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Abstract

Quantum Monte Carlo methods are used to calculate various ground state properties of charged

bosons in two dimensions, throughout the whole density range where the fluid phase is stable.

Wigner crystallization is predicted at rs � 60. Results for the ground state energy and the momen-

tum distribution are summarized in analytic interpolation formulas embodying known asymptotic

behaviors. Near freezing, the condensate fraction is less than 1%. The static structure factor S(k)

and susceptibility χ(k) are obtained from the density-density correlation function in imaginary

time, F (k, τ). An estimate of the energy of elementary excitations, given in terms of an upper

bound involving S(k) and χ(k), is compared with the result obtained via analytic continuation

from F (k, τ).

PACS numbers: 02.70.Ss, 05.30.Jp
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I. INTRODUCTION

The two-dimensional fluid of point-like spinless bosons interacting with a 1/r potential

has drawn attention in the literature1 as a model in quantum statistical mechanics which

parallels the physically more relevant fluid of electrons. At zero temperature, the model is

specified by the coupling parameter rs = 1/
√

πnaB, where n is the density and aB the Bohr

radius. For small rs the system is a weakly coupled fluid, well described by the Random

Phase Approximation,2 whereas it becomes strongly correlated and eventually undergoes

Wigner crystallization upon increasing rs. Several results for the ground state energy, static

structure, screening properties and elementary excitations have been reported using the Cor-

related Basis Function theory,1,3 various implementation of the Singwi-Tosi-Land-Sjölander

(STLS) formalism,4,5 and the Overhauser model.6 The momentum distribution has been

calculated for low rs in the Bogolubov approximation.7 A comparison between the STLS

results for the 1/r potential and the ln(r) potential has been reported by Moudgil et al.8

Although the charged boson model may find applications to superconductors, either as

a system of bound electron pairs9 or in terms of an effective action with Fermionic degrees

of freedom integrated out,10 no direct realization of the system is experimentally available.

Therefore numerical results provided by quantum Monte Carlo (QMC) simulations consti-

tute the only reliable benchmark for analytic approaches. Extensive simulation results are

available for 3D charged bosons11,12 and for the 2D system with the ln(r) interaction.13–15

In this work we present QMC results for several ground state properties of the 2D fluid

of charged bosons with the 1/r potential. We use two different algorithms, namely diffusion

Monte Carlo (DMC),16 which is more efficient in the calculation of mixed averages, and

reptation quantum Monte Carlo (RQMC),17 which gives easier access to correlations in

imaginary time. The exact ground state energy and the mixed estimate16 of the one-body

density matrix are calculated with the former. Unbiased estimates of the static structure

factor and the susceptibility are instead obtained, using RQMC, from the auto-correlation

in imaginary time of the density fluctuation operator. The inverse Laplace transform of the

same auto-correlation function yields valuable information on the spectrum of elementary

excitations.
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II. METHOD

Quantum Monte Carlo is the method of choice for strongly interacting bosonic systems

in their ground state, because it yields exact numerical results for a number of quantities,

subject only to known statistical errors.

The DMC method16 samples a probability distribution proportional to the “mixed dis-

tribution” f(R) = Φ(R)Ψ(R), where R = {r1, · · · , rN} is a point in the 2N -dimensional

configuration space of the system, Ψ(R) is a trial wave-function, and Φ(R) is the ground-

state wave-function. The exact ground state energy is obtained as the average over the

mixed distribution of the local energy, EL(R) = Ψ(R)−1HΨ(R). For a general operator

not commuting with the Hamiltonian, ground-state averages can be approximated by the

extrapolated estimate (twice the average over the mixed distribution minus the variational

estimate),16 which leads to an error quadratic in the difference (Φ−Ψ). Our results for the

one-body density matrix are given in terms of this extrapolated estimate, as in Ref. 12.

For operators diagonal in R we avoid mixed estimates resorting to the RQMC method17

(one could alternatively use the forward walking technique18 within the DMC method).

In RQMC, the evolution in imaginary time of the system is represented by a time-

discretized path X ={R0, · · · , RM}. The algorithm samples the distribution P (X) =

Ψ(R0)
2ΠM

i=1G(Ri−1 → Ri; ε), where G(R → R′; ε) is a short-time approximation to the

importance-sampled Green’s function Ψ(R′)〈R′| exp(−εH)|R〉Ψ(R)−1. Assuming M is large

enough, the inner time slices of the path are individually sampled from the distribution

Φ(R)2, and sequentially sampled according to the quantum dynamical fluctuations in the

ground state. Pure estimators, 〈Φ|O|Φ〉 = 〈〈O(Ri)〉〉, and imaginary-time correlation func-

tions, c(τ) = 〈〈O(Ri)O(Ri+n)〉〉, are thus readily accessible (here 〈〈·〉〉 means average over

the random walk in the space of quantum paths X, and τ = nε).17

In all simulations we consider a system of N particles in a square cell with periodic

boundary conditions. The trial function is chosen of the pair product form, Ψ(R) =

exp(−∑
ij(u|ri − rj|)), where u(r) is the RPA pseudopotential following Ref. 19. Both the

pseudopotential and the Coulomb interaction are evaluated using generalized Ewald sums.19

As usual,11,19 we estimate the finite-size effect on the ground-state energy from variational

Monte Carlo simulations. Variational energies EN , calculated with N in the range 25–200,

are used to determine the best–fit parameter in the form E∞ = EN + a(rs)/N + b(rs)/N
2.
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Assuming that the same size dependence holds for the exact DMC energies, the optimal

parameters a(rs) and b(rs) are then used to extrapolate to the thermodynamic limit the re-

sult of a single DMC simulation with N = 52. Other quantities have comparatively smaller

finite-size errors, typically below the statistical accuracy of the present simulations.

III. RESULTS

A. Ground-state energy

The DMC ground state energies of the 2D bosonic fluid in the thermodynamic limit

are compared in Table I with the results obtained with the Singwi–Tosi–Land–Sjölander

(STLS) method by Gold,5 with a parametrized wave function approach by Sim, Tao and

Wu3 and within the Hypernetted Chain Approximation (HNC) by Apaja et al..1 While all

computations agree qualitatively, we note that the agreement between HCN and the exact

DMC results is particularly good. Our DMC results can be accurately reproduced by the

parametrized function:

Eg(rs) = −[a0r
b0
s + a1r

b1
s + a2r

b2
s + a3r

b3
s ]−c (1)

where a0 and b0 are fixed by the small rs behavior1 (E(rs → 0) � −1.29355/r
2/3
s ), b1

is fixed requiring a constant sub-leading term for rs → 0, b2 and b3 by requiring leading

terms in r−1
s and r

−3/2
s for rs → ∞. The final values of the parameters are c = 7/40,

a0 = 0.2297, a1 = 0.161, a2 = 0.0594, a3 = 0.01017, b0 = 80/21, b1 = 94/21, b2 = 73/14

and b3 = 40/7. The reduced χ2 for the fit with 4 parameters and 7 data points is 1.5 at

rs = 1. The above interpolation formula allows to obtain, by means of the virial theorem,

the unbiased estimator of the average kinetic energy 〈ke〉 = −d(rsEg)/drs as well as of the

inverse compressibility 1/ρKT = −rs

4
[∂Eg

∂rs
− rs

∂2Eg

∂r2
s

], both reported in Table I.

In Fig. (1) our results are compared with the previous DMC results by Rapisarda and

Senatore20 for 2D fermions and for the 2D Wigner crystal. In two dimensions bosons crys-

tallize at rs � 60 and fermions at rs � 34. The difference in critical density is analogous to

the difference obtained in the 3D case, where bosons crystallize at rs = 160 and fermions at

rs = 100.11
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FIG. 1: Ground-state energy for 2D triangular Wigner crystal (WC), bosons (B), unpolarized (UP)

and polarized (P) fermions as a function of rs. Wigner crystal and fermion data are from Ref. 20.

On purpose of clarity we plotted r
3/2
s (E(rs)−c1/rs)), with c1 = −2.2122, while the inset shows the

corresponding E(rs) curves. Points with error bars are size-extrapolated DMC results, continuous

curves are analytical fits.

TABLE I: Ground state energy for bosons from VMC and DMC, extrapolated to the bulk limit

and compared with estimates from approximate theories. We also give the average kinetic energy

and inverse compressibility obtained from Eq. (1). All values are in Rydberg per particle, the digits

in parenthesis represent the error bar in the last digit.

rs E(DMC) E(V MC) HNC1 STW3 STLS5 〈ke〉 1/nKT

1 -1.1448(5) -1.14269(7) -1.1458 -1.1062 - 0.2903 -0.531

2 -0.6740(2) -0.67192(6) -0.6740 -0.6631 -0.6484 0.1442 -0.3582

5 -0.31903(5) -0.317456(6) -0.3185 -0.3133 -0.3078 0.04896 -0.187

10 -0.17480(5) -0.17385(3) -0.1741 -0.16685 -0.1724 0.01961 -0.1097

20 -0.093387(8) -0.092903(3) -0.0928 -0.086024 -0.0959 0.007533 -0.06177

40 -0.048986(8) -0.048737(2) – – – 0.00286 -0.03359

75 -0.026965(6) -0.0268246(8) – – – 0.001189 -0.01892
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FIG. 2: One–body density matrix n(r) at rs =1, 2, 5, 10, 20, 40 and 75

B. Momentum distribution

The one–body density matrix n(r) and its Fourier transform, the momentum distribution

n(k), have been computed performing random displacements of particles on the sampled

configurations as explained in Ref. 13.

At variance with the 3D case,12 the standard procedure leads to strong size effects due

to the slow convergence of n(r) to its asymptotic limit n0 = limr→∞ n(r). We removed the

size-effect adopting the correction proposed by Magro and Ceperley13 for 2D bosons with

ln r interactions. Our results for the one–body density matrix are shown in Fig. (2).

Extending to the 2D case the discussion presented for 3D charged bosons in Ref. 21, we

fix the divergence of the momentum distribution at small k

n(k → 0) � n0

4S(k)
� n0

√
rs/2

(kr0)3/2
(2)

where n0 is condensate fraction, and r0 = rsaB. The cusp condition22 instead gives infor-

mation on the short–range behavior of the momentum distribution:

n(k → ∞) � 4r2
sg(0)

(kr0)6
(3)

where g(0) is the pair correlation function at r = 0. Moreover, at small density, we expect

the momentum distribution to be approximately Gaussian, in agreement with harmonic

theory for the crystalline phase.

6



TABLE II: Best fit parameters for equation (4). The last line reports the value of g(0) from Fig. (4)

as used in the fit of n(k).

rs 1 2 5 10 20 40 75

n0 0.531 0.38 0.176 0.0677 0.018 0.001 0.0007

a0 0.839 0.853 0.475 0.977 0.861 1.21 2.59

a1 44 3.5 5.46 – – – –

a2 -0.086 0.492 2.17 1.96 1.05 0.946 0.098

a3 0.696 0.56 -2.1 -1.13 -0.08 -0.74 0.627

a4 1.13 0.226 0.23 -0.01 -0.163 0.184 -0.103

a5 0.135 0.192 0.28 0.7 -0.006 -0.014 -0.024

a6 -111 -6.07 1.12 -1.52 0.849 3.44 0.576

a7 6.98 2.29 1.45 1.86 2.61 1.99 2.59

g0 0.21 0.078 0.01 - - - -

n0
7 0.537 0.398 0.230 - - - -

We have collected all this information in a fitting formula to interpolate the DMC data

for the momentum distribution n(k):

n(k) = (2π)2ρn0δ
2(k) +

n0

√
rs/2

κ3/2
e−κ2/a2

0 +
4g(0)r2

s

a6
1 + κ6

+

(
a2√
κ

+ a3 + a4

√
κ + a5κ

)
e−(κ2−κa6)/a2

7

where κ = kr0. Given the known values of the density and of g(0) (see next section), we

determined the remaining parameters by a least–squares fit to the DMC data on n(k), n(r)

and on the average kinetic energy.

Table II contains the best–fit parameters and the resulting value of the condensate fraction

n0. The condensate fraction decreases very rapidly with increasing rs, the depletion being

already 50% at rs = 1, in agreement with the result of the Bogolubov theory7 (in 3D12 a

similar depletion occurs at rs = 5). For large couplings, the Bogolubov theory overestimates

the condensate fraction. In a wide density range in the liquid phase, say rs > 20, n0 is of
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the order of 1% or less. Such small values, obtained by fitting Eq. 4 to the extrapolated

estimates from the simulation, are presumably meaningful only as an indication of the order

of magnitude.

C. Imaginary-time correlation functions: static response function and static struc-

ture factor

Information on charge response properties of the system like screening, plasma oscillations

or polarization are contained in the imaginary time density-density correlation function:

F (k, τ) =
1

N
〈ρk(τ)ρk(0)〉 =

1

2π

∫ ∞

−∞
e−τωS(k, ω), (4)

where ρk(τ) =
∑

i e
i(k·r) and S(k, ω) is the dynamical response function. The correlation

functions F (k, τ) have been computed with RQMC for systems of 56 particles.

The static structure factor S(k) is readily obtained from the imaginary-time density-

density correlation function as:

S(k) =

∫ ∞

0

dω S(k, ω) = F (k, 0). (5)

In Fig. (3) we report the behavior of S(k) for various densities. As rs increases and ap-

proaches the crystallization density, a sharp peak develops in correspondence with the first

lattice wave-vector of the 2D Wigner crystal, kr0 = (2π
√

3)1/2 � 3.3.

In Fig. (4) we report the pair distribution function:

g(r) =
1

Nρ

∑
i�=j

〈δ(|ri − rj| − r)〉. (6)

At low density g(r) develops a high peak and long-range oscillations typical of a system

approaching localization. As the density increases the effective repulsion between particles

decreases and overlapping between charges becomes possible. The behavior of S(k) and g(r)

is qualitatively in agreement with the findings of Apaja et al.,1 but for both functions the

Monte Carlo results show more pronounced effects of correlations at low densities.

The static response function χ(k) can be evaluated from the relation

χ(k) = −2

∫ ∞

0

S(k, ω)

ω
dω = −2

∫ ∞

0

F (k, τ)dτ. (7)
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FIG. 3: Static structure factor S(k) as a function of kr0 for rs = 1, 2, 5, 10, 20, 40, 60. Lines are

only guide to the eyes.
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FIG. 4: The pair-distribution function for rs = 1, 2, 5, 10, 20, 40 and 60 (cubic spline interpolation

of Monte Carlo data). Higher peaks correspond to higher values of rs.

In Fig. (5) we report the static effective interaction vk/ε(k, 0) where vk is the Coulomb

interaction and ε(k, 0) = 1/[1 + vkχ(k, 0)] is the static dielectric function. At low k the

effective interaction is given the compressibility sum rule,

lim
k→0

vk

ε(k, 0)
=

1

ρKT
, (8)

while in the short-wavelength limit it behaves like the Coulomb interaction. The minimum

of vk/ε(k, 0) deepens and shifts to larger k upon increasing rs. We note that a negative

dielectric function cannot be interpreted as a signal of instability of the bosonic fluid due to
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FIG. 5: Effective interaction for rs = 2, 5, 10, 20, 40 and 60 (open symbols, Monte Carlo data; lines,

cubic spline interpolations). Deeper minima correspond to lower densities. The solid dots at k = 0

are the values of 1/ρKT from Tab. I.
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FIG. 6: The static response function χ(k) at rs = 1 (solid dots) and rs = 10 (open diamonds).

The solid lines are from Apaja et al..1

the presence of the rigid background. As in the case of the structural properties, in the large

coupling regime the Monte Carlo data for the effective potential show more pronounced

features than the results of Apaya et al..1 This is shown, in terms of the static response

function χ(k), in Fig. (6).
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FIG. 7: The excitation spectra for rs = 2, 5, 10, 20 (full circles and open diamonds) are compared

with their respective upper-bound ωmin
k (solid lines). Dashed curves corresponds to data from

Ref. 1 for rs = 5 and rs = 20. Curves with deeper minimum corresponds to lower densities.

D. Excitation spectrum

The elementary excitations spectrum of the density fluctuation is contained in the dy-

namic structure factor:

S(k, ω) =
∑

n

|〈n|ρk|0〉|2δ(ω − ωn0). (9)

We estimate the energy dispersion of the collective excitation by fitting the imaginary

time dependence of F (k, τ) with F (k, τ) = A(k)e−ω1(k)τ + B(k)e−ω2(k)τ . This amounts to

represent the dynamical structure factor S(k, ω) as the sum of two delta functions. When a

single mode has a dominating spectral weight, its dispersion ω1(k), is reproduced reasonably

well,17 regardless of the representation chosen for the remaining part of the spectrum (a delta

function at ω2(k) in this case).

Moreover, combining our results for χ(k) and S(k) we obtain, by means of a sum-rules

approach,12,23 a rigorous upper bound for the plasmon dispersion:

ωmin
k ≤ 2ρS(k)

χ(k)
. (10)

At low k a single mode exhausts the sum rule. In this case, the upper bound in Eq. (10)

becomes an equality and the strength of the excitation coincides with S(k).

In Fig. 7 we show our results for the excitation energies extracted directly from F (k, τ) and

compare them with their corresponding upper-bounds, at different densities. On increasing
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FIG. 8: Excitation spectrum near the rotonlike minimum for rs = 10, 20, 40, 60. Full circles and

open diamonds, data from two-exponentials fit to F (k, τ); solid lines, upper-bounds from Eq. 10.

rs a roton–like mode, close to the first reciprocal lattice vector of the Wigner crystal, develops

and softens. The evolution of this minimum as the crystallization transition is approached

is shown in more detail in Fig. (8).

In conclusions, we have presented an extensive QMC study of ground-state properties

of 2D charged bosons. The present results constitute a valuable benchmark for theoretical

approaches, showing their range of validity.
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