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ON THE GEOMETRIC FLOW OF KIRCHHOFF ELASTIC RODS

CHUN-CHI LIN AND HARTMUT R. SCHWETLICK

Abstract. Recently, rod theory has been applied to the mathematical model-
ing of bacterial fibers and biopolymers (e.g. DNA), to study their mechanical
properties and shapes (e.g. supercoiling). In static rod theory, an elastic rod
in equilibrium is the critical point of an elastic energy. This induces a natural
question of how to find elasticae. In this paper, we focus on how to find the
critical points by means of gradient flows. We relate a geometric functional
of curves to the isotropic Kirchhoff elastic energy of rods so that the gener-
alized elastic curves are the centerlines of elastic rods in equilibrium. Thus,
the variational problem for rods is formulated in curve geometry. This prob-
lem turns out to be a generalization of curve-straightening flows, which induce
nonlinear fourth-order evolution equations. We establish the long time exis-
tence of length preserving gradient flow for the geometric energy. Furthermore,
by studying the asymptotic behaviour, we show that the limit curves are the
centerlines of the Kirchhoff elastic rods in equilibrium.

1. Introduction

Recently, rod theory has been applied to the mathematical modeling of bacterial
fibers and biopolymers (e.g. DNA) to study their mechanical properties and shapes
(e.g. supercoiling). In static rod theory, an elastic rod in equilibrium is the critical
point of an elastic energy. This induces a natural question of how to find elasticae.
In our project, we ask the question: starting from a given rod configuration Γ in R

3,
can we find the critical points of a Kirchhoff elastic energy, or the so called elasticae,
by means of geometric gradient flows? In order to keep the model problem in this
paper simple, we only consider a special isotropic Kirchhoff elastic energy. For more
general rod theory, readers are referred to [1].

Suppose f : I = R/Z → R
3 is the centerline of a closed rod. Let γ = |∂xf |,

ds = γ dx the arclength element, and ∂s = γ−1∂x the arclength differentiation.
Denote by T = ∂sf the unit tangent vector, and κ = ∂2

sf the curvature vector of f .
A rod configuration Γ is a framed curve described by {f (s) ;T (s) ,M1 (s) ,M2 (s)},
where the material frame {T,M1,M2} forms an orthonormal frame field along f .
Thus, we can write the skew-symmetric system⎛⎝ T ′

M ′
1

M ′
2

⎞⎠ =

⎛⎝ 0 m1 m2

−m1 0 m
−m2 −m 0

⎞⎠⎛⎝ T
M1

M2

⎞⎠ ,
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with arbitrary functions m1 (s), m2 (s), and m (s). Consider the Kirchhoff elastic
energy E of an isotropic rod Γ, defined by

E [Γ] :=
∫
I

(
α · (m2

1 +m2
2) + β ·m2

)
ds,

with material constants α > 0 and β ≥ 0. The term involving α gives the bending
energy, while the term involving β gives the twisting energy.

Whenever a smooth curve f has no inflection points, the Frenet frame field
{T,N,B} along f is well-defined. By using the Frenet frame field, it can be easily
verified that

E [Γ] =
∫
I

(
α |κ|2 + βm2

)
ds,(1.1)

(e.g., see [7]). A natural frame is an orthonormal frame field along a given curve f ,
which is uniquely determined by its initial data at a point and the skew-symmetric
system, ⎛⎝ T ′

U ′

V ′

⎞⎠ =

⎛⎝ 0 u v
−u 0 0
−v 0 0

⎞⎠⎛⎝ T
U
V

⎞⎠ ,

(see [3] or [7] p. 607). A natural frame can be thought as a frame without twisting.
As we denote by θ the angle from U to M1 with θ (0) = 0, one can verify that m
is equal to the twisting rate, i.e., m (s) = θ′ (s). Whenever f contains no inflection
points, the Frenet frame is well defined along f . Denote by φ the angle from U to
N , then it is easy to verify that the torsion of the curve satisfies τ = φ′. Denote by
Ψ := θ − φ the angle from N to M1 and let �Ψ := Ψ (L) − Ψ (0), where L is the
total length of f . By these notations, we have

Tw [Γ] =
∫
I

m ds = �Ψ +
∫
I

τ ds.(1.2)

It is worth mentioning here that whenever f contains neither self-intersection nor in-
flection points, applying the so called Fuller-Calugareanu-White formulae provides
another approach to derive Eq.(1.2). This approach is less general and less direct,
but reveals the topological meaning of �Ψ, although the total twisting number of
Γ, Tw [Γ], and the total torsion of f ,

∫
I

τ ds, are not topological invariants. We thus

set up the boundary value problem by prescribing a real number, �Ψ, which is
called the end point condition of rod configurations in the rest of this paper. From
above, we would like to emphasize that the bending energy and twisting energy in-
teract as rod configurations achieving the critical points of the elastic energy. More
precisely, the twisting depends on the centerlines of rods as well. Otherwise, the
twisting energy and bending energy can be considered separately and the resulting
centerlines of rod elasticae would simply be curve elasticae.

In [7], Langer and Singer proposed to study the generalized elastic curves by
introducing the geometric functional F̃ of curves f : I → R

3,

F̃ [f ] := λ3K [f ] + λ2T [f ] + λ1L [f ] ,(1.3)
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where

K [f ] :=
∫
I

1
2
|κ|2 ds, T [f ] :=

∫
I

τ ds, L [f ] :=
∫
I

ds,

and λi in Eq.(1.3) are Lagrange multipliers for i = 1, 2. According to their formu-
lation, a generalized elastic curve f in equilibrium is a critical point of the elastic
energy F̃ among the class of curves with fixed total torsion T [f ] = T0 and length
L [f ] = L. As long as λi together with the fixed total torsion T0 fit certain rela-
tions, they showed that f is the centerline of an isotropic elastic rod in equilibrium.
The problems considered in this paper and in Eq. (1.3) is closely related to curve
straightening flows. To the authors’ knowledge, curve straightening flows have been
studied by Wen [9], Polden [8], Koiso[6] and Dziuk, Kuwert, Schätzle [4]. At the
beginning, we tried to apply the method used in the problems of curve straight-
ening flows to the geometric functional F̃ proposed in [7]. However, an essential
difficulty coming from the constraint of fixing the total torsion fails this approach.
Namely, after multiplying the term of the first variation of the total torsion T [f ]
by its Lagrange multiplier, the method of L2 curvature estimates combined with
Gagliardo-Nirenberg-type interpolation inequalities used in the problems of curve
straightening flows fails, because this term has higher power of derivatives in total
than those from K [f ].

In order to resolve the difficulty mentioned above, we propose another approach
based on Theorem 1 below. We learn from [5] and [7] that a symmetric elastic
rod (or, equivalently, an isotropic elastic rod) must have a constant twisting rate.
Observe that among all isotropic rod configurations Γ with constant twisting rate
m = T [f ]+�Ψ

L , fixed length L, but without inflection points, we have the identity,

E [Γ] = G�Ψ,L [f ] := 2αK [f ] +
β

L
(T [f ] + �Ψ)2 .

Theorem 1 basically means that the equilibrium elastic rods must stay in the sub-
class of rod configurations with constant twisting rate and fixed length L. Thus, in
order to find closed elastic rods of E , we work with the geometric functional,

F [f ] := G�Ψ,L [f ] + λ1 · (L [f ] − L) ,(1.4)

where λ1 is the Lagrange multiplier. It turns out that working with the functional
G�Ψ,L of curves with fixed length L is more suitable than working directly with the
rod energy E in our geometric approach .

Theorem 1. Let f : I = R/Z → R
3 be the centerline of a closed rod Γ. Assume f

contains no inflection points. Then, subject to variations of fixed length L and end
point condition �Ψ in Eq.(1.2), Γ is an equilibrium of the elastic energy E if and
only if f is a critical point of the geometric functional F and the twisting rate is
equal to the constant ∆Ψ+T [f ]

L .

The inflection points in above theorem simply mean points of zero curvature.
We exclude the situation of the limit curves containing inflection points because
our argument in Theorem 1 relies on the formulation of Frenet frames, which are
ill-defined at an inflection point. By the first variational formulae in Lemma 6, we
obtain for the length preserving L2 gradient flow of F the evolution equation,

∂tf = λ3 · (−∇2
sκ− |κ|2

2
κ) + λ2 (t) · ∇s (T × κ) + λ1 (t) · κ,(1.5)
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where f : [0,∞)×I → R
3 has smooth initial data f0. Here, the covariant derivative

∇sη denotes the normal component of ∂sη, i.e., ∇sη = ∂sη − 〈∂sη, T 〉T , and

λ1 (t) :=
2α
∫
I

〈κ,∇2
sκ+ |κ|2

2 κ〉 ds− 2β
L (T [f ] + �Ψ)

∫
I

〈κ,∇s (T × κ)〉 ds∫
I

|κ|2 ds
,(1.6)

λ2 (t) :=
2β
L

(T [f ] + �Ψ) , L, β > 0,(1.7)

λ3 := 2α, α > 0.(1.8)

Notice that λ1 (t) in Eq.(1.6) is chosen so that d
dtL [ft] = 0 for all time. The

following theorem is the main result of this paper.

Theorem 2. For any real number �Ψ and any smooth initial closed curve f0, there
exists a smooth solution to the L2-gradient flow in Eq.(1.5), until the appearance
of inflection points. With the assumption of no inflection points appearing during
the flow, the curves subconverge to f∞, an equilibrium of the energy functional F ,
after reparametrization by arclength and translation. Furthermore, if f∞ contains
no inflection points, then f∞ is the centerline of an equilibrium Kirchhoff elastic
rod with constant total twisting rate T [f∞]+�Ψ

L .

This paper is arranged as follows. In section 2 we introduce further notation
and collect the results needed from [4]. Since most of these preliminaries follow the
lines in [4], the reader is recommended to consult [4] for further details. In Section
3 we present the proof of the main results. Finally, Section 4 is devoted to the
numerical treatment of the problem. We explain the algorithm we have used and
show several computational results.

2. Preliminaries

Lemma 1 (Lemma 2.1 in [4]). Suppose φ is any normal field along f and f :
[0, ε) × I → R

n is a time dependent curve satisfying ∂tf = V + ϕT , where V
is the normal velocity and ϕ = 〈T, ∂tf〉. Then the following formulae hold.

∇sφ = ∂sφ+ 〈φ, κ〉 T,(2.1)
∂t (ds) = (∂sϕ− 〈κ, V 〉) ds,(2.2)
∂t∂s − ∂s∂t = (〈κ, V 〉 − ∂sϕ) ∂s,(2.3)
∂tT = ∇sV + ϕ · κ,(2.4)
∂tφ = ∇tφ− 〈∇sV + ϕ κ, φ〉T,(2.5)
∇tκ = ∇2

sV + 〈κ, V 〉κ+ ϕ · ∇sκ,(2.6)
(∇t∇s −∇s∇t)φ = (〈κ, V 〉 − ∂sϕ)∇sφ+ 〈κ, φ〉∇sV − 〈∇sV, φ〉 · κ.(2.7)

Lemma 2 (Lemma 2.2 in [4]). Suppose f : [0, T̂ ) × I → R
n moves in a normal

direction with velocity ∂tf = V , φ is a normal vector field along f , and ∇tφ+∇4
sφ =

Y . Then
d

dt

1
2

∫
I

|φ|2 ds+
∫
I

∣∣∇2
sφ
∣∣2 ds =

∫
I

〈Y, φ〉 ds− 1
2

∫
I

|φ|2 〈κ, V 〉 ds.(2.8)

Furthermore, ψ = ∇sφ satisfies the equation

∇tψ + ∇4
sψ = ∇sY + 〈κ, φ〉∇sV − 〈∇sV, φ〉κ+ 〈κ, V 〉ψ.(2.9)
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For normal vector fields φ1, · · ·, φk along f , we denote by φ1 ∗ ∗ ∗ φk a term of
the type

φ1 ∗ ∗ ∗ φk =
{

〈φi1 , φi2 〉 · · · 〈φik−1 , φik
〉 , for k even,

〈φi1 , φi2 〉 · · · 〈φik−2 , φik−1〉 · φik
, for k odd,

where i1, ···, ik is any permutation of 1, ···, k. Slightly more generally, we allow some
of the φi to be functions, in which case the ∗-product reduces to multiplication.
For a normal vector field φ along f , we denote by Pµ

ν (φ) any linear combination
of terms of the type ∇i1

s φ ∗ · · · ∗ ∇iν
s φ with universal constant coefficients, where

µ = i1 + · · · + iν is the total number of derivatives. Notice that the following
formulae hold:⎧⎨⎩

∇s (P a
b (φ) ∗ P c

d (φ)) = ∇sP
a
b (φ) ∗ P c

d (φ) + P a
b (φ) ∗ ∇sP

c
d (φ) ,

P a
b (φ) ∗ P c

d (φ) = P a+c
b+d (φ) , ∇sP

c
d (φ) = P c+1

d (φ) .
(2.10)

Similarly, we denote by Qµ
ν (κ) the linear combination of ∂i1

s κ ∗ ∗ ∗ ∂iν
s κ, where

i1 + · · · + iν = µ.
The following lemma states the important interpolation inequality for higher

order curvature functionals.

Lemma 3 (Proposition 2.5 in [4]). For any term Pµ
ν (κ) with ν ≥ 2 which contains

only derivatives of κ of order at most k − 1, we have∫
I

|Pµ
ν (κ)| ds ≤ c L [f ]1−µ−ν ‖κ‖ν−γ

2 ‖κ‖γ
k,2 ,(2.11)

where γ =
(
µ+ 1

2ν − 1
)
/k, c = c (n, k, µ, ν), and

‖κ‖k,p :=
k∑

i=0

∥∥∇i
sκ
∥∥

p
,
∥∥∇i

sκ
∥∥

p
:= L [f ]i+1−1/p (

∫
I

∣∣∇i
sκ
∣∣p ds)1/p.

Moreover, if µ+ 1
2ν < 2k + 1, then γ < 2 and we have for any ε > 0,

∫
I

|Pµ
ν (κ)| ds ≤ ε

∫
I

| ∇k
sκ |2 ds+ cε

−γ
2−γ (

∫
I

|κ|2 ds)
ν−γ
2−γ + c(

∫
I

|κ|2 ds)µ+ν−1.

(2.12)

Lemma 4 (Lemma 2.6 in [4]). We have the identities

∇sκ− ∂sκ = |κ|2 T,(2.13)

∇m
s κ− ∂m

s κ =
[ m

2 ]∑
i=1

Qm−2i
2i+1 (κ) +

[ m+1
2 ]∑

i=1

Qm+1−2i
2i (κ)T.(2.14)

Lemma 5 (Lemma 2.7 in [4]). Assume the bounds ‖κ‖L2 ≤ Λ0 and ‖∇m
s κ‖L1 ≤

Λm for m ≥ 1. Then for any m ≥ 1 one has∥∥∂m−1
s κ

∥∥
L∞ + ‖∂m

s κ‖L1 ≤ cm (Λ0, ...,Λm) .(2.15)
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3. Proof of the Main Results

Lemma 6. Let f : I = R/Z → R
3 represent a smooth curve in R

3 without inflec-
tion points. Then, for any variation fε (x) = f (x)+εW (x), where f , W ∈ C∞ (I),
one has the followings:

d
dε�ε=0L [fε] = −

∫
I

〈κ,W 〉 ds+ [〈T,W 〉]L0 ,

d
dε�ε=0T [fε] = −

∫
I

〈∇s (T × κ) ,W 〉 ds

+
[
〈∇2

s (W − 〈W,T 〉T ) + 〈W,T 〉 · ∇sκ,
B
|κ|〉 + 〈W,T × κ〉

]L
0
,

d
dε�ε=0K [fε] =

∫
I

〈∇2
sκ+ |κ|2

2 κ,W 〉 ds

+
[
〈T,W 〉 · |κ|2

2 + 〈κ,∇s (W − 〈W,T 〉T )〉 − 〈∇sκ,W 〉
]L
0
.

Proof. The formulae can be directly verified by applying the general formulae in
Lemma 1 below. Thus, we skip the detail of the computation and leave the verifi-
cation to the reader.

Proof of Theorem 1. If we perturb the rod configuration Γ of a given elastic rod in
equilibrium without perturbing the centerline f , then

0 = δE [Γ] = β · δ
∫
I

m2 ds = 2β ·
∫
I

m · (δm) ds.(3.1)

By the end point condition in Eq.(1.2) and the formula m (s) = θ′ (s), we conclude
that m is a constant and

m =
(�Ψ + T [f ])

L
= L−1

∫
I

m ds.

Thus, any closed Kirchhoff elastic rod in equilibrium with end point condition �Ψ
and length L belongs to the subclass of rod configurations A�Ψ,L, where

A�Ψ,L := {Γ : m (s) =
�Ψ + T [f ]

L
, L [f ] = L}.

Observe that for any rod configurations Γ ∈ A�Ψ,L, we have

E [Γ] = G�Ψ,L [f ] .(3.2)

Now, perburbations of Γ preserving the length in the subclass of rod configurations
A�Ψ,L induce the variational equation,

δ (G�Ψ,L [f ] + λ1 · (L [f ] − L)) = 0,

where λ1 is the Lagrange multiplier.
Conversely, by assuming f being the critical point of F , we have

δLG�Ψ,L [f ] = 0,

where δL denotes perturbations of preserving the length. Since the rod configuration
Γ has constant twisting rate (�Ψ+T [f ])

L , therefore Γ ∈ A�Ψ,L. Thus,

δLE [Γ] = δLG�Ψ,L [f ] = 0.
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Proof of Theorem 2. The proof is motivated by the arguments in [4]. Recalling
that no inflection point is on the initial curve, the short time existence is a standard
argument. We thus skip it here, and focus on the long time existence and asymptotic
behaviour.

To prove global bounds we wish to estimate higher Sobolev norms of the curva-
ture. Their evolution is given by

∇t∇m
s κ = −∇4

s∇m
s κ+ tensors of lesser order.

Therefore we arrive at

d

dt

1
2

∫
I

| ∇m
s κ |2 ds+

∫
I

| ∇m+2
s κ |2 ds = terms of lesser order.

It will be not necessary to compute the error terms explicitly. It is sufficient to keep
track of their scaling, in other words we have to know the order of the derivatives
involved. Using the notation introduced before the next lemma characterizes the
error terms coming from the twist term, i.e., dealing with the new situation that
the total torsion is included in our energy.

Lemma 7. For m ≥ 2, we have the formula,

∇m
s (T × κ) = T ×∇m

s κ+
∑

a1,b1,c1,d1

[
P a1

b1
(κ) × P c1

d1
(κ)
]⊥

+
∑

i=1,2

∑
a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

[(
P

ai
2

bi
2

(κ) × P
ci
2

di
2

(κ)
)
∗ P ei

2
fi
2

(κ)
]⊥

+
∑

i=1,2

∑
a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

((
T × P

a
(i)
3

b
(i)
3

(κ)
)
∗ P c

(i)
3

d
(i)
3

(κ)
)
,

where the sums are taken such that (a1 + c1)+(b1 + d1) /2 = m, (a(i)
2 +c(i)2 +e(i)2 )+

(b(i)2 + d
(i)
2 + f

(i)
2 )/2 = m − i, and (a(i)

3 + c
(i)
3 ) + (b(i)3 + d

(i)
3 )/2 = m − i + 1/2 for

i ∈ {1, 2}.

Proof of Lemma 7. We first need the following formulae, which can be easily ver-
ified by applying Eq.(2.1). Assume P a

b (φ) and P c
d (φ) are normal vector fields,

then ⎧⎨⎩
∇s (P a

b (φ) × P c
d (φ)) = [(∇sP

a
b (φ) + 〈κ, P a

b (φ)〉 · T ) × P c
d (φ)

+P a
b (φ) × (∇sP

c
d (φ) + 〈κ, P c

d (φ)〉 · T )]⊥,
∇s (T × P c

d (φ)) = [κ× P c
d (φ)]⊥ + T × P c+1

d (φ) ,
(3.3)

where [· · ·]⊥ denotes its normal component and × denotes the exterior product in
R

3. Notice that in Eq.(3.3), we use + instead of − for our convenience because the
sign is meaningless as using universal constant coefficients in those terms, Pα

β (φ).
Now, the proof is an induction argument. As m = 2,

∇2
s(T × κ) = T ×∇2

sκ+ (κ×∇sκ)⊥ = T ×∇2
sκ+

(
P 0

1 (κ) × P 1
1 (κ)

)⊥
.
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As m ≥ 3, we apply Eqs. (2.1), (2.10) and (3.3) in the following calculation:

∇m
s (T × κ) = ∇s{T ×∇m−1

s κ+
∑

a1,b1,c1,d1

[
P a1

b1
(κ) × P c1

d1
(κ)
]⊥

+
2∑

i=1

∑
a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

[(
P

ai
2

bi
2

(κ) × P
ci
2

di
2

(κ)
)
∗ P ei

2
fi
2

(κ)
]⊥

+
2∑

i=1

∑
a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

((
T × P

a
(i)
3

b
(i)
3

(κ)
)
∗ P c

(i)
3

d
(i)
3

(κ)
)
}

= ∇s{I1 + I2 +
2∑

i=1

I
(i)
3 +

2∑
i=1

I
(i)
4 }.

10 :

∇sI1 = ∇s

[
T ×∇m−1

s κ
]

= T ×∇m
s κ+

[
P 0

1 (κ) × Pm−1
1 (κ)

]⊥
,

20 :

∇sI2 =
∑

a1,b1,c1,d1

∇s

[
P a1

b1
(κ) × P c1

d1
(κ)
]⊥

=
∑

a1,b1,c1,d1

∇s[P a1
b1

(κ) × P c1
d1

(κ)] − 〈P a1
b1

(κ) × P c1
d1

(κ) , T 〉 · κ

=
∑

a1,b1,c1,d1

[((P a1+1
b1

(κ) + P a1
b1+1 (κ)T ) × P c1

d1
(κ))

+ (P a1
b1

(κ) ×
(
P c1+1

d1
(κ) + P a1

b1+1 (κ)T
)
]⊥ +

(
T × P a1

b1
(κ)
)
∗ P c1

d1+1 (κ)

=
∑

a,b,c,d

[P a
b (κ) × P c

d (κ)]⊥ +
∑

A,B,C,D

(
T × PA

B (κ)
)
∗ PC

D (κ) ,

where (a+ c)+(b+ d) /2 = (a1 + c1)+(b1 + d1) /2+1 and (A+ C)+(B +D) /2 =
(a1 + c1) + (b1 + d1) /2 + 1/2.

30 :

∇sI
(i)
3 =

∑
a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

∇s

[(
P

ai
2

bi
2

(κ) × P
ci
2

di
2

(κ)
)
∗ P ei

2
fi
2

(κ)
]⊥

=
∑

a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

∇s[(P
a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ P e
(i)
2

f
(i)
2

(κ)]

− 〈(P a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ P e
(i)
2

f
(i)
2

(κ) , T 〉 · κ

=
∑

a
(i)
2 ,b

(i)
2 ,c

(i)
2 ,d

(i)
2 ,e

(i)
2 ,f

(i)
2

∇s[(P
a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ))] ∗ P e
(i)
2

f
(i)
2

(κ)

+ (P a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ ∇sP
e
(i)
2

f
(i)
2

(κ)

− 〈(P a
(i)
2

b
(i)
2

(κ) × P
c
(i)
2

d
(i)
2

(κ)) ∗ P e
(i)
2

f
(i)
2

(κ) , T 〉 · κ

=
∑

a,b,c,d,e,f

[(P a
b (κ) × P c

d (κ)) ∗ P e
f (κ)]⊥ +

∑
A,B,C,D

(
T × PA

B (κ)
)
∗ PC

D (κ)

where (a+ c+ e)+ (b+ d+ f) /2 = (a(i)
2 + c

(i)
2 + e

(i)
2 )+ (b(i)2 +d

(i)
2 + f

(i)
2 )/2+1 and

(A+ C) + (B +D) /2 = (a(i)
2 + c

(i)
2 ) + (b(i)2 + d

(i)
2 )/2 + 1/2.
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40 :

∇sI
(i)
4 =

∑
a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

∇s[(T × P
a
(i)
3

b
(i)
3

(κ)) ∗ P c
(i)
3

d
(i)
3

(κ)]

=
∑

a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

{∂s[(T × P
a
(i)
3

b
(i)
3

(κ)) ∗ P c
(i)
3

d
(i)
3

(κ)]}⊥

=
∑

a
(i)
3 ,b

(i)
3 ,c

(i)
3 ,d

(i)
3

{(P 0
1 (κ) × P

a
(i)
3

b
(i)
3

(κ) + (T × P
a
(i)
3 +1

b
(i)
3

(κ))) ∗ P c
(i)
3

d
(i)
3

(κ)}⊥

+ (T × P
a
(i)
3

b
(i)
3

(κ)) ∗ P c
(i)
3 +1

d
(i)
3

(κ)

=
∑

a,b,c,d

[(P a
b (κ) × P c

d (κ)) ∗ P e
f (κ)]⊥ +

∑
A,B,C,D

(
T × PA

B (κ)
)
∗ PC

D (κ)

where (a+ c+ e)+(b+ d+ f) /2 = (a(i)
3 +c(i)3 )+(b(i)3 +d(i)

3 )/2+1/2 and (A+ C)+
(B +D) /2 = (a(i)

3 + c
(i)
3 ) + (b(i)3 + d

(i)
3 )/2 + 1.

The proof is finished by summing up all these terms from 10 to 40.

Lemma 8 (Corresponding to Lemma 2.3 in [4]). Suppose

∂tf = −∇2
sκ+ σ |κ|2 κ+ λ1κ+ λ2∇s (T × κ) ,

where σ, λi ∈ R. Then,
For m ≥ 0, the derivatives of the curvature φm = ∇m

s κ satisfy

∇tφm + ∇4
sφm

= Pm+2
3 (κ) + σ ·

(
Pm+2

3 (κ) + Pm
5 (κ)

)
+ λ1 ·

(
∇m+2

s κ+ Pm
3 (κ)

)
+ λ2 ·

(
∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ) + · · +∇1
s(T × κ) ∗ Pm

2 (κ)
)
.

(3.4)

The statement is still true when λi = λi (t) depends on time.

Proof of Lemma 8. The case of m = 0 follows from Eq.(2.6) and the definition of
∂tf ,

∇tκ = −∇4
sκ+ σ · (∇2

s(|κ|
2 κ) + |κ|4 κ) + λ1 · (∇2

sκ+ |κ|2 κ)
+λ2 ·

(
∇3

s(T × κ) + κ〈κ,∇s(T × κ)〉
)
.

For m ≥ 1, Eq.(3.4) can be inductively derived by using Eq.(2.9),

∇tφm + ∇4
sφm

= ∇s[Pm+1
3 (κ) + σ ·

(
Pm+1

3 (κ) + Pm−1
5 (κ)

)
+ λ1 ·

(
∇m+1

s κ+ Pm−1
3 (κ)

)
+ λ2 · (∇m+2

s (T × κ) + ∇m
s (T × κ) ∗ P 0

2 (κ) + · · · + ∇1
s (T × κ) ∗ Pm−1

2 (κ))]
+〈κ, φm−1〉 · ∇s[−∇2

sκ+ σ |κ|2 κ+ λ1κ+ λ2∇s (T × κ)]
−〈∇s[−∇2

sκ+ σ |κ|2 κ+ λ1κ+ λ2∇s (T × κ)], φm−1〉 · κ
+〈κ,−∇2

sκ+ σ |κ|2 κ+ λ1κ+ λ2∇s (T × κ)〉 · φm

= Pm+2
3 (κ) + σ ·

(
Pm+2

3 (κ) + Pm
5 (κ)

)
+ λ1 ·

(
∇m+2

s κ+ Pm
3 (κ)

)
+λ2 · (∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ) + · · · + ∇1
s (T × κ) ∗ Pm

2 (κ)).
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By Eqs.(2.8) and (3.4), we have
d
dt

1
2

∫
I

| ∇m
s κ |2 ds+

∫
I

| ∇m+2
s κ |2 ds+ λ1 (t)

∫
I

| ∇m+1
s κ |2 ds

= λ1 (t)
∫
I

〈∇m
s κ, P

m
3 (κ)〉 ds+

∫
I

〈∇m
s κ, P

m+2
3 (κ) + Pm

5 (κ)〉 ds

+ λ2 (t)
∫
I

〈∇m
s κ,∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ)

+ · · · + ∇1
s(T × κ) ∗ Pm

2 (κ)〉 ds.

(3.5)

Notice that estimating terms in Eq.(3.5) is the key argument of this paper. One
can verify from Lemma 6 that

d
dtF [ft] = 2α d

dtK [f ] + 2β
L (T [f ] + �Ψ) d

dtT [f ] + λ1 (t) · d
dtL [f ]

=
∫
I

〈2α(∇2
sκ+ |κ|2

2 κ) − λ2 (t)∇s(T × κ) − λ1 (t)κ, ∂tf〉 ds

= −
∫
I

| 2α(−∇2
sκ− |κ|2

2 κ) + λ2 (t)∇s(T × κ) + λ1 (t)κ |2 ds

≤ 0.

(3.6)

Note that λ1 (t) is chosen to fulfill L [ft] ≡ L. From Eq.(3.6), F [ft] is nonincreasing
as t is increasing. Thus,

β
L (T [ft] + �Ψ)2 ≤ 2αK [ft] + β

L (T [ft] + �Ψ)2

= G�Ψ,L [ft] = F [ft] ≤ F [f0]
= 2αK [f0] + β

L (T [f0] + �Ψ)2 .

Therefore,

|λ2 (t)| =
2β
L

|T [f ] + �Ψ| ≤ C (f0,�Ψ, α, β, L) ,(3.7)

is uniformly bounded. Furthermore, by Eq.(3.6),

‖κ‖2
L2 = 2K [ft] ≤ C (f0, α) .(3.8)

Thus ‖κ‖2
L2 is uniformly bounded for any t ≥ 0.

By applying Eqs.(2.12), (3.7), (3.8) and Lemma 7, the sum of the last two terms
in Eq.(3.5) satisfies the inequality,∫

I

〈∇m
s κ, P

m+2
3 (κ) + Pm

5 (κ)〉 ds

+λ2 (t)
∫
I

〈∇m
s κ,∇m+3

s (T × κ) + ∇m+1
s (T × κ) ∗ P 0

2 (κ)

+ · · · + ∇1
s(T × κ) ∗ Pm

2 (κ)〉 ds
≤ C (f0,�Ψ, α, β, L) · (ε

∫
I

∣∣∇m+2
s κ

∣∣2 ds+ C (f0,m, ε)),

(3.9)

Now we estimate the term involving λ1 (t) on the right hand side of Eq.(3.5).
Since κ = ∂2

sf , by applying Poincare inequality to ∂sf , we have the estimate

L ‖κ‖2
L2 ≥ 4π2.

Thus, by applying Eq.(2.11) to the right hand side of Eq.(1.6) involving λ1 (t), we
have the estimates,

|λ1 (t)|
≤ C (f0,�Ψ, α, β, L) ·

∫
I

(∣∣P 2
2 (κ)

∣∣+ ∣∣P 0
4 (κ)

∣∣+ ∣∣P 1
2 (κ)

∣∣) ds
≤ C · (‖κ‖

2
m+2
m+2,2 · ‖κ‖

2− 2
m+2

2 + ‖κ‖
1

m+2
m+2,2 · ‖κ‖

4− 2
m+2

2 + ‖κ‖
1

m+2
m+2,2 · ‖κ‖

2− 1
m+2

2 ),
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and

|
∫
I

〈∇m
s κ, P

m
3 (κ)〉 ds |≤

∫
I

∣∣P 2m
4 (κ)

∣∣ ds ≤ c (m,L) · ‖κ‖2− 3
m+2

m+2,2 · ‖κ‖2+ 3
m+2

2 .

Therefore,

| λ1 (t)
∫
I

〈∇m
s κ, P

m
3 (κ)〉 ds |

≤ C (f0,�Ψ, α, β, L,m) · (‖κ‖2− 1
m+2

m+2,2 + ‖κ‖2− 2
m+2

m+2,2 )
≤ ε
∫
I

∣∣∇m+2
s κ

∣∣2 ds+ C (f0,�Ψ, α, β, L,m, ε) ,

(3.10)

where the last inequality comes form applying Young’s inequality, and the inequal-
ity,

‖κ‖2
k,2 ≤ c (k)

(∥∥∇k
sκ
∥∥2

2
+ ‖κ‖2

2

)
,

(can be yielded by a standard interpolation inequality, see [2]).
The remaining term in Eq.(3.5) to be estimated is λ1 (t) ·

∫
I

∣∣∇m+1
s κ

∣∣2 ds, which

is the borderline case as applying the above estimates. In other words, the inter-
polation technique fails now. Instead, we use the observation that the total torsion
is invariant under the rescaling, therefore the rescaling argument in [4] still works.
More precisely, it can be verified that as we rescale f by f (ρ) = p + ρ (f − p), we
have the properties: K

[
f (ρ)

]
= 1

ρK [f ], T
[
f (ρ)

]
= T [f ] and L

[
f (ρ)

]
= ρL [f ].

Taking the derivative of F
[
f (ρ)

]
at ρ = 1 and using Eq.(1.5), we have

2αK [f ] − λ1L [f ] = − d

dρ
F
[
f (ρ)

]
�ρ=1=

∫
I

〈∂tf, f − p〉 ds.

Thus, as long as p = p (t) is properly chosen, e.g., p = L−1
∫
I

f ds, and by the energy

identity,

d

dt
F [ft] = −

∫
I

|∂tf |2 ds,(3.11)

one has the inequality,

−λ1 (t) ≤ L1/2 ‖∂tf‖L2 ,

which implies the estimate,
t∫
0

(
λ−1 (τ)

)2
dτ ≤ C (f0,�Ψ, α, β, L) ,

where λ−1 (t) = −min {0, λ1 (t)}. By applying integration by parts and Hölder
inequality, we have

−λ1

∫
I

∣∣∇m+1
s κ

∣∣2 ds ≤ ε ·
∫
I

∣∣∇m+2
s κ

∣∣2 ds+ c (ε) ·
(
λ−1
)2 · ∫

I

|∇m
s κ|

2
ds.(3.12)
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Note that by applying Poincare inequality twice, we have∫
I

∣∣∇m+2
s κ

∣∣2 ds ≥
(

2π
L

)4 ∫
I

|∇m
s κ|

2
ds.(3.13)

Now, by Eqs.(3.5), (3.9), (3.10), (3.12), (3.13), and a small enough number ε =
ε (f0,�Ψ, α, β, L,m) > 0, we have

d

dt

∫
I

|∇m
s κ|

2
ds+ C1 ·

∫
I

|∇m
s κ|

2
ds ≤ C2 · (1 + (λ−1 (t)2) ·

∫
I

|∇m
s κ|

2
ds),

(3.14)

where we let Ci = Ci (f0,�Ψ, α, β, L,m) > 0, ∀ i ∈ Z, from now on. Let

um (t) := exp (C1 · t) ·
∫
I

|∇m
s κ|

2
ds.

By applying Gronwall inequality to Eq.(3.14), we have

um (t) ≤ ea(t) · (um (0) + C3 ·
t∫
0

eC1·τ dτ),

where

a (t) =

t∫
0

C4 · (λ−1 (τ))2 dτ ≤ C (f0,�Ψ, α, β, L,m) .

Therefore, we obtain

‖∇m
s κ‖

2
L2 (t) ≤ C (f0,�Ψ, α, β, L,m) · (1 + e−C1·t · ‖∇m

s κ‖
2
L2 (0))

≤ C (f0,�Ψ, α, β, L,m) ,
(3.15)

for all m ≥ 0. In addition, from the definition of λ1 in Eq.(1.6), we conclude that
|λ1| ≤ C (f0,�Ψ, α, β, L). Notice that one has the estimate,∥∥∂m−1

s κ
∥∥

L∞ ≤ c · ‖∂m
s κ‖L1 , ∀ m ≥ 1.(3.16)

Now, by applying induction argument on m, and using Lemma 4, 5, Eq.(3.15),
(3.16) and Hölder inequality, we derive the inequalities,

‖∇m
s κ‖L∞ + ‖∂m

s κ‖L∞ ≤ C (f0,�Ψ, α, β, L,m) , ∀ m ≥ 0.(3.17)

On the asymptotic behaviour of the flow, we choose a subsequence of curves
f (t, ·) which converges smoothly to a curve f∞, after reparametrizations of ar-
clength and translations. Lemma 8 and Eq.(3.17) imply

‖∇t (∇m
s κ)‖L∞ ≤ C (f0,�Ψ, α, β, L,m) , ∀ m ≥ 0.(3.18)

From Eq.(3.17) and (3.18), one sees that for u (t) :=
∫
I

| ∂tf |2 ds, the inequality

|u′ (t)| ≤ C (f0,�Ψ, α, β, L) ,

holds. On the other hand, the energy identity, Eq.(3.11), implies u (t) ∈ L1 ([0,∞)).
Therefore, u (t) → 0 as t → ∞. In other words, f∞ is independent of t and thus,
by Eq.(1.5), is an equilibrium of F . Now, by Theorem 1, the proof is finished.
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4. Numerical algorithm

We base our numerical treatment on the algorithm proposed in [4] and implement
the new nonlinear term λ2∇s (T × κ) explicitly in time.

First observe that the divergence form of the main part in the evolution equation
admits a weak formulation of the flow. In fact, we have

∇2
sκ+ 1

2 |κ|
2
κ− λ2∇s (T × κ) = ∂s

(
∂sκ+ 3

2 |κ|
2
T − λ2 T × κ

)
.

Secondly, the common way of avoiding higher order elements for the discretization
is to rewrite the equation as a second order system for position vector f and the
mean curvature vector κ

∂tf + ∂s

(
∂sκ+ 3

2 |κ|
2 T − λ2 T × κ

)
= λ1κ,(4.1)

∂2
sf = κ.(4.2)

The weak form of the problem leads in one space dimension to a difference scheme.
Decompose I = R/Z = ∪N

1 Ij into intervals Ij = [xj−1, xj), where xj are the nodal
points. We discretize the space H1(I,n ) by the space

Xh =
{
g ∈ C0(I,n ) : g|Ij ∈1 (Ij)

}
= (span {φ1, . . . , φN})n

of periodic piecewise affine functions spanned by the nodal basis functions φj ∈ Xh

satisfying φj(xi) = δij . The discretization parameter is given by h = maxj hj,
hj = |Ij |. We use the pointwise interpolation Ihg, g ∈ C0(I,n ) uniquely defined by
Ihg ∈ Xh and Ihg(xj) = g(xj) for all j = 1, . . . , N . A discrete (weak) solution to
(4.1) is then a pair of functions (fh, κh) : [0, T ] → Xh ×Xh,

fh(x, t) =
N∑

j=1

fj(t)φj(x), κh(x, t) =
N∑

j=1

κj(t)φj(x)

satisfying for all φh, ψh ∈ Xh the weak problem∫
I

(
Ih(∂tfhφh)|∂xfh| −

∂xκh

|∂xfh|
∂xφh − 3

2
|κh|2

∂xfh

|∂xfh|
∂xφh

)
dx

=
∫

I

(
λ1

∂xfh

|∂xfh|
× κh∂xφh + λ2Ih(κhφh)|∂xfh|

)
dx = 0,

(4.3)

−
∫

I

∂xfh

|∂xfh|
∂xψhdx =

∫
I

Ih(κhψh)|∂xfh|dx(4.4)

In the time direction we discretize semi-implicitly. In particular, the new nonlinear
term λ2∇s (T × κ) in our flow equation is treated explicitly. For functions defined
on the time interval [0, T ] we use the notation gm = g(·,mk), kM = T .

Algorithm. For given initial data f0(x) and nodal points of the parameterization
xj , j = 1, . . . , N let f0

j = f0(xj), h0
j = |f0

j − f0
j−1|, and

κ0
j =

2
h0

j+1(h
0
j + h0

j+1)
f0

j+1 −
2

h0
jh

0
j+1

f0
j +

2
h0

j(h
0
j + h0

j+1)
f0

j−1,

where we use the extensions f0
0 = f0

N , f0
N+1 = f0

1 , h0
0 = h0

N , h0
N+1 = h0

1.
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For m = 0, . . . ,M − 1 we set

hm
j = |fm

j − fm
j−1|,

βm
j = |κm

j−1|2 + κm
j−1κ

m
j + |κm

j |2,

γm
j =

fm
j − fm

j−1

hm
j

×
κm

j + κm
j−1

2
,

and solve for fm+1
j , κm+1

j in

βm
j

2hm
j

fm+1
j−1 +

(
hm

j + hm
j+1

2k
−

βm
j

2hm
j

−
βm

j+1

2hm
j+1

)
fm+1

j +
βm

j+1

2hm
j+1

fm+1
j+1

+
1
hm

j

κm+1
j−1 −

(
1
hm

j

+
1

hm
j+1

+
λm

1

2
(hm

j + hm
j+1) + λm

2 ∗
)
κm+1

j +
1

hm
j+1

κm+1
j+1

=
hm

j + hm
j+1

2k
fm

j + λm
2

(
γm

j+1 − γm
j

)
,

1
hm

j

fm+1
j−1 −

(
1
hm

j

+
1

hm
j+1

)
fm+1

j +
1

hm
j+1

fm+1
j+1 =

hm
j + hm

j+1

2
κm

j .

Hereby, the Lagrange multipliers are computed according to

λm
2 =

2β
Lm

(τm + ∆Ψ).

λm
1 = −

N∑
j=1

(
|κm

j − κm
j−1|2/hm

j + (fm
j − fm

j−1) · (κm
j − κm

j−1)β
m
j /2h

m
j + λm

2 Γm
j

)
N∑

j=1

hm
j β

m
j /3

where

Γm
j = κm

j · (γm
j+1 − γm

j ),

τm = −3
N∑

j=1

Γm
j /β

m
j ,

Lm =
N∑

j=1

hm
j .

The algorithm is intrinsic in the sense that it does not explicitly depend on the
grid parameter h = maxj hj . Nevertheless, during time evolution the distribution
of nodes drift away from the equidistant grid. Thus, we redistribute the nodes
tangentially according to arclength if the ratio maxj hj/minj hj exceeds 2.

We also mention that the linear system for fm+1
j , κm+1

j can be decoupled giving
a linear system for fm+1

j alone. The tridiagonal structure of the matrices is then
replaced by a five-diagonal structure, where the periodicity of the curve implies
non-zero elements in the upper right and lower left corners. The implementation
of a fifth-diagonal linear solver can easily be generalized to such a situation.
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Computations and figures. Let us first note that numerical computations show
that the flat circle is a stationary solution which continues to stay stable for small
values of β. For increasing values of β the circle loses stability and we observe
non-trivial equilibria of non-zero total torsion.

Figure 1 shows a table of stationary states for given values of ∆Ψ in the interval
(−π, π). Observe that equilibria corresponding to the same absolute value of ∆Ψ
bend into the opposite direction leading to a reflection symmetry wrt. the horizontal
plane.

It is interesting to see that the issue of inflection points comes into play if |∆Ψ|
approaches the value π. Then the corresponding asymptotic stationary curve con-
tains points having a very small magnitude of the curvature vector κ. We mentioned
before that the flow equation and the computation of the torsion τ gets ill-defined
in such a situation. We observe this problem also in our computations in the sense
that the flow gets numerically unstable if curves with points of small |κ| evolve.

The next table in Figure 2 presents the evolution of a strongly bended initial
curve unfolding along our flow to a stationary curve. Recalling the different lengths
the curve is similar but not identical to the one from Figure 1.
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Figure 1. Stationary curves of length 6.31 for β = 35 and ∆Ψ =
−3.1,−2,−1,−0.5, 0, 0.5, 1, 2, 3.1
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Figure 2. Evolution of a curve of length 18.9 under the flow with
β = 60, ∆Ψ = −2 at times t = 0, 1, 2, 3, 4, 6, 8, 13, 52


