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Abstract

From information theory, mutual information is known to measure

stochastic interdependence of probability distributions with two subsys-

tems. We use a generalised version of this measure: multi-information, the

Kullback-Leibler distance of a distribution from its corresponding indepen-

dent distribution, and give a definition within the framework of statistical

mechanics. There, the theory of infinite-volume Gibbs measures allows

for the description of phase coexistence: The interaction potential of a

model can yield several Gibbs measures at the same time. We propose

to take the least multi-information of all the translation-invariant Gibbs

measures to define a quantity directly depending on the interaction po-

tential. We show that it is enough to take this infimum over the pure,

i.e. physically relevant states only. Our definition is applied to the two-

dimensional Ising model and the main result is derived: In the Ising square

lattice, multi-information as a function of temperature attains its isolated

global maximum at the point of phase transition. There, the one-sided

derivatives diverge. Finally, we also briefly discuss the behaviour for the

one-dimensional Ising chain in a magnetic field.
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1 Introduction

Shannon’s mutual information compares the summed entropies H of two

distributions p{1}, p{2} with the entropy of their joint distribution p{1,2}:

I(p{1,2}) = H(p{1}) + H(p{2}) − H(p{1,2}). (1)

If more than two subsystems exist, one can keep the two-point property

of I and let the quantity depend on the distance between the elementary

subsystems now [Li]. There are also multivariate generalisations. Let Λ

be a finite set. Co-information is an alternating sum of entropies of the

marginals pV of all subsystems V ⊂ Λ [Be]. Being hard to calculate, this

quantity also has the drawback of becoming negative in certain cases. In

[TSE], a quantity is used where the mutual informations of all bipartitions

of Λ are summed up. Another multivariate generalisation is called multi-

information [SV]:

I(pΛ) =
∑
i∈Λ

H(p{i}) − H(pΛ) (2)

This quantity allows for a nice information-geometric interpretation: It is

the Kullback-Leibler distance [CT] of pΛ from its factorized distribution

⊗i∈Λp{i} [Am, Ay1].

All these information-theoretic measures quantify stochastic interdepen-

dence in probability distributions. They are used for a variety of purposes:

statements about information transmission in noisy channels [Sh], ICA (in-

dependent component analysis) in multivariate statistics [HKO], measur-

ing dependencies amongst cells of a neural network [Be], measuring brain

complexity [TSE], deriving learning rules for neural networks [L, Ay2], to

mention only a few of the possible applications.

To give us an idea of the behaviour of a quantity like mutual informa-

tion, let us consider a simple example: two units x1, x2 which can take

values from {0, 1}. If we know the probabilities p{1,2}(x1, x2) of the four

configurations, mutual information is given by (1). Let us introduce an

additional parameter β by which we can adjust a generic p{1,2} from the

2



equidistribution to one of the Dirac measures. We define

pβ(x1, x2) :=
(p{1,2}(x1, x2))β∑

x′
1,x′

2∈{0,1}(p{1,2}(x′
1, x

′
2))β

. (3)

The denominator normalizes pβ. Mutual information is now a function of

the parameter β. For a generic choice of p{1,2}, the function β �→ I(pβ), let

us call it I(β), is shown in figure (1). The trajectory of the curve β �→ pβ

within the simplex of all probability measures for the four configurations is

shown in figure (2). It ranges from the barycentre to one of the corners of

the simplex. The Kullback-Leibler distance of this curve from the surface

of independent distributions is mutual information.

Looking at both these figures, the question about the maximum of I springs

to mind. To give us an idea what such a maximization [Ay1, AK] can mean,

we want to define multi-information in the context of statistical mechanics

(a field that has benefited greatly from information theory [J1]). There we

have a mathematical formalism that describes models of different structural

richness. A simple example for a finite-volume state (Gibbs measure) is

p(xi, i ∈ Λ) = eF+
P

∅�=V ⊂Λ ΘV
Q

i∈V xi , (4)

with xi ∈ {0, 1}. F is a normalization constant (the free energy). The

coefficients ΘV ∈ R, V ⊂ Λ represent the strength of direct interaction be-

tween the units i. The set of all terms ΘV
∏

i∈V xi in the exponent is called

an interaction potential. A parametrized family of such potentials is called

a model. The parameters (c.f. the β in (3)) can be inverse temperature,

magnetic field etc.

There are (infinite-volume) potentials whose infinite-volume state is not

uniquely determined. Models showing this phenomenon for certain (criti-

cal) parameter values are said to exhibit phase coexistence. There are hints

in the literature that measures of stochastic interdependence are maxi-

mized at critical parameter values [MKNYM, Ar], or at phase transitions

in a less strict sense [CY, LF, GL]. One can go a step further and look

at the structural phenomena occuring at the phase coexistence point in
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Figure 1: Plot of I(β) for p1(0, 0) = 0.1, p1(0, 1) = 0.2, p1(1, 0) = 0.3, p1(1, 1) =

0.4. For b = 0 (pβ is the equidistribution) and β → ∞ (pβ is Dirac measure) I(β)

vanishes, i.e. there are no stochastic dependencies for complete randomness and

complete predicatability.
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Figure 2: The set of probability distributions for the four configurations with the

plane of factorizable p
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standard models like the Ising square lattice: infinite-cluster formation,

divergence of the correlation length. They can be seen as signs of “com-

plex” behaviour. From this perspective it seems natural to assume that

large stochastic interdependence is associated with high structural com-

plexity. As stated already, mutual-information based quantities are also

used as complexity measures, see also [FC].

Phase transitions thus seem to mark the “border of maximum complex

behaviour” between complete randomness and absolute predictability. It

is one of the objectives of the present work to give an example where

this kind of statement can be made rigorous. To do so, we generalise

multi-information to a quantity in the thermodynamic limit that takes

into account a mathematical description of phase transitions, namely the

non-uniqueness of infinite-volume Gibbs measures for certain interaction

potentials.

The first part of this work will give a general definition of multi-information

in the context of statistical mechanics. We propose a definition where the

quantity depends directly on the interaction potential. In the second part,

for the two-dimensional Ising model it is shown analytically that multi-

information is maximized at the critical point.
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2 Multi-information in statistical me-

chanics

2.1 Notation

Our systems take discrete values on the points of an infinite lattice. Let

S be a finite set (the spin space), and let x : Z
d �→ S, i �→ xi be configura-

tions on the d-dimensional lattice of integers Z. To make it a measurable

space, the space of configurations Ω := S(Zd) is equipped with the product

sigma algebra F , which contains the cylinder sets {x ∈ Ω : XΛ(x) = xΛ},
where xΛ := (xi)i∈Λ is a configuration on the finite1 set Λ ⊂⊂ Z

d and

XΛ : Ω �→ SΛ, x �→ xΛ the natural projection onto a finite configuration.

Thus the projection XΛ yields finite measurable spaces (ΩΛ,FΛ), where

ΩΛ := SΛ denotes the set of xΛ and FΛ its power set.

We will first define multi-information on these finite spaces, for pΛ a prob-

ability measure on (ΩΛ,FΛ). At this point, the form of the measure is of

no importance.

Definition 2.1: Let pΛ be a probability measure on (ΩΛ,FΛ), where Λ

is a finite set. The multi-information of pΛ is defined by

I(pΛ) :=
∑
i∈Λ

H(p{i}) − H(pΛ). (5)

Here, H := −∑xΛ∈ΩΛ
pΛ(xΛ) ln pΛ(xΛ) denotes the Shannon entropy and

p{i}(xi) :=
∑

xΛ\{i} p(xΛ\{i}, xi) are the marginal distributions of the ele-

mentary subsystems in Λ. �

2.2 Thermodynamic limit

To define multi-information for distributions on the infinite measurable

space (Ω,F), our starting point are measures pΛ on finite spaces (ΩΛ,FΛ),

Λ ⊂⊂ Z
d. These we consider as being obtained from a translation invari-

1We denote finiteness of subsets by ⊂⊂.

7



ant measure p on (Ω,F) by defining its marginal distributions pΛ(xΛ) :=

p(XΛ = xΛ). Translation invariance of p is defined by

p({(xi+j)j∈Zd |(xj)j∈Zd ∈ A}) = p(A) ∀A ∈ F , ∀i ∈ Z
d. (6)

Existence and properties of the van-Hove limit [R] of multi-information

follow in straightforward fashion from well-known results for entropy (see

the appendix for a proof). Notice that the set of translation invariant

measures is a simplex [S, Ge].

Theorem and Definition 2.2: Let p be a translation invariant probabil-

ity measure on (Ω,F). Then the van-Hove limit limΛ↗Zd
1
|Λ|I(pΛ) =: I(p)

exists and I(p) ∈ [0, ln |S|]. The function p �→ I(p) is concave and

lower-semicontinuous (w.r.t. the weak∗ topology).

The quantity I(p) depends on the state of a system. In statistical me-

chanics, however, models are defined via the interaction between their con-

stituents (spins, particles). In the following, we want to obtain a definition

which directly depends on the interaction potential.

2.3 Phase coexistence

The construction of measures in infinite volume [Do] [LR] can yield non-

uniqueness for a given interaction, so the description of phase coexis-

tence becomes possible. For an interaction-dependent definition of multi-

information we have to choose from a set of possible measures now. To

introduce the necessary notation and to make our point clear, we give

a brief description of the standard construction of infinite-volume Gibbs

measures. All the results stated in this paragraph can be found in this

or a similar form in [Ge, S], for short descriptions of the subject see also

[Pe, Gr].

From finite-volume statistical mechanics one knows the form of the con-
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ditional probabilities for a finite configuration given an exterior configura-

tion that the measure p on (Ω,F) should have [Wi]. Specifying these, one

obtains a condition that possible infinite-volume Gibbs measures should

fulfill. For this, we need to define interaction potentials in infinite volume.

Definition 2.3: A potential Φ on Z
d is a family of functions {ΦV }V ⊂⊂Zd

from Ω to R with

(i) ΦV is XV -measurable for all V ⊂⊂ Z
d

(ii) The series EΦ
Λ (xΛ, yΛc) :=

∑
V ⊂⊂Zd:
V ∩Λ�=∅

ΦV (xΛ, yΛc) converges for all

Λ ⊂⊂ Z
d and for all (xΛ, yΛc) := x ∈ Ω (where Λc denotes the com-

plement of Λ in Z
d.).

EΦ
Λ (xΛ, yΛc) is the energy of xΛ with boundary condition yΛc . �

This definition enables us to specify the Gibbsian conditional probabili-

ties for the desired measures. Since we no nothing about the existence of

these measures, we can only fix probability kernels (i.e. loosely speaking,

conditional probabilities “waiting for a measure”). Let ΩΛc = SZ
d\Λ. Us-

ing a definition from [Ge], a specification for finite S is given by a family

{kΦ
Λ}Λ⊂⊂Zd of probability kernels from (ΩΛc ,FΛc) to (Ω,F) where

A �→ kΦ
Λ(A|yΛc) :=

∑
xΛ:

(xΛ,yΛc )∈A

e−EΦ
Λ (xΛ,yΛc)∑

x′
Λ∈ΩΛ

e−EΦ
Λ (x′

Λ,yΛc)
. (7)

Here, Φ is a potential, Λ ⊂⊂ Z
d, A ∈ F and yΛc ∈ ΩΛc . Such specifications

fulfill consistency conditions analogous to those of conditional probabilities.

The set of DLR measures is now defined as the solution set of p(A|FΛc) =

kΦ
Λ(A|·) p-a.s. for all finite volumes Λ and events A. Here, p(A|FΛc)

is the conditional expectation of 1A, i.e. of the indicator function for an

event A, given the sigma algebra of events outside Λ. For the definition

of conditional expectations given a sub-sigma algebra, see e.g. [Ba]. The

properties of the set of DLR measures are well known.

Proposition and Definition 2.4: Given a potential Φ, the set of

infinite-volume Gibbs states (DLR measures) is given by

G(Φ) =
{

p on (Ω,F) : p(A|FΛc) = kΦ
Λ(A|·) p-a.s. ∀A ∈ F ,Λ ⊂⊂ Z

d
}

.
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G(Φ) is a compact, convex set (more precisely: a simplex). Depending on

the potential Φ, there are the following possibilities for its cardinality:

|G(Φ)| = 0, (8)

|G(Φ)| = 1, (9)

|G(Φ)| = ∞. (10)

The set of Gibbs measures is always non-empty if the potential is transla-

tion invariant, i.e. if it fulfills

ΦV +i((xi−j)j∈Zd) = ΦV (x) ∀x ∈ Ω, ∀V ⊂⊂ Z
d, ∀i ∈ Z

d. (11)

Notice that even translation-invariant potentials need not have only

translation-invariant states. Since the thermodynamic limit of multi-

information was obtained for translation-invariant states, we will actually

need the set of translation-invariant Gibbs measures GI(Φ), i.e. the in-

tersection of all translation-invariant measures on (Ω,F) with the set of

Gibbs measures of translation invariant potentials. The set GI(Φ) is also

compact and convex and its cardinality can be 1 or infinity.

2.4 Multi-information of a potential

We are now in the position to define multi-information as a function of

the interaction potential of a statistical-mechanics model. Our aim is to

extract the minimum stochastic complexity of a model, so we define

Definition 2.5: Multi-information given a translation invariant potential

Φ is defined by

I(Φ) := inf
p∈GI(Φ)

I(p), (12)

where I(p) is given by proposition and definition 2.2. �

Remark 2.6: Because of lower-semicontinuity of I(p) (Theorem 2.2)

and compactness of GI it follows that the infimum is indeed attained. This
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follows from general statements about extrema of semicontinuous functions

over compact sets, c.f. Theorem 25.9 in [Ch]. �

The non-uniqueness expressed by (10) is called phase coexistence.

Phases are the extreme points of the simplex G(Φ), which are also just the

physically realised states2. These so-called pure states have fluctuation-

free macroscopic quantities. On the other hand, we can construct convex

combinations of them, which do not stand for physically realised states but

which express our uncertainty about the state we are in [Ge]. That is why

the following proposition helps motivating our choice of defining I(Φ).

Theorem 2.7: Let ex(GI) be the set of extreme points of GI . We have

I(Φ) = inf
p∈GI(Φ)

I(p) = inf
p∈ex(GI)(Φ)

I(p). (13)

So to take the infimum in definition 2.5 is not only justified by extracting

the least model complexity but also by the fact that the infimum is attained

in a physically relevant state. To illustrate definition 2.5 and proposition

2.7, figure 3 shows I(p) over the set of infinite-volume Gibbs measures in

the case of the two-dimensional Ising model. This example will also be the

topic of the next section.

pβ
+pβ

−

I(p)

I(pβ
±)

p

Figure 3: Schematic view of multi-information depending on p in the 2d Ising

model

2Also, the property of ergodicity is equivalent with being an extreme point of the simplex

of translation-invariant probability measures.
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3 Ising square lattice

3.1 Multi-information for the model

Usually it is hard to calculate complexity measures for non-trivial systems.

Here, we take advantage of the wealth of exact results for the standard ex-

ample of statistical mechanics, the two-dimensional Ising model. Definition

2.5 can now be applied to the Ising potential, we have

Φβ
V (x) = −βxixj if V = {i, j} ⊂ Z

2 where |i − j| = 1, (14)

and Φβ
V (x) = 0 for all other sets V , the spin space S = {±1} 	 xi and

β ∈ R
+. The parameter β is the inverse temperature and stands for

the strength of interaction between spins. We use the results existing for

this model, i.e. the explicit expressions for free energy and magnetization,

critical temperature and the known set of Gibbs measures, for a list of

references see [Ge].

Let us first present a visualization of the main result of this paper: A plot of

multi-information of the potential (14) as a function of inverse temperature

(see figure 4). What one can see is a sharp isolated global maximum at

the point of phase transition. The analytic result will be given in the next

section.

To derive a formula for multi-information, we take advantage of the existing

exact results, which we will cite in the following. It is well known that

below a critical temperature the set of infinite-volume Gibbs measures is

the convex hull of two extreme probability measures:

G(Φβ) = {tpβ
− + (1 − t)pβ

+ : t ∈ [0, 1]} (15)

where the two extreme points pβ
± are connected by a spin-flip symmetry

that can be written as

pβ
+ (XΛ = xΛ) = pβ

− (XΛ = −xΛ) ∀Λ ⊂⊂ Z
d. (16)
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I(Φβ)
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Figure 4: Multi-information of the Ising square lattice

Moreover, for the single-spin expectations (the magnetization) we have

pβ
−(X0) = −pβ

+(X0). It is essential that these order parameters are non-

zero for β > βc. The Yang formula (a rigorous result, see [S], p. 153) is

given by

mβ := pβ
+(X0) =

⎧⎨
⎩ (1 − sinh−4 2β)

1
8 if β > βc,

0 otherwise.
(17)

The essential feature of the model is a continuous phase transition at a

critical temperature βc:

sinh2βc = 1, i.e. βc =
1
2

ln(1 +
√

2). (18)

We will also need the entropy (per unit volume)

h(β) := h(pβ
±) = ln(

√
2 cosh 2β) +

1
π

∫ π
2

0
ln
{

1 +
√

1 − κ2
β sin2 ω

}
dω

− 2β tanh 2β − β
sinh2 2β − 1

sinh 2β cosh 2β

⎡
⎣ 2

π

∫ π
2

0

dω√
1 − κ2

β sin2 ω
− 1

⎤
⎦ , (19)
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where

κβ =
2 sinh 2β
cosh2 2β

. (20)

This expression for the entropy can be found using the results for free

energy f(β) and energy e(β), see e.g. [Wa], because of

h(β) = βe(β) − βf(β). (21)

0

0.5

log 2

-1 -0.5 0.5 1
x

Figure 5: The function s(x)

Theorem 3.1: Let mβ and h(β) be defined by (17) and (19). Also, let

s(x) = −1 + x

2
ln

1 + x

2
− 1 − x

2
ln

1 − x

2
, x ∈ [−1, 1], (22)

(see figure 5)3. Multi-information of the Ising square lattice is given by

I(Φβ) = s(mβ) − h(β). (23)

30 ln 0 := 0.
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Remark 3.2: Notice that similar expressions can be found for all

translation-invariant models with binary spin space. �

3.2 The maximum of multi-information

Putting some effort into bounding the terms in (23), one can obtain

analytic results connecting the phase transition with maximum multi-

information:

Theorem 3.3: In the two-dimensional Ising model, multi-information

as a function β �→ I(Φβ) of inverse temperature attains its isolated global

maximum at the point of phase transition β = βc. At this point, the

left-sided derivative goes to +∞, the right-sided one to −∞.

The rest of this chapter is devoted to the proof of the above theorem.

Two technical lemmas are needed. Using the shorthand notation

Θ(β) :=
sinh2 2β − 1

sinh 2β cosh 2β

⎡
⎣ 2

π

∫ π
2

0

dω√
1 − κ2

β sin2 ω
− 1

⎤
⎦ , (24)

we have the following bounds:

Lemma 3.4: Let β ≥ βc. Then

βΘ(β) ≤ min
{

sinh 2β − 1
2

ln
sinh 2β + 1
sinh 2β − 1

,
β

sinh 2β cosh 2β

}
. (25)

Moreover, Θ(βc) = 0.

− ln
(√

2 cosh 2β
)

+ 2β tanh 2β

≤ min
{

2βc(β − βc) +
√

2βc − ln 2,
−β

sinh 2β cosh 2β
+ ln

√
2
}

, (26)

s(mβ) ≤ ln 2 − (1 − sinh−4 2β)
1
4

2
− (1 − sinh−4 2β)

1
2

12
. (27)
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Lemma 3.5: For 0 ≤ y ≤ 1/2 we have

(1 − (1 + y2)−4)
1
4

2
>

y2

2
ln

2 + y2

y2
. (28)

0

0.5log2

0.4407 0.501 betaβc β̄

C2A C1

β

I(Φβ)

Figure 6: Partitioning the β domain for the proof of Theorem 3.3.

Proof of Theorem 3.3: Multi-information is considered in four different

regimens (cf. fig. 6). Let us start with the high-temperature case:

(A) β ≤ βc: We consider the monotonicity of I(Φβ). Here, the order

parameter mβ vanishes. Thus, as an immediate consequence of Theorem

3.1 we obtain

I(Φβ) = ln 2 − h(β), β ≤ βc. (29)

Using (21), the β derivative is

dI(Φβ)
dβ

= −dh(β)
dβ

=
d

dβ
[βf(β) − βe(β)]

=
d(βf(β))

dβ
− e(β) − β

de(β)
dβ

= −β
de(β)
dβ

. (30)

16



We obtained the last equality because of

d(βf(β))
dβ

= e(β). (31)

(For this sort of equations, see e.g. [R], p. 56.) Applying (31) to the left-

over term in (30) gives

dI(Φβ)
dβ

= −β
d2(βf(β))

dβ2
≥ 0. (32)

This relation follows from the convexity of −βf(β), see again [R], p. 54.

Hence, the monotonicity up to the critical point is known.

(B) β = βc: Let us now consider the non-analyticity at the critical

temperature. Below βc (for the left-sided derivative) we use (30). The

divergence of the specific heat is known from the literature, we use

de(β)
dβ

=
8
π

ln |β − βc| + bounded terms, (33)

see [S] (p. 152). This expression goes to −∞ as β ↗ βc. Thus, the left-

sided derivative of I(Φβ) goes to +∞.

Above βc, the derivative of the first term in (23) comes into play. We have

ds(mβ)
dβ

=
sinh−4 2β
tanh 2β

m−7
β

1
2

ln
1 − mβ

1 + mβ
. (34)

Expanding the logarithm into a series (see e.g. [BS]), we obtain the follow-

ing bound:

m−1
β

1
2

ln
1 − mβ

1 + mβ
= −1 −

∞∑
n=1

m2n
β

2n + 1
≤ −1. (35)

Hence,
ds(mβ)

dβ
≤ −sinh−4 2β

tanh 2β
m−6

β . (36)

In order to write (33) such that it depends on mβ, we use

(1 − sinh−4 2β) ≤ 8
√

2(β − βc), (37)

which follows from the concavity of the left-hand side (which thus remains

underneath its tangent through βc). Together with the formula (17) for

mβ we have

ln(β − βc) ≥ 8 ln mβ − ln(8
√

2). (38)
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Put all this together for

lim
mβ↘0

dI(Φβ)
dβ

≤ lim
mβ↘0

[
−sinh−4 2β

tanh 2β
m−6

β − 8
π

8 ln mβ + bounded terms
]

= lim
y→∞ y6

[
−
√

2 +
64 ln y

πy6
+

b. T.
y6

]
= −∞, (39)

where we used the substitution y := 1/mβ and sinh−4 2βc/ tanh 2βc =
√

2.

(C) βc < β: For the remaining β domain we only show

I(Φβ) < I(Φβc), β > βc. (40)

Together with Theorem 3.1 this becomes

s(mβ) − h(β) < ln 2 − h(βc), β > βc. (41)

With (18), (19), the entropy at βc is found to be

h(βc) = ln 2 −
√

2βc +
1
π

∫ π
2

0
ln [1 + cosω] dω. (42)

(We used Θ(βc) = 0 from Lemma 3.4 and cosh 2βc =
√

2.) The relation to

be shown, (41), thus becomes

s(mβ) − ln(
√

2 cosh 2β) +
1
π

∫ π
2

0
ln

1 + cos ω

1 +
√

1 − κ2
β sin2 ω

dω

+ 2β tanh 2β + βΘ(β) −
√

2βc < 0, β > βc. (43)

We now start with the observation that the integral in (43) is smaller or

equal to zero since cos ω ≤ √
... and thus the argument of the logarithm is

smaller or equal to 1. It thus suffices to no longer consider this term in the

following. For an additional partitioning of the domain above βc we use

β̄ :=
1
2

arsinh (1 − K4)−
1
4 , K := 2(

√
2βc − 3

2
ln 2). (44)

(C1) βc < β ≤ β̄: If we feed the corresponding terms from Lemma 3.4

into (43), we obtain the following inequality whose proof suffices to prove

(43):

− (1 − sinh−4 2β)
1
4

2
− (1 − sinh−4 2β)

1
2

12

+ 2βc(β − βc) +
sinh 2β − 1

2
log

sinh 2β + 1
sinh 2β − 1

< 0 (45)
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We now show that the sum of the first and last terms of the LHS, as well

as the sum of the two terms in-between them are negative in the required

range βc up to β̄. For first and last term we need Lemma 3.5. Also using

sinh 2β =: 1 + y2 (46)

as well as

sinh 2β̄ < 1 + (1/2)2 (47)

(which can be checked using (44), sinh 2β̄ ≈ 1.18) it is clear that the sum

of first and last terms of the LHS of (45) are smaller zero in the required

range. For the middle terms, by squaring the corresponding inequality we

obtain

4β2
c (β − βc)2 <

1 − sinh−4 2β
144

, βc < β ≤ β̄. (48)

Here, we do the following: At β = βc, both sides are equal to zero. Taking

the second derivatives shows that the LHS is a concave function, the RHS

a convex one. If the inequality holds for the point β̄, it also holds for the

entire interval (βc, β̄]. Using (44) one calculates for β = β̄

4β2
c (β̄ − βc)2 <

K4

144
, (49)

from which we obtain (taking the square root, shifting terms and applying

the hyperbolic sine)

sinh 2β̄ < sinh
[

K2

12βc
+ 2βc

]
= 1.19471... (50)

Putting in the value of sinh β̄ using (44) shows that this relation indeed

holds. Hence (48) holds in the required β range including β̄, and thus (43)

holds.

(C2) β̄ < β: Lemma 3.4 again makes (43) an inequality whose proof

suffices to prove (43):

3
2

ln 2 −
√

2βc − (1 − sinh−4 2β)
1
4

2
< 0, β̄ < β. (51)

the corresponding equality is just solved by β̄, cf. (44). As the LHS is

monotonically decreasing, the inequality holds above β̄. �
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4 Discussion; The Ising chain in a field

What does the maximization of multi-information mean? In our example

we can view multi-information as the difference of two terms: The infor-

mation about the single spin that stems from the whole system, ln 2−h(p)

(information per site) and the information about the single spin that comes

from one single spin only, ln 2 − H0(p0). This information difference can

be seen as the uncertainty about the internal mechanisms of the system in

the sense that information about the subsystems does not imply complete

information about the whole system, see figure 7.

Another measure for internal dependencies is p(XiXj) − p(Xi)p(Xj), the

covariance. In the Ising square lattice its behaviour is very similar to that

of multi-information, see figure 8, see also [Li]. Similarly to entropy, the

plotted correlation functions of nearest and next-nearest neighbours also

diverge logarithmically at the citical temperature [MW]. So the left- and

right-sided derivatives of covariance behave qualitatively the same way as

the ones of multi-information.

Figure 4 fits nicely into the universal picture discussed in [Ar]. Clearly, the

singularity there is due to the phase transition, which is also characterized

by non-analyticity of the free energy. Let us now discuss an example where

no phase transition takes place. There is a complete solution for the Ising

chain in a magnetic field b. Our interaction potential depends on this addi-

tional parameter now. In analogy to (23) we can write down a formula for

multi-information (for entropy and magnetization see e.g. [Pa]) and plot

it for different values of b (figure 9). Without magnetic field the ground

state is described by a unique Gibbs measure that gives equal weight to

both Dirac measures (c.f. also the dotted line in figure 2). The mag-

netization stays zero through all temperatures and multi-information is

completely determined by the entropy of the whole system. For b > 0 the

symmetry is broken, magnetization is positive for finite β. Now there is

competition between the order creating and destroying influences of field
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0

0.346574

0.693147

1 2y 21

log 2 − h

log 2 − s(mβ)

βc/β

log 2

Figure 7: 2d Ising: ln 2−h and ln 2− s(mβ) depending on βc/β. Their difference

is multi-information.

Figure 8: 2d Ising: correlation functions of near neighbours and m2
β (lower curve)

depending on βc/β. The difference between correlation and m2
β is covariance.

(figure taken from [MW].)
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and temperature. Interdependencies in the system are highest if these in-

fluences balance out.

Finally, let us consider the behaviour in the parameter b (figure 10). In the

two-dimensional case a phase transition is known to take place at b = 0. To-

gether with our (“numerically”) observed maximum in the one-dimensional

case, we may conjecture that the multi-information of the square lattice

will show a maximum with a singularity at this point.

0

0.346574

0.693147

2 4x β

b = 0

b = 0.01

b = 0.5

log 2

Figure 9: Graphs of multi-information in the Ising chain for different magnetic

fields
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Figure 10: Multi-information of the Ising chain depending on the magnetic field

for different temperatures

5 Proofs of lemmas and theorems

Let us first state a lemma which will be needed for the proof of Theorem

2.2:

Lemma 5.1: Let p, q be probability measures on (Ω,F). We have

(i) 0 ≤ H(p{0}) ≤ ln |S|,
(ii) H

(
(tp + (1 − t)q){0}

) ≥ tH(p{0}) + (1 − t)H(q{0}) ∀t ∈ [0, 1],

(iii) H(p{0}) is continuous for the weak* topology.

Proof: For (i), (ii) see [CT]. In our case the measures are marginals of

p, q, but (ii) follows immediately from the affinity of the projection of p

onto p{0}, i.e. (tp + (1 − t)q){0} = tp{0} + (1 − t)q{0}.

(iii) follows from the continuity of entropy w.r.t. p{0}, see [Ca]. It remains

to show that the projection π0 of p onto p{0} is continuous, i.e. that from
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pn → p follows

π0(pn) → π0(p). (52)

Continuity for the weak* topology on our topological space Ω means that

pn → p is equivalent to pn(f) → p(f)∀f ∈ C(Ω) (being the space of con-

tinuous functions for the product topology). For f we choose the indicator

function 1{X0=x0} (which is continuous since the inverse images of 1 and 0

are open sets). Now we have

π0(pn)(x0) = pn(X0 = x0) = pn(1{X0=x0}) → p(1{X0=x0}) = π0(p)(x0) ∀x0 ∈ S.

Hence (52) holds. �

Proof of Theorem 2.2: We use the existence of the van-Hove limit,

upper-semicontinuity and affinity of the entropy limΛ↗Zd
1
|Λ|H(pΛ) =:

h(p) ∈ [0, ln |S|] (cf. [Is], these properties follow immediately from the proof

for a more generally defined entropy not requiring finite S) and Lemma 5.1.

Similarly to I(pΛ), we can split I(p) into marginal entropy and entropy:

I(p) = lim
Λ↗Zd

1
|Λ|

[∑
i∈Λ

H(p{i}) − H(pΛ)

]
= lim

Λ↗Zd

1
|Λ|
[|Λ|H(p{0}) − H(pΛ)

]

= H(p{0}) − lim
Λ↗Zd

1
|Λ|H(pΛ) = H(p{0}) − h(p), (53)

where the second equality follows from translation invariance. Since we

have all the desired properties for h(p) and H(p{0}), the theorem follows

immediately. �

Proof of Theorem 2.7: We have to show that the Infimum is always

attained in an extreme point of GI . This follows from compactness and

convexity of GI as well as lower-semicontinuity and concavity of I(p) ac-

cording to Theorem 25.9 in vol. 2 of [Ch]. �

Proof of Theorem 3.1: We show:

(i) I(Φβ) = I(pβ
±),

(ii) I(pβ
±) = s(mβ) − h(β).

Let us begin with (i): According to (15), the pβ
± are the only extreme Gibbs

measures. First we show that I(p) is symmetric around (pβ
− + pβ

+)/2. For
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this we use the measures p = (1 − t)pβ
− + tpβ

+ and p′ = tpβ
− + (1 − t)pβ

+ for

t ∈ [0, 1]. Because of the spin-flip symmetry (16), for Λ ⊂⊂ Z
d we have

H(pΛ) = −
∑

xΛ∈ΩΛ

[tpβ
−(xΛ) + (1 − t)pβ

+(xΛ)] ln [tpβ
−(xΛ) + (1 − t)pβ

+(xΛ)]

= −
∑

xΛ∈ΩΛ

[tpβ
+(−xΛ) + (1 − t)pβ

−(−xΛ)] ln [tpβ
+(−xΛ) + (1 − t)pβ

−(−xΛ)]

= −
∑

xΛ∈ΩΛ

[tpβ
+(xΛ)+(1−t)pβ

−(xΛ)] ln [tpβ
+(xΛ) + (1 − t)pβ

−(xΛ)] = H(p′Λ).

(54)

Taking the limit does not change the above argumentation, so h(p) = h(p′)

and together with (53) we also have I(p) = I(p′). By theorem 2.7 I(Φβ) =

inf
p∈{pβ

−,pβ
+} I(p), because of the above symmetry we have I(pβ

−) = I(pβ
+)

(see figure 3).

(ii): A general relation between expectation and probability of the single

spin is

p(X0) =
∑

x0=±1

p(X0 = x0)x0 = p(X0 = 1) − p(X0 = −1). (55)

Also using
∑

x0=±1 p(x0) = 1, we obtain for the single-spin probability

p(X0 = x0) =
1 + x0p(X0)

2
. (56)

Hence

H0(p
β
±) = −

∑
x0=±1

1 + x0p
β
±(X0)

2
ln

1 + x0p
β
±(X0)

2
= s
(
pβ
+(X0)

)
. (57)

Since s is an even function, both expectation values lead to the same result.

From (53) follows (ii). �

Proof of Lemma 3.4:

Equation (25): Θ(β) is shorthand for

Θ(β) :=
sinh22β − 1

sinh2βcosh2β

⎡
⎣ 2

π

∫ π
2

0

dω√
1 − κ2

βsin2ω
− 1

⎤
⎦ . (58)

1.) βΘ(β) ≤ sinh 2β−1
2 log sinh 2β+1

sinh 2β−1 , Θ(βc) = 0

We start with the contents of the square brackets in (58). Taking the -1
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into the integral, the resulting expression in the integral can be modified

like this:

1 −
√

1 − κ2
β sin2 ω√

1 − κ2
β sin2 ω

≤
1 −
(
1 − κ2

β sin2 ω
)

√
1 − κ2

β sin2 ω
≤ κ2

β sin ω√
1 − κ2

β sin2 ω
. (59)

We can integrate over this (cf. e.g. [BS], bestimmtes Integral #21). We

have ∫ π
2

0

sinω√
1 − κ2 sin2 ω

dω =
1
2κ

ln
1 + κ

1 − κ
, |κ| < 1. (60)

Also using the definition of κβ, cf. (20), we obtain

Θ(β) ≤ sinh2 2β − 1
sinh 2β cosh 2β

2
π

[
sinh 2β
cosh2 2β

ln
1 + κβ

1 − κβ

]
. (61)

Once again we use (20) for

1 + κβ

1 − κβ
=

cosh2 2β + 2 sinh 2β
cosh2 2β − 2 sinh 2β

=
1 + sinh2 2β + 2 sinh 2β
1 + sinh2 2β − 2 sinh 2β

=
(

sinh 2β + 1
sinh 2β − 1

)2

.

(62)

Together with (61) this gives

Θ(β) ≤ sinh2 2β − 1
cosh3 2β

4
π

ln
sinh 2β + 1
sinh 2β − 1

. (63)

For the first statement of the lemma we still have to show that

β
sinh2 2β − 1

cosh3 2β
4
π
≤ sinh 2β − 1

2
. (64)

Using sinh2 2β − 1 = (sinh 2β + 1)(sinh 2β − 1), the inequality becomes

sinh 2β + 1
cosh3 2β

≤ π

8β
. (65)

The LHS can be bounded as follows (note that for β > βc we have sinh 2β >

1):
sinh 2β + 1
cosh3 2β

≤ sinh2 2β + 1
cosh3 2β

=
cosh2 2β
cosh3 2β

≤ 1
1 + (2β)2/2

. (66)

The last relation follows from the series expansion of the hyperbolic co-

sine. Whenever this last expression is smaller than the RHS of (65), the

inequality holds. Thus we have to show

1
1 + (2β)2/2

≤ π

8β
(67)
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or

0 ≤ β2 − 4
π

β +
1
2
, (68)

which is fulfilled for β = 0. Since the corresponding equation has no real

zeroes, the relation also holds for all the other β, and thus (64) is proven.

We still have to show that Θ(βc) = 0. Clearly, Θ(β) ≥ 0 for β ≥ βc.

In part (B1) of the proof of Theorem 3.3 we have moreover shown that

βΘ(β) ≤ (1 − sinh−4 2β)
1
4 /2, given the just proven first statement of the

lemma. Hence we have

0 ≤ Θ(βc) ≤ (1 − sinh−4 2βc)
1
4

2βc
= 0. (69)

2.) Θ(β) ≤ 1/ sinh 2β cosh 2β

We start with the observation that for β ≥ βc the following equation holds:

√
1 − κ2

β =

√
cosh4 2β − 4 sinh2 2β

cosh4 2β

=

√(
sinh2 2β + 1

)2 − 4 sinh2 2β

cosh2 2β
=

sinh2 2β − 1
cosh2 2β

. (70)

Using this equation, (58) becomes

Θ(β) = coth 2β
√

1 − κ2
β

⎡
⎣ 2

π

∫ π
2

0

dω√
1 − κ2

βsin2ω
− 1

⎤
⎦ . (71)

We shift the root into the square brackets and obtain the integrand√
1 − κ2

1 − κ2 sin2 ω
−
√

1 − κ2. (72)

This is a continuous function in ω which has the value zero at ω = 0 and the

value 1 − √
1 − κ2 at ω = π/2. Connecting these two points, one obtains

the diagonal of a rectangle with area (1 −√
1 − κ2)π

2 . In the following we

want to show that the integral can be bounded from above by half of the

area of the described rectangle. For this, we have to show that the part of

the area A of the rectangle above the integrand is greater or equal to the
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part B of the area below the integrand (the integral itself). If this holds,

we have B ≤ (A+B)/2. Instead of comparing A and B, we compare their

respective integrands. We obtain the integrand of A by twice reflecting the

integrand of B: once in the vertical line through π/4, once in the horizontal

line through 1−√
1−κ2

2 . The resulting inequality is

√
1 − κ2

1 − κ2 sin2 ω
−
√

1 − κ2 ≤ 1−
√

1 − κ2−
[√

1 − κ2

1 − κ2 sin2
(

π
2 − ω

) −√1 − κ2

]

= 1 −
√

1 − κ2

1 − κ2 cos2 ω
, (73)

or put differently,⎧⎨
⎩
√

1 − κ2

1 − κ2 sin2 ω
+

√
1 − κ2

1 − κ2 cos2 ω

⎫⎬
⎭ ≤ 1 +

√
1 − κ2. (74)

The expression in curly brackets is symmetric around π/4 because of

cos2 ω = sin2(π/2 − ω). In order to prove the inequality, we just have

to show that the expression is monotonic decreasing up to π/4 (for ω = 0

we have equality). For this we take the derivative of the LHS w.r.t. ω:

d

dω
{} =

κ2

2
sin 2ω

[(
1 − κ2 sin2 ω

)− 3
2 − (1 − κ2 cos2 ω

)− 3
2

]
≤ 0. (75)

The expression is smaller or equal to zero, since because of cos2 ω ≥ sin2 ω

for ω ≤ π/4 the contents of the square brackets is smaller or equal to zero,

while the prefactor stays positive because of sin 2ω ≥ 0 for ω ≤ π/4. Thus

we have shown that B ≤ A, or

∫ π
2

0

⎡
⎣
√

1 − κ2

1 − κ2 sin2 ω
−
√

1 − κ2

⎤
⎦ dω ≤ 1

2

(
1 −
√

1 − κ2
) π

2
. (76)

We continue with (71). With the bound of the integral we obtain

Θ(β) = coth 2β
2
π

∫ π
2

0

⎡
⎣
√√√√ 1 − κ2

β

1 − κ2
β sin2 ω

−
√

1 − κ2
β

⎤
⎦ dω

≤ coth 2β
2
π

1
2

(
1 −
√

1 − κ2
β

) π

2
. (77)
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Again using (70), the last expression becomes

1
2

coth 2β
(

1 − sinh2 2β − 1
cosh2 2β

)
=

1
2

cosh 2β
sinh 2β

cosh2 2β − sinh2 2β + 1
cosh2 2β

=
1

sinh 2β cosh 2β
. (78)

Equation (26):

1.) − ln
(√

2 cosh 2β
)

+ 2β tanh 2β ≤ 2βc(β − βc) +
√

(2)βc − ln 2

We expand the LHS into a Taylor series around βc:

[
2β tanh 2β − ln(

√
2 cosh 2β)

]
β=βc

=

2βc tanh 2βc − ln(
√

2 cosh 2βc) +
4βc

cosh2 2βc

(β − βc)

+
4

cosh2 2βc
[1 − 4βc tanh 2βc]

(β − βc)2

2
+ O

(
(β − βc)3

)
. (79)

As one can see, the second derivative of the LHS is smaller zero for

4β tanh 2β > 1 (which holds for β > βc), so the function stays below

its tangent in βc, and for an upper bound the series can be truncated after

the first term:

2β tanh 2β − ln(
√

2 cosh 2β) ≤
√

2βc − ln 2 + 2βc(β − βc). (80)

(Notice that cosh 2βc =
√

2.)

2.) − ln
(√

2 cosh 2β
)

+ 2β tanh 2β ≤ −β
sinh 2β cosh 2β + ln

√
2

We have the equality

− ln(
√

2 cosh 2β) + 2β tanh 2β = β (2 tanh 2β − 2) + ln
√

2
1 + e−4β

. (81)

(From the definition of cosh 2β we factored out e2β .) Moreover

2 tanh 2β − 2 +
1

sinh 2β cosh 2β
=

(sinh 2β − cosh 2β)2

sinh 2β cosh 2β
=

e−4β

sinh 2β cosh 2β
.

(82)

With these it follows that

− ln(
√

2 cosh 2β) + 2β tanh 2β − β

sinh 2β cosh 2β
≤

β
e−4β

sinh 2β cosh 2β
− ln

[
1 + e−4β

]
+ ln

√
2 ≤ ln

√
2. (83)
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The last relation was obtained using the fact that the sum of the first two

terms does not exceed zero. To show this, we modify the first term as

follows:

β
e−4β

sinh 2β cosh 2β
=

2βe−4β

sinh 4β
≤ 2βe−4β

4β
=

e−4β

2
. (84)

Now we have the inequality

e−4β

2
≤ ln

[
1 + e−4β

]

=
e−4β

2
+

e−4β

2
− e−8β

2
+

∞∑
n=2

[
1

e4β(2n−1)(2n − 1)
− 1

e4β(2n)2n

]
, (85)

since on the RHS the terms behind the first exp(−4β)/2 are pairwise

greater 0 (we expanded ln(1 + x), cf. [BS]). Thus (83) holds.

Equation (27): The function s(x) can be rewritten as follows:

s(x) = −1 + x

2
ln

1 + x

2
− 1 − x

2
ln

1 − x

2

= ln 2 − 1
2

[(1 + x) ln(1 + x) + (1 − x) ln(1 − x)] . (86)

The expression in square brackets is expanded (see again [BS]) and

bounded below:

[ ] = (1 + x)
∞∑

n=1

(−1)n+1 xn

n
− (1 − x)

∞∑
n=1

xn

n

=
∞∑

n=1

[
(−1)n+1 xn

n
− xn

n

]
+ x

∞∑
n=1

[
(−1)n+1 xn

n
+

xn

n

]

= −
∞∑

n=1

x2n

n
+ 2

∞∑
n=1

x2n

2n − 1
=

∞∑
n=1

x2n

2n2 − n
≥ x2 +

x4

6
. (87)

This bound is possible since all the coefficients in the sum are positive.

Together with (17) for mβ we thus obtain

s(mβ) ≤ ln 2 − (1 − sinh−4 2β)
1
4

2
− (1 − sinh−4 2β)

1
2

12
. (88)

�

Proof of Lemma 3.5: In order to show that

(1 − (1 + y2)−4)
1
4

2
>

y2

2
ln

2 + y2

y2
, 0 ≤ y ≤ 1

2
(89)
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we show that the LHS is greater than 3
5y, the RHS is smaller than 3

5y. So

for the RHS we have to show

5
6
y ln

2 + y2

y2
< 1. (90)

We only need y ≤ 1/2. In this case 2 + y2 ≤ 9/4, and thus we also have

5
6
y ln

2 + y2

y2
≤ 5

6
y ln

9
4y2

= −5
3
y ln

2
3
y. (91)

By equating the first derivative to zero we obtain the maximum of the

function −y ln (2y/3) at 3/(2e). Hence

−5
3
y ln

2
3
y ≤ 5

3
3
2e

< 1. (92)

With this, (90) is shown for y ≤ 1/2. For the LHS of (89) one has to prove:

(1 − (1 + y2)−4)
1
4

y
>

6
5
. (93)

The LHS is modified as follows:

= 4

√
(1 + y2)4 − 1
y4(1 + y2)4

=
1

(1 + y2)
4

√
y8 + 4y6 + 6y4 + 4y2

y4
≥

4
√

4y−2

1 + y2
. (94)

Since in the last expression the denominator is monotonically decreasing,

the numerator increasing, for a lower bound it suffices to evaluate the

expression for the greatest y (we again choose y ≤ 1/2):

4
√

4y−2

1 + y2
≥

4

√
4(1

2 )−2

1 + 1
4

=
8
5

>
6
5
, y ≤ 1

2
. (95)

�
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