x)) ≤ ‖g‖L1(R2) = ‖M∗ω‖H1 ≤ C(η) . (16)

Let f be the maximal function of (N ′)∗ω. Since dN ′ ∈ L2, clearly det dN ′ ∈ L1 and hence
(N ′)∗ω ∈ L1. By the definition of maximal functions we have

‖f‖L1(Dr/2(x)) ≤ ‖g‖L1(Dr/2(x)) + C‖(N ′)∗ω‖L1 ,

where the constant C depends only on r. Since S2 can be covered with finitely many disks
of radius r/2, we find that ‖(N ′)∗ω‖H1(S2) is bounded by a constant depending on η and r.

Step 2 Construction of M and W−1,2 estimate.
We now come to the proof of the existence of constants r and C(η) which satisfy (i)–(iv)

above. We first construct an intermediate function ζ : C → S2. The constant r is chosen so
small that the disk D2r(x) is contained in one of the half spheres S±

i of Lemma 3.4. Thus∫
D2r(x)

|det dN ′| ≤ 1

2

∫
S±

i

|dN ′|2 = 4π − η

4
. (17)

Using the Fubini–Tonelli Theorem, we can find a ρ ∈ ]r, 2r[ such that∫
∂Dρ(x)

|dN ′|2 ≤ 4π

r
. (18)
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We identify Dρ(x) with Dρ′ ⊂ C (using the stereographic projection, see the discussion
above) and we define ζ : C → S2 by setting:

ζ = N ′ on Dρ′ and ζ(z) = N ′
(
ρ z
|z|

)
on C \ Dρ′ .

Clearly, ζ satisfies (i). We now show that

(iv)’ ‖ζ∗ω‖W−1,2(Dρ′+1)
and ‖dζ‖L2(Dρ′+1)

are bounded by a constant C(η).

The bound on ‖dζ‖L2(Dρ′+1)
is given by the fact that ‖dN ′‖L2(S±

i ) is uniformly bounded and

by the choice (18). We retain

‖dζ‖L2(Dρ′+1)
≤ C(η) . (19)

We now come to the W−1,2 bound. Note that

ar(ζ(C)) ≤
∫
D2r(x)

|det dN ′| ≤ 4π − η

4
.

Thus S2\ζ(C) has area at least η/4. This means that we can find a closed set E ⊂ S2\ζ(C),
with area η/8. Arguing as in the proof of Proposition 3.5.5 of [MS] we can find a 1–form αE
on S2 \ E such that

‖αE‖L∞(S2) ≤ C

ar(E)
and dαE = ω on S2 \ E , (20)

where C is a universal constant. Using αE one finds ζ∗ω = d(ζ∗αE). Let ϕ ∈ W 1,2(Dρ′+1).
Then, since ζ takes values in S2 \ E, we have∫

Dρ′+1

ϕ ζ∗ω =

∫
∂Dρ′+1

ϕζ∗α−
∫
Dρ′+1

dϕ ∧ ζ∗α .

Recall that ζ |∂Dρ′+1
= N ′|∂Dρ′ . Thus, by (20), we get∣∣∣∣∣

∫
∂Dρ′+1

ϕζ∗α

∣∣∣∣∣ ≤ C

ar(E)
‖ϕ‖L2(∂Dρ′+1)

‖dζ‖L2(∂Dρ′+1)

(18)

≤ C(η)‖ϕ‖W 1,2(Dρ′+1)
.

Analogously,∣∣∣∣∣
∫
Dρ′+1

dϕ ∧ ζ∗α
∣∣∣∣∣ ≤ C

ar(E)
‖dϕ‖L2(Dρ′+1)

‖dζ‖L2(Dρ′+1)

(19)

≤ C‖ϕ‖W 1,2(Dρ′+1)
.

This establishes the W−1,2 bound of (iv)’

Step 3 The existence of M .
In this step we modify ζ so to reach (ii) and (iii), while keeping (i) and upgrading (iv)’ to

(iv). Consider the restriction of ζ to Dρ′ and define for every regular value x ∈ S2 its degree
deg(ζ, x). Standard arguments give that deg(ζ, x) is constant on the connected components
of S2 \ ζ(∂Dρ′). Thus, by continuity it can be extended to an integer valued piecewise
constant function on S2 \ ζ(∂Dρ′). Define

U0 := {x ∈ S2| deg(ζ, x) = 0} . (21)
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Then U0 is an open set contained in S2 \ ζ(∂Dρ′). The idea is to choose y ∈ U0 and to take
a retraction of R : [0, 1] × S2 \ {y} → S2 onto the antipodal of y. Then we define M = ζ on
Dρ′ and on Dρ′+1 \ Dρ we put

M(z) = R(ρ′ + 1 − |z|, ζ(z)) .
Since ζ(Dρ′+1 \ Dρ′) = ζ(∂Dρ′), we have U0 ∩ ζ(Dρ′+1 \ Dρ′) = ∅. Thus M is well defined.
From the definition of (21), we clearly have deg(C,S2,M) ≡ 0, and thus M satisfies (iii).
Moreover M |Dρ′ = ζ and M |C\Dρ′+1

is constant; hence, M satisfies (i) and (ii). The only

difficulty is to choose y and the retraction R so to achieve the bounds (iv).
Clearly, U0 contains S2 \ ζ(C) and thus ar(U0) ≥ η. Moreover U0 is an open set bounded

by a subset of the curve γ = ζ(∂D′
ρ) = N ′(∂Dρ(x)), which, in view of (18) has bounded

length. Thanks to Lemma C.1, there exists a δ, depending on ar(U0) and length(γ), such
that U0 contains a ball Dδ(y). Thus δ can be chosen bigger than a constant which depends
only on η.

Fix such a y and such a δ and define a C1 map R : [0, 1]×(S2 \Dδ(y)) → S2 which retracts
on the antipode y of y. This can be done so that ‖R‖C1 depends only on η. Thus

‖M∗ω‖W−1,2(C) ≤ C1(η)‖ζ∗ω‖W−1,2(Dρ′+2(0))

(iv)′

≤ C2(η) .

An analogous estimate holds for ‖dM‖L2 . This gives (iv) and completes the proof.

4. An L2,∞
estimate for (A−H Id)

Proposition 4.1. There exists C > 0 such that, if

ar(Σ) = 4π , and

∫
Σ

∣∣Å∣∣2 ≤ δ2 , (22)

then ∥∥∥∥A−
( ∫

Σ

tr A
2

)
Id

∥∥∥∥
L2,∞(Σ)

≤ Cδ (23)

For the definition and properties of the Marcinkiewicz space L2,∞ we refer to Appendix
B.

Proof. Below we will prove the existence of a universal constant C such that, for for every
Σ with δ2 ≤ 4π, there exist two conformal parameterizations ϕ+, ϕ− : D1 → Σ with the
following properties:

(a) ϕ+(D1) ∪ ϕ−(D1) = Σ;

(b) ar(ϕ+(D1) ∩ ϕ−(D1)) ≥ C−1;

(c) ‖ tr A− λ±‖L2,∞(ϕ±(D1)) ≤ Cδ for some constants λ±.
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We first show how this would give (23). Note that

C−1|λ+ − λ−|
(b)

≤
∫
ϕ+(D1)∩ϕ−(D1)

|λ+ − λ−| ≤
∫
ϕ+(D1)

| tr A− λ+| +
∫
ϕ−(D1)

| tr A− λ−|

≤ C1‖ tr A− λ+‖L2,∞(ϕ+(D1)) + C1‖ tr A− λ−‖L2,∞(ϕ−(D1))

(c)

≤ 2C1Cδ .

Hence |λ+−λ−| ≤ 2C1C
2δ. This means that ‖ tr A−λ+‖L2,∞(Σ) ≤ C2δ, where C2 is another

constant. Let us set 2H :=
∫

Σ
tr A. Then

4π|2H − λ+| ≤
∫

Σ

| tr A− λ+| ≤ C1‖ tr A− λ+‖L2,∞(Σ) ≤ C3δ .

This gives ‖ tr A− 2H‖L2,∞(Ω) ≤ C4δ. Then

‖A−HId‖L2,∞(Ω) ≤
(∫

Σ

∣∣Å∣∣2)1/2

+
√

2
∥∥ tr A

2
−H

∥∥
L2,∞(Ω)

≤ C6δ .

Subsections 4.1 and 4.2 are devoted to prove the existence of ϕ± as above. To explain
the underlying key idea, we have to set some notation. Let ϕ : D1 → Σ be a conformal
parameterization of ϕ(D1). We denote by x1, x2 a system of orthonormal coordinates in
R2. Thus, in these conformal coordinates, the metric of Σ is given by h2δij . We denote by
ei ∈ TΣ the unit vectors 1

h
∂
∂xi

and we set Aij := A(ei, ej).
Set f := tr A, fd := A11 − A22, and fm := 2A12. In Subsection 4.1 we use Codazzi–

Mainardi equations to control ∇f in terms of fm, fd, ∇fm, and ∇fd (here, if w : Σ → R,
then ∇w denotes the gradient of g in the Riemannian manifold Σ; that is, for any vector
field X : Σ → TΣ, we have g(∇w,X) = dw(X)).

Potentially this control will depend in a rather subtle way on the conformal parameteri-
zation ϕ. This is not a surprise, since the functions fd and fm depend on ϕ (whereas tr A
depends only on the immersion of Σ in R3). In Subsection 4.2 we use the results of Section
2 in order to choose ϕ± which satisfy (a) and (b) and enjoy good bounds. We then show
that these bounds and the relation derived in Subsection 4.1 are sufficient to prove (c).

4.1. Key calculation. Let ϕ, ei, Aij , f , fd and fm be as above. When w is a function,
Dei

w denotes the Lie derivative of w with respect to ei, whereas we will use the notations
∂xi
w and wi for ∂

∂xi
[w ◦ ϕ] = D ∂

∂xi

w = hDei
w.

If X is a vector field on Σ, then we denote by ∇ei
X the covariant derivative of X with

respect to ei. For every (2, 0)–tensor B on Σ, ∇B denotes the usual (3, 0)–tensor given by

∇B(X, Y, Z) := DX(B(Y, Z)) − B (∇XY, Z) −B (Y,∇XZ) .

We set ∇Bijk = ∇B(ei, ej , ek) and recall Codazzi–Mainardi equations:

∇Aijk = ∇Ajik . (24)

To compute ∇f , recall that ∇f = (De1f) e1 + (De2f) e2. Straightforward calculations give

De1f = De1(A11 + A22) = ∇A111 + ∇A122 + 2A(∇e1e1, e1) + 2A(∇e1e2, e2)
De1fd = De1(A11 − A22) = ∇A111 −∇A122 + 2A(∇e1e1, e1) − 2A(∇e1e2, e2)
De2fm = 2De2A12 = 2∇A212 + 2A(∇e2e1, e2) + 2A(e1,∇e2e2)
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Thus De1f = De1fd +De2fm + 2R̃1, where

R̃1 = A(∇e1e1, e1) + A(∇e1e2, e2) −A(∇e2e1, e2) − A(e1,∇e2e2) . (25)

Recall that hDe1h = D ∂
∂xi

h = hi. Straightforward computations give:

∇e1e1 = −h2

h2
e2 ∇e2e1 =

h1

h2
e2 ∇e1e2 =

h2

h2
e1 ∇e2e2 = −h1

h2
e1 . (26)

Plugging these relations into (25) we get

R̃1 := −2h2

h2
A12 +

h1

h2
(A22 −A11) = −h2

h2
fm − h1

h2
fd . (27)

A similar computation for De2f yields De2f = −De2fd +De1fm + 2R̃2, where R̃2 is given by
an expression similar to the one of (27). Recall that hi = D ∂

∂xi

f = ∂xi
f . Hence{

∂x1f = ∂x1fd + ∂x2fm + 2hR̃1

∂x2f = −∂x2fd + ∂x1fm + 2hR̃2 .
(28)

Denote by R the vector

R := (R1, R2) := (2hR̃1, 2hR̃2) , (29)

by divER the “Euclidean” divergence ∂x1R1 + ∂x2R2 and by ∆Ef the “Euclidean laplacian”
∂2
x1
f + ∂2

x2
f . Then

∆Ef = ∂2
x1
fd − ∂2

x2
fd + 2∂x1∂x2fm + divER . (30)

4.2. Choice of ϕ±. Thanks to Lemma 2.2 and Proposition 3.2, Σ is a sphere and there
exist a universal constant C and a conformal parameterization ψ : S2 → Σ such that

ψ∗g = h
2
σ C−1 ≤ h ≤ C ‖dh‖L2 ≤ C . (31)

Clearly, there exist a universal constant C1 and two conformal parameterizations ϕ1, ϕ2 :
R2 → S2 such that

(a’) ϕ1(D1) ∪ ϕ2(D1) = S2;

(b’) ar(ϕ1(D1) ∩ ϕ2(D1)) ≥ 1;

(c’) ‖ϕi‖C0(K) + ‖ϕi‖C1(K) + ‖ϕi‖C2(K) ≤ C1(K) for every compact set K.

Let us define ϕ+ := ψ ◦ ϕ1 and ϕ− := ψ ◦ ϕ2. Clearly, ϕ± are conformal and for some
universal constant C, they satisfy (a) and (b). It remains to show (c). Without loss of
generality we show it for ϕ = ϕ+. We fix a system of orthonormal coordinates x1, x2 in
R2 ⊃ D1 and we adopt the notation of Subsection 4.1. Thus, in this system of conformal
coordinates, the metric g on Σ is given by h2δij . Set f := tr A as in Subsection 4.1.

Our goal is to bound ‖f −λ‖L2,∞(ϕ(D1)) for some λ ∈ R. Since the conformal factor enjoys
L∞ estimates from above and from below, this is equivalent to show that ‖f − λ‖L2,∞(D1) ≤
Cδ. Thus, from now on we work in the Euclidean disk D1: in order to achieve our estimate
we use equation (30).
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First estimate Let us denote by ŵ the Fourier transform of w and by w̌ the inverse
Fourier transform. Moreover let ξ be the frequency variables. Recall that since ϕ : R2 → S2,
the functions f , fm and fd are defined everywhere on R2. Let ζ be a smooth cut–off function
supported on D3/2 and such that ϕ = 1 on D1. Define f ′ as

f1 :=
(ξ2

1 − ξ2
2)

|ξ|2 ζ̂fd + 2
ξ1ξ2
|ξ|2 ζ̂fm f ′ := f̌1 .

By Plancherel theorem, there exists a constant C (which depends on the cut–off function ϕ)
such that

‖f ′‖L2 ≤ C
(‖fd‖L2(D2) + ‖fm‖L2(D2)

) ≤ C1δ .

Moreover, on the set D3/2 we have

∆Ef
′ = ∂2

x1
fd − ∂2

x2
fd + 2∂x1∂x2fm . (32)

Second estimate Let K(x) = 1
2π

log(|x|) be the fundamental solution of the Laplacian
in R2 and set f ′′ = K ∗ divE R. Thus f ′′ = (∂x1K) ∗R1 + (∂x2K) ∗R2. Recall the definition
of R in (29). By (27) we have

R1 = −h2

h
fm − h1

h
fd .

Hence, the estimate (31) gives that ‖R1‖L1 ≤ Cδ. An analogous estimate holds for R2. The
locality of convolution, Lemma B.1 and Lemma B.2 give that ‖f ′′‖L2,∞(D2) ≤ Cδ. Moreover,

∆Ef
′′ = divR . (33)

Third estimate Let α := f−f ′′−f ′. Then, thanks to (30), (32), and (33), α is harmonic
on D3/2. Moreover, the relations (28) give{

∂x1α = ∂x1fd + ∂x2fm +R1 − ∂x1(f
′ + f ′′)

∂x2α = −∂x2fd + ∂x1fm +R2 − ∂x2(f
′ + f ′′) .

Let ||| · |||D3/2
be a norm which is controlled by both the L1(D3/2) norm and the W−1,2

0 (D3/2)

norm. Then, the various estimates give that |||∇α|||D3/2
≤ Cδ. Since α is harmonic and

D1 ⊂⊂ D3/2, there is a universal constant C1 such that ‖∇α‖L∞ ≤ C1δ. Thus, for some λ > 0
and for some universal constant C2, we have ‖α − λ‖L∞(D1) ≤ C2δ. Since f = f ′ + f ′′ + α,
we get

‖f − λ‖L2,∞(D1) ≤ C3‖f ′‖L2(D1) + C4‖f ′′‖L2,∞(D1) + C5‖α− λ‖L∞(D1) ≤ C6δ . (34)

5. Proof of the L2
estimate for A− Id

In the previous section we have achieved the following: If we define 2H :=
∫

Σ
tr A, then

‖A−HId‖L2,∞ ≤ Cδ. The goal of this section is to use this information to prove∫
Σ

|A− Id|2 ≤ Cδ2 . (35)
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In order to do this we will show that |1 −H
2| ≤ Cδ2. This is sufficient to get (35). Indeed

| tr A− 2H|2 = κ2
1 + κ2

2 + 4H
2
+ 2κ1κ2 − 4Hκ1 − 4Hκ2

= |κ1 − κ2|2 + 4H
2 − 4H tr A+ 4detA . (36)

Integrating (36) and taking into account
∫

Σ
detA = 4π = ar(Σ) and

∫
Σ

tr A = 2Har(Σ), we
have ∫

Σ

| tr A− 2HId|2 =
1

2

∫
Σ

∣∣Å∣∣2 + 16π(1 −H
2
) .

Thus, |1 − H
2| ≤ Cδ2 would imply

∫
Σ
|A − HId|2 ≤ Cδ2. Moreover, for δ small enough,

|1 −H
2| ≤ Cδ2 implies (1 −H)2 ≤ Cδ2. Easy calculations give

|A− Id|2 ≤ 2|A−HId|2 + 2(1 −H)2,

which would give (35).
For later purposes, we collect the inequality

‖A−HId‖2
L2 ≤ Cδ2 + C1|1 −H

2| , (37)

which is a direct consequence of the computations above. Moreover, we will make use of the
following generalization of Wente’s estimate:

Lemma 5.1. Let f, g, h ∈ C∞(S2). Then there exists a universal constant C such that∫
S2

hdg ∧ df ≤ C‖dh‖L2,∞‖dg‖L2‖df‖L2 . (38)

Proof. In local charts, thanks to Theorem 3.3, we have the H1 estimate

‖dg ∧ df‖H1(D1) ≤ C‖dg‖L2(D1)‖df‖L2(D1)

in the Euclidean disk D1. A finite covering of S2 with smooth coordinate patches yields

‖dg ∧ df‖H1(S2) ≤ C‖dg‖L2(S2)‖df‖L2(S2)

The duality between Hardy and BMO (see Theorem A.6 and Corollary A.7) gives∫
S2

hdg ∧ df ≤ C|h|BMO‖dg‖L2‖df‖L2 . (39)

Thanks to Lemma B.3 we have |h|BMO ≤ C‖dh‖L2,∞.

5.1. Setting. Using the Gauss–Bonnet formula and the fact that 8πH =
∫

Σ
tr A we get

that

4π(1 −H
2
) =

∫
Σ

detA−H

∫
Σ

tr A +H
2
∫

Σ

1 . (40)

We denote by N : Σ → S2 ⊂ R3 the Gauss map. Fix a conformal map ψ : S2 → Σ ⊂ R3

satisfying the requirements of Proposition 3.2 and a conformal map ϕ : R2 ⊃ D1 → S2.
Denote by

• Ψ : D1 → Σ ⊂ R3 the conformal map ψ ◦ ϕ;
• h̃2 and h2 the conformal factors of Ψ and ψ;
• M and N ′ the maps N ◦ Ψ and N ◦ ψ.



NEARLY UMBILICAL SURFACES 13

Fix an orthonormal system of coordinates y1, y2, y3 on R3 and an orthonormal system x1, x2

on D1. If a and b are two vectors of R3, then a ∧ b denotes the vector of R3 which is the
standard wedge product of a and b.

5.2. Algebraic computations. As a first step we give give some formulas for h̃2, h̃2(detdN)◦
Ψ and h̃2(tr dN) ◦ Ψ.

First Computation Since Ψ is conformal, we have

det dΨ = |Ψ,x1 ∧ Ψ,x2| , (41)

where Ψ,xi
denotes the map ∂Ψ

∂xi
: D1 → R3. In equation (41) we make a slight abuse of

notation. Indeed

• On the left hand side, we consider Ψ as a map taking values on Σ. Thus det dΨ has
the usual meaning, since dΨp is a linear map from TpR

2 → TΨ(p)Σ.
• On the right hand side, we consider Ψ as a map taking values on R3.

We now fix the convention on the wedge product of vectors of R3 in such a way that

M · Ψ,x1 ∧ Ψ,x2 = |Ψ,x1 ∧ Ψ,x2| . (42)

Hence we can write

h̃2 = M · Ψ,x1 ∧ Ψ,x2 . (43)

Second Computation The normal M is perpendicular to bothM,x1 andM,x2 . Moreover,
the orientation convention which yields (42) gives

det dM := M ·M,x1 ∧M,x2 . (44)

Similarly to (41), equation (44) must be understood in the following way:

• On the left hand side, we consider M as a map taking values on S2. Thus det dM has
the usual meaning;

• On the right hand side, we consider M as a map taking values on R3.

The discussion above gives the equality

h̃2(det dN) ◦ Ψ = det dM = M ·M,x1 ∧M,x2 . (45)

Third Computation Note that M,xi
= [dN ◦Ψ](Ψ,xi

). Thus, thanks to the conformality
of Ψ, we have

(tr dN) ◦ Ψ =

[
dN ◦ Ψ

(
Ψ,x1

|Ψ,x1|
)]

· Ψ,x1

|Ψ,x1|
+

[
dN ◦ Ψ

(
Ψ,x2

|Ψ,x2|
)]

· Ψ,x2

|Ψ,x2|
=

1

h
2 [M,x1 · Ψ,x1 +M,x2 · Ψ,x2] .

Since Ψ is conformal we have

M,x1 · Ψ,x1 = M,x1 · (Ψ,x2 ∧M) = M ·M,x1 ∧ Ψ,x2 .

Thus, we get

h̃2(tr dN) ◦ Ψ = (M ·M,x1 ∧ Ψ,x2 +M · Ψ,x1 ∧M,x2) . (46)
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Combining (43), (45), and (46) we get∫
Ψ(D1)

(
detA−H tr A+H

2
)
ζ =

∫
D1

h̃2
(
(det dN) ◦ Ψ −H(tr dN) ◦ Ψ +H

2
)
ζ ◦ Ψ

=

∫
D1

(
M · (M −HΨ),x1 ∧ (M −HΨ),x2

)
ζ ◦ Ψ , (47)

for every ζ ∈ C∞
c (Ψ(D1)).

5.3. Skew–symmetric quantities. Let f, g : D1 → R3 be two vector–valued maps. De-
note by fi, gi, i ∈ {1, 2, 3} the components of f and g in a system of orthonormal coordinates
of R3. Then, straightforward computations give the following identity:

f · g,x1 ∧ g,x2 =
3∑

i,j,k=1

εijkfidgj ∧ dgk . (48)

where εijk is the totally antisymmetric tensor given by

εijk =

⎧⎨⎩ 1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 otherwise .

Thus, equations (47) and (48) give∫
Ψ(D1)

(
detA−H tr A +H

2
)
ζ

=

3∑
i,j,k=1

εijk

∫
D1

(
Mi d [(M −HΨ)j ] ∧ d [(M −HΨ)k]

)
ζ ◦ Ψ , (49)

for every ζ ∈ C∞
c (Ψ(D1)). Since ϕ : D1 → ϕ(D1) ⊂ S2 is a diffeomorphism, we can use ϕ−1

to pull back the forms on the right hand side of (49) on ϕ(D1). Recalling that N ′ = M ◦ϕ−1

and ψ = Ψ ◦ ϕ−1, we get∫
ψ(ϕ(D1))

(
detA−H tr A+H

2
)
ζ

=

3∑
i,j,k=1

εijk

∫
ϕ(D1)

(
N ′
i d [(N ′ −Hψ)j] ∧ d [(N ′ −Hψ)k]

)
ζ ◦ ψ . (50)

Hence, thanks to the arbitrariness of the conformal map ϕ, the previous equation gives that,
for every ζ ∈ C∞(S2) which is supported in a set of diameter strictly less than 4π, we have∫

ψ(S2)

(
detA−H tr A+H

2
)
ζ ◦ ψ−1

=
3∑

i,j,k=1

εijk

∫
S2

(
N ′
i d [(N ′ −Hψ)j ] ∧ d [(N ′ −Hψ)k]

)
ζ . (51)
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A partition of unity on S2 gives∫
Σ

(
detA−H tr A+H

2
)

=
3∑

i,j,k=1

εijk

∫
S2

N ′
i d [(N ′ −Hψ)j ] ∧ d [(N ′ −Hψ)k] . (52)

Integrating by parts we can write∫
S2

N ′
i d [(N ′ −Hψ)j ] ∧ d [(N ′ −Hψ)k] =

∫
S2

−(N ′ −Hψ)j dN
′
i ∧ d [(N ′ −Hψ)k] .

5.4. Final estimates. Thanks to Lemma 5.1 we have∣∣∣∣∫
S2

[(N ′ −Hψ)j] dN
′
i ∧ d [(N ′ −Hψ)k]

∣∣∣∣ ≤ ‖N ′ −Hψ‖L2,∞‖dN ′‖L2‖d(N ′ −Hψ)‖L2 . (53)

Thus we conclude that∣∣∣∣∫
Σ

(detA−H tr A+H
2
)

∣∣∣∣ ≤ C‖dN ′‖L2(S2)‖d(N ′ −Hψ)‖L2(S2)‖d(N ′ −Hψ)‖L2,∞(S2) ,

(54)

for some universal constant C. Since ψ is conformal and satisfies the bounds given by
Proposition 3.2, we have that there exist universal constants C1, C2 such that

‖dN ′‖L2(S2) ≤ C1‖dN‖L2(Σ) ≤ C2

‖d(N ′ −Hψ)‖L2(S2) ≤ C1‖dN −HId‖L2(Σ)

‖d(N ′ −Hψ)‖L2,∞(S2) ≤ C1‖dN −HId‖L2,∞(Σ) ≤ C2δ .

Thus, taking into account (40) and (54) we get

|1 −H
2| ≤ C3δ‖A−HId‖L2(Σ) . (55)

Recalling (37) we conclude

‖A−HId‖2
L2(Σ) ≤ Cδ2 + C4δ‖A−HId‖L2(Σ) ,

which, by Young’s inequality, yields

‖A−HId‖2
L2(Σ) ≤ Cδ2 +

C2
4δ

2

2
+

‖A−HId‖2
L2(Σ)

2
.

Hence,

‖A−HId‖2
L2(Σ) ≤ C5δ

2

and plugging this into (55) we get |1 −H
2| ≤ C6δ

2, which completes the proof.



16 CAMILLO DE LELLIS, STEFAN MÜLLER

6. Σ is W 2,2
close to a round sphere

To complete the proof of Theorem 1.1 it remains to show the estimate (2), under the

assumption that
∥∥Å

∥∥2

L2 < 8π. The difficulties in getting a conformal ψ satisfying (2) are
considerably increased by the action of the conformal group of the sphere. In order to choose
ψ, as a first step we impose the normalization conditions of Lemma 3.4 and we show that
these conditions imply that the conformal factor of ψ is close to 1 (see Subsection 6.1). In a
second step, we prove that this, together with the bound on ‖A − Id‖L2(Dρ) implies that ψ
is close to a smooth isometric embedding of S2 (see Subsections 6.2, 6.3).

6.1. The conformal factor of ψ is close to 1. Fix ψ as in Lemma 3.4 and Proposition
3.2 and denote by h = eu its conformal factor. The goal of this subsection is to show the
existence of a universal constant C such that

‖eu − 1‖W 1,2 + ‖u‖W 1,2 ≤ Cδ . (56)

To do so we first show that for δ ↓ 0, the map ψ must converge to a conformal map, in fact
a rigid motion in view of the normalizations. Then we use a linearization of the equation
−∆S2u = Ke2u − 1 to get the optimal estimate on δ.

First we gather all the information acquired in the previous sections (see (57) and Propo-
sition 3.2):

u satisfies −∆S2 = Ke2u − 1 and
∫
e2u = 1 (57)

‖u‖L∞ + ‖u‖W 1,2 ≤ C for some universal constant C (58)

Let S±
i be as in Lemma 3.4. Then

∫
S±

i

|A|2e2u = 4π + δ2/2 . (59)∫
S2

|A− Id|2e2u ≤ Cδ2 (60)

Step 1 We begin by proving the following statement

Fix p <∞ and η > 0. If δ > 0 is sufficiently small, then ‖e2u − 1‖Lp + ‖u‖Lp ≤ η. (61)

Since e2v is a locally Lipschitz function, thanks to (58) there exists a constant C, independent
of u, such that ∣∣e2u − 1

∣∣ ≤ C|u| . (62)

Thus we have ‖e2u − 1‖Lp ≤ C‖u‖Lp. Assume, by contradiction, that (61) is false. Then
there exist η > 0 and sequences δn ↓ 0, {un} ⊂ C∞(S2) such that

• (57), (58), (59), and (60) hold (with un and δn in place of u and δ);
• ‖un − 1‖Lp ≥ η > 0.

Thanks to these assumptions, ∆S2un is a bounded sequence in L1. Let D(∆) be the set of
functions f ∈ L1(S2) with 0 average. Recall that ∆−1

S2 : D(∆) →W 1,q is a compact operator
for every q < 2. Thus a subsequence of un, not relabeled, converges strongly in W 1,q to
some u∞. Equations (60) and (59) give that Kn− 1 converges to 0 strongly in L1. Since e2u

is bounded and converges strongly in Lq to 1, by the dominated convergence Theorem we
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conclude that Ke2u converges strongly in L1 to 1. Passing to the limit in (57), (58), (59),
and (60) we get

−∆S2u∞ = e2u∞ − 1

∫
S±

i

e2u∞ = 2π .

The first identity implies that eu∞ is the conformal factor of a map ψ∞ : S2 → S2. The
second identity implies that u∞ = 0. Hence un → 0 in W 1,q for every q < 2. Since un is
bounded, we get that un → 0 strongly in every Lp. This gives a contradiction.

Step 2 Let S be the space of functions v such that

−∆S2v = e2v − 1

∫
S2

e2v = 4π .

As noticed above, S is given by the logarithms of conformal factors of elements of the
conformal group of the sphere. Hence, S is a finite dimensional submanifold of C∞(S2). Let
C > 0 and set SC := S ∩ {v : ‖v‖L∞ ≤ C}. We now show that:

If δ is sufficiently small, there exists v ∈ SC with

∫
S2

(u− v)
(
e2u − e2v

)
= 0 . (63)

To see this define the map

Φ : SC � v →
∫

S2

v
(
e2v − 1

)
.

It is easy to see that Φ(SC) contains an interval [−ε, ε] and that Φ is continuous. Note that∫
(u− v)

(
e2u − e2v

)
= Φ(v) +

∫
S2

u
(
e2u − e2v

)
+

∫
S2

v
(
1 − e2u

)
. (64)

Thanks to (61), we have, for δ is sufficiently small,∣∣∣∣∫
S2

u
(
e2u − e2v

)
+

∫
S2

v
(
1 − e2u

)∣∣∣∣ < ε .

Hence there exists v ∈ SC such that the right hand side of (64) vanishes.

Step 3 We now show that for v as in (63), we have ‖d(u− v)‖L2 ≤ Cδ. Note that

−∆S2(u− v) =
(
e2u − e2v

)
+ (detA− 1)e2u .

Multiplying by u− v, integrating by parts and using (63) we get

‖d(u− v)‖L2 =

∫
S2

|∇S2(u− v)|2 =

∫
S2

(u− v)(detA− 1)e2u

=

∫
Σ

(u− v)(detA− 1) . (65)

Recall that ar(Σ) = 4π. Thus by the Gauss–Bonnet formula
∫

Σ
(detA − 1) = 0. Hence, if

we denote by a the average of u− v on Σ, we get∫
Σ

(u− v)(detA− 1) =

∫
Σ

(u− v − a)(detA− 1)
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Recall that detA− 1 = det(A− Id) + (trA− 2). Moreover:∣∣∣∣∫
Σ

(u− v − a)det (A− Id)

∣∣∣∣ ≤ (2‖u‖L∞ + 2‖v‖L∞)‖det (A− Id)‖L1

≤ C‖A− Id‖2
L2 ≤ Cδ2 , (66)

whereas∣∣∣∣∫
Σ

(u− v − a)(trA− 2)

∣∣∣∣ ≤ ‖u− v − a‖L2‖A− Id‖L2 ≤ Cδ‖d(u− v)‖L2

≤ C2

2
δ2 +

‖d(u− v)‖2
L2

2
. (67)

Thus, plugging (66) and (67) into (65) we get

‖d(u− v)‖2
L2 ≤ Cδ2 +

‖d(u− v)‖2
L2

2
,

which yields the desired estimate.

Step 4 Conclusion.
By the Poincaré inequality, ‖d(u − v)‖L2 ≤ Cδ yields ‖u − v − a‖L2 ≤ Cδ for some

a ∈ R. Thus, from the uniform bounds on ‖v‖L∞ ≤ C and ‖u‖L∞ and from (62) we get∣∣∫
S2

∫
e2(u−a) − ∫

S2 e
2v

∣∣ ≤ Cδ. Recall that
∫
e2u =

∫
e2v = 4π. Thus we get |e−a − 1| ≤ Cδ,

which implies |a| ≤ Cδ. Thus ‖u−v‖L2 ≤ Cδ. Again, by the uniform bounds on ‖v‖L∞ ≤ C
and ‖u‖L∞ and from (62), we get∣∣∣∣∣2π −

∫
Si

j

e2v

∣∣∣∣∣ =

∣∣∣∣∣
∫

Si
j

e2u −
∫
Si

j

e2v

∣∣∣∣∣ ≤ Cδ . (68)

Recall that the only v ∈ S such that
∫
Si

j
e2v = 2π is the trivial solution v ≡ 0. Since S is

a finite dimensional manifold contained in C∞, the inequality (68) implies ‖v‖C2 ≤ C ′δ, for
some universal constant C ′. This gives ‖u‖W 1,2 ≤ C ′δ. Recalling (62) we get (56).

6.2. Cartan Formalism. Let Dρ be a disk of S2 and let (e1, e2) be an orthonormal frame on
Dρ. We assume that this orthonormal frame is generated by a conformal map ϕ : Dr → Dρ

via the relations ei = ∂xi
ϕ/|∂xi

ϕ|. Moreover, we assume that ‖ϕ‖C1 is bounded by a universal
constant (which is certainly possible if, for instance, ρ ≤ π). We define

Φ : S2 → (e1, e2, e1 ∧ e2) ∈ SO(3) . (69)

Ψ : S2 →
(
e−udψ(e1) , e

−udψ(e2) , e
−2udψ(e1) ∧ dψ(e2)

)
∈ SO(3) . (70)

Note that e−2udψ(e1) ∧ dψ(e2) = N ◦ Ψ. Hereby we fix a system of coordinates in R3 and
we regard the elements of SO(3) as matrices: Thus, according to definition (69), for x ∈ S2,
Φ(x) is the matrix which has e1(x), e2(x), and e1(x)∧e2(x) as row vectors. We endow SO(3)
with the operator norm and we denote by B ·F and by B−1 respectively the matrix product
of B and F and the inverse of B.

We want to show that there exist constants ρ > 0 and C > 0 such that

min
R∈SO(3)

‖Φ −R · Ψ‖L2(Dρ) ≤ Cδ . (71)
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Note that the left hand side of (71) is actually independent of the choice of the frame. Thus,
though the estimate is derived for the particular frame of TDρ chosen above, we conclude:

• Let (e1, e2) be any orthonormal frame and Φ, Ψ as in (69), (70). Then (71) holds.

An easy covering argument yields a constant C ′ such that, for some R ∈ SO(3):

For every V and for every frame (e1, e2) on TV , we have ‖Φ − Ψ · R‖L2(V ) ≤ C ′δ (72)

One basic property of moving frames (see for instance vol. 3 of [Sp]) is the existence of
unique 1–forms with values in skew–symmetric matrices U and W such that

dΦ = Φ · U
dΨ = Ψ ·W .

Alternatively, U and W can be regarded as matrices of 1–forms on S2. We define the norm
of |Ux| (for x ∈ Dρ) as

|Ux| := sup
v∈TxS2,|v|=1

|Ux(v)| ,

where |Ux(v)| is the operator norm of the matrix Ux(v) ∈ M3×3.
We now come to the proof of (71). Consider Λ := Φ · Ψ−1 and compute

dΛ = dΦ · Ψ−1 − Ψ−1 · dΨ · Ψ−1 · Φ
= Φ · U · Ψ−1 − Φ · Ψ−1 · Ψ ·W · Ψ−1 = Φ · (U −W ) · Ψ−1 .

The following Lemma is a standard Poincaré inequality (for the reader’s convenience we
report its proof in Appendix D):

Lemma 6.1. There exists a universal constant C such that for some R ∈ SO(3) we have

‖Λ − R‖L2(Dρ) ≤ Cρ‖dΛ‖L2(Dρ) .

Thus, since ρ ≤ π, there is a constant C such that

‖Λ −R‖L2(Dρ) ≤ C‖U −W‖L2(Dρ) .

To complete the proof of (71) it is sufficient to show that there is a universal constant C
such that

‖U −W‖L2(Dρ) ≤ Cδ . (73)

Let θ1, θ2 the basis of the cotangent space T ∗M which is dual to (e1, e2). Moreover, recall
that

• ev is the conformal factor of ϕ : Dr → Dρ;
• x1, x2 is an orthonormal basis for Dr;
• ei = ∂xi

ϕ/|∂xi
ϕ| = e−v∂xi

ϕ.

Since the second fundamental form of the sphere is the identity, we have (see e.g. page 97
of Volume III of [Sp])

−W31 = W13 = A
(
e−udψ(e1), e

−udψ(e1)
)
θ1 +A

(
e−udψ(e1), e

−udψ(e2)
)
θ2

−W32 = W23 = A
(
e−udψ(e1), e

−udψ(e2)
)
θ1 +A

(
e−udψ(e2), e

−udψ(e2)
)
θ2

−U31 = U13 = θ1
−U32 = U23 = θ2 .
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Since ‖A− Id‖L2 ≤ Cδ, the previous equations give ‖Wi3 −Ui3‖ ≤ Cδ. Thus it only remains
to show that ‖U12 −W12‖ ≤ Cδ. Recall that

W12(ej) = g
(∇Σ

e−udψ(ej)
(e−udψ(e2)), e

−udψ(e1)
)

U12(ej) = θ1
(∇S2

ej
e2

)
,

where g is the Riemannian metric on Σ. Thus

U12 = e−v
{[
∂x2v

]
θ1 −

[
∂x1v

]
θ2

}
W12 = e−u◦ϕ−v

{[
∂x2

(
v + u ◦ ϕ)]

θ1 −
[
∂x1(v + u ◦ ϕ)]

θ2

}
Recall that ‖ϕ‖C1 is bounded by a universal constant and that ‖e−u− 1‖L2 + ‖u‖W 1,2 ≤ Cδ.
Hence we conclude that

‖U12 −W12‖L2(Dρ) ≤ Cδ .

6.3. Conclusion. Let us compose ψ with the inverse of the rotation R appearing in (72).
By abuse of notation, we denote this map by ψ as well. Then the previous subsection shows
the existence of constants C and ρ such that:

• For every disk D of radius ρ in S2 there exists a conformal map ϕ such that ‖ϕ‖C2 ≤ C
and, if we define ei := ∂xi

ϕ/|∂xi
ϕ| and Φ, Ψ as in (69), (70), then:

dΨ = Ψ ·W dΦ = Φ · U
‖Ψ − Φ‖L2(D) ≤ Cδ (74)

‖U −W‖L2(D) ≤ Cδ

Hence, we easily get that

‖dΨ − dΦ‖L2(D) ≤ ‖Ψ · (U −W )‖L2(Dρ) + ‖(Φ − Ψ) · U‖L2(Dρ) ≤ Cδ , (75)

where we have also used the fact that ‖U‖L∞ depends on ‖ϕ‖C1, which is bounded by a
uniform constant (recall the choice of ϕ). Denote by id : S2 → R3 the standard embedding
of the round sphere in the Euclidean space. Note that (74) gives that ‖dψ−d(id)‖L2(D) ≤ Cδ.
Thus (since ρ is a fixed constant), by an easy covering argument we get ‖dψ−d(id)‖L2(S2) ≤
C1δ for some universal constant C1. By the Poincaré inequality, there is a vector cΣ ∈ R3

such that

‖ψ − (cΣ + id)‖W 1,2(S2) ≤ C2δ .

It is not difficult to see that (75) and (74) give an estimate on the second derivatives of
ψ − (cΣ + id), yielding the desired bound

‖ψ − (cΣ + id)‖W 2,2(S2) ≤ C3δ .

Indeed fix a system coordinates on R3 and call ψk, idk the components of ψ, id. Since ‖ϕ‖C2

is bounded by a universal constant, it is sufficient to check∥∥∥∂2
xixj

(ψk − idk)
∥∥∥
L2(D)

≤ C4δ . (76)

Note that

∂xj
ψk =

∣∣∂xj
ϕ
∣∣ [
dψ(ej)

]
k

= hΨjk
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where Ψjk denotes the jk entry of the matrix Ψ and h is the conformal factor of ϕ. Thus,

∂2
xixj

ψk =
(
h ∂xi

h
)
Ψjk + h2 dΨjk(ei) .

Analogously

∂2
xixj

idk =
(
h ∂xi

h
)
Φjk + h2 dΦjk(ei) .

Hence, thanks to the uniform bounds on ‖h‖L∞ and ‖∂xj
h‖L∞, the estimates (75) and (74)

give (76).

7. Optimality

In this section we prove the optimality of Theorem 1.1.

Proposition 7.1. There exists a family of smooth connected compact surfaces Σr ⊂ R3

without boundary such that:

C ≥ ar(Σr) ≥ c > 0 for every r (77)

lim
r↓0

∫
Σr

∣∣Å∣∣p = 0 for every p < 2 (78)

Σr converges, in the Hausdorff topology, to the union of two round spheres (79)

lim
r↓0

(
inf
λ

∫
Σr

|A− λId|p
)

> 0 . (80)

Proof. The idea of the construction is the following. Let us take two round spheres Σ1 and
Σ2 of radii 1 and 1/2. Then we can glue them with a small hyperbolic neck Γ so that the
integral

∫
Γ
|A|p is as small as we want. We now give the details of this construction. The

estimate of the quantity
∫

Γ
|A|p will be simplified by using catenoid necks.

Detailed construction. Consider the family of curves {γr} known as catenaries, i.e. the
graphs of the functions fr : R → R given by

fr(x) := r cosh
(x
r

)
.

The surface generated by a revolution of γr around the x–axis is called a catenoid and will
be denoted by Γr. It is well known that catenoids are minimal surfaces (see for instance page
202 of [DC]). Thus trA = κ1 + κ2 = 0 everywhere on Γr.

Let x, y, z be a system of coordinates in R3 and assume that the catenoid Γr is given by
|(x, y)| = r cosh

(
z
r

)
. For every r > 0 we take:

• A round sphere of radius 1/2 centered in a point (0, 0, z1) with z1 > 0 and tangent to
Γr in a circle γ1

r .
• A round sphere of radius 1 centered in a point (0, 0, z2) with z2 < 0 and tangent to Γr

in a circle γ2
r .

Consider the closed surface Σr which is made of:

• The part of the sphere Σ1 lying above γ1 (which we denote by S2
r );

• The part of the sphere Σ2 lying below γ2 (which we denote by S1
r );

• The portion of catenoid lying between γ1 and γ2 (which we denote by Tr).



22 CAMILLO DE LELLIS, STEFAN MÜLLER

Σ2

Γr Σr
Tr

Σ1 S1
r

S2
r

Figure 1. Construction of the surface Σr

See Fig. 1 below.
Step 1 Behavior of Σr for r ↓ 0.
The circles γir are given by

Γr ∩ {z = zi(r)}
and straightforward computations give that

z1(r) is the unique positive solution of cosh

(
z1(r)

r

)
=

1√
2r

z2(r) is the unique negative solution of cosh

(
z2(r)

r

)
=

1√
r
.

Hence zi(r) ↓ 0 as r ↓ 0. Moreover, the radius of γ1
r is

√
r/2, whereas the radius of γ2

r is
√
r.

Hence we conclude that

The surfaces S1
r and S2

r converge, respectively, to a sphere S1
∞ of radius 1/2 and

to a sphere S2
∞ of radius 1, which are tangent at (0, 0, 0). (81)

The area of the neck Tr converges to 0. (82)

Step 2 Estimates.
We now prove that

lim
r↓0

∫
Tr

∣∣Å∣∣p = 0 . (83)

Since Tr is a portion of a minimal surface, tr A = 0 on Tr. Thus (83) is equivalent to

lim
r↓0

∫
Tr

|A|p = 0 . (84)
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Again because of the minimal surface equation, 2detA = −|A|2 on Tr. Thus, by Gauss–
Bonnet Theorem:

8π =

∫
Σr

2detA =

∫
S1

r∪S2
r

2detA−
∫
Tr

|A|2 . (85)

Since S1
r and S2

r are both portions of round spheres, we have∫
S1

r∪S2
r

2detA ≤ 16π .

Thus,
∫
Tr
|A|2 ≤ 8π and, by Hölder inequality,∫

Tr

|A|p ≤ (ar(Tr))
2−p
2

(∫
Tr

|A|2
) p

2 ≤ (8π)
p
2 (ar(Tr))

2−p
2 . (86)

By (81), the inequality (86) yields (84). Thus:

• The bound (77) is trivially satisfied.
• Since S1

r and S2
r are subsets of round spheres, we have∫

Σr

∣∣Å∣∣p =

∫
Tr

∣∣Å∣∣p ,
and (78) follows from (83).

• Thanks to (82) and (84)

lim
r↓0

(
inf
λ

∫
Σr

|A− λId|p
)

= inf
λ

(∫
S1∞

|A− λId|p +

∫
S2∞

|A− λId|p
)

= inf
λ

[
2π

(
1

2
− λ

)2

+ 8π(1 − λ)2

]
> 0,

which gives (80).

Note that the surfaces just constructed are C1 and piecewise C2. However, they are all
surfaces of revolution: The curves which generate them are C1 and piecewise C∞, whereas
the higher derivatives have four points of jump discontinuity. Hence, a standard smoothing
argument yields a family of surfaces of revolution which are C∞ and satisfy all the require-
ments of the Proposition.

Appendix A. Hardy and BMO spaces

We recall here the definitions of Hardy and BMO spaces (see for example [St], sections
1,2,3 and 4). First of all, if f : Rn → R, the maximal function Mf is defined as

Mf(x) := sup
r>0

1

|Br(x)|
∣∣∣∣∫
Br(x)

f

∣∣∣∣ .
When f : Σ → R and Σ ⊂ R3 is a compact surface, we let d(Σ) be the intrinsic diameter of
Σ (i.e. the maximum of distΣ(x, y) for x, y ∈ Σ) and we define

Mf(x) := sup
0<r<d(Σ)

1

ar(Dr(x))

∣∣∣∣∫
Dr(x)

f

∣∣∣∣ .
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Definition A.1. The Hardy space H1(Rn) (resp. H1(Σ)) consists of the functions f ∈
L1(Rn) (resp. f ∈ L1(Σ)) such that Mf ∈ L1(Rn) (resp. Mf ∈ L1(Σ)). The norm ‖f‖H1

is given by ‖Mf‖L1.

The following result follows from [FS]

Theorem A.2. Let g ∈ H1(R2). Then the equation ∆R2u = g admits a solution u : R2 →
R which is continuous, belongs to W 2,1 and satisfies

‖du‖L2 + ‖u‖L∞ ≤ C‖g‖H1 ,

for some universal constant C.

Using local charts a partition of unity, Theorem A.2 yields the following

Corollary A.3. Let g ∈ H1(S2). Then the equation ∆S2u = g admits a solution u0 which
is continuous, belongs to W 2,1 and satisfies

‖du0‖L2(S2) + ‖u0‖L∞ ≤ C
(
1 + ‖g‖H1(S2)

)
. (87)

Remark A.4. Since harmonic functions on S2 are constant, the general solution of ∆S2u =
g can be written as u = u0 + c. Thus the normalization condition∫

S2

e2u = 4π ,

yields an estimate like (87) also for u.

In section 5 we use the duality between BMO and Hardy, due to Fefferman.

Definition A.5. Let f ∈ L1
loc(R

n). We say that f ∈ BMO if

|f |BMO := sup
x∈Rn

sup
r>0

1

|Br(x)|
∫
Br(x)

|f − fx,r| is finite,

where fx,r denotes the average of f on Br(x). As above, we can extend the definition to
compact surfaces by taking the second supremum among disks of radius smaller than d(Σ).

Theorem A.6. Let f, g ∈ C∞
c (Rn). Then∣∣∣∣∫ fg

∣∣∣∣ ≤ ‖f‖H1|g|BMO .

Again, using local charts and a partition of unity, we get

Corollary A.7. Let f, g ∈ C∞(S2). Then there exists a universal constant C such that∣∣∣∣∫
S2

fg

∣∣∣∣ ≤ C‖f‖H1(S2)|g|BMO(S2) .
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Appendix B. The space L2,∞

Given a measure space (Ω, µ) with a σ–finite measure µ, the Marcinkiewicz space L2,∞(Ω, µ)
is defined as the set of functions{

f

∣∣∣∣there exists C > 0: µ
({f 2 ≥ k}) ≤ C

k
for every k > 0

}
.

For every f ∈ L2,∞ is natural to define

|f |L2,∞ := inf

{
C : µ

({f 2 ≥ k}) ≤ C

k
for every k > 0

}
. (88)

| · | is not a norm. However, it is possible to define a norm ‖ · ‖L2,∞ which endows L2,∞ of a
Banach space structure and such that

1

k
‖ · ‖L2,∞ ≤ | · |L2,∞ ≤ k‖ · ‖L2,∞ , (89)

see e.g. Section 1.8 of [Z]. For the Proof of Proposition 4.1 we need the following two lemmas:

Lemma B.1. If f ∈ L2,∞(Rn), g ∈ L1(Rn), then

‖f ∗ g‖L2,∞ ≤ ‖f‖L2,∞‖g‖L1 . (90)

Lemma B.2. Let K be the fundamental solution of the Laplacian in R2 given by K(x) =
1
2π

log(|x|). Then ∇K ∈ L2,∞(U) for every bounded set U ⊂ R2.

Lemma B.1 follows easily from the fact that ‖ · ‖L2,∞ is a norm, while Lemma B.2 is
obtained directly from the definition of | · |L2,∞. Finally, in the proof of Theorem 1.1 we need
the following

Lemma B.3. Let u ∈ C∞(S2,R). Then there exists a universal constant C such that

|u|BMO(S2) ≤ C‖du‖L2,∞(S2) .

Proof. Lemma B.3 follows from the Sobolev embedding W 1,1(S2) ↪→ L2(S2) and the fact
that |u|R2 and |u|L2,∞(R2) are both invariant under the rescalings x → rx. Indeed, using
local charts, it suffices to prove

|u|BMO(D1) ≤ C‖du‖L2,∞(D1) (91)

where D1 is the Euclidean unit disk. Recall that

|u|BMO(D1) := sup
y∈D1

[
sup

r<dist (y,∂D1)

1

ar(Dr(y))

∫
Dr(y)

|u− uy,r|
]
, (92)

In view of the definition of |u|BMO(D1), it is sufficient to prove would be sufficient to prove

1

ar(Dr(y))

∫
Dr(y)

|u− uy,r| ≤ C‖du‖L2,∞(Dr(y)) for all r < 1.

By invariance under translations, we can assume y = 0. Moreover, we can assume that
r = 1. Indeed, define ur(x) := u(rx). Then,

1

ar(Dr)

∫
Dr

∣∣u− u0,r
∣∣ =

1

ar(D1)

∫
D1

∣∣ur − u0,1
r

∣∣
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and
‖u‖L2,∞(Dr) ≤ k|u|L2,∞(Dr) = k|ur|L2,∞(D1) ≤ k2‖u‖L2,∞(D1) .

Thus, the proof reduces to the inequality∫
D1

∣∣u− u0,1
∣∣ ≤ C‖du‖L2,∞(D1) .

Clearly, for some universal constant C, we have ‖du‖L1(D1) ≤ C‖du‖L2,∞(D1). Moreover, the
Poincaré and Schwartz inequalities give∫

D1

∣∣u− u0,1
∣∣ ≤ π1/2‖u− u0,1‖L2(D1) ≤ C1π

1/2‖du‖L1(D1) ≤ C1Cπ
1/2‖du‖L2,∞(D1) .

This completes the proof.

Appendix C. Lemma on open sets

Lemma C.1. Let U ⊂ S2 be an open set and assume that ∂U ⊂ γ, where γ is a closed
curve. Then there exists a constant δ > 0, depending only on ar(U) and len (γ) such that U
contains an open disk of radius δ.

Proof. We argue by contradiction. Then there exist a sequence of open sets Un and a sequence
of closed curves γn such that:

1. limn len (γn) = C1 > 0 and limn ar(Un) = C2 > 0;
2. For every δ > 0 there exists N such that, for every n > N , Un does not contain any

disk of radius δ.

Let parameterize γn by arc–length. Then there is a subsequence, not relabeled, which con-
verges uniformly to a Lipschitz curve γ∞. Hence up to subsequences, Un converges, in the
Hausdorff topology, to a closed set U∞ whose boundary is contained in γ∞. Due to 2.,
the set U∞ has empty interior and thus ar(U∞) = ar(∂U∞) = 0. But 1. implies that
ar(U∞) = C2 > 0. This is the desired contradiction.

Appendix D. Poincaré inequality for SO(3)–valued maps

Here we give a proof of Lemma 6.1. We embed SO(3) ⊂ M3×3 = R9 and we set

Λ =
1

ar(Dρ)

∫
Dρ

Λ,

Since the operator norm on M
3×3 is equivalent to the Euclidean norm on R9, the Poincaré

inequality yields a constant C such that

‖Λ − Λ‖L2(Dρ) ≤ Cρ‖dΛ‖L2(Dρ) .

Note that

dist (Λ, SO(3))2 =
1

ar(Dρ)

∫
Dρ

dist (Λ, SO(3))2

≤ 1

ar(Dρ)

∫
Dρ

(|Λ − Λ| + dist (Λ, SO(3))
)2

=
1

ar(Dρ)
‖Λ − Λ‖2

L2(Dρ) .
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Thus there exists a map R ∈ SO(3) such that

‖Λ −R‖L2(Dρ) ≤
√

2Cρ‖dΛ‖L2(Dρ) .
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