
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Hierarchical Quadrature of Singular

Integrals

(revised version: April 2004)

by

Steffen Börm and Wolfgang Hackbusch

Preprint no.: 50 2003

Hierarchical Quadrature for Singular Integrals

Steffen Börm, Leipzig, and Wolfgang Hackbusch, Leipzig

April 22, 2004

Abstract

We introduce a method for the computation of singular integrals arising in the dis-
cretization of integral equations.

The basic method is based on the concept of admissible subdomains, known, e.g.,
from panel clustering techniques and H-matrices: We split the domain of integration
into a hierarchy of subdomains and perform standard quadrature on those subdomains
that are amenable to it.

By using additional properties of the integrand, we can significantly reduce the
algorithmic complexity of our approach.

The method works also well for hypersingular integrals.

AMS Subject Classification: 65D32, 42B20
Key words: Numerical quadrature, singular integrals

1 Introduction

We consider integrals as they arise in the boundary element method. Let us consider

I :=

∫ 1

0

∫ 1

0

|x − y|α dy dx (1.1)

as an example. The kernel function is improperly integrable if α > −1. However, since also
strongly singular integrals appear in the BEM, α ≤ −1 will not be excluded. In the latter
case, I has to be interpreted as partie finie integral in the sense of Hadamard [8, pp.184].

The standard quadrature methods apply one of the follow techniques:

1. Use a quadrature rule adapted to the singularity of the kernel (cf. [17, 16]).

2. Apply at least for one of the double integrals an exact integration. Hopefully the
remaining integral is regular and standard Gauss quadrature works well (cf. [12, 17]).

3. Apply a transformation that removes the singularity (cf. [2, 10, 11]).

4. Apply a transformation like ξ = x− y, η = x + y, that changes the moving singularity
|x − y|α of (1.1) into the fixed singularity |ξ|α and apply 1 or 2 (cf. [10]).

1

5. Adaptive refinement, i.e., the integration region is split into suitable subregions. Sub-
regions that do not contain the singularity are treated by standard quadrature, the
remaining subregions are split again (cf. [18]).

Although the techniques 1-4 are quite successful in special situations, they are of limited
use. Method 5 might be costly because of many levels of refinement. The mentioned tech-
niques depend strongly on the dimensionality of the integral. In particular, all methods are
not easily extended to strongly singular integrals.

In this paper, we describe a technique which combines the adaptive refinement from 5
with further structural properties of the integrand. Eventually, we have to determine only
few integrals over smooth integrands and to solve a small system of equations. Moreover,
this approach extends to strong singularities.

Our assumptions are explained for

I :=

∫ 1

0

∫ 1

0

κ(x, y) dy dx.

We suppose that the integrand κ(x, y) — possibly after subtracting a smooth part — satisfies
two conditions: translation invariance and homogeneity. The first condition reads

κ(x, y) = κ(x + c, y + c) for all c ∈ R, (1.2)

while a homogeneous integrand satisfies

κ(sx, sy) = sακ(x, y) for all s ∈ R>0, (1.3)

where α ∈ R is the degree of homogeneity. A closely related variant of (1.3) occurs, e.g., for
κ(x, y) = log(|x − y|), where

κ(sx, sy) = β(s) + κ(x, y) for all s ∈ R>0. (1.4)

Furthermore, κ is assumed to be sufficiently smooth outside of a neighborhood of the pos-
sible singularity at x = y (A possible qualification of the smoothness of κ is given by the
asymptotic smoothness, cf. (2.13)).

In addition to (1.2), a symmetry condition

κ(y, x) = κ(x, y) (1.5)

can be exploited (antisymmetry κ(y, x) = −κ(x, y) would lead immediately to the trivial
result I = 0).

Obviously, the integrand of example (1.1) satisfies the conditions (1.2) and (1.3) with the
same value α as well as (1.5).

In Subsection 2.1 we first apply a recursive additive splitting of the integral which yields
an infinite sum of subintegrals. The situation simplifies due to the translation invariance as
explained in Subsection 2.2, where we identify equivalence classes of integrals. The essential
step is the use of the homogeneity condition in Subsection 2.3, which reduces the infinite
sum to a finite linear combination, where the number of terms is the number of different

2

equivalence classes. The remaining few integrals possess a regular integrand. The arising
linear system is discussed in Subsection 2.4.

The use of homogeneity can be illustrated by the one-dimensional integral

Q :=

∫ 1

0

κ(x, 0) dx.

We split Q into the sum

Q =

∞∑
i=0

Q(i), Q(i) :=

∫ 2−i

2−i−1

κ(x, 0) dx,

which has to converge if κ is weakly singular. The homogeneity condition (1.3) together
with the transformation x = 2−it yields

Q(i) =

∫ 2−i

2−i−1

κ(x, 0) dx = 2−i

∫ 1

1/2

κ(2−it, 0) dt = 2−i2−αi

∫ 1

1/2

κ(t, 0) dt = 2−(1+α)iQ(0),

thus we find

Q = Q(0)

∞∑
i=0

2−(1+α)i.

The assumed summability implies α > −1 and

∞∑
i=0

2−(1+α)i =
1

1 − 2−(1+α)
.

The integral

Q(0) =

∫ 1

1/2

κ(t, 0) dt

can be approximated by standard quadrature techniques, since κ is assumed to be smooth
outside the singularity at t = 0.

In some applications, the integrand may consist of a product of a kernel function κ
satisfying the conditions (1.2) and (1.3) and smooth additional factors that do not satisfy
these conditions. If these additional factors are polynomials, we can still use a modified
version of our method that is presented in Section 3.

So far, we have assumed that the integral has a weak singularity. The case of a strong
singularity of κ is discussed in Section 4. We recall the definition of partie finie integrals and
show how this definition can directly be used in our approach. However, to do this we have
to split the integration domain [0, 1]2 of (1.1) into triangles. In Subsection 4.4 we show that
the simpler splitting into subsquares works as well.

2 Weak singularities

Let us consider the approximate computation of

I :=

∫ 1

0

∫ 1

0

κ(x, y) dy dx

3

for α ∈ R>−1. In the case of negative α, we have a singularity at the diagonal x = y of the
domain [0, 1]2, so using standard quadrature techniques will not lead to acceptable results.

In this Section, we will derive an algorithm (cf. (2.8)) that expresses I in terms of the
integrals

I2 =

∫ 1

0

∫ 1

0

κ(x + 2, y) dy dx, I−2 =

∫ 1

0

∫ 1

0

κ(x, y + 2) dy dx,

I3 =

∫ 1

0

∫ 1

0

κ(x + 3, y) dy dx, I−3 =

∫ 1

0

∫ 1

0

κ(x, y + 3) dy dx.

Since all these integrals are regular, we can approximate them directly by standard quadra-
ture techniques and get an approximation of I.

2.1 Splitting

While standard quadrature is not working on the entire domain of integration, there ob-
viously are subdomains in which the integrand is analytic, e.g., [0, 1/4] × [1/2, 3/4] or
[3/4, 1] × [1/4, 1/2].

Therefore it is straightforward to split the domain into subdomains on which standard
quadrature is applicable, to compute the results and to add them up. In order to do this
efficiently, we organize the subdomains in a hierarchical way: We split the original domain
Ω = [0, 1] × [0, 1] into four subdomains

Ω0,0 := [0, 1/2] × [0, 1/2], Ω1,0 := [1/2, 1] × [0, 1/2],

Ω0,1 := [0, 1/2] × [1/2, 1], Ω1,1 := [1/2, 1] × [1/2, 1],

and define the corresponding integrals

I0,0 :=

∫
Ω0,0

κ(x, y) dy dx, I1,0 :=

∫
Ω1,0

κ(x, y) dy dx,

I0,1 :=

∫
Ω0,1

κ(x, y) dy dx, I1,1 :=

∫
Ω1,1

κ(x, y) dy dx.

Obviously, the computation of I0,0 and I1,1 is just as hard as that of I: We again have
to deal with a singularity along the diagonal of the domain. In the computation of I1,0 and
I0,1, only a pointwise singularity occurs.

The original integral I can be computed by

I = I0,0 + I1,0 + I0,1 + I1,1. (2.1)

If we use the integrals I, I0,0, I1,0, I0,1 and I1,1 as vertices and denote the contributions they
give to each other by directed edges, we can express (2.1) in the form of a splitting graph
given in Figure 2.1.

Let us now consider the integral I1,0 corresponding to the domain Ω1,0 = [1/2, 1]×[0, 1/2].
We once more split the domain in order to get

Ω2,0 := [1/2, 3/4] × [0, 1/4], Ω3,0 := [3/4, 1] × [0, 1/4],

Ω2,1 := [1/2, 3/4] × [1/4, 1/2], Ω3,1 := [3/4, 1] × [1/4, 1/2].

4

I

I_00 I_10 I_01 I_11 0,0

I1,1

I1,0

I0,1

I

Figure 2.1: Splitting graph corresponding to (2.1)

I

I_00 I_10 I_01 I_11

I_20 I_30 I_31 I_21 I2,0 I3,0

I2,1 I3,1

Figure 2.2: Splitting graph and domain decomposition corresponding to (2.1) and (2.2)

We define the integrals I2,0, I3,0, I2,1 and I3,1 as above and find

I1,0 = I2,0 + I3,0 + I2,1 + I3,1. (2.2)

Now the situation is changed: The integrals I2,0, I3,0 and I3,1 (see gray squares in Figure 2.2)
no longer involve a singularity, therefore we can apply standard quadrature to compute
them. The integral I2,1 is similar to I1,0. By repeating this procedure for all subdomains still
containing singularities, we can construct a splitting tree.

If the tree were finite, we could approximate the integrals corresponding to its leaves
by standard quadrature and then accumulate them along its edges in order to obtain an
approximation for the integral corresponding to the root and all intermediate subdomains.

Since the simple splitting is not able to eliminate singularities, this tree is infinite, so
we cannot approximate the integral directly. What we can do is to consider a subtree, e.g.,
consisting of all nodes up to a given level � in the tree, use quadrature on those leaves that
admit it, approximate by zero on the remaining leaves and then sum up as before.

Splitting Ω as above leads, among others, to the subdomains Ω0,0 and Ω1,1, and these
subdomains contain the same type of singularity as the original Ω. This means that the
splitting tree, when cut off at level �, will contain at least 2� leaves that cannot be treated by
standard quadrature. Therefore, the complexity of the computation will grow exponentially
in �.

Section 6 of [18] deals with the problem of computing an approximation of an entire
integral equation, and in this context the exponential growth of the complexity can be
tolerated, since it only occurs for diagonal elements of the stiffness matrix and does not
effect the total order of complexity.

We are interested in bounding the complexity of the approximation of single integrals,

5

so controlling only the average efficiency is not enough. In order to reach higher efficiency,
we have to make use of additional properties of the kernel function.

2.2 Equivalence classes

We use the translation invariance (1.2) of the kernel κ:

I1,1 =

∫
Ω1,1

κ(x, y) dy dx =

∫ 1

1/2

∫ 1

1/2

κ(x, y) dy dx =

∫ 1/2

0

∫ 1/2

0

κ

(
x +

1

2
, y +

1

2

)
dy dx

=

∫ 1/2

0

∫ 1/2

0

κ(x, y) dy dx =

∫
Ω0,0

κ(x, y) dy dx = I0,0.

This equation holds because the subdomains satisfy

Ω1,1 = Ω0,0 + (1/2, 1/2),

i.e., because Ω1,1 is a translation of Ω0,0.
This means that the equation (2.1) takes the form

I = 2I0,0 + I1,0 + I0,1. (2.3)

Similarly, we find that I2,0 = I3,1, and therefore

I1,0 = 2I2,0 + I3,0 + I2,1. (2.4)

We represent the additional factors in our splitting graph by adding them to the edges. The
graph from Figure 2.2 then takes the form displayed in Figure 2.3.

I

I_00

2

I_10

1

I_01

1

I_20

2

I_30

1

I_21

1

Figure 2.3: Reduced graph corresponding to (2.3) and (2.4)

In order to estimate the impact of the reduction, we consider a domain [a, b] × [c, d].
Let [a0, b0] × [c0, d0] be one of the predecessors of this domain in the splitting graph. Since
only domains containing singularities are split in the course of our procedure, we must have
[a0, b0] ∩ [c0, d0] �= ∅. By construction, there are not more than 3 subdomains satisfying this
condition. Since each subdomain has in turn exactly 4 successors in the splitting graph,
there can be no more than 12 equivalence classes on each level of the splitting graph.

This implies that, by using equivalence of subdomains, we can reduce the number of
subdomains, and therefore the complexity of the computation, on a level � from O(2�) to
O(1).

6

2.3 Homogeneity

Although we can reduce the complexity of our algorithm by using equivalence classes, we
still have to truncate the splitting graph in order to get a finite algorithm, and of course this
truncation implies a loss of precision.

One way of avoiding this is to make use of the homogeneity (cf. (1.3)) of the kernel: We
have

κ(sx, sy) = sακ(x, y)

for all s ∈ R>0, and, due to the choice of our subdomain splitting, this implies

I2,1 =

∫ 3/4

1/2

∫ 1/2

1/4

κ(x, y) dy dx =

∫ 1/2

1/4

∫ 1/4

0

κ(x, y) dy dx

=
1

4

∫ 1

1/2

∫ 1/2

0

κ
(x

2
,
y

2

)
dy dx =

2−α

4

∫ 1

1/2

∫ 1/2

0

κ(x, y) dy dx =
2−α

4
I1,0.

By setting c := 2−α/4, equation (2.4) takes the form

I1,0 = 2I2,0 + I3,0 + cI1,0. (2.5)

This means that now we have to introduce cycles into the splitting graph, leading to a graph
of the form given in Figure 2.4.

I

I_00

2

I_10

1

I_01

1

c

I_20

2

I_30

1

Figure 2.4: Reduced cyclic graph corresponding to (2.3) and (2.5)

Applying the entire procedure to the domain I, we end up with the finite splitting graph
shown in Figure 2.5 instead of an infinite graph.

I

2c

I_10

1

I_01

1

c

I_20

2

I_30

1
c

I_02

2

I_03

1 cI1

−1cI

cI2

cI2

cI3

cI−3 cI−2

cI−2

Figure 2.5: Final splitting graph and domain decomposition

7

As a finishing touch, we transform all integrals to the domain Ω, so we can use the same
quadrature rule for all leaves of the splitting graph: We set

Iγ :=

∫ 1

0

∫ 1

0

κ(x + γ, y) dy dx

and rewrite the transfer equations in these new variables:

I = I0 = 2cI0 + cI1 + cI−1, I1 = cI1 + 2cI2 + cI3, I−1 = cI−1 + 2cI−2 + cI−3. (2.6)

2.4 System of equations

Since the splitting graph given in Figure 2.5 is no longer acyclic, we can no longer simply
compute the value I by traversing the graph. Instead, we interpret the graph again as a
system of linear equations for the unknown variables I, I1 and I−1 and find⎛

⎝2c c c
0 c 0
0 0 c

⎞
⎠
⎛
⎝ I

I1

I−1

⎞
⎠+

⎛
⎝ 0

2cI2 + cI3

2cI−2 + cI−3

⎞
⎠ =

⎛
⎝ I

I1

I−1

⎞
⎠ , (2.7)

which can be rewritten as⎛
⎝1 − 2c −c −c

0 1 − c 0
0 0 1 − c

⎞
⎠
⎛
⎝ I

I1

I−1

⎞
⎠ =

⎛
⎝ 0

2cI2 + cI3

2cI−2 + cI−3

⎞
⎠ . (2.8)

Since c = 2−α/4 < 1/2, all the diagonal entries are positive, therefore this system has a
unique solution.

If κ is symmetric (cf. (1.5)), we have Iγ = I−γ and can reduce the system to get(
1 − 2c −2c

0 1 − c

)(
I
I1

)
=

(
0

2cI2 + cI3

)
. (2.9)

Remark 2.1 (Logarithmic kernel functions) Let us consider the logarithmic kernel
function κ(x, y) = log |x − y|. It is invariant under translation, but not homogeneous.
Therefore, we replace the homogeneity condition (1.3) by

κ(sx, sy) = β(s) + κ(x, y),

i.e., equation (1.4) (for our example, β(s) = log(s) satisfies this equation) and find that

Iγ =
1

2
I2γ +

1

4
I2γ−1 +

1

4
I2γ+1 + β(1/2)

holds. This implies⎛
⎝1/2 −1/4 −1/4

0 3/4 0
0 0 3/4

⎞
⎠
⎛
⎝ I

I1

I−1

⎞
⎠ =

⎛
⎝ β(1/2)

β(1/2) + I2/2 + I3/4
β(1/2) + I−2/2 + I−3/4

⎞
⎠ .

Due to the symmetry of κ, we have I1 = I−1 and find(
1/2 −1/2
0 3/4

)(
I
I1

)
=

(
β(1/2)

β(1/2) + I2/2 + I3/4

)
. (2.10)

A kernel function like log2 |x − y| leads to a more involved equation than (1.4); however,
similar techniques can be applied.

8

2.5 Approximation

Up to this point, we have used no approximation. The equations (2.8), (2.9) and (2.10) hold
for the exact integrals. In order to get a numerical approximation scheme, we replace the
regular integrals I2, I−2, I3 and I−3 by approximations and use the equations (2.8), (2.9) or
(2.10) in order to derive approximations of I, I1 and I−1.

2.5.1 Quadrature rule

The right-hand side of (2.8) contains integrals Iγ corresponding to regular integrals, i.e., with
|γ| > 1. In order to find the solution I, we have to approximate these integrals.

We denote the m-th order Gauss quadrature points for the interval [0, 1] by (xk)
m
k=1 and

the corresponding weights by (wk)
m
k=1 and approximation Iγ by applying quadrature to both

integrals:

Ĩγ :=

m∑
k=1

m∑
�=1

wkw�κ(xk + γ, x�). (2.11)

2.5.2 Quadrature error estimate

Since Gauss quadrature is exact for polynomials of order 2m − 1, we have

|Iγ − Ĩγ| ≤ 2 min
k∈Q2m−1

‖κ − k‖∞,[γ,1+γ]×[0,1], (2.12)

where Q2m−1 is the space of tensor product polynomials of order 2m − 1, i.e.,

Q2m−1 = span{p ⊗ q : p, q are polynomials of order 2m − 1}.
We assume that the kernel function κ is asymptotically smooth with a singularity of order
g ∈ R≥0, i.e., that there are constants c0, c1 ∈ R>0 such that

|∂ν
x∂µ

y κ(x, y)| ≤ c1(c0)
|ν+µ|(ν + µ)!‖x − y‖−g−|ν+µ| (2.13)

holds for all ν, µ ∈ N0. The parameter g will typically coincide with −α from (1.3).
The estimate (2.13) implies

‖∂ν
x∂µ

y κ‖∞,τ×σ ≤ c1

dist(τ, σ)g

(
c0

dist(τ, σ)

)|ν+µ|
(ν + µ)!

for all intervals τ, σ ⊆ R with τ ∩ σ = ∅, so we can apply [1, Theorem 3.2] to the standard
tensor-product Chebyshev interpolation operator in dimension d = 2 in order to find a
polynomial k ∈ Q2

2m−1 satisfying

‖κ − k‖∞,τ×σ ≤ 8ec1(2m)3

dist(τ, σ)g

(
1 +

c0 diam(τ × σ)

dist(τ, σ)

)(
1 +

2 dist(τ, σ)

c0 diam(τ × σ)

)−2m

. (2.14)

We apply this to τ = [γ, 1 + γ], σ = [0, 1] and find

diam(τ × σ) =
√

2, dist(τ, σ) = max{0, |γ| − 1},

9

so (2.14) takes the form

‖κ − k‖∞,[γ,1+γ]×[0,1] ≤ 8ec1(2m)3

(|γ| − 1)g

(
1 +

c0

√
2

|γ| − 1

)(
c0

c0 +
√

2(|γ| − 1)

)2m

.

Combining this estimate with (2.12), we get

|Iγ − Ĩγ| ≤ 16ec1(2m)3

(|γ| − 1)g

(
1 +

c0

√
2

|γ| − 1

)(
c0

c0 +
√

2(|γ| − 1)

)2m

,

so the quadrature error converges exponentially in the order m.

2.5.3 Approximation of singular integrals

In the right-hand side of (2.8) we have I2, I3, I−2 and I−3. If we approximate these integrals
by the quadrature rule (2.11), we have

εrhs := max{|I2 − Ĩ2|, |I−2 − Ĩ−2|, |I3 − Ĩ3|, |I−3 − Ĩ−3|}

≤ C(m)

(|γ| − 1)g

(
c0

c0 +
√

2

)2m

with C(m) := 16ec1(2m)3

(
1 +

c0

√
2

|γ| − 1

)
.

Solving (2.8) with these approximated right-hand side values, we get

Ĩ1 :=
2cĨ2 + cĨ3

1 − c
, Ĩ−1 :=

2cĨ−2 + cĨ−3

1 − c
, Ĩ :=

cĨ1 + cĨ−1

1 − 2c

and find

|I1 − Ĩ1| ≤ c

|1 − c|εrhs, |I−1 − Ĩ−1| ≤ c

|1 − c|εrhs, |I − Ĩ| ≤ 6c2

|1 − c| |1 − 2c|εrhs,

so the approximation of the integrals improves exponentially if the quadrature order is in-
creased.

3 Integrals with polynomials

3.1 General case

If an integral equation is discretized by other than piecewise constant functions, we have to
compute integrals of the form

Iγ
i,j :=

∫ 1

0

∫ 1

0

|x − y + γ|αϕi(x)ϕj(y) dy dx,

where ϕi, ϕj are n-th order polynomials and γ ∈ R. If we split this integral and transform
as before, we find

Iγ
i,j = c

∫ 1

0

∫ 1

0

|x − y + 2γ|αϕi

(x

2

)
ϕj

(y

2

)
dy dx + c

∫ 1

0

∫ 1

0

|x − y + 2γ − 1|αϕi

(x

2

)
ϕj

(
y + 1

2

)
dy dx

(3.1)

+ c

∫ 1

0

∫ 1

0

|x − y + 2γ + 1|αϕi

(
x + 1

2

)
ϕj

(y

2

)
dy dx + c

∫ 1

0

∫ 1

0

|x − y + 2γ|αϕi

(
x + 1

2

)
ϕj

(
y + 1

2

)

10

Since (x, y)
→ ϕi(x)ϕj(y) is in general neither invariant under translation nor homogeneous,
we cannot apply our method directly.

Although a single polynomial is not invariant under translation and scaling, the space of
all polynomials of a certain order is. Therefore we treat an entire basis of a polynomial space
simultaneously: Let (ϕi)

n
i=0 be a Lagrange basis of the space of n-th order polynomials, i.e.,

we assume that there are interpolation points (ξi)
n
i=0 satisfying

p(x) =
n∑

i=0

p(ξi)ϕi(x) (3.2)

for all n-th order polynomials p.
Since the integrals depend on two polynomials, we introduce the index set

P := {0, . . . , n} × {0, . . . , n}
and collect the integrals for all combinations of basis functions in vectors Iγ ∈ R

P defined
by

Iγ
i,j :=

∫ 1

0

∫ 1

0

κ(x + γ, y)ϕi(x)ϕj(y) dy dx (3.3)

for i, j ∈ {0, . . . , n}.
We define the transfer matrices T 00, T 01, T 10, T 11 ∈ R

P×P by setting

T αβ
(i,j)(k,l) := ϕi

(
ξk + α

2

)
ϕj

(
ξl + β

2

)
for α, β ∈ {0, 1} and (i, j), (k, l) ∈ P and deduce from (3.2) that∑

(k,l)∈P

T αβ
(i,j)(k,l)ϕk(x)ϕl(y) = ϕi

(
x + α

2

)
ϕj

(
y + β

2

)
.

Remark 3.1 Since (ϕi)
n
i=0 is a Lagrange basis, we have

∑n
i=0 ϕi ≡ 1. This implies

∑
(i,j)∈P

T αβ
(i,j)(k,l) =

(
n∑

i=0

ϕi

)(
ξk + α

2

)(n∑
j=0

ϕj

)(
ξl + β

2

)
= 1,

so the column sum of any column of a transfer matrix T αβ will be 1. Therefore the constant
vector is a left eigenvector of any transfer matrix, and the corresponding eigenvalue is 1.

Using these new notations, we can write equation (3.1) in the form

Iγ = cT 00I2γ + cT 01I2γ−1 + cT 10I2γ+1 + cT 11I2γ

and use it to replace the scalar-valued recurrence relation (2.7) by

c

⎛
⎝T 00 + T 11 T 10 T 01

T 01

T 10

⎞
⎠

︸ ︷︷ ︸
=:M

⎛
⎝ I0

I1

I−1

⎞
⎠+ c

⎛
⎝ 0

(T 00 + T 11)I2 + T 10I3

(T 00 + T 11)I−2 + T 01I−3

⎞
⎠ =

⎛
⎝ I0

I1

I−1

⎞
⎠ . (3.4)

Now we can proceed as before and solve the resulting system of linear equations.

11

3.2 Linear polynomials

Let us now consider a simple example: The Lagrange basis

ϕ0(t) = 1 − t and ϕ1(t) = t

of affine functions corresponding to the interpolation points

ξ0 = 0 and ξ1 = 1.

We identify P = {(0, 0), (1, 0), (0, 1), (1, 1)} with the set {1, 2, 3, 4} and find

T 00 =

⎛
⎜⎜⎝

1 1/2 1/2 1/4
0 1/2 0 1/4
0 0 1/2 1/4
0 0 0 1/4

⎞
⎟⎟⎠ , T 01 =

⎛
⎜⎜⎝

1/2 1/4 0 0
0 1/4 0 0

1/2 1/4 1 1/2
0 1/4 0 1/2

⎞
⎟⎟⎠ ,

T 10 =

⎛
⎜⎜⎝

1/2 0 1/4 0
1/2 1 1/4 1/2
0 0 1/4 0
0 0 1/4 1/2

⎞
⎟⎟⎠ , T 11 =

⎛
⎜⎜⎝

1/4 0 0 0
1/4 1/2 0 0
1/4 0 1/2 0
1/4 1/2 1/2 1

⎞
⎟⎟⎠ ,

so the matrix M from (3.4) takes the form

M = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5/4 1/2 1/2 1/4 1/2 0 1/4 0 1/2 1/4 0 0
1/4 1 0 1/4 1/2 1 1/4 1/2 0 1/4 0 0
1/4 0 1 1/4 0 0 1/4 0 1/2 1/4 1 1/2
1/4 1/2 1/2 5/4 0 0 1/4 1/2 0 1/4 0 1/2

1/2 1/4 0 0
0 1/4 0 0

1/2 1/4 1 1/2
0 1/4 0 1/2

1/2 0 1/4 0
1/2 1 1/4 1/2

0 0 1/4 0
0 0 1/4 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix is upper block triangular, and all but the upper left block are again upper or
lower block triangular, so we can find its eigenvalues by computing the Schur form of the
upper left block: We have

QT

⎛
⎜⎜⎝

5/4 1/2 1/2 1/4
1/4 1 0 1/4
1/4 0 1 1/4
1/4 1/2 1/2 5/4

⎞
⎟⎟⎠Q =

⎛
⎜⎜⎝

2
1

1
1/2 1/2

⎞
⎟⎟⎠ ,

where the unitary transformation Q is given by

Q :=
1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ ,

12

so we find σ(M) = {2c, c, c/2, c/4}, i.e., the matrix I − M is singular if 2−α/4 = c ∈
{1/2, 1, 2, 4} holds, and this is the case if the order α of homogeneity is in {−1,−2,−3,−4}.

4 Strong singularities

4.1 Finite part integrals

In the case of α ≤ −1, the integral (1.1) does not exist in the standard sense. Instead we
consider the family Iε of integrals

Iε :=

∫ 1

0

∫ 1

0
|x−y|≥ε

κ(x, y) dy dx =

∫ 1−ε

0

∫ 1

x+ε

κ(x, y) dy dx +

∫ 1

ε

∫ x−ε

0

κ(x, y) dy dx (4.1)

for ε > 0. The integration domain is [0, 1]2 minus a symmetric strip around x = y as depicted
in Figure 4.1.

For instance, in the case of (1.1), i.e., κ(x, y) = |x − y|α, with α < −1 and α �= −2, we
have

Iε = c0 + cα+1ε
α+1 + cα+2ε

α+2 with

c0 =
2

(α + 1)(α + 2)
, cα+1 = − 2

α + 1
, cα+2 =

2

α + 2
.

In the case −2 < α < −1, the term cα+1ε
α+1 diverges as ε → 0, while cα+2ε

α+2 → 0. In
the case α < −2, both terms cα+2ε

α+2, cα+1ε
α+1 diverge. Omitting the divergent terms, we

define the partie finie integral (cf. [8]) by the constant term c0:

p.f.

∫ 1

0

∫ 1

0

|x − y|α dy dx :=
2

(α + 1)(α + 2)
.

In the case of α = −1 or α = −2, logarithmic terms appear and result in

p.f.

∫ 1

0

∫ 1

0

|x − y|−1 dy dx = −2 = p.f.

∫ 1

0

∫ 1

0

|x − y|−2.

4.2 Triangular splitting

The system (2.8) can be solved if c �∈ {1/2, 1}, i.e., if α �∈ {−1,−2}. In order to find an
interpretation for its solution, we introduce an auxiliary splitting strategy: Different from
before, we no longer split the domain Ω = [0, 1]× [0, 1] into square subdomains, but we split
it first into the triangles

Ωl := {(x, y) ∈ Ω : y < x}, Ωu := {(x, y) ∈ Ω : y ≥ x}
and then split these triangles into four similar subtriangles by applying the standard “red”
refinement strategy.

As before, we split only those subdomains that touch the singularity and get the sequence
of splittings given in Figure 4.1.

13

Figure 4.1: Triangular splitting strategy

For the case of the domain Ωl, we end up with four equivalence classes:

I l
0 :=

∫ 1

0

∫ x

0

κ(x, y) dy dx, I l
1 :=

∫ 1

0

∫ 1

x

κ(x + 1, y) dy dx,

I l
2 :=

∫ 1

0

∫ x

0

κ(x + 1, y) dy dx, I l
3 :=

∫ 1

0

∫ 1

x

κ(x + 2, y) dy dx,

(cf. Figure 4.2) since we have

I l
0 =

∫ 1

0

∫ x

0

κ(x, y) dy dx

=

∫ 1/2

0

∫ x

0

κ(x, y) dy dx +

∫ 1

1/2

∫ x−1/2

0

κ(x, y) dy dx +

∫ 1

1/2

∫ 1/2

x−1/2

κ(x, y) dy dx +

∫ 1

1/2

∫ x

1/2

κ(x, y) dy dx

=

∫ 1/2

0

∫ x

0

κ(x, y) dy dx +

∫ 1/2

0

∫ x

0

κ(x +
1

2
, y) dy dx +

∫ 1/2

0

∫ 1/2

x

κ(x +
1

2
, y) dy dx +

∫ 1/2

0

∫ x

0

κ(x, y) dy d

= cI l
0 + cI l

2 + cI l
1 + cI l

0 = 2cI l
0 + cI l

1 + cI l
2,

I l
1 =

∫ 1

0

∫ 1

x

κ(x + 1, y) dy dx

=

∫ 1/2

0

∫ 1/2

x

κ(x + 1, y) dy dx +

∫ 1/2

0

∫ 1/2+x

1/2

κ(x + 1, y) dy dx

+

∫ 1/2

0

∫ 1

1/2+x

κ(x + 1, y) dy dx +

∫ 1

1/2

∫ 1

x

κ(x + 1, y) dy dx

=

∫ 1/2

0

∫ 1/2

x

κ(x + 1, y) dy dx +

∫ 1/2

0

∫ x

0

κ(x +
1

2
, y) dy dx

+

∫ 1/2

0

∫ 1/2

x

κ(x +
1

2
, y) dy dx +

∫ 1/2

0

∫ 1/2

x

κ(x + 1, y) dy dx

= cI l
3 + cI l

2 + cI l
1 + cI l

3 = cI l
1 + cI l

2 + 2cI l
3

and since I l
2 and I l

3 are nonsingular integrals.
For the domain Ωu, we get the four equivalence classes

Iu
0 :=

∫ 1

0

∫ 1

x

κ(x, y) dy dx, Iu
1 :=

∫ 1

0

∫ x

0

κ(x, y + 1) dy dx,

Iu
2 :=

∫ 1

0

∫ 1

x

κ(x, y + 1) dy dx, Iu
3 :=

∫ 1

0

∫ x

0

κ(x, y + 2) dy dx

14

I
u
1

I

l

u

I3

u
I

l
2I

l
1

2

I
0I l 3

0

I

u

0 1 2 3

1

2

3

Figure 4.2: Equivalence classes for the triangular case.

(cf. Figure 4.2) with the recurrence relations

Iu
0 = 2cIu

0 + cIu
1 + cIu

2 , Iu
1 = cIu

1 + cIu
2 + 2cIu

3 .

Combining the equations, we find⎛
⎜⎜⎝

2c c
c

2c c
c

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:M

⎛
⎜⎜⎝

I l
0

I l
1

Iu
0

Iu
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:x

+

⎛
⎜⎜⎝

cI l
2

cI l
2 + 2cI l

3

cIu
2

cIu
2 + 2cIu

3

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:b

=

⎛
⎜⎜⎝

I l
0

I l
1

Iu
0

Iu
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=x

. (4.2)

By repeated application of this equation, we find

x = Mx + b = M(Mx + b) + b = . . . = Mkx +
k−1∑
l=0

M lb.

The partial sums

xk :=
k−1∑
�=0

M �b (4.3)

correspond to integrals over subdomains: xk represents the integrals over those subdomains
that do not contain singularities after k splitting operations.

In Figure 4.1, the subdomains marked in grey correspond to x0, x1, . . . , x4 (from left to
right). Since our new splitting strategy is based on triangles aligned with the diagonal of
the domain, we find that for xk, a strip of width 2−k around the diagonal has been removed
from the domain of integration, so we have

xk
1 =

∫ 1

2−k

∫ x−2−k

0

|x−y|α dy dx, xk
3 =

∫ 1−2−k

0

∫ 1

x+2−k

|x−y|α dy dx, Ik := xk
1+xk

3 = I2−k .

(4.4)
The latter equation is the reason for our construction: Due to the triangular splitting, the
partial sums Ik correspond to the integrals I2−k defined in (4.1). Therefore the convergence
properties of Ik are closely related to the quantities occurring in the definition of the partie
finie integral.

15

Remark 4.1 (Symmetric case) If κ is symmetric, i.e., if the kernel function satisfies
(1.5), we have Iu

0 = I l
0 and Iu

1 = I l
1, so it is sufficient to solve(

1 − 2c −c
0 1 − c

)(
I l
0

I l
1

)
=

(
cI l

2

cI l
2 + 2cI l

3

)

and set I := 2I l
0.

4.3 Convergence analysis

If ρ(M), the spectral radius of the matrix M from equation (4.2), is smaller than 1, the sum
xk =

∑k−1
�=0 M �b converges to (I − M)−1b, so we can compute x = limk→∞ xk = (I − M)−1b

directly by solving (2.8) (in the case of integrals with polynomials, equation (3.4) can be
used).

Now let us consider the general case. Obviously, the spectrum σ(M) of M is given
by σ(M) = {c, 2c}. Since the eigenspace for the eigenvalue 2c is spanned by the vectors
(1, 0, 0, 0)� and (0, 0, 1, 0)� and the one for the eigenvalue c is spanned by (−1, 1, 0, 0)� and
(0, 0,−1, 1)�, we can diagonalize M :

M =

⎛
⎜⎜⎝

1 −1
1

1 −1
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=T

⎛
⎜⎜⎝

2c
c

2c
c

⎞
⎟⎟⎠

︸ ︷︷ ︸
=D

⎛
⎜⎜⎝

1 1
1

1 1
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=T−1

.

We can apply this to the sum
∑k−1

�=0 M � and get

T−1x =

∞∑
�=0

D�(T−1b), T−1xk =

k−1∑
�=0

D�(T−1b).

Therefore Ik from (4.4) is given by

Ik = xk
1 + xk

3 =

(
k−1∑
�=0

(2c)�

)
(b1 + b2 + b3 + b4)︸ ︷︷ ︸

=:b+

−
(

k−1∑
�=0

c�

)
(b2 + b4)︸ ︷︷ ︸

=:b−

.

In the exceptional cases c = 1/2 and c = 1, we get the respective expressions

Ik = kb+ − 1 − 2−k

1 − 1/2
b− = −2b− + kb+ + 21−kb−, (case c = 1/2) (4.5a)

Ik =
1 − 2k

1 − 2
b+ − kb− = −b+ − kb− + 2kb+, (case c = 1) (4.5b)

and otherwise

Ik =
1 − (2c)k

1 − 2c
b+ − 1 − ck

1 − c
b− =

(
b+

1 − 2c
− b−

1 − c

)
− b+

1 − 2c
(2c)k +

b−
1 − c

ck. (4.5c)

16

As we can see in Figure 4.1, we have

Ik = Iεk
:=

∫ 1

εk

∫ x−εk

0

|x − y|α dy dx +

∫ 1−εk

0

∫ 1

x+εk

|x − y|α dy dx

for εk := 2−k, and we find

(2c)k = 2−k(α+1) = εα+1
k , ck = 2−k(α+2) = εα+2

k and k = − log2 εk.

We can use this to rewrite equations (4.5a-c) in the form

Iεk
=

⎧⎪⎪⎨
⎪⎪⎩
−2b− − b+ log2 εk + 2b−εk if α = −1,

−b+ + b− log2 εk + b+ε−1
k if α = −2,(

b+
1−2c

− b−
1−c

)
− b+

1−2c
εα+1
k + b−

1−c
εα+2
k otherwise.

(4.6)

We are interested in the case k → ∞, i.e., εk → 0. For α > −1, the integral is only
weakly singular, and εα+1

k and εα+2
k converge to zero. For α ≤ −1, the integral is not weakly

integrable, so we use the Hadamard integral, i.e., we take only the finite part of the expansion
(4.6) of Iεk

:

I∞ :=

⎧⎪⎨
⎪⎩
−2b− if α = −1,

−b+ if α = −2,
b+

1−2c
− b−

1−c
otherwise.

Now let us consider a simpler way of finding the Hadamard integral I∞. If c �∈ {1/2, 1}, i.e.,
if α �∈ {−1,−2}, the partial sums (4.3) can be written in the form

xk = (I − M)−1(I − Mk)b.

In the weakly singular case, we have ρ(M) < 1, and Mk converges to zero if k → ∞, giving
us

x∞ := (I − M)−1b. (4.7)

Diagonalization of this equation yields

x∞ =

⎛
⎜⎜⎝

1 −1
1

1 −1
1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
1−2c

1
1−c

1
1−2c

1
1−c

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 1
1

1 1
1

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎝

(b1 + b2)/(1 − 2c) − b2/(1 − c)
b2/(1 − c)

(b3 + b4)/(1 − 2c) − b4/(1 − c)
b4/(1 − c)

⎞
⎟⎟⎠

and we find that
x∞

1 + x∞
3 = I∞

holds, so we can compute I∞ even in the strongly singular case by equation (4.7).
Unfortunately, this equation cannot be applied if I − M is singular, i.e., if c ∈ {1/2, 1}.

We can fix this by replacing (I − M)−1 by the proper pseudo-inverse: We use the function

pinv(α) :=

{
1/α if α �= 0,

0 otherwise,

17

to define the pseudo-inverse (I − M)† by

(I − M)† := T

⎛
⎜⎜⎝

pinv(1 − 2c)
pinv(1 − c)

pinv(1 − 2c)
pinv(1 − c)

⎞
⎟⎟⎠T−1.

Obviously, we have (I − M)† = (I − M)−1 if I − M is regular. If it is singular, we use

x∞ := (I − M)†b

and find

x∞ =

⎛
⎜⎜⎝

(b1 + b2) pinv(1 − 2c) − b2 pinv(1 − c)
b2 pinv(1 − c)

(b3 + b4) pinv(1 − 2c) − b4 pinv(1 − c)
b4 pinv(1 − c)

⎞
⎟⎟⎠ .

In the cases c = 1/2 (i.e., α = −1) and c = 1 (i.e., α = −2), we find

x∞
1 + x∞

3 = −b2 + b4

1 − c
= −2b− = I∞ (case c = 1/2, α = −1),

x∞
1 + x∞

3 =
b1 + b2 + b3 + b4

1 − 2c
= −b+ = I∞ (case c = 1, α = −2),

so now we have found a general procedure for the computation of I∞: We compute x∞ :=
(I−M)†b and get I∞ = x∞

1 +x∞
3 . This will work for all values of α, i.e., for arbitrary degrees

of singularity, and it will give us the desired Hadamard integral.

4.4 Reduction to rectangular splitting

We have seen that the solution of (2.8) corresponds to the Hadamard integral if c �∈ {1/2, 1},
i.e., if α �∈ {−1,−2}.

The relation to the Hadamard integral is due to the fact that we use triangular subdo-
mains and approach the diagonal {(x, y) ∈ Ω : x = y} uniformly. While this works in the
one-dimensional setting, its generalization to higher dimensions is not straightforward (it
would require the use of curved subdomains).

Let I l
0, I

l
1, I

u
0 , Iu

1 ∈ R satisfy equation (4.2) and let the regular integrals I l
2, I

l
3, I

u
2 , Iu

3 ∈ R

and I2, I3, I−2, I−3 ∈ R be defined as before.

=

I
2

I
2

I
3

I
3
l

I
3
l

I
2
l

c c

c

c

c

Figure 4.3: Relation of square and triangular equivalence classes

18

The regular integrals satisfy the equation

2cI2 + cI3 = c

∫ 1

0

∫ 1

0

|x − y + 2|α dy dx + c

∫ 1

0

∫ 1

0

|x − y + 2|α dy dx + c

∫ 1

0

∫ 1

0

|x − y + 3|α dy dx

=

∫ 1/2

0

∫ 1/2

0

|x − y + 1|α dy dx +

∫ 1

1/2

∫ 1

1/2

|x − y + 1|α dy dx +

∫ 1/2

0

∫ 1/2

0

|x − y + 3/2|α dy dx

=

∫ 1/2

0

∫ 1

0

|x − y + 1|α dy dx +

∫ 1

1/2

∫ 1/2

0

|x − y + 1|α dy dx

=

∫ 1

0

∫ 1

0

|x − y + 1|α dy dx −
∫ 1/2

0

∫ 1

1/2

|x − y + 1|α dy dx

=

∫ 1

0

∫ x

0

|x − y + 1|α dy dx +

∫ 1/2

0

∫ 1/2

x

|x − y + 1|α dy dx +

∫ 1

1/2

∫ 1

x

|x − y + 1|α dy dx

= I l
2 + 2cI l

3.

By similar arguments, we find 2cI−2 + cI−3 = Ir
2 + 2cIr

3 . By setting

Î0 := I l
0 + Iu

0 , Î1 := I l
1 + I l

2, Î−1 := Iu
1 + Iu

2 ,

we find that

Î0 = I l
0 + Iu

0 = 2c(I l
0 + Iu

0) + c(I l
1 + I l

2) + c(Iu
1 + Iu

2) = 2cÎ0 + cÎ1 + Î−1,

Î1 = I l
1 + I l

2 = cI l
1 + cI l

2 + 2cI l
3 + I l

2 = cÎ1 + 2cI l
3 + I l

2 = cÎ1 + 2cI2 + cI3,

Î−1 = cÎ−1 + 2cI−2 + cI−3.

holds. This implies ⎛
⎝ Î0

Î1

Î−1

⎞
⎠ =

⎛
⎝2c c c

c
c

⎞
⎠
⎛
⎝ Î0

Î1

Î−1

⎞
⎠+

⎛
⎝ 0

2cI2 + cI3

2cI−2 + cI−3

⎞
⎠ ,

so each solution of (4.2) corresponds to a solution of (2.7). Since the solutions are unique,
the triangular splitting scheme leads to the same result as the rectangular scheme.

5 Implementation

In this paper, we have studied only the one-dimensional case, where only a small number of
equivalence classes (4, namely (Iγ)

3
γ=0, in the case of a rectangular splitting, and 8, namely

(Iu
γ)3

γ=0 and (I l
γ)

3
γ=0, in the case of a triangular splitting) has to be computed. In this simple

setting, we can compute the solution of the systems of linear equations explicitly and use
them to derive quadrature rules. In the symmetric case for example, we can use (2.9) to
derive the quadrature formula

I ≈ 4c2

(1 − 2c)(1 − c)
Ĩ2 +

2c2

(1 − 2c)(1 − c)
Ĩ3

=
4c2

(1 − 2c)(1 − c)

m∑
k=1

m∑
�=1

wkw� κ(xk + 2, x�) +
2c2

(1 − 2c)(1 − c)

m∑
k=1

m∑
�=1

wkw� κ(xk + 3, x�),

19

where (xk)
m
k=1 are the Gauss quadrature points for the interval [0, 1] and (wk)

m
k=1 are the

corresponding weights. For the logarithmic kernel function κ(x, y) = log |x − y|, we have to
add an appropriate multiple of the correction term β(1/2).

In order to treat integrals with polynomials efficiently, we note that the computation of
the vector Iγ from (3.3) requires only one kernel evaluation per quadrature point, since only
the multiplicative factors corresponding to the basis functions ϕi and ϕj change. This means
that the number of kernel evaluations for the case of integrals with polynomials is the same
as for the case of integrals without additional factors.

Applying our quadrature algorithm to boundary integral operators on curves Γ is straight-
forward: The curve is approximated by a polygon through a sequence of points (ai)

n
i=0, and

the entries of the Galerkin stiffness matrix are approximated by

Aνµ =
n∑

i=1

n∑
j=1

∫ ai

ai−1

ϕν(x)

∫ aj

aj−1

κ(x, y)ϕµ(y) dy dx

for polynomial (or piecewise polynomial) basis functions (ϕν). In order to apply our quadra-
ture scheme, we have to transform the line integrals to integrals over [0, 1]2. If i = j, this is
straightforward: We use the parametrization

Φ(s, t) =

(
ais + ai−1(1 − s)
ait + ai−1(1 − t)

)
and find∫ ai

ai−1

∫ aj

aj−1

κ(x, y)ϕν(x)ϕµ(y) dy dx = ‖ai − ai−1‖ ‖aj − aj−1‖
∫ 1

0

∫ 1

0

κ̂(s, t)ϕ̂ν(s)ϕ̂µ(t) dt ds

with

κ̂(s, t) = κ(ais + ai−1(1 − s), ait + ai−1(1 − t)),

ϕ̂ν(s) = ϕν(ais + ai−1(1 − s)), ϕ̂µ(t) = ϕµ(ait + ai−1(1 − t)).

Obviously, if κ is shift-invariant, so is κ̂, and if ϕν and ϕµ are polynomial, so are ϕ̂ν and ϕ̂µ.
Therefore we can now apply our quadrature rule to approximate this integral.

Let us consider the case of two adjacent lines, i.e., ai−1 = aj or aj−1 = ai. Since both
cases are symmetric, we will only give a construction for the first one. Again, we introduce
a parametrization

Φ(s, t) =

(
ais + ai−1(1 − s)

aj(1 − t) + aj−1(2 − t)

)
that maps [0, 1] × [1, 2] to [ai−1, ai] × [aj−1, aj] and ensures Φ(1, 1) = (ai−1, aj) = (aj, aj).
Applying the corresponding transformation, we get∫ ai

ai−1

∫ aj

aj−1

κ(x, y)ϕν(x)ϕµ(y) dy dx = ‖ai − ai−1‖ ‖aj − aj−1‖
∫ 1

0

∫ 2

1

κ̂(s, t)ϕ̂ν(s)ϕ̂µ(t) dt ds

with

κ̂(s, t) = κ(ais + ai−1(1 − s), aj(1 − t) + aj−1(2 − t)),

ϕ̂ν(s) = ϕν(ais + ai−1(1 − s)), ϕ̂µ(t) = ϕµ(aj(1 − t) + aj−1(2 − t)).

20

m = 1 m = 2 m = 3 m = 4 m = 5
n = 2 n = 8 n = 18 n = 32 n = 50

|I − Ĩ|/|I| |I − Ĩ|/|I| |I − Ĩ|/|I| |I − Ĩ|/|I| |I − Ĩ|/|I|
log 1.19−2 1.10−4 1.48−6 2.44−8 4.54−10

α = −0.5 1.39−2 1.98−4 3.42−6 6.67−8 1.41−9

α = −1.0 − − − − −
α = −1.5 7.32−2 2.10−3 5.53−5 1.46−6 3.92−8

α = −2.0 − − − − −
α = −2.5 1.73−1 8.62−3 3.26−4 1.13−5 3.72−7

α = −3.0 2.35−1 1.49−2 6.62−4 2.58−5 9.40−7

α = −3.5 3.02−1 2.39−2 1.24−3 5.39−5 2.16−6

α = −4.0 3.72−1 3.61−2 2.15−3 1.05−4 4.58−6

α = −10.0 9.29−1 4.28−1 8.79−2 1.14−2 1.14−3

Table 6.1: Relative errors and kernel evaluations for different degrees of homogeneity and
quadrature orders, rectangular splitting

The transformed integral corresponds to the value I1 of (2.6), so we can compute it using
(2.8) even though the transformed kernel function κ̂ is no longer invariant under translations.

Our approach is not limited to the one-dimensional case: Let us consider the example
of triangular domains. Instead of splitting intervals into two halves, we split triangles into
four similar subtriangles and proceed as before. The resulting splitting graph contains 14
non-admissible and 60 admissible equivalence classes. We can treat products of rectangles
or quadrilaterals by similar techniques.

6 Numerical experiments

Since we are mainly interested in the behaviour of the quadrature rule for high-order singu-
larities, we consider the simple one-dimensional case with the kernel function

κ(x, y) = |x − y|α

from (1.1) and test the performance of our method for different values of α. We have

I =

∫ 1

0

∫ 1

0

κ(x, y) dy dx = 2

∫ 1

0

∫ x

0

|x − y|α dy dx =
2

(α + 1)(α + 2)
.

We approximate I as described in Subsection 2.5 for different values of α and collect the
relative errors and the number of kernel evaluations in Table 6.1. Here, m denotes the order
of the quadrature rule (2.11), n denotes the number of kernel evaluations required, and the
rows of the table give the relative error of the integral. The cases α = −1 and α = −2
are omitted because the regularization described in Subsection 4.3 only works for triangular
approximations.

We compare the results with those derived for the triangular approximation introduced in
Subsection 4.2. The regular integrals are approximated by applying the Duffy transformation

21

m = 1 m = 2 m = 3 m = 4 m = 5
n = 2 n = 8 n = 18 n = 32 n = 50

|I − Ĩ|/|I| |I − Ĩ|/|I| |I − Ĩ|/|I| |I − Ĩ|/|I| |I − Ĩ|/|I|
log 8.73−3 3.86−6 3.26−7 7.75−9 1.75−10

α = −0.5 6.02−4 6.18−5 1.43−6 3.19−8 7.36−10

α = −1.0 2.86−2 6.50−4 1.48−5 3.49−7 8.56−9

α = −1.5 3.36−2 1.23−3 3.47−5 9.54−7 2.62−8

α = −2.0 3.35−2 1.88−3 6.40−5 2.01−6 6.15−8

α = −2.5 1.10−1 5.99−3 2.33−4 8.16−6 2.72−7

α = −3.0 1.61−1 1.07−2 4.88−4 1.92−5 7.04−7

α = −3.5 2.18−1 1.77−2 9.31−4 4.10−5 1.64−6

α = −4.0 2.79−1 2.72−2 1.65−3 8.06−5 3.53−6

α = −10.0 8.58−1 3.62−1 7.34−2 9.53−3 9.47−4

Table 6.2: Relative errors and kernel evaluations for different degrees of homogeneity and
quadrature orders, triangular splitting

(s, t)
→ (s, (1−s)t) to tensor Gauss quadrature rules. The corresponding relative errors can
be found in Table 6.2. Due to the better performance of the quadrature rule for triangular
subdomains, they are slightly smaller than those for the case of rectangular splittings.

As predicted by theory, the quadrature error converges exponentially in all cases, while
the algorithmic complexity, expressed as the number n of kernel evaluations, increases only
quadratically: Since we compute the integrals I2, I3 (or Iu

2 , Iu
3) by using tensor quadrature

of order m, we have n = 2m2.

References

[1] S. Börm and L. Grasedyck. Low-rank approximation of integral operators by interpolation.
Preprint 72, Max Planck Institute for Mathematics in the Sciences Leipzig, 2002. To
appear in Computing.

[2] M.G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a
vertex. SIAM J. Numer. Anal., 19:1260–1262, 1982.

[3] S. Erichsen and S.A. Sauter: Efficient automatic quadrature in 3-d Galerkin BEM. Com-
put. Methods Appl. Mech. Engrg., 157:215-224, 1998

[4] M. Guiggiani. Direct evaluation of hypersingular integrals in 2D BEM. In Hackbusch [5],
pages 23–34.

[5] W. Hackbusch (ed.). Numerical techniques for boundary element methods, Notes on Nu-
merical Fluid Mechanics, vol. 33. Vieweg-Verlag, Braunschweig, 1992.

[6] W. Hackbusch and S.A. Sauter. On numerical cubatures of nearly singular surface inte-
grals arising in BEM collocation. Computing, 52:139–159, 1994.

22

[7] W. Hackbusch and G. Wittum (eds.). Boundary elements: implementation and analysis
of advanced algorithms, Notes on Numerical Fluid Mechanics, vol. 54. Vieweg-Verlag,
Braunschweig, 1996.

[8] J. Hadamard. Le problème de Cauchy et les équations aux dérivées partielles linéaires
hyperboliques. Hermann & Cie, Paris, 1932

[9] R. Kieser, C. Schwab, and W.L. Wendland. Numerical evaluation of singular and finite-
part integrals on curved surfaces using symbolic manipulation. In Hackbusch [5], pages
279–301.

[10] S.A. Sauter. Über die effiziente Verwendung des Galerkin-Verfahrens zur Lösung Fred-
holmscher Integralgleichungen. Doctoral thesis, Universität zu Kiel, 1992.

[11] S.A. Sauter. Cubature techniques for 3D Galerkin BEM. In Hackbusch and Wittum [7],
pages 29–44.

[12] S.A. Sauter and C. Lage. On the efficient computation of singular and nearly singular
integrals arising in 3D Galerkin BEM. ZAMM, 76:273–275, 1996.

[13] S.A. Sauter and C. Lage. Transformation of hypersingular integrals and black-box cuba-
ture. Math. Comp., 70:223–250, 2001.

[14] S.A. Sauter and C. Schwab. Quadrature for hp-Galerkin BEM in R
3. Numer. Math.,

78:211–258, 1997.

[15] C. Schwab: Variable order composite quadrature of singular and nearly singular inte-
grals. Computing, 53,173-194, 1994

[16] C. Schwab and W.L. Wendland. On numerical cubatures of singular surface integrals in
boundary element methods. Numer. Math., 62:343–369, 1992.

[17] J. Stoer. Einführung in die Numerische Mathematik I. Springer-Verlag, Berlin, 8th
edition, 1999.

[18] G. Vainikko. Multidimensional weakly singular integral equations. Springer-Verlag,
Berlin, 1991.

[19] H. Yserentant. A remark on the numerical computation of improper integrals. Numer.
Math., 30:179–183, 1983.

Steffen Börm
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstrasse 22–26
04103 Leipzig
Germany
sbo@mis.mpg.de

23

Wolfgang Hackbusch
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstrasse 22–26
04103 Leipzig
Germany
wh@mis.mpg.de

24

